Study Guide and Reinforcement

Student Edition

blue.msscience.com

The **McGraw·Hill** Companies

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database retrieval system, without prior written permission of the publisher. Send all inquiries to:

Glencoe/McGraw-Hill 8787 Orion Place Columbus, OH 43240

ISBN 0-07-867169-8 Printed in the United States of America 1 2 3 4 5 6 7 8 9 10 045 09 08 07 06 05 04

Table of Contents

Chapter 1: The Nature of Science	1
Chapter 2: Traits and How They Change	5
Chapter 3: Interactions of Human Systems	9
Chapter 4: Interactions of Life	.11
Chapter 5: The Nonliving Environment	.15
Chapter 6: Ecosystems	.19
Chapter 7: Plate Tectonics	.23
Chapter 8: Earthquakes and Volcanoes	.27
Chapter 9: Clues to Earth's Past	.31
Chapter 10: Geologic Time	.35
Chapter 11: The Sun-Earth-Moon System	.39
Chapter 12: The Solar System	.43
Chapter 13: Stars and Galaxies	.47
Chapter 14: Inside the Atom	.51
Chapter 15: The Periodic Table	.53
Chapter 16: Atomic Structure and Chemical Bonds	.57
Chapter 17: Chemical Reactions	.59
Chapter 18: Motion and Momentum	.61
Chapter 19: Force and Newton's Laws	.65
Chapter 20: Work and Simple Machines	.69
Chapter 21: Thermal Energy	.73
Chapter 22: Electricity	.77
Chapter 23: Magnetism	.81
Chapter 24: Waves, Sound, and Light	.83

_____ the scientist reports on the results

What is science?

Directions: *Tell three interesting points about scientific journals and magazines.* **Directions:** *List twelve things that should be included in a science experiment journal.* 8. _____ 9. 10. 11. _____ 6. _____ 12. **Directions:** Explain how early scientists made scientific observations. Use your own experience to explain the problem with that method of observing. **Directions:** *Match the terms below with their definitions.* scientific law technology theory ______ 15. a rule that describes a pattern in nature ______ **16.** an explanation that is supported by facts _____ 17. the application of science for everyday use **Directions:** Number the following events in the order they happen. The first step in the sequence has been numbered for you. 18. _____ using scientific methods the scientist tests the prediction using previous experience and knowledge, the scientist makes a prediction ___1__ a scientist has a problem to solve

other scientists may read about the results and get ideas for their own research

trials

variable

Doing Science

Chapter 1

experiment

Directions: Complete the following sentences using the words below. Some of the words might not be used.

models

	control	metric	bias	hypothesis
е	xperimental research design	Engl	ish	descriptive research
1.	A method of solving scientifi	•	•	tions
2.	A(n) questions by testing a hypoth	nesis through the	is a methouse of a series of ca	od of answering scientific refully controlled steps.
3.	Prior knowledge, new inform	nation, and previo	us observations are	e used to form
	a(n)		·	
4.	A(n)experimental groups except t	hat the variable is	is a samp not applied.	le treated like other
5.	Computertheir work.		help	o modern scientists do
6.	After a hypothesis is developed designed to test the hypothesis			is often
7.	Multiplevalid results.		of an	experiment ensure
8.	Experiments are reliable only time is tested.	if one		at a
9.	The International System of	Units is based on	the	system.
10.	A random sample is one way when choosing people for an			
Dire	ections: Match the SI unit with w	hat it measures by v	vriting the correct lette	er in the space provided.
	11. meter		a. mass	
	12. kilogram		b. volume	
	13. square meter		c. length	
	14. cubic meter		d. area	

knowledge

modernization

hobby

information

Science and Technology

Chapter 1

lifestyle

discoveries

Directions: *Use the words to complete the sentences below. Some of the words may not be used.*

	science	worldwide	globalization
1. Sc	cientific	often challenges old ways	of thinking or doing things.
2. Pe	eople of all races, ages, sexes, cult	tures, and professions prac	tice
3. Sc	ome scientific discoveries have be	een made by people pursui	ng a(n)
	cientificur style of living.	_ are constantly incorporat	ed into products that influence
	hanks to modern information te		out new scientific discoveries is
6. M	lodern technology has led to the	(of new information.
7. W	ctions: Answers the following quest. What is meant by the statement "secisions"?	•	nation that people use to make
_			
8. N	Name three aspects of everyday li	fe that have been greatly cl	nanged by new technologies.
_			

Traits and the Environment

Chapter

Directions: *Use the terms from the word bank to fill in the blanks in the summary statements.*

DNA	gender	sunlight	
environment	hormones	temperature	
genes	selecting	traits	
Eye, hair, and skin color you inherit from	n your parents are cal	led inherited (1)	
Traits result from coded information for	und in (2)	·	
Native Americans developed maize by c	arefully (3)	and breeding wild corn.	
Humans have tens of thousands of (4) _	in the	ir DNA.	
A phenotype is a combination of geneti	c makeup and the effe	cts of the (5)	
External influences of environment on p	phenotype can include	e amounts of (6)	
and (7) Internal influe	nces include (8)	·	
Some species maintain a desired male-fo	emale ratio by having	individuals that change	
(9)			
ment. Explain the environmental factor and ho		•	
11			
12.			
13			
14			
15			

Genetics

Chapter 2

Directions: *Use the clues below to complete the crossword puzzle.*

	1 2	
4	5	
6 7 8		
9 10		
11		

Across

- 1. Mendel's plants
- 4. Passing of traits from parent to offspring
- 5. Famous heredity scientist
- **6.** Alleles that will show their effect on the phenotype when present in the genotype
- 9. Parts of the DNA code on chromosomes
- **10.** Two of the same alleles of this type are needed to produce a trait
- 11. Principle that each parent passes only one allele for a trait to its offspring

Down

- 2. Chart to help predict genetic crosses
- **3.** Science of heredity
- **7.** Parents produce _____.
- 8. Different form of a gene

Environmental Impact over Time

Chapter

Directions: Find the mistakes in the statements below. Rewrite each statement correctly on the lines provided.

1.	Pollution is a living environmental factor that can limit whether a species survives in a habitat.
2.	Predators never limit the number of animals found in an environment.
3.	In Darwin's theory, the theory of evolution by independent assortment, several factors act together over time to make new species.
4.	Over generations, groups in an environment adapt to predators by evolving ways to be detected.
5.	Darwin and Mendel were working separately to determine theories of evolution.
6.	Mapping is the process that changes DNA to form new alleles.
7.	Selective breeding is used in nature to provide change over time.
8.	The production of several species from many ancestral species is called adaptive radiation.
9.	Evidence of selective breeding is found in fossil records.
10.	New species can occur when natural selection favors a useless variation.

The Human Organism

Chapter 3

Directions: Use Table 1 to help you complete the table with seven minerals that can be found in leafy green vegetables.

[Mineral	Во	dy Parts/Syste	ms/Functions Th	at Need It
1.					
2.					
3.					
4.					
5.					
6.					
7.					
Directio	ons: List four processes in				
8			9 .		
10			11		
Directio	ons: List three problems	that may arise if y	you do not get end	ough water daily.	
12		_ 13		14	
Direction of time.	ons: List three body func	tions that will be	affected if you do	not get enough wate	er over long periods
15		_ 16		17	
Directio	ons: Name four types of o	cells and give the	function of each ι	ısing one or two wor	ds.
18			19		
20			21		
Directio	ons: Arrange 6 levels of b	ody organization	n in order from sm	allest to largest.	
Smalle	st				Larges
B	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	12	12.	Fo	\E

How Your Body Works

Chapter

Directions: *Use the words in the list to fill in the blanks.*

	alveoli	enzymes	villi	absorbed
	cellular respiration	carbon dioxi	de	negative feedback
1.	In the process ofand energy is released.		, oxygen co	mbines with food molecules
2.		are proteins th	at help break	down the chemicals in food.
3.	Nutrients are carried through	gh the bloodstream afte	r they are	
		in the small int	estine.	
4.	In the small intestine, nutrie	ents pass through smal	l, fingerlike p	rojections,
	called	·		
5.	Thin-walled sacs in the lung	gs are called		·
6.	Oxygen and	ar	e exchanged i	n the lungs.
7.	The mechanism of		helps the	e body maintain homeostasis.
	ections: Answer the following q Why is excretion an import		ded.	
9.	What are nephrons? What j	ob do kidneys perform	?	
10.	How do rapid breathing, flu	ishing, and sweating he	elp maintain l	nomeostasis?

Living Earth

Chapter

Directions: *Use the information from your textbook to complete the summary chart below.*

	Vocabulary	Definition	Two Real-World Examples
1.	biosphere		a.
			b.
2.	community		a.
			b.
3.	ecology		a.
			b.
4.	ecosystem		a.
			b.
5.	habitat		a.
			b.
6.	organism		a.
			b.
7.	population		a.
			b.
8.	species		a.
			b.

Directions: Describe a part of the biosphere and a particular community, population, and habitat in that ecosystem.

9.	

Populations

Chapter 4

Directions: *Answer the following questions on the lines provided.*

1. How can competition limit a population's growth? 2. How can a limiting factor affect a population's growth? 3. Which has a higher biotic potential, a pumpkin or a peach? 4. If two squirrels live in one square m of a 50 square m park, what is the park's estimated squirrel population? 5. What are some factors that might stop a population's exponential growth? **6.** What is carrying capacity? 7. Give an example of how migration affects population size. **8.** Is it possible for a population with a high birth rate to decrease in size? Explain. 9. Describe how scientists measure wildlife populations such as rabbits.

Class Name Date

Interactions Within Communities

Chapter

Directions: Match the terms in Column II with the definitions in Column I. Write the letter of the correct term in the blank at the left.

Column I		Column II				
1. plant eaters	a. carnivores					
2. consume wastes a	b. consumers					
3. a consumer captu	c. omnivores					
4. use the Sun to ma	d. herbivores					
5. animals that eat o	ther animals	e. predators				
6. eat plants and oth	er animals	f. producers				
7. consumers that ca	pture and eat other consumers	g. decomposers				
8. cannot make their	own energy-rich molecules	h. prey				
Directions: Select the term from t	he following list that matches each example.					
commensalism	mutualism	parasitism				
	9. A clown fish is protected by an anemone's tentacles.					
	10. cyanobacteria, or alga, living in the	e tissues of a fungus				
	11. a roundworm that lives in a puppy	y				
Directions: Label the examples be	elow either habitat or niche.					
12. /	A chameleon changes its colors to blenc	l in with its surroundings.				
13. I	Ducks and amphibians live in or near a	pond.				
14. Birds nest in trees.						
15. A male lion's mane attracts a mate.						
16. \	Your cat's sense of smell helps it find its	way home.				
	Monarch butterflies eat milkweed, maki pecies.	ing them poisonous to other				

____ 18. Woodpeckers use their beaks to pry insects from trees.

Abiotic Factors

Chapter 5

Directions: *Write the correct term on the line in front of its definition.*

abiotic	atmosphere	biotic	climate		
elevation	humus	soil	sunlight		
temperature	timberline	water	wind		
1.	decaying matter found in	ı soil			
2.	2. layer of air that surrounds Earth				
3.	3. the elevation above which trees cannot grow				
4.	4. degree of hotness or coldness measured on a scale				
5.	5. features of environment that are alive or were once alive				
6.	6. inorganic compound needed for life processes				
7.	nonliving, physical featur	res of an environment			
8.	air currents caused by he	at from the Sun that w	rarms the air		
9.	distance above sea level				
10.	energy source for almost	all life on Earth			
11.	average weather conditio	ns in an area over time			
12.	mixture of mineral and r water, air, bacteria, fungi,	-	of dead organisms,		

Directions: *List the six abiotic factors and how each affects the organisms that live in the environment.*

	Abiotic Factor	Effect on Organisms in the Environment
13.		
14.		
15.		
16.		
17.		
18.		

Cycles in Nature

Chapter

Directions: Match the term in Column II with the description in Column I. Write the letter of the correct term in the blank at the left. All terms may not be used.

 photosynthesis is part of this continuous movement gas removed from the air during photosynthesis element that helps plants grow process that changes nitrogen gas into compound plants can use process of water changing from a gas to a liquid nitrogen cycle evaporation water cycle respiration nitrogen 	
 3. element that helps plants grow 4. process that changes nitrogen gas into compound plants can use 5. process of water changing from a gas to a liquid 6. carbon dioxide d. water cycle e. respiration f. nitrogen 	
4. process that changes nitrogen gas into compound plants can use 5. process of water changing from a gas to a liquid f. nitrogen	
plants can use 5. process of water changing from a gas to a liquid f. nitrogen	
plants can use e. respiration f. nitrogen	
6. transfer of nitrogen from air to soil to organism, g. condensation	
and back to air or soil h. carbon cycle	
7. process of water changing from a liquid to a gas i. transpiration	
8. continuous movement of water from Earth's surface to the air, and back to Earth's surface j. nitrogen fixation	
Directions: Match the cause in the first column with the effect in the second column. Write the letter of the correct effect in the blank at the left. An effect may have more than one cause.	
9. water vapor condenses a. soil infertility	
10. fossil fuels burn b. precipitation	
11. forests are cut down c. increase of carbon dioxi	de
12. clouds become large and heavy in the air	
13. nitrogen removed when harvesting crops	
Directions: Answer the following questions on the lines provided. 14. What are the three primary steps of the water cycle?	
15. Explain the importance of nitrogen to living things.	

Energy Flow

Chapter 5

Directions: *Complete the following sentences using the terms listed below.*

	chemosynthesis	producers	en	ergy pyramid	
	consumers	photosynthesis		food web	
1. T	The production of energy-rich fo	od molecules from cher	nicals is called _		_•
2. A	A diagram that shows all the pos	sible feeding, or energy	transfer, relation	onships in a	
С	community is called a(n)	·			
3. A	A food chain begins with	·			
4. _	make υ	ip the second and highe	er steps in a foo	d chain.	
5. A	A diagram that shows the compa	arative amount of energ	gy at each feedin	ng level is called	
a	n(n)				
6. T	The production of energy-rich suga	ar molecules using light e	nergy is called _	·	
then	ections: The steps in the following for using 1 as the producer level. Place a. hawk 8	the number of the step in a	the blank at the le	ft.	
	b. grain	_	_		,,
	c. mouse				
	d. snake		_ d. insects		
	ections: Answer the following quest In the above food chains, what	•	anisms have in o	common?	
	Second-step organisms?				_
12.	Explain why an energy pyramic	l is in the shape of a py	ramid.		
					$\overline{}$

Name Date Class

birds

How Ecosystems Change

drought

fire

Directions: *Use the terms provided to complete the following summary.*

climax community

grasses human		insects	lichens
mammals	mammals mosses organic matter		pioneer species
plants	primary succession	secondary succession	seeds
succession	trees		
Gradual change in the	types of species that live	in an area is called (1)	·
The first species to inhabi	t an area, the (2)	, must be	e able to survive
(3)	, extreme heat and co	ld, and other harsh conditi	ons. These are usually
(4)	The succession that	begins in a place previously	y without plants is
referred to as (5)	As the	first species of (6)	
arrive, and erosion takes ¡	place, the rock begins to	break down into smaller p	pieces. As these organ-
isms die, they add (7)	to	the rock. Plants, such as	
(8)	and ferns grow in the	e new soil. The soil layer th	ickens, and
(9)	, wildflowers, and oth	er plants take over. Eventu	ally, the organic
buildup is enough to supp	port shrubs and (10)	At t	he same time, small
birds, (11)	, and (12)	have	begun to move in.
Occasionally, natural or	r (13)	activity causes a cha	ange in the environ-
ment. These might includ	le (14)	, avalanche, lumber	ing, or construction.
Succession that begins in	a place that already has	soil and was once the hom	e of living organisms
is called (15)	After a fire	e, the bare soil is exposed, b	out it already contains
the (16)	of weeds, grasse	s, and trees. Wind and	
(17)	deposit more seeds	and growth begins very qu	ickly. It may take hun-
dreds or thousands of yea	ers for the community to	become relatively stable a	nd to develop into a
(18)			

Biomes

Chapter 6

Directions: Complete the table below using information in your textbook.

Biome	Climate	Dominant plants	Characteristic animals
1. Tundra			
2. Taiga			
3. Temperate deciduous forest			
4. Temperate rain forest			
5. Tropical rain forest			
6. Desert			
7. Grassland			


Aquatic Ecosystems

Directions: Describe two life zones in the ocean and how organisms are affected by the conditions in each zone.

1.				

2. _____

Directions: *Answer the following questions on the lines provided.*

- **3.** The illustrations above show two types of freshwater ecosystems. Which supports more species and why?
- **4.** What is an estuary and why is it important to marine organisms?
- **5.** Why are wetlands protected in most areas?
- **6.** How do coral reefs form? What makes them vulnerable to environmental stress?

Continental Drift

Chapter

Directions: In the space provided, briefly discuss Pangaea and continental drift and the scientific clues that support Alfred Wegener's theory.

1.	Pangaea:
2	Continental drift:
3	Puzzle-like fit clues:
٥.	Tubbe like it ettes.
4	Fossil clues:
1.	Tossii ciucs.
5	Plant clues:
٠.	
6.	Climate clues:
••	
7	Rock clues:
,.	Tock cides.
8.	New ideas about continental drift developed through advanced technology. One new explana-
	tion for how the continents could drift is

Seafloor Spreading

Chapter 7

Directions: Find the mistakes in the statements below. Rewrite each statement correctly on the lines provided.

1. During the 1940s and 1950s, scientists began using radar on moving ships to map large areas of the ocean floor in detail. 2. The youngest rocks are found far from the mid-ocean ridges. 3. The scientist Henry Hess invented echo-sounding devices for mapping the ocean floor. **4.** As the seafloor spreads apart, hot saltwater moves upward and flows from the cracks. 5. As the new seafloor moves away from the ridge and becomes hotter, it moves upward and forms still higher ridges. **6.** The research ship *Glomar Challenger* was equipped with a drilling rig that records magnetic data. 7. Rocks on the seafloor are much older than many continental rocks. **8.** When plates collide, the denser plate will ride over the less-dense plate. 9. Earth's magnetic field has always run from the north pole to the south pole. 10. The magnetic alignment in rocks on the ocean floor always runs from the north pole to the south pole.

Theory of Plate Tectonics

Chapter

Directions: *Use the following words to fill in the blanks below.*

	astnenospnere	iitnospnere	plate tectonics	
convection		plates		
	The theory ofinto sections.	_ states that Earth's cr	ust and upper mantle are broken	
	These sections, calledupper mantle.	•	•	
	The crust and upper mantle together a Beneath this layer is the plasticlike			
	Scientists suggest that differences in de			
	toward the surface, cool, and sink. This	s cycle is called a	current.	
Di	rections: Four diagrams are shown in the to	able below. Label and des	cribe each diagram in the space provide	a

in order to complete the table.

Diagram	Type of boundary and motion at boundary	Diagram	Type of boundary and motion at boundary
6.		8.	
7.		9.	

Earthquakes

Chapter 8

Directions: *Match the terms from the word bank with the phrases below.*

elastic rebound	magnitude	seismic safe	surface wave
epicenter	Mercalli	seismic wave	S-wave
fault	P-wave	strain	tsunami
focus	Richter		
1	. the point where the m	ovement occurs that causes t	he wave energy to start
2	. the type of earthquak	te wave that does damage to	roads and buildings
3	a type of seismic wave the direction of the w	e that causes particles to vib	rate perpendicular to
4	. surface of a break alo	ng which rocks move	
5	. the snapping back of	rock when it breaks apart	
6	. a consequence of eart	thquakes that occur on the o	ocean floor
7	. point on Earth's surfa	ace above an earthquake's fo	cus
8	the fastest type of seis same direction the wa	smic wave, which causes rockave is moving	k to vibrate in the
9	. a scale of magnitude	that tells how much energy a	an earthquake releases
10	. waves that travel thro	ugh Earth	
11	 a scale that describes geologic and structur 	the intensity of an earthqua al damage it causes	ke by the amount of
12	. something measured the energy of an earth	by the height of lines traced nquake	on a seismograph by
13	 the kind of energy the rock breaks 	at builds up as rock bends as	nd is released when
14	 a description for build earthquake 	dings that can stand up to th	ne vibrations of an
Directions: List three types	of faults and how they for	m.	
15			
16			
17			

Volcanoes

Chapter

Directions: Indicate whether each statement refers to a shield volcano (**sh**), a cinder cone volcano (**cc**), or a composite volcano (cv).

1	. moderate to violent eruptions throwing volcanic ash, cinders, and lava high into the air
2	a. largest type of volcano
3	a relatively small cone of volcanic material formed from tephra
4	sometimes erupts violently, forming a layer of tephra; sometimes a quieter eruption forming a lava layer
5	. forms along subduction zones
6	buildup of basaltic layers, forming a broad volcano with gently sloping sides
7	. forms where magma is being forced up from the extreme depths within Earth, or in areas where Earth's plates are moving apart
8	S. Sunset Crater, near Flagstaff, Arizona
9	. Mount St. Helens, in Washington
10	. a steep-sided mountain composed of alternating layers of lava and tephra

Directions: Match the descriptions in Column II with the items in Column I. Write the letter of the correct description in the blank at the left.

Column I

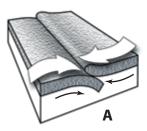
____ 11. pyroclastic flow ____ **12.** mudflows ____ **13.** lava ____ 14. lava rich in silica

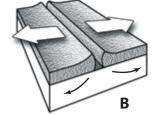
____ 15. lava rich in iron and magnesium

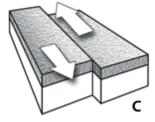
____ **16.** tephra

Column II

- a. magma when it reaches Earth's surface
- **b.** ash, cinders, solidified lava
- **c.** tends to flow easily
- **d.** tends to be thicker and is more resistant to flow
- e. hot, glowing rock flows on cushion of hot gases
- f. often accompany eruptions, and can be brought on by heavy rain


Earthquakes, Volcanoes, and **Plate Tectonics**


Chapter


Directions: *Answer the following questions on the lines provided.*

- 1. Describe the lithosphere.
- 2. What are rifts? What kinds of eruptions would you expect there?
- 3. What happens at a convergent plate boundary? How does this set up conditions that form volcanoes?
- 4. Where do most volcanoes form? How did the Hawaiian Islands form?
- **5.** Where and how do earthquakes form?
- **6.** Describe the convection theory of tectonic plate movement.

Directions: *Use the drawings to identify the types of plate boundaries.*

- 7. transform boundary _____
- 8. convergent boundary _____
- **9.** divergent boundary _____

Date Class Name

Fossils

Chapter

Directions: Write the correct Earth science term from the word bank on the line next to its definition.

carbon films cast	mineral replacement	permineralized remains trace fossils
coal	mold	
fossils	original remains	
1.	thin film of carbon residue forming a organism	a silhouette of the original
2.	soft spaces inside an organism are fill groundwater	ed with minerals from
3.	hard, outer cavity in the rock where f	ossil has been dissolved
4.	fossilized tracks and evidence of activ	vity of organisms
	traces of species that existed on Earth environment, and geologic time	, used to judge climate,
6.	minerals or sediments fill a fossil mo	ld
7.	totally carbonized remains, now used	as fuel source
8.	the replacement of hard and soft par	ts of an organism
9.	remains, imprints, or traces of prehis	toric organisms
10.	entire, complete organism found in a	mber, ice, or natural tar pit
rections: List three require	ements for a fossil to be considered an index	r fossil.
·		
	ngs scientists studying fossils might learn a	bout the environment.
·		

Relative Ages of Rocks

Chapter

Directions: *In the blank at the left, write the term that completes each statement.*

 1. Natural laws govern the way geologists determine the age of rock deposits. This technique is called
2. The principle of states that an older rock layer and things buried in it occur beneath younger layers unless the layers have been disturbed.
3. Some rock layers are incomplete. The gaps are called
4. A common cause of gaps in rock layers is

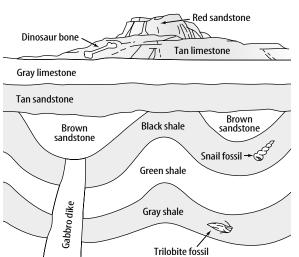

Directions: Look at the cross-sectional view of the rock layers shown in Figure 1. For each question, decide which of the two named materials is older. Assume the layers have not been overturned. Write the name of the older material on the line provided.

Figure 1

- 5. tan sandstone and brown sandstone
 - 6. brown sandstone and gray limestone
 - 7. gabbro dike and brown sandstone
 - 8. gabbro dike and gray shale

9. snail fossil and trilobite fossil

- 10. snail fossil and dinosaur bone
- _ 11. snail fossil and green shale
- 12. dinosaur bone and red sandstone
- _ **13.** red sandstone and gray limestone
- _ **14.** tan limestone and tan sandstone
- 15. tan limestone and gray limestone
- **16.** The type of unconformity shown in Figure 1 is a(n)

Column I

Absolute Ages of Rocks

Chapter

Directions: Match the terms in Column I with their definitions in Column II. Write the letter of the correct phrase in the blank at the left.

Column II

Mullill I	Column 11
1. absolute dating	a. time it takes for half of the atoms in an isotope to decay
2. half-life3. radioactive decay	b. breaking down of a neutron into a proton and an electron
4. radiometric dating	c. principle that Earth processes occurring today are similar to those that occurred in the past
5. uniformitarianism	d. process that uses the properties of atoms in rocks and other objects to determine their ages
	e. calculating the absolute age of a rock by measuring the amounts of parent and daughter materials in a rock and by knowing the half-life of the parent material
irections: Follow the steps below to demo	nstrate the radioactive decay of carbon-14. Then answer the questions
1. Cut a strip of paper 8 cm long. Thin	k of the paper as all of the carbon-14 in an animal when it died.
2. The idea is to show how you find that half-lives of isotopes. Cut the strip	the age of a rock that contains an animal fossil by using the of paper in half.
3. Discard one half of the paper. This below with an X.	s represents the decayed material. Record the cut in Item 6
1. Continue by cutting the second ha	alf of the paper in half. Record the cut below with an X.
5. Continue Steps 3 and 4 until the p cut you make with an X.	paper is so small you cannot make another cut. Record each
6. Number of cuts:	
	you were able (practically) to cut the sample in half?
	, and the control of

8. Each cut represents the half-life of carbon-14. What is the total amount of time represented

9. Multiply the number of cuts by the half-life of carbon-14. What is the total amount of time

10. Could using the half-life of carbon-14 determine when dinosaurs died? Explain.

by each cut?

represented by the cuts?

Class Name Date

Life and Geologic Time

Directions: *Use the following word bank to complete the summary statements below.*

artificial select	tion era	natural selection				
eon	evolution	period				
epoch	geologic time scale	species				
		trilobites				
De	efinition					
1.	theory that species have changed over	r time				
2.	longest geologic time unit; based on	abundance of fossils				
3.	shortest geologic time unit; based on regionally, such as from continent to	•				
4.	time unit based on major, striking, ar fossils present	nd world-wide changes in types of				
5.	division of Earth's history into time ulived only during certain periods; coreons					
6.	theory proposed by Charles Darwin time	to explain how species change over				
7.	breeding of certain species by human	s for desired traits				
8.	time unit characterized by types of li	unit characterized by types of life existing world-wide at the time				
9.	group of organisms that normally report their group	p of organisms that normally reproduces only with other members leir group				
10.	three-segment-bodied organisms use	d as index fossils				
its environment and has a goo	election and then give a real-world example od chance of survival.	of an organism that is well adapted to				
Example:						

Early Earth History

Chapter 10

Directions: List the events and types of organisms below in the order in which they happened or appeared on Earth. The oldest one is Number 1.

			cyanobacteria	fish	invertebrates		
	organisms with hard parts		shielding of Earth from ultraviolet rays				
	Pangaea	reptiles	oxygen i	s major atmo	ospheric gas		
1							
2							
3							
4							
5							
5							
7							
3							
) .							
	•		ccurred in the Precar		Willen occurred in		
			nbrian time?				
2. Why	is so little known a	bout the Precam					
2. Why 3. Whe	is so little known a	bout the Precam	nbrian time?				
2. Why 3. Whe	is so little known a	bout the Precam	oic Era live?				

Class Name Date

Middle and Recent Earth History

Chapter

Directions: Match the descriptions in Column I with the terms in Column II. Write the letter of the correct term in the space provided in the left-hand column.

Column I	Column II
1. seed plants which first appeared in the Paleozoic Era	a. Gondwanaland
2. era of "middle life"	b. mammals
3. most recent period in the Mesozoic Era	c. Australia
4. oldest period in the Mesozoic Era	d. Laurasia
5. northern part of Pangaea	e. Cretaceous
6. southern part of Pangaea	f. gymnosperms
7. fast-moving dinosaur	g. angiosperms
8. dinosaur thought to nurture hatchlings	h. Mesozoic
9. winged animal resembling both dinosaurs and birds	i. Quaternary
	j. Maiasaura
10. milk-producing animals; first appeared in the Triassic Period	k. Triassic
11. flowering plants	l. Cenozoic
12. most recent era	m. marsupials
13. most recent period in the Cenozoic Era	n. tyrannosaurs
14. climate change that allowed flowering plants to increase	o. cooling
15. where most marsupials live	p. Archaeopteryx
16. animals with pouches	q. Gallimimus
Directions: Complete the following statements.	
17. The bones of cold-blooded animals have	·
18. The bones of dinosaurs resemble those ofl	olooded animals.
19. Some dinosaurs may have their young.	

Earth

Chapter

Directions: Complete the following statements. Write the correct word on the blank provided.

	axis	rotates	elliptical		
	seasons	equinox	spherical		
	revolves	revolves solstice mag			
1.	Earth is	in shape, with a slight bul	ge at the equator.		
2.	The day when the Sun reaches	s the greatest distance north of	r south of the equator is the		
3.	Earth turns on its	once every 24 h			
4.	Earth	_ around the Sun in a(n)	orbit.		
5.	When the Sun is directly above	ve Earth's equator, we refer to i	t as the		
6.	Earth is tilted on its axis at a 2	23.5-degree angle creating a sh	ort period of climate change		
	commonly called	·			
7.	Scientists hypothesize that the	e movement of material inside	Earth's core and Earth's rotation		
	generate a(n)	·			
8.	Earth	_, creating day and night.			
Dire	ections: Define the terms revolve	and rotate in your own words and	give an example of each.		
9.	Revolve:				
	Example:				
10.	Rotate:				
	Example:				
the	hours of sunlight and angle of direc	t rays at different times of the year	fer to Figure 3 and your text to discuss c.)		
11.					

The Moon—Earth's Satellite

Chapter 11

Directions: *Identify each phase of the Moon in Figure 1 by writing its name on the line beneath the phase shown. Then answer the following questions on the lines provided.*

Figure 1

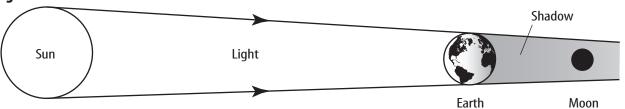
1.

2.

3. _

4.

_____ 5. What phase occurs between the full moon and the third quarter?


6. What phase occurs between the third quarter and the new moon?

7. What phase occurs between the new moon and the first quarter?

8. What phase occurs between the first quarter and the full moon?

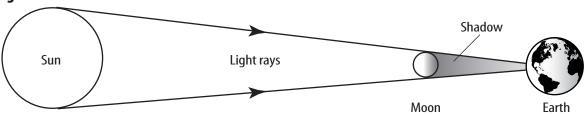

Directions: *Identify Figures 2 and 3 as either a* **total lunar eclipse** *or* **total solar eclipse**. *Then on the lines below, explain why each type of eclipse happens and who would be able to see the eclipse.*

Figure 2

9. _____

Figure 3

10. _____

11. Figure 2: _____

12. Figure 3: _____

Exploring Earth's Moon

Chapter

Directions: *Complete the following sentences using the terms listed below.*

	crust lunar shadow thin					
	basin	minerals	water	surface		
		ice	core			
1.	Information from (Clementine helped scientist	s measure the thickness of	of the Moon's		
2.		abled scientists to confirm	that the moon has an iro	on-rich		
3.	Hydrogen is one of	the elements that make up)	_·		
4.	The South Pole-Ait surface of the Moor	ken Basin is an impact crat 1.	ter, or impact	, on the		
5.	The Clementine spa	cecraft was placed in	orbi	t.		
6.	Throughout the Mo	oon's rotation, most of the	South Pole-Aitken Basin	stays in		
7.	Clementine also too	k photographs for use in r	naking a map of the Moo	on's		
8.	Some scientists theo the Moon's poles.	orize that	may exist in the	floors of the craters at		
9.	Data show that the M	Moon's crust is	on the side of	the Moon facing Earth.		
10.	Another kind of inf	formation collected by Cler	mentine indicates what ki	nds of		
		make up Moon rock	S.			
Dire	ections: Answer the fo	llowing questions on the lines	provided.			
11.	Why might the Sou	th Pole-Aitken Basin be a ş	good place for a solar-po	wered Moon colony?		
12.	Where did the space	ecraft <i>Clementine</i> get its na	ıme?			

The Solar System

Chapter

Directions: List the historical models and astronomical ideas of the solar system by completing the study chart below.

	Model	Supporter of the Model	Key Ideas
1.	(also known as the geocentric model)	early Greek astronomers	
2a.			Moon revolved around Earth, all planets revolved around the Sun in circular orbits
2b.	(also known as the heliocentric model)	Johannes Kepler	
3.	Modern View of Solar System	current understanding	

Directions: List the planets of our solar system in order. (Hint: refer to Figure 1 in the text for additional help.)

Sun	/'n	$/\dot{\alpha}$	$/\dot{\mathbf{v}}$	\ `	$/\dot{\mathbf{v}}$	\ . 9	15	1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
							\.	\.	/•
		\						\	\

Directions: Describe the four steps that help explain how the solar system may have formed. (Hint: refer to Figure 3 in the text for additional help.)

13.	
15	
13.	
16.	

The Inner Planets

Chapter

Directions: Write the names of the inner planets as headings in the chart in the order of their position from the Sun. Then fill in the chart using information from your textbook.

	1.	2.	3.	4.
Size and composition	5.	6.	7.	8.
Atmosphere	9.	10.	11.	12.
Temperatures	13.	14.	15.	16.
Surface features	17.	18.	19.	20.
Moons (number/ names)			21.	22.
Space probes	23.	24.		25.

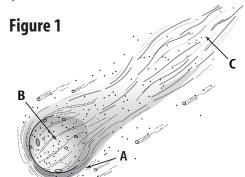
The Outer Planets

Chapter 12

Directions: List the outer planets across the top of the chart in the order of their usual position from the Sun. Then fill in the chart using information from your textbook.

	1.	2.	3.	4.	5.
	(Fifth from)		(Seventh from Sun		
Size and Composition	6.	7.	8.	9.	10.
Atmosphere	11.	12.	13.	14.	15.
Below the Atmosphere	16.	17.	18.	19.	20.
Notable Features	21.	22.	23.	24.	25.
Moons (number/ names)	26.	27.	28.	29.	30.
Space Probes	31.	32.	33.	34.	

Other Objects in the Solar System


Chapter 12

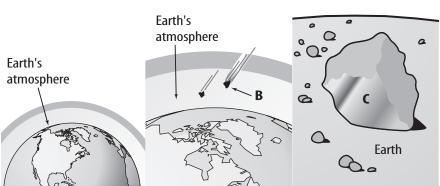
Directions: Answer the following questions on the lines provided.

- 1. What is the Oort Cloud, and where is it located?
- 2. What is an asteroid, and where are most asteroids located?

Directions: *Identify Figure 1 and its parts, then answer the question that follows.*

- **3.** Figure 1: _____
 - A. _____
 - C.

4. How does a comet begin and end?


Directions: *Identify the parts of Figure 2, then answer the question that follows.*

5. A. ____

C. ____

- B. _____
- Figure 2

6. What two space objects produce meteorites?

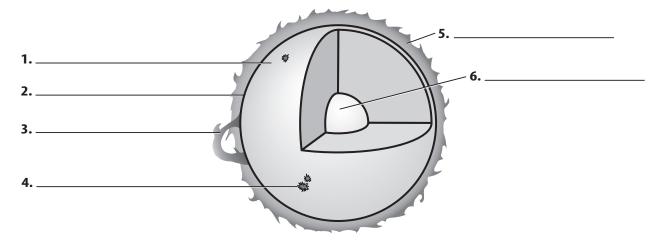
Stars

Chapter 13

Directions: *Use the vocabulary terms to complete the summary paragraph about stars.*

24 hours 88 constellations absolute magnitude apparent magnitude atmosphere chemical elements circumpolar constellations constellation light-year parallax

Polaris
Proxima Centauri
spectroscope
stars
temperature


Modern a	astronomy has divided the sky into (1)	A
(2)	is defined as a pattern of stars in the	sky that looks like a familiar object.
However, th	ne (3) in the constellation have	ve no relationship to each other in
space—som	ne may be close, and some light-years away. The North	n Star, also called
(4)	, is positioned almost directly over Ea	orth's north pole. Some constella-
tions can be	e viewed all year round near Earth's poles. (5)	appear to rotate
above the p	oole one full circle in the sky every (6)	as Earth rotates on its axis.
Scientists m	neasure the brightness of stars to determine a star's ago	e and chemical makeup. They are
able to mea	sure the actual amount of light the star gives off, calle	d (7), as
well as the a	amount of light received on Earth, called (8)	The distance a
star is from	Earth can be measured by studying the apparent shif	in position of the star when
viewed fron	n two different positions—referred to as (9)	The nearer the
object is to	the observer, the greater the apparent shift in position	. Scientists are able to measure the
distances be	etween Earth and stars such as (10)	which is 4.3 light-years away
and is the cl	losest star to Earth, excluding the Sun. A (11)	is the distance
light travels	s in one year. Astronomers are also interested in the co	lor of a star, as it indicates the
(12)	and age of a star. When attached to	a telescope, a
(13)	acts like a prism and spreads light o	out into a band of colors called a
spectrum. A	As light from the star passes out of the star's atmosphe	re, (14) in
the star's at	mosphere absorb specific wavelengths of light, produc	ing a unique pattern of dark lines.
These patter	erns of lines can be used to identify which chemical ele	ments are in the star's
(15)		

The Sun

Chapter

Directions: The diagram shows interior and outer features of the Sun. Write the name of each feature on the lines provided in the diagram.

Directions: Answer the questions in complete sentences.

- 7. How can the Sun be classified?
- **8.** How is the energy of the Sun produced?
- **9.** How does our Sun differ from most other main sequence stars?
- **10.** How do CMEs (coronal mass ejections) affect Earth?
- 11. How are sunspots related to prominences and solar flares?

Evolution of Stars

Chapter 13

Directions: Circle the term in the puzzle that fits each clue. Then write the term on the line. In the puzzle, the terms read across or down.

Ε	ı	В	L	Α	С	K	Н	0	L	Ε	Ν	S
Н	Ν	Ε	U	Т	R	0	Ν	S	Т	Α	R	Т
R	M	Α	1	Ν	S	Ε	Q	U	Е	Ν	С	Ε
D	С	Е	1	Ε	Ν	Р	R	Р	0	Р	0	G
I	0	S	Е	В	L	U	Е	Ε	D	Т	Н	-1
Α	L	Α	Т	U	M	Α	S	R	S	С	Α	Α
G	Ο	Υ	Ε	L	L	0	W	G	Ν	В	Ε	Ν
R	R	С	0	Α	Ν	٧	Ε	I	R	Т	Ε	Т
Α	W	Н	1	Т	Е	D	W	Α	R	F	D	-1
M	Ν	Т	S	U	Р	Ε	R	Ν	0	٧	Α	0
Ε	Ν	F	U	S	I	0	Ν	Т	Ε	R	G	Υ

- 1. A ______ is a large cloud of dust and gas that becomes a star.
- **2.** A graph that shows the relationship between a star's absolute magnitude and temperature is an ______.
- **3.** A star that is a _____ has exhausted its supply of hydrogen.
- **4.** The ______ of atoms powers the Sun and other stars.
- **5.** The temperature and brightness of stars are indicated by their ______.
- **6.** About 90 percent of the stars, including our Sun, are _____ stars.
- 7. A ______ is produced when the outer core of a star explodes after the core collapses.
- **8.** The hottest, brightest stars are _____ and white.
- 9. Medium hot and bright stars like our Sun are ______ in color.
- **10.** When a star has no fuel left and its outer layers escape into space, it is a ______.
- 11. As heavier elements are formed by fusion, a massive star expands into a ______.
- 11. As heavier elements are formed by fusion, a massive star expands into a _____
- 12. When a collapsed core becomes so dense only neutrons can exist there, a
 - _____ is formed.
- 13. A ______ is so dense that nothing, including light, can escape its gravity field.14. Write the remaining letters in the puzzle in the order in which they appear to reveal a famous

scientist's theory.

one trillion

Andromeda

Local Group

Milky Way

Galaxies and the Universe

galaxy

Chapter

cluster

Directions: *Use the terms below to complete the following sentences.*

Steady state theory

	Doppler shift Big Bar	ng theory	irregular	spiral
	elliptical	Clouds of Magel	lan	Oscillating model
1.	The two types of		galaxies	are barred and normal.
2.	A	is a group o	of galaxies.	
3.	smaller and less common than o	galaxies have sother types of galaxies	many differe es.	nt shapes and are usually
4.	An elliptical galaxy about 2.9 mi	illion light-years awa	ay is in the co	onstellation
	of	·		
5.	Galaxies shaped like footballs are	e		galaxies.
6.	Two irregular galaxies called the			orbit the Milky Way.
7.	Aby gravity.	is a large gr	oup of stars,	gas, and dust held together
8.	The the universe.	is an exp	planation for	the formation of
9.	The solar system in which we liv	e is in the		Galaxy.
10.	The Milky Way Galaxy may cont	tain		
11.	The Andromeda Galaxy is a mer	mber of the		·
12.	Thestars and galaxies.	causes ch	anges in the	light coming from distant
13.	One model of the origin of the uproposes that the universe was a			, which
	Another model of the origin of which believes that the universe			

Class Name Date

Models of the Atom

Chapter

Directions: *Match the terms in the word bank with the descriptions below.*

alpha particle	electrode	matter	waves
anode	electron	element	neutron
cathode	electron cloud	gold foil experiment	
	1. led to the developmen	t of the idea of an atomic	nucleus
	2. a particle that does no	t respond to magnets	
	3. cathode ray		
	4. a way to understand u	npredictable electrons	
	5. the kind of particle Ru	therford used to shoot th	rough gold foil
	6. matter made of atoms	of only one kind	
	7. where electrons travel		
	8. a piece of metal that ca	an conduct electricity	
	9. an electrode with a po	sitive charge	
1	0. an electrode with a neg	gative charge	
1	1. what a chemist studies		
	following events in the develop as been numbered for you.	oment of atomic theory in the	order they happened. The
12 Veering al	pha particles led Rutherfo	rd to think up the idea of	a nucleus.
Bohr prov	ved that electrons might be	e in energy levels.	
	osophers believed that the nd they named these parti		articles that could not be
Neutrons	were discovered.		
Thomson	proved that the rays in Ci	ooke's tube were affected	by a magnet.
Directions: List Dalt	on's four ideas about matter.		
	on s tour facus about matter.		
13			

The Nucleus

Chapter 14

Directions: Answer the following questions on the lines provided.

1. What does the atomic number of an element refer to?

2.	Define isotopes.
3.	What is the strong nuclear force?
	Name two types of transmutations.
	Explain what happens during transmutation.
6.	What is radioactive decay?
7.	Describe an alpha particle.
8.	Describe a beta particle.
9.	What is meant by the half-life of a radioactive isotope?
10.	Why are nuclear waste products a problem?
11.	Why are tracer elements important?
Dire	ections: Identify each statement as true or false. Rewrite the false statements to make them correct.
12.	Radioactive isotopes used for medical purposes should have long half-lives.
13.	Scientists can use particle accelerators to create new elements.
14.	Archaeologists can estimate the age of any ancient artifact with carbon dating.
15.	The half-life of a radioactive isotope decreases as the isotope decays.

Introduction to the **Periodic Table**

Directions: *Match the terms from the word bank with the descriptions below.*

7	atomic mass	Mendeleev	Mt
17	Au	mercury	nonmetals
18	copper, tin, and iron	boron	periodic
55	gold and silver	metals	representative elements
	group	Moseley	transition elements
	1. a man who accur and germanium	rately predicted the proj	perties of gallium, scandium,
	2. the number of co	olumns in the periodic t	rable
	3. a man who arran	ged the elements accord	ding to their atomic number
	4. elements in grou	ps 3-12	
	5. the number of el	ements named by 1830	
	6. a brittle element	that conducts electricit	y
	7. metals for weapo	ns	
	8. a metal named for	or the shining dawn	
	9. the number of no	onmetals	
	10. the group of elem	nents that contains thos	se that are most important for
	11. a group that incl	udes metals, metalloids	, and nonmetals
	12. the property of a	toms first used to arran	ge them into a periodic table
	13. a metal named for	or scientist Lise Meitner	
	14. a metal that is no	ot a solid	
	15. a pattern that rep	peats over and over is th	iis
	16. elements that are electricity	reflective, ductile, mall	eable, and conducts heat and
	17. metals for jewelr	y	
	18. the number of ro	ows, or periods, in the n	nodern periodic table
	19. elements that sha	are this have similar che	mical properties

Representative Elements

Chapter 15

Directions: In the sentences below, a code letter has been substituted for each letter of the alphabet. To find out what the sentences say, use the following key to decode them. In the key, the code letters are shown directly below the alphabet letter they stand for. Write the correct letter above each code letter, then read the sentences aloud.

A	B C D E F C	G H I J K L M N	O P Q R S T U	V W X Y Z B O H S J
C	F K L P T Z	G H I J K L M N X A V M O D R Z	I U E G W N Y	B Q H S J
1.	XGIYU	1 PDPRPZNW	C G P	K C D D P L
		C D O C D V		
2.	XGIYU	PDPRPZNW	C G P	K C D D P L
2	N A P		P C G N A	
3.	PHKPUN	1 2		
4	C Z L		WIDVL	
т.		INAPG		
	KIZNCVZ	RPNCDW,	ZIZRPNCDW	CZL
	R P N C D D I V L			
Dii	rections: Answer the fo	ollowing questions on the lines p	rovided.	
5.	Diamonds and graph	nite are two forms of what n	onmetal?	
6.	What is ammonia m	ade of and what are some of	f its uses?	
7.	Why is ozone an imp	portant form of oxygen?		
8.	What do halogens al	l have in common?		
9.	What do the noble g	ases have in common?		

Transition Elements

Chapter

Directions: *Complete the following sentences using the correct terms.*

1.	All transition elements are	·
2.	The iron triad are elements th	at have properties.
3.	Many of the heavy metals are	to living things.
4.	has t	he highest melting point of any metal.
5.	has	he lowest melting point of any metal.
6.	The not combine easily with other	group are often used for electrodes or catalysts because they do elements.
7.	Another name for	is the rare earths.
8.	The	are soft metals that can be cut with a knife.
9.	All of the actinides are	·
10.	All but three of the actinides a	re
	ections: Match the use in the second eprovided.	nd column to the element in the first column. Write the correct letter in the
Ele	ment	Use
	11. iron	a. filament of lightbulbs
	12. silver	b. electrodes
	13. mercury	c. used as a fuel in nuclear power plants
	14. chromium	d. principal ingredient in misch metal
	15. americium	e. used to kill cancer cells
	16. tungsten	f. a necessary part of hemoglobin
	17. platinum	g. thermometers
	18. californium	h. brightly colored paint
	19. plutonium	i. fill cavities
	20. cerium	j. smoke detectors

Why do atoms combine?

Chapter

Directions: *Match the term from the word bank with each phrase below.*

	electron dot diagram	fourth halogens	nucleus proton				
charged chemical bond	empty space	neutral	stable				
down	first	noble gases	up				
	1. the energy level that can	hold only 2 electrons					
	2. what an atom will be if it	has a different number of	of protons and electro				
	3. the energy level that can l	energy level that can hold 32 electrons					
	4. what an atom may be if it	t an atom may be if it has a different number of protons and electrons					
	5. the group that needs one	group that needs one more electron to fill its outer energy level					
	6. an area of space around t	area of space around the nucleus where electrons are likely to be group that has one electron in its outer level					
	7. the group that has one ele						
	8. the area where protons as	e area where protons and neutrons can be found e force that holds atoms together					
	9. the force that holds atom						
	10. the most stable group on	the periodic table					
	11. what makes up most of a	in atom					
	12. the particle that must be neutral atom	present in the same nur	mber as electrons in a				
	13. the reactivities of alkali n group	netals increase as you go	this direction in the				
	14. the reactivities of noble g group	gases increase as you go	this direction in the				
	15. a handy way to represent	the outer electrons of a	n atom				
	16. atoms join with each oth	er to become more like	this				

electrons

molecules

random

How Elements Bond

positive

gaining

regular

Chapter 16

covalent

negative

ionic

Directions: Correctly complete the following paragraphs using terms from the list below. Some terms may not be used, and some terms may be used more than once.

neutral

losing

protons

gains

nonpolar	ions	loses	polar	sharing
Elements in Grou	ıp 1 become more	stable by 1	an	electron. These
elements form 2		ions because the	ey have more 3.	
than 4.	Chl	orine readily 5.	;	an electron, forming
a 6.	ion. The	e attraction between s	odium ions and chl	orine ions forms
7	bonds. In	sodium chloride, the	ions are lined up in	a
8	pattern.			
Unlike sodium a	nd chlorine, some	atoms become more	e stable by sharing	
9	, forming	10	rather than	n charged
11	The bo	nds in a molecule of	oxygen are 12.	
13	bonds,	while the bonds in a	molecule of water a	re
14	15		bonds.	
Directions: Next to e	ach formula, write tl	ne number of atoms of e	ach element found in o	ne unit of the compound.
16. potassium iodi	de, KI			
17. sodium sulfide	, Na ₂ S			
18. silicon dioxide,	SiO ₂			
19. carbonic acid.	H _s CO _s			

Directions: *Complete the following activity.*

20. Hydrogen combines with sulfur much like hydrogen combines with oxygen. Draw an electron dot diagram showing hydrogen combined with sulfur and write the chemical formula below.

Class Name Date

Chemical Formulas and Equations

Directions: Use the terms from the word bank to fill in the blanks in front of the correct phrases below.

balanced		endothermic	products					
bubbles		exothermic	reactants					
chemical react	tion	iron oxide	silver sulfide					
conservation of	mass	precipitate	subscripts					
1.	substances	that are about to take par	t in a chemical reaction					
2.	the number	rs in a chemical formula t	hat tell you the ratio of atoms in a					
3.		oisier devised, that says thuring a reaction	nat matter is neither created nor					
4.	tarnish on	silver						
5.		all a chemical equation wheach type of atom on both	nen it is written with the same					
6 .	the process	e process of changing some substances into other substances						
7.		hat releases heat to its sur de of the equation.	roundings. Energy appears on the					
8.	a sign that	a gas has been produced						
9.	rust							
10.	the substan	ces that are formed by a	chemical reaction					
11.	a reaction t equation.	hat absorbs heat. Energy	appears on the left side of the					
12.	a solid forn	ned in a reaction by mixing	ng two solutions					
Directions: List four ways yo	ou can detect o	a chemical reaction.						
13								
14								
15								
16								

Rates of Chemical Reactions

Class

Directions: *Use the clues to complete the puzzle.*

			2									
3		4				5		6				
			7							8		
				9								
	10											
				11								

Across

- 2. It speeds up a reaction but is not permanently changed
- **3.** It slows down a chemical reaction
- 7. The minimum amount of energy needed to start any reaction (2 words)
- chemical reaction (2 words)
- 10. Increasing this speeds up most chemical reactions
- 11. Enzymes that break down proteins

9. By decreasing this, you can speed up a

Down

- 1. Amount of substance present in a certain volume
- **4.** They are broken before a chemical reaction takes place
- **5.** Measure of how fast a reaction occurs (two words)
- **6.** These must be strong in order to cause a chemical change to take place
- **8.** Catalysts at work in the body

What is motion?

Chapter 18

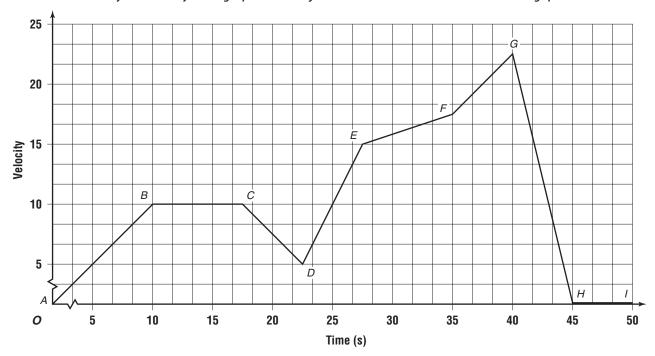
Directions: *Fill in the chart using information from the chapter.*

	Term	Definition	Includes Direction?
1.	distance		
2.	displacement		
3.	average speed		
4.	instantaneous speed		
5.	velocity		

Directions	: List three ways the velocity of a car can change.
6	
Directions	: Explain how the speed of an object is changing if the line representing the object's motion on a me graph becomes steeper.
9	
Directions	Explain how the displacement of an object could be zero while the distance the object travels is 150 m.
10	

Acceleration

Chapter 18


Directions: In the space provided, substitute a word for the word in italics to make the statement correct.

- ______ 1. *Velocity* is a change in an object's motion.
 - 2. Acceleration is the rate of change of velocity with *distance*.
 - **3.** When an object slows down, it has *no* acceleration.

Directions: *Answer the following questions on the lines provided.*

- **4.** A merry-go-round horse travels at a constant speed. Is it accelerating? Explain.
- **5.** What is the unit for speed? For acceleration?
- **6.** If an object has an acceleration of -3 m/s^2 , describe its motion.

Directions: *Study the velocity-time graph for an object in motion. Then answer the following questions.*

- 7. In what interval does the object have the fastest acceleration?
- **8.** Over what interval(s) does the object have a negative acceleration?
- **9.** Over what interval is the object stopped?

Momentum

Chapter 18

Directions: In question 1, below, a code letter has been substituted for every letter of the alphabet. To find out what the sentence says, use the following key to decode it. In the key, the code letters are shown directly below the letters they stand for. Write the correct letter above each code letter, then read the sentence.

A	В	C	D	E	F	G	Н	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
L	V	Y	Q	G	Z	M	Ο	В	P	F	S	R	J	D	T	E	N	I	Н	X	C	K	M	A	U
1.			_				_																		
	Н	O G		Н	DF	ILS	3	R	D R	(G)	Н	X R	Γ	Z	Ι) V	P G	ΥH	ΙΙ	Н	[0]	LΗ			
	ΥI	O S	SB	Q G	r	K	ВН	О	-	G I	_Y()	D	ΗО	G 1	1	Q]	D G	Ι	JΙ	ЭН	Y	OI	JN	A C

2. What is the law that is stated above?

Directions: Correctly complete each sentence by underlining the best of the three choices in parentheses.

- 3. A feather floating in the air has (more, less, the same) momentum as a bowling ball on a shelf.
- 4. The momentum of an object depends on its mass and (velocity, acceleration, inertia).
- 5. The tendency for an object to resist change in its motion, is its (momentum, inertia, weight).
- **6.** We say that momentum is conserved, yet objects slow down after collisions. This is because of (inertia, friction, mass).

Directions: *Answer the following questions on the lines provided.*

- **7.** A 500 g model train car traveling at 0.8 m/s collides with a 300 g stationary car. The cars hook up and move off down the track together. How fast are they going?
- **8.** Which has a greater momentum, a car or a bike moving at the same speed?
- 9. What happens when two objects with the same mass collide?

Newton's First Law

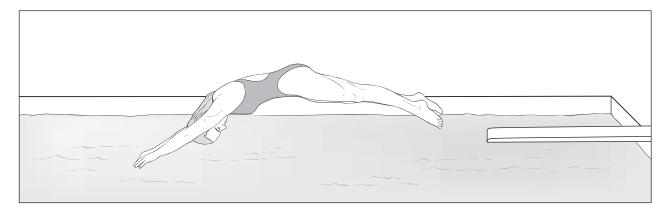
Chapter 19

Directions: *Use the terms from the word bank to fill in the blanks in front of the correct phrases below.*

balanced	l	net force	static	
force	N	Newton's first	sliding	
friction		rolling	unbalance	d
1	the force that bri		ng to a stop, also usefu	ıl for moun-
2	• the type of friction static friction	on that acts on a rol	lling wheel, easier to o	vercome than
3	. the combination	of all forces acting	on an object	
4	the law that descriptorces	ribes the motion of	objects that experience	e balanced
5	. the forces acting	on an object whose	e motion is not	
6	• the type of friction object	on that you have to	overcome to push a st	ationary
7	. the type of frictio	n acting on surfaces	sliding on each other	
8	. a push or pull			
9	. the forces that ca	use the motion of a	an object to change	
Directions: Unscramble the helped Isaac Newton to under			h that explains how Galile	eo Galilei's ideas
Galileo realized that a	n object could be in	n motion even if the	e (10)	
(ecsfro) acting on it were	e (11)	(aaebcd	ln). In real life,	
(12)	(cinotfri) is th	ne force that (13)		_(lswso)
objects down and causes	them to (14)		_ (sptso). Newton's	
(15)	(srift) law of n	notion described ho	w forces cause the mot	ion of objects
to (16)	(aehncg): A	n object at rest rema	ains at rest and an obje	ct in motion
continues to move in a (1	7)	(gsahitr) li	ne with constant	
(18)	(pedes) if the	net force acting on i	t is (19)	
(ozer).				

Newton's Second Law

Chapter


Directions: Select the term from the following list that matches each description. Some terms will not be used.

a. 16 N

- **b.** -16 N
- **c.** gravity
- **d.** F = ma
- **e.** $a = \frac{F}{m}$
- f. normal forces
- g. air resistance
- **h.** $F = m(\frac{9.8 \text{ m}}{\text{s}^2})$

- j. Newton's second law of motion
- k. terminal velocity
- 1. Newton's first law of motion
- 1. acts against the direction of motion and gets larger as an object moves faster
- **2.** Force is equal to mass times acceleration.
 - **3.** An object acted upon by a net force will accelerate in the direction of that force.
- 4. the gravitational force on any object near Earth's surface
- **5.** the outward forces exerted by a surface
 - **6.** the speed an object reaches when the force of gravity is balanced by the force of air resistance
- 7. What force must be applied to a 60-kg object to make it accelerate at 10 m/s²?

Directions: Study the illustration of the diver. Then identify each statement as **true** or **false**. If the statement is false, change the word(s) in italics to make it true.

- **8.** After the diver jumps forward from the diving board, the force of gravity will accelerate the diver *parallel* to the direction of motion.
 - **9.** When the diver hits the water, the force of the water against her body can stop it about *five times faster* than the pull of gravity that accelerated it.
 - 10. If the diver doesn't have the correct form when she enters the water, the force of the water can *accelerate* her speed.
 - 11. Air resistance prevents the diver from moving in a straight line once she jumps from the platform.

Example

Newton's Third Law

Chapter 19

Reaction force

Directions: Complete the table by naming the action and reaction forces in the following examples.

Action force

1. A flying bird		
2. Two bumper cars collide		
3. Holding your hand out the window of a moving car		
4. Walking		
5. Touching your finger to your nose		
Directions: <i>Complete the following</i> 6. Newton's third law states,	•	t terms or phrases. s an equal but"
7. There is no	in time betwe	en the action and the reaction.
8. One reason it's often easy to of one of the objects.	miss an action-reaction pa	air is because of the
9. Action-reaction forces are	always the same	but are in
opposite	·	
10. When you swim in water,	your arms push the water	r The water
reacts by pushing	on your	arms, causing your body to
accelerate	·	
Directions: Answer the following	a question usina complete cen	toncos
11. How could the action for		
11. How could the action for	te of a canoe moving time	rugh water be increased:

Work and Power

Directions: Give an example of how you could apply a force to do work. Describe the necessary condition for the force to do work.

1	
	ons: Give an example of how you could apply a force and not do work. Explain why the applied force is ng work.
2	

Directions: *Write formulas to fill in the following chart.*

	Write a Formula to Calculate	Data That Is Needed	Formula
3.	Work		
4.	Power		

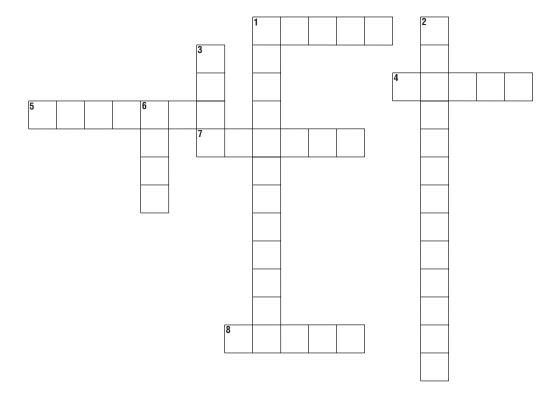
Directions: Decide what each situation describes and write the term in the blank. You may use terms from the bank more than once or not at all.

distance	force	kinetic energy	power
energy	heat	potential energy	work
	5. what is done when a	baseball is lifted 0.7 m	
	6. the form of energy years	ou give a chair by pushing it a	cross the floor
	7. the form of energy a library shelf	book has that decreases as it t	rumbles from a
	8. what a dog did as he	pushed his food bowl across th	e room with his nose
	9. measured in newtons	S	
1	0. something that can r	not be created nor destroyed	
1	1. measured in watts		
1	2. the form of energy a	baseball has that increases wh	en it is lifted 0.7 m
1	3. a baseball is carried 7	7 m	
1	4. the rate at which wor	rk is done	

Using Machines

Chapter

Directions: Use the formula, efficiency = $(W_{\text{out}}/W_{\text{in}}) \times 100\%$, to calculate the efficiency of each of the following machines.


1.	A 600-N box is pushed up a ramp that is 2 m high and 5 m long. The person pushing the box exerts a force of 300 N. What is the efficiency of the ramp?				
2.	2. A person uses a fixed pulley to raise a 75-N object 40 m. The force e. What is the efficiency of the pulley?	xerted on the object is 120 N			
Diı	Directions: Complete the following sentences using the correct terms.				
	3. The work input is equal to the work	in an ideal machine.			
	4. Machines are useful because they can change the				
	, or of	the force you need to exert.			
5.	5. The force you exert on an object is the effort, or	force.			
6.	6. The of a machine compares the input	ut force to the output force.			
7.	7 can reduce a machine's efficiency.				
	8. The ability of a machine to convert input work to output work is c	called the			

Simple Machines

Chapter

Directions: *Use the clues to complete the puzzle.*

Across

- 1. A moving inclined plane
- 4. An inclined plane wrapped around a post
- **5.** The pivot point of a lever
- 7. A surface that re-directs force using a rope
- 8. A rod that pivots about a point

Down

- 1. Two rigidly attached wheels that rotate together
- 2. A sloped surface
- 3. An inclined plane
- **6.** Used with a pulley to change the direction of a force

Temperature and Thermal Energy

Chapter

Directions: *Unscramble the words to fill in the blanks in the summary statements.*

(1)	(rateeputerm) is a	measure of the average	kinetic energy of the		
(2)	(oeeuscllm) in a substance. As the temperature increases, the mole-				
cules have more (3)	(tiencikt greeny), and are moving				
(4)	(reastf). For most ma	aterials, as the temperat	ure increases, the mole-		
cules in the material n	nove (5)	(feathrr) apart, ca	ausing the material to		
(6)	(pandex). When the	material cools, its mole	cules move more		
(7)	(yowlls) and the mat	erial (8)	(strancoct). Fo		
the same temperature	increase, (9)	(udsiqli) usu	ally expand more than		
(10)	(dlsois). On the (11)	(iueslcs) temperature		
scale, the (12)	(bilingo)	point of water is 100° C	and the		
(13)	(zengerif) point of	water is 0° C. The (14)_			
(metlahr ygeren) of an	n object is the sum of the (1	5)	(nkctei) and		
(16)	(lontpetia) energy (of all the molecules in the	ne object.		
Directions: Use the term	ns from the word bank to comp	lete the section summary.			
greater	increases	more	thermal energy		
height	kelvin	temperature			
A practical way to n	neasure (17)	is to use a th	ermometer. One type of		
thermometer contains	a liquid that expands as its	s temperature (18)	, so		
that the (19)	of the liqui	d in the tube depends o	on the temperature. On		
the (20)	temperature sca	ale, the lowest possible t	emperature is 0 K. If two		
glasses of water at the	same temperature are pour	red into a container, the			
(21)	of the water in the	container is (22)	than		
the thermal energy of	the water in either glass, be	ecause there are (23)			
molecules of water in	the container.				

Heat

Chapter 21

Directions: *Answer the following questions on the lines provided.*

How is heat related to thermal energy? Can an object contain heat?

 Explain how convection could be used to heat a room with a hot radiator on one side of the room.

 Directions: Fill in the blanks with the terms that best complete the statements.
 Heat always moves from a(n) _______ object to a(n) _______ object.
 When two objects are in contact, heat is best transferred by _______.
 Heat is transferred by conduction when ______ moving molecules bump into ______ moving molecules and transfer ______ energy.
 The heat from an electric space heater is transferred to you by ______.
 Radiation transfers thermal energy by ______.
 Heat is transferred in gases or liquids primarily by _______.

Directions: Correctly complete each sentence by underlining the best of the three choices in parentheses.

- **9.** A small pan of water at 50°C is brought into contact with a larger pan of water at 50°C. Heat is transferred (from the large pan to the small pan, from the small pan to the large pan, not at all).
- 10. Convection involves (molecules moving, molecules colliding, electromagnetic waves).
- 11. Metals are good (reservoirs, insulators, conductors) because they transfer heat easily.
- **12.** Cooking tools often have plastic handles because plastic is a good (conductor, insulator, reservoir) of heat.
- **13.** A measure of how well a substance absorbs heat is its (equivalent heat, calorie content, specific heat).
- **14.** Heat transfer by (convection, radiation, conduction) occurs when energy is transferred by electromagnetic waves.

Name Date Class

Engines and Refrigerators

Chapter 21

Directions: Answer the following questions on the lines provided.

1. What is a heat engine?

2.	In a c	ar v	with a four-cycle engine, why is it an advantage to have at least four cylinders?
			e heat only moves from a hotter object to a cooler object. How is it possible for a heat remove heat from a cold object and add it to a hotter object?
	r ectio temen		Identify each statement as true or false . If it is false, change the italicized term to make the e.
		4.	In an air conditioner heat from inside the house is <i>absorbed</i> by coolant within pipes.
		5.	If you let the air out of a bicycle tire, the valve becomes cold. This is because when a gas under pressure expands, it <i>releases energy to</i> the environment.
		6.	When a heat pump is used for heating, it <i>removes</i> heat from the cold air outside and <i>adds</i> heat to the warm air inside.
		7.	A diesel engine <i>does not</i> use spark plugs.
		8.	An engine that uses the process of burning fuel within the engine is called a(n) <i>internal combustion engine</i> .
		9.	A heat engine is any device that converts thermal energy into <i>kinetic energy</i> .
		10.	In internal combustion engines, fuel burns in a <i>combustion chamber</i> inside the engine.

Electric Charge

Chapter

Directions: <i>Unscramble to</i>	he terms to fill in the blanks in	the summary paragraphs.	
When an atom gains	electrons, it gains a (1)	(7	venagtie) charge. When
an atom loses electrons	, it becomes (2)	(soipviet)	. When many electrons
move from one solid ob	ject to another, the charge	created is called (3)	
(actsti). Unlike electron	s, (4)	(roptnos) usually de	o not move from one
object to another. Howe	ever, in (5)	(loustinos) bo	th are positive and nega-
tive. (6)	(snio), such as so	odium and (7)	
(drochlie), can move. The	nis enables (8)	(never) im	pulses to be transmitted.
9	teps that use ions to transmit r		
12			
Directions: <i>Match the ter</i>	ms from the word bank with tl	he correct phrases below.	
conductor	electric field	electric force	insulator
electric discharge	electric field lines	induced charge	
1	3. something charged object amount of charge on ear	ects exert on each other, ach object and the distar	1
1	something that causes t touching	wo charged balloons to	repel each other without
1	5. lines that are drawn awa	ay from a positive charg	e and toward a negative
1	a material in which election plastic	etrons can not move easi	ily, such as glass and
1	7. a material in which elec	trons can move easily, su	ich as gold and copper
1	8. electric charge moves q lightning strike	uickly from one location	n to another, as in a
1	9. using Earth as a conduc	ctor to avoid lightning d	amage

20. separation of positive and negative charges due to an electric field

Electric Current

Chapter 22

Directions: *Complete the paragraphs using the terms listed below.*

chemical reactions		ohms		electric potential energy
resistance		volts		electric current
negative	positive		V	circuit

Life as we know it would be impossible without electricity. Think of the number of electrical

devices we rely on every day: lights, refrigerators, computers, televisions, flashlights, car headlights,

watches-the list is endless. All of these devices, and countless others, need a constant, steady source of electrical energy. This steady source of electrical energy comes from a(n) 1. _____, which is the steady flow of electrons through a conductor. This steady flow of electricity requires a closed path, or 2. ______, through which to flow. Its basic elements are a conductor, such as wire, through which electrons flow and a source of electrons, such as a battery. An electric current carries energy that comes from separating positive and negative charges. Negatively charged electrons "seek out" positively charged electrons to recombine. This can only happen if they travel through the circuit. In a circuit, the electrons flow from the 3. ______ end to the 4. _____ end. A familiar source of electrons in electric circuits is a battery. The total stored electrical energy in a battery—the energy available to do work—is called **5.** ______. This energy is measured in units called **6.**______, which is abbreviated 7. ______ to separate positive and negative electrical charges. When the negative and positive ends of the charges are connected by a conductor, a circuit forms and the electrical energy is available to do work. However, the electrons don't flow completely freely through the circuit. Depending on the material used for the conductor, the electrons have more or less difficulty flowing. The measure of how difficult it is for electrons to flow through a circuit is called **9.** ______. This is measured in units called **10.** ______.

Electric Circuits

Chapter 22

Directions: *Use the terms and statements from the list below to complete the table.*

kilowatt amount of electric energy used by a device series: a circuit that has only one path for the electric current to follow Ohm's law power = current \times voltage series circuit parallel: a circuit that has more than one path for the electric current to follow watt voltage = current \times resistance kW $P = I \times V$ parallel circuit $V = I \times R$ W

	Important Facts About Electric Circuits				
1. Tł	ere is a relationship among v	oltage, current, and resistance in an electric circuit.			
a.	Name of law:				
b.	Expression of law:				
C.	Equation:				
2. Th	ere are two types of electric o	circuits.			
a.	Two types of circuits:	(1)			
		(2)			
b.	Definitions of these circuits:	(1)			
		(2)			
3. Th	ne electrical power of a circuit	can be measured.			
a.	Definition of electrical power:				
b.	Unit of electrical power:	(1) Name:			
		(2) Abbreviation:			
		(3) Term for 1000 units:			
		(4) Abbreviation for 1000 units:			
c.	Determining the electrical power of a circuit:	(1) Expression: (2) Formula:			

What is magnetism?

Chapter 23

Directions: You have two bar magnets. Describe or draw different arrangements of the two magnets to make the magnets behave as described.

	What the magnets will do	Diagram or Description	
1.	repel, end on	1.	2.
2.	attract, end on	3.	4.
3.	attract, side by side	5.	
4.	repel, side by side	6.	

Directions: Use the words from the word bank to fill in the blanks in the summary paragraph below.

away	magnets	rocks	toward	
charged	iron	north	south	
domains	magnetosphere	outer	stronger	
Magnetic field lines l	pegin at a magnet's (7)	p	ole and end at the	
(8)	pole. Field lines that o	curve (9)	each other	
show attraction. Field l	ines that curve (10)	from	each other show repul-	
sion. When the field is (11)	_, the lines will be clos	er together.	
The atoms of magne	tic materials behave like tin	ny (12)	Magnetic mate-	
rials such as (13)	contain	groups of atoms called	l magnetic	
(14)	in which the magnetic	c fields of the atoms in	the group point in the	
same direction. Earth is	surrounded by a magnetic	field that is thought to	be produced by the move-	
ment of molten iron in	Earth's (15)	core. Earth's 1	nagnetic field affects a	
region of space called th	ne (16)	that deflects most of	of the	
(17)	particles that come from	om the Sun. The magne	etism of some ancient	
(18)	contains a record of t	he direction of Earth's 1	magnetic field and how it	
has changed over time.				

Electricity and Magnetism

Chapter 23

Directions: *Use the figures below to answer questions 1 through 5.*

- 1. In figure A, when electrons move in the coiled wire what is produced?
- **2.** In figure A, if you changed the direction of electron flow by switching the connections to the battery, what would happen?
- 3. In figure A, if an iron bar were inserted into the wire coil, what would happen to the iron bar?
- **4.** Suppose you wrapped an iron bar with wire and connected the ends of the wire to a battery. What is this device called? What would happen to this device if you disconnected the battery?
- **5.** In figure B, if you repeatedly moved a bar magnet in and out of the wire coil, what would be produced? What is this process called?

Directions: Answer the following questions on the lines provided.

- **6.** What is the function of an electric motor in terms of electric power and motion?
- 7. Briefly explain how an electric motor works.
- 8. What is the function of an electric generator in terms of electric power and motion?
- 9. Briefly explain how an electric generator works.

Waves

Chapter

Directions: *Match the words from the list with the descriptions below.*

amplit	ude	electromagnetic wave	refraction	
compression		frequency	trough	
cres	t	mechanical wave	wave	
diffract	tion	rarefaction	wave speed	
	1.	a disturbance that moves through matter	or space	
	2.	low point in a transverse wave		
		region where coils are farthest apart for a spring coil	compressional wave on a	
	4.	type of wave that can travel through matt	er and empty space	
	5.	depends on the energy carried by a wave		
	6.	equals the wavelength times the frequency	y	
		region where coils are closest together for a spring coil	compressional wave on a	
		a change in wave direction that occurs wh material to another and changes speed	nen a wave passes from one	
	9.	the bending of waves around an object		
	10.	a high point in a transverse wave		
		the number of wavelengths that pass a po measured in units of Hertz, which is the s	•	
	12.	type of wave that can travel only through i	matter, including seismic waves	
Directions: Fill in the blo	anks	by unscrambling the words.		
In water waves, ener	rgy i	s transferred by collisions between water ((13)	
(sloceemul). The (14)		(nactolsio) of the pa	rticles hardly	
(15)			·	
Waves are usually p	rodu	aced by something (16)	(gomvin) back and	
		, (tgivibnra).		
		(siopterper) of waves depend o	n the	
		(tonsbrivia) that produce them.		

Sound Waves

Chapter

Directions: Answer the questions on the lines provided.

1.	How does a vibrating drum produce a sound wave?
2.	Does sound travel outside Earth's atmosphere in space? Explain.
3.	Explain how intensity, sound, and energy are related.
4.	What are the three main parts of the human ear and what is the function of each?
5.	Explain why sound travels faster through iron than through air.

Light

Chapter

Directions: Answer the questions on the lines provided.

1.	Compare and contrast light waves and sound waves.
2.	Describe the electromagnetic spectrum.
3.	What are ultraviolet waves, X-rays, and gamma rays used for?
1	How do the cornea, lens, and retina aid in the vision process?
т.	Tiow do the cornea, ichs, and rethia aid in the vision process:
5.	What are rod and cone cells?