Study of an operating system: FreeRTOS

Nicolas Melot

Operating systems for embedded devices

Sommaire

Introduction 4
1 Tasks 5
L1 A task in FIEERTIOS.c.coiiiiii ettt et s s et s e eae e 5
L1T Life CYCIE Of @ TASK...eeiuiiiiieiieciiesteet ettt ettt et s e et e st e e b e e ssbeesseesateenbaeeensbbaeessnsnneeesnnns 5

1.2 Creating and deleting @ LASK..........ceouiruieiiiitiee ettt ettt et ettt ae et e s et et e e st e bees b e be e st e bt e st e e ebeeeennes 6

2 Scheduling 8
2.1 PIIOTIEIES ..ttt ettt et b e et e bt st e bt e s a bt e bt e e ab e e bt e sab e e bt e s at e e bt e ea bt e eb e e et e e bt e e abe e bt e eabeesnbeeeeenan 8
2.2 Priority-qQUALLY TASKS.eoueitiiteieiteteet ettt sttt ettt b et b et ettt sbe ettt b et et e e eesanas 9
2.3 STATVALION. c..cuuitietiietetet ettt sttt et et a et eh b b sa e b b e e et e ettt ea e bt a e ae b e ae e ean e enaeenn 9

3 Queue management 9
3.1 REAING 1N @ QUEUE.c.eeeiieiiiiieiteiieteeet ettt ettt ettt et e st e e st s b e b ea e et eaeessesae e st esnesaeemneeatneesenneenaneeenanee 10
3.2 WIIHNG €0 @ QUEUEL. ..ottt ettt et ettt ettt ettt et e bt et e s bt et eaeess e e st e st saee st easenbeeasesbeeanenbeennesbeenbneenaneeenanes 10
3.3 CIEALNG @ QUEUL. c...eueeeutiieenieriteieeitet et et e ett et e eateste et e ebee et saeenbe s bt enbe e st e bt sa b e bt eatesbeeat e e bt emteebeemtesbee bt sutenbesmtenbeenaneesane 11

4 Resources management 12
4.1 BINATY SEIMAPNOIES. ... ceveiuietieiieiteeiteetiete et et ette bt eatesteeste bt eatesbeeateabeemteebeenteebeemteeaee et eate st eateabeemsesbeensanbeesnbeeesabeeenns 12
4.1.1 Handle binary SEMAPNOTES........ccoutrriteriieiteniteeieertte et esitesteesitesbeesbtesbeesteesabeesstesateesseesaseesaesnseenseeessnassneesss 13

4.1.1.1 Creation Of @ SEMAPROTE.eooiiiiiiiiiieiierie ettt sttt ettt s bt e bt e sabeebeesabeebbeeessnabtaeessansnees 13

4.1.1.2 TaKing @ SEMAPNOTE.cc.uertieiiriietieiieteete sttt sttt ettt e ettt et eat e st e e st e sbeestesbee et sbtenbesbt e beebteesabeeesneeeas 13

4.1.1.3 GIVING @ SEIMAPNOTE.......coueiiiiiiiiiiieiteeeet ettt ettt ettt st e bbb e bt e bt e et e bt et e sbeetesateesbeeesneeeas 13

22 IMIULEXES. ¢ neeueeeeteetteeute et e et e bt e sat et esut e e bt e sut e e bt e eateeab e e sabeeabeesbeeeab e e bt e e ab e e bt e sabeesbbeea bt e bt e eab e e be e et e e bt e st aeeesabaaeeeeat 15
4.2.1 Priority INNETITAIICE.eoueeiiiiieiieieieeiete ettt ettt ettt et a e e et en e eaee st eanesaeeneeeaneeeeens 15

4.3 Counting SEMAPNOTES.ccuerutiriieiirieetirteet ettt ettt et et b et b et s bt et s bt e bt sbte bt sbtenbeebbenbeeabenbeeabesbbeesabaeenan 15
4.3.1 Counting SEMAPNOTE TOULINES.ccuerutertirtietirtenteetenteetesteetesteeteett et e eteesteebeesteestesbeenaesbeentesbeenteenabaesnbneesannes 15

Z N I (<110) o TSP 15

4.3.1.2 TAKE & ZIVE OPCIATIOMS. ¢...eueeuteeueetieiieetiete et et eatesteetesteeeesbeeteebeenbees e e teesee bt eseesseeneesaeensesneesesneenneeenns 16

5 Handling interrupts 16
5.1 Manage interrupts using a binary SEMAPNOTE.cc.cevuireiriiriirienieert ettt ettt st ettt st e st sbee b ebaee s 17
5.2 CIItICAL SECHIOMS......uiuitiiiitietiteiet ettt ettt sttt b ettt et ea e bt e bt s b e b b e s b st et s s e s ss et eseeneeneenneeaneen 18
5.2.1 SUSPENA INEEITUPLS. ..c.veevetititentetetetet ettt ettt et sttt et sae st et e et et et et eseeateae e bt ebeebesaesaeebesbesaesateenteenbeesaneenne 18

5.2.2 StOP the SChEAUIET........ooiiiiiiiii ettt et e a e e s e 19

6 Memory management 19
6.1 PrOTOLYPES. ..ttt ettt ettt ettt ettt et e bt et ea e st ea e e s bt e st s bt ea bt s bt et e e bt em bt eh b e bt e st et e bt e bt e at e bt et e eheenbe st e e e nateeena 19
6.2 Memory allocated ONCE O All.........coouiiiiiiiiiiiiie ettt sttt sttt sttt st sbe et st esabeeenatees 20
6.3 Constant sized and NUMDETed MEMOTY......c..ccceeiiiiiriiiiiiiiieeeeee ettt s s s e 20
6.4 Free memory allocation and dealloCatioN............cocueiuieiiiiieiiiniiiiinieic ettt s e 21
Conclusion 23

References 24

7 Illustrations 25

8 Appendix 26
8.1 An example of FreeRTOSCONTIZN....c.coiiiiiiiiiiiii ettt ettt 27
B2 NEAP _L.Cotniiiitete ettt bt h et h e b e e h e bt et bbbt et h et e b b et e ebt e bttt e bt e e sabaeenabeeens 29
B3 AP 2. Cu ettt e b e a e e b e a bt et e e bt e e bt e e bt e e bt e e bt e s bt e eat e e bt e ebbeeabeenbaeebeenee 31

I 1 11 o G TN OO OO O OO OO P PP PPPPPRPPPP 37

Nicolas Melot Study of an operating system: FreeRTOS

Introduction

FreeRTOS is an free and open-source Real-Time Operating system developed by Real Time Engineers Ltd. Its
design has been developed to fit on very small embedded systems and implements only a very minimalist set of
functions: very basic handle of tasks and memory management, just sufficient API concerning synchronization, and
absolutely nothing is provided for network communication, drivers for external hardware, or access to a filesystem.
However, among its features are the following characteristics: preemptive tasks, a support for 23 micro-controller
architectures' by its developers, a small footprint® (4.3Kbytes on an ARM7 after compilation®), written in C and
compiled with various C compiler (some ports are compiled with gcc, others with openwatcom or borland c++). It also
allows an unlimited number of tasks to run at the same time and no limitation about their priorities as long as used

hardware can afford it. Finally, it implements queues, binary and counting semaphores and mutexes.

1 http://www.freertos.org/a00090.html
2 http://www.freertos.org/FAQMem.html#QSize
3 http://www.freertos.org/FreeRTOS_Features.html

Nicolas Melot Study of an operating system: FreeRTOS Tasks

1 Tasks

1.1 A task in FreeRTOS

FreeRTOS allows an unlimited number of tasks to be run as long as hardware and memory can handle it. As a
real time operating system, FreeRTOS is able to handle both cyclic and acyclic tasks. In RTOS, a task is defined by a

simple C function, taking a void* parameter and returning nothing (void).

Several functions are available to manage tasks: task creation (vTaskCreate()), destruction (vTaskDelete()),
priority management (uxTaskPriorityGet(), vTaskPrioritySet()) or delay/resume ((vTaskDelay(), vTaskDelayUntil(),
vTaskSuspend(), vTaskResume(), vTaskResumeFromISR()). More options are available to user, for instance to create a

critical sequence or monitor the task for debugging purpose.

1.1.1 Life cycle of a task

This section will describe more precisely how can a task evolve from the moment it is created to when it is
destroyed. In this context, we will consider to be available only one micro-controller core, which means only one
calculation, or only one task, can be run at a given time. Any given task can be in one of two simple states : “running”
or “not running”. As we suppose there is only one core, only one task can be running at a given time; all other tasks are
in the “not running task. Figure 1 gives a simplified representation of this life cycle. When a task changes its state from
“Not running” to running, it is said “swapped in” or “switched in”” whereas it is called “swapped out” or “switched out”

when changing to “Not running” state.

v

Not running ‘ Running

Y

Figure 1: Simplified life cycle of a
task : Only one task can be
"running" at a given time,
whereas the “not running state
can be expanded“.

As there are several reasons for a task not to be running, the “Not running” state can be expanded as shows
Figure 2. A task can be preempted because of a more priority task (scheduling is described in section 2), because it has
been delayed or because it waits for a event. When a task can runs but is waiting for the processor to be available, its
state is said “Ready”. This can happen when a task has it needs everything to run but there is a more priority task
running at this time. When a task is delayed or is waiting for another task (synchronisation through semaphores or
mutextes) a task is said to be “Blocked”. Finally, a call to vTaskSuspend() and vTaskResume() or

xTaskResumeFromISR() makes the task going in and out the state “Suspend”.

Nicolas Melot Study of an operating system: FreeRTOS Tasks

It is important to underline that a if a task can leave by itself the “Running” state (delay, suspend or wait for an

event), only the scheduler can “switch in” again this task. When a task wants to run again, its state turns to “Ready” an

only the scheduler can choose which “Ready” task is run at a given time

(. .
Not running

Suspended

Vtask

VtaskSuspend() g
called

called

~N

;uspend()
alled

VtaskResume()

.y

Ready activi

Scheduler

y Running

VtaskSuspend() Event
called Bloc
funct

. Blocked

ing API
on called

\. J/
Figure 2: Life cycle of a task
1.2 Creating and deleting a task

A task defined by a simple C function, taking one void* argument and returning nothing (see Text 1)

void ATaskFunction(void *pvParameters);

Text 1: A typical task signature

Any created task should never end before it is destroyed. It is common for task's code to be wrapped in an infinite

loop, or to invoke vTaskDestroy(NULL) before it reaches its final brace. As any code in infinite loop can fail and exit

this loop, it is safer even for a repetitive task, to invoke vTaskDelete() before its final brace. An example of a typical task

implementation is available on Text 3.

A task can be created using vTaskCreate() (Text 2). This function takes as argument the following list:

® pvTaskCode: a pointer to the function where the task is implemented.

® pcName: given name to the task. This is useless to FreeRTOS but is intented to debugging purpose only.

® usStackDepth: length of the stack for this task in words. The actual size of the stack depends on the

micro controller. If stack with is 32 bits (4 bytes) and usStackDepth is 100, then 400 bytes (4 times 100) will be

allocated for the task.

® pvParameters: a pointer to arguments given to the task.

A good practice consists in creating a dedicated

Nicolas Melot Study of an operating system: FreeRTOS Tasks

structure, instantiate and fill it then give its pointer to the task.

® uxPriority: priority given to the task, a number between 0 and MAX_PRIORITIES - 1. This is

discussed in section 2.

® pxCreatedTask: a pointer to an identifier that allows to handle the task. If the task does not have to be

handled in the future, this can be leaved NULL.

portBASE_TYPE xTaskCreate(pdTASK CODE pvTaskCode,
const signed portCHAR * const pcName,
unsigned portSHORT usStackDepth,
void *pvParameters,
unsigned portBASE TYPE uxPriority,
xTaskHandle *pxCreatedTask

Text 2: Task creation routine

void ATaskFunction(void *pvParameters)

{

/* Variables can be declared just as per a normal function. Each instance
of a task created using this function will have its own copy of the
ivariableExample variable. This would not be true if the variable was
declared static — in which case only one copy of the variable would exist
and this copy would be shared by each created instance of the task. */

int ivVariableExample = 0;

/* A task will normally be implemented as in infinite loop. */
for(;;)
{

/* The code to implement the task functionality will go here. */

}

/* Should the task implementation ever break out of the above loop
then the task must be deleted before reaching the end of this function.
The NULL parameter passed to the vTaskDelete() function indicates that
the task to be deleted is the calling (this) task. */

vTaskDelete(NULL);

Text 3: A typical task (from “Using the FreeRTOS Real Time Kernel”).

A task is destroyed using xTaskDestroy() routine. It takes as argument pxCreatedTask which is given when the

task was created. Signature of this routine is given in Text 4 and an example can be found in Text 3.

void vTaskDelete(xTaskHandle pxTask);

Text 4: Deleting a task

When a task is deleted, it is responsibility of idle task to free all allocated memory to this task by kernel. Notice

that all memory dynamically allocated must be manually freed.

Nicolas Melot Study of an operating system: FreeRTOS Scheduling

2 Scheduling

Task scheduling aims to decide which task in “Ready” state has to be run at a given time. FreeRTOS achieves
this purpose with priorities given to tasks while they are created (see 1.2). Priority of a task is the only element the

scheduler takes into account to decide which task has to be switched in.

Every clock tick makes the scheduler to decide which task has to be waken up, as shown in Figure 3.

Kernel decides which
task to run

Kernel decides which

Tick interrupt task to run

Kernel |
Task 1

Task 2 |

t1 Time t3

Figure 3: Every clock tick makes the
scheduler to run a "Ready" state task
and to switch out the running task.

2.1 Priorities

FreeRTOS implements tasks priorities to handle multi tasks scheduling. A priority is a number given to a task
while it is created or changed manually using vTaskPriorityGet() and vTaskPrioritySet() (See FreeRTOS manual). There
is no automatic management of priorities which mean a task always keeps the same priority unless the programmer
change it explicitly. A low value means a low priority: A priority of 0 is the minimal priority a task could have and this
level should be strictly reserved for the idle task. The last available priority in the application (the higher value) is the
highest priority available for task. FreeRTOS has no limitation concerning the number of priorities it handles.
Maximum number of priorities is defined in MAX_PRIORITIES constant in FreeRTOSConfig.h (see section 8.1), and
hardware limitation (width of the MAX_PRIORITIES type). If an higher value is given to a task, then FreeRTOS cuts it
to MAX_PRIORITIES - 1. Figure 4 gives an example of a application run in FreeRTOS. Task 1 and task 3 are event-
based tasks (they start when a event occurs, run then wait for the event to occur again), Task 2 is periodic and idle task

makes sure there is always a task running.

This task management allows an implementation of Rate Monotonic for task scheduling: tasks with higher
frequencies are given an higher priority whereas low frequencies tasks deserve a low priority. Event-based or continuous

tasks are preempted by periodic tasks.

Nicolas Melot Study of an operating system: FreeRTOS Scheduling

‘ Task 2 preempts task 3 H Task 3 preempts task 2 ‘

Task 1 (high, event-based)

Task2 (medium, periodic) [l
[[

Task 3 (low, event-based) Lo |

[| |

Idle task | |

-
Time
tl t3 t4 t5 t6 A7 t8 t9 t10 t11t12t13

Task 3 preempts idle task H Task 2 preempts idle task ‘ Event processing is
delayed until every higher
priority tasks are
suspended or blocked

Figure 4: An hypothetic FreeRTOS application schedule
2.2 Priority-equally tasks
Tasks created with an equal priority are treated equally by the scheduler: If two of them are ready to run, the
scheduler shares running time among all of them: at each clock tick, the scheduler chooses a different task among the
ready tasks with highest priority. This implements a Round Robin implementation where quantum is the time between

each clock tick. This value is available in TICK_RATE_HZ constant, in FreeRTOSConfig.h (section 8.1).

Time t1: Task 1 enters

running state and runs | | Time t2: Scheduler
until scheduler moves t1 to ready
preempt it for task 2 state and run task 2
| | | | | | |
| | | | | | |
Task 1 ® ‘ ‘ ‘ rm— |
| | | | | | |
Task 2 ‘ ‘ ‘ ‘ ‘
| | | | |
- >
! t2 3 Time 4 t5

Figure 5: Two tasks with a equivalent priority are
run after each other in turn.

2.3 Starvation

There is no mechanism implemented in FreeRTOS that prevents task starvation: the programmer has to make
sure there is no higher priority task taking all running time for itself. It is also a good idea to let the idle task to run,
since it can handle some important work such as free memory from deleted tasks, or switching the device into a

sleeping mode.

3 Queue management

Queues are an underlying mechanism beyond all tasks communication or synchronization in a FreeRTOS
environment. They are an important subject to understand as it is unavoidable to be able to build a complex application

with tasks cooperating with each other. They are a mean to store a and finite number (named “length”) of fixed-size

Nicolas Melot Study of an operating system: FreeRTOS Queue management

data. They are able to be read and written by several different tasks, and don't belong to any task in particular. A queue
is normally a FIFO which means elements are read in the order they have been written. This behavior depends on the

writing method: two writing functions can be used to write either at the beginning or at the end of this queue.

3.1 Reading in a queue

When a single task reads in a queue, it is moved to “Blocked” state and moved back to “Ready” as soon as data
has been written in the queue by another task or an interrupt. If several tasks are trying to read a queue, the highest
priority task reads it first. Finally, if several tasks with the same priority are trying to read, the first task who asked for a
read operation is chosen. A task can also specify a maximum waiting time for the queue to allow it to be read. After this

time, the task switches back automatically to “Ready” state.

portBASE TYPE xQueueReceive(
xQueueHandle xQueue,
const void * pvBuffer,
portTickType xTicksToWait

)i

Text 5: normal method to read in a queue: it reads an element then removes it.

xqueue is the identifier of the queue to be read

pvBuffer is a pointer to the buffer where the read value will be copied to. This memory must be allocated and

must be large enough to handle the element read from the queue.

xTicksToWait defines the maximum time to wait. O prevents the task from waiting even if a value is not
available, whereas if INCLUDE_vTaskSuspend is set and xTicksToWait equals MAX_DELAY, the task waits

indefinitely.

pdPASS is returned if a value was sucessfully read before xTicksToWait is reached. If not, errQUEUE_EMPTY

is returned from xQueueReceive().

After reading an element in a queue, this element is normally removed from it; however, an other read function

given in allows to read an element without having it to be deleted from the queue.

portBASE TYPE xQueuePeek(
xQueueHandle xQueue,
const void * pvBuffer,
portTickType xTicksToWait
)i

Text 6: It also possible to read in a queue without without removing the element from it.

3.2 Writing to a queue

Writing on a queue obeys to the same rules as reading it. When a task tries to write on a queue, it has to wait for

it to have some free space: the task is blocked until another task reads the queue and free some space. If several tasks

10

Nicolas Melot Study of an operating system: FreeRTOS Queue management

attempt to write on the same queue, the higher priority task is chosen first. If several tasks with the same priority are

trying to write on a queue, then the first one to wait is chosen. Figure 6 gives a good illustration on how queues work.

A prototype is available on Text 7. It describes the normal method to write on a queue. Text 8 gives the
underlying function behind xQueueSend and the function to be used if the user wants the last written element to be read

first (Last In, First Out or LIFO).

portBASE _TYPE xQueueSend(xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait
)i

Text 7: function to write on a queue in FIFO mode

xQueue is the queue to write on. This value is returned by the queue creation method.
pvltemToQueue is a pointer to an element which is wanted to be copied (by value) to the queue.

xticksToWait is the number of ticks to wait before the task gives up to write on this queue. If xTicksToWait is 0,
the task won't wait at all if the queue is full. If INCLUDE_vTaskSuspend if defined to 1 inf FreeRTOSConfig.h (section
8.1) and xTicksToWait equals MAX_DELAY, then the task has no time limit to wait.

XqueueSend returns pdPASS if the element was successfully written to the queue before the maximum waiting

time was reached, or errQUEUE_FULL if the maximum time was elapsed before the task could write on the queue.

portBASE TYPE xQueueSendToBack(xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait
)i
pPOrtBASE _TYPE xQueueSendToFront (xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait
)i

Text 8: xQueueSendToBack: a synonym for xQueSend; xQueueSendToFront write on a queue in
LIFO mode.
3.3 Creating a queue

Length of a queue and its width (the size of its elements) are given when the queue is created. Text 9 gives the

function signature available to create a queue.

xQueueHandle xQueueCreate(unsigned portBASE TYPE uxQueueLength,
unsigned portBASE TYPE uxItemSize
)i

Text 9: Queue creation function

uxQueueLenght gives the number of elements this queue will be able to handle at any given time. uxItemSize is

the size in byte of any element stored in the queue. xQueueCreate returns NULL if the queue was not created due to lack

11

Nicolas Melot Study of an operating system: FreeRTOS Queue management

of memory available; if not, the returned value should be kept to handle the newly created queue.

A queue is created to allow task 1 and task B to communicate. The queue can hold a maximum
of 5 values. When a queue is created, it doesn't contain any value so it's empty

Task 1 [D 0] D] Task2

Task 1 writes a value on the queue; the value is sent to the back. Since the queue was
previously empty, the value is now both the first and the last value in the queue.

Task 1 [D C 0] } Task2
|

Task 1 sends again an other value. The queue contains now the previously written value and
this newly added value. The previous value remains at the front of the queue while the new one
is now at its back. Three spaces are still available.

_— [mmm} rase2
|

Task 2 reads a value in the queue. It will receive the value in the front of the queue, which is the
first task one inserted.

Task 1 [D 1] } Task2
L.

Task 2 has removed an item. The second item is moved to be the one in the front of the queue.
This is the value task 2 will read next time it tries to read a value. 4 spaces are now available.

Task 1 [DDDQ} Task2

 E—

Figure 6: Possible scenario with a queue and two tasks

4 Resources management

4.1 Binary semaphores

Binary semaphores are the simplest effective way to synchronize tasks, an other even more simple, but not as
effective, consists in polling an input or a resource. A binary semaphore can be seen as a queue which contains only one

element. Figure 7 gives an idea on its mechanism.

12

Nicolas Melot Study of an operating system: FreeRTOS Resources management

41.1 Handle binary semaphores

4.1.1.1 Creation of a semaphore

void vSemaphoreCreateBinary(xSemaphoreHandle xSemaphore);

Text 10: creating a semaphore

xSemaphore: semaphore to be created.

4.1.1.2 Taking a semaphore

This operation is equivalent to a P() operation, or if compared to queues, to a Receive() operation. A task taking

the semaphore must wait it to be available and is blocked until it is or until a delay is elapsed (if applicable).

portBASE TYPE xSemaphoreTake(xSemaphoreHandle xSemaphore, portTickType
xTicksToWait);

Text 11: taking a semaphore
xSsemaphore is the semaphore to take.

xTicksToWait is the time, in clock ticks, for the task to wait before it gives up with taking the semaphore. If

xTicksToWait equals MAX_DELAY and INCLUDE_vTaskSuspend is 1, then the task won't stop waiting.

If the take operation succeed in time, the function returns pdPASS. If not, pdFALSE is returned.
4.1.1.3 Giving a semaphore
Giving a semaphore can be compared to a V() operation or to writing on a queue.

portBASE_TYPE xSemaphoreGive(xSemaphoreHandle xSemaphore);

Text 12: giving a semaphore

xSemaphore is the semaphore to be given.

The function returns pdPASS if the give operation was successful, or pdFAIL if the semaphore was already

available, or if the task did not hold it.

13

Nicolas Melot Study of an operating system: FreeRTOS Resources management

The semaphore is not available, so the task is blocked, wating for the semaphore.

@ - = — xSemaphoreTake()

An interrupt occurs and gives a semaphore

- N

xGiveSemaphoreFromISR() xSemaphoreTake()

Which unblocks the task

~
xGiveSemaphoreFromISR() }7 xSemaphoreTake()
,/

S

AN

And allows it to take succesfully the semaphore.

'—> xSemaphoreTake()

Another interrupt occurs and gives another semaphore. In the meanwhile, the task is processing
the first interrupt.

- N

xSemaphoreTake()

xGiveSemaphoreFromISR()

. /

When the task has finished to preccess its first work, it waits for another semaphore and gets it
directly, since an interrupt occurred. The task is now able to process the second interrupt.

xSemaphoreTake()

Figure 7: A binary semaphore is equivalent to a queue which
can contain one element

14

Nicolas Melot Study of an operating system: FreeRTOS Resources management

4.2 Mutexes

Mutexes are designed to prevent mutual exclusion or deadlocking. A mutex is used similarly to a binary
semaphore, except the task which take the semaphore must give it back. This can be though with a token associated with
the resource to access to. A task holds the token, works with the resource then gives back the token; in the meanwhile,

no other token can be given to the mutex. A good illustration is shown in Figure 8.

Two tasks want to access a resource. But only a task which holds the mutext is allowed to work
with it.

Task 1

Ressource to
protect

Task 2 is blocked until Task 1 has finished to work with the resource, and has given back the
mutex.

Ressource to
protect

Task 2

Task 1 tries to take the mutex. Since it is available, it gets it and is allowed to work with the
resource.

. Task 1

Ressource to
protect

Ressource to
protect
Mutext Mutext

Task 2

Task 2 tries to take the same mutex, but task 1 stil has it.Task 2 is not permitted to access the
resource.

Task 2 gives back the mutex. It is now available to whichever task that need to work with the
associated resource.

. Task 1

r
Ressource to L

protect

Ressource to
protect

E S

Mutext Mutext

Figure 8: Usual use case of a mutex
4.2.1 Priority inheritance

Priority inheritance is actually the only difference between a binary semaphore and a mutex. When several tasks
asks for a mutex, the mutex holder's priority is set to the highest waiting task priority. This mechanism helps against
priority inversion phenomenon although it doesn't absolutely prevent it from happening. The use of a mutex raises the

application global complexity and therefore should be avoided whenever it is possible.

4.3 Counting semaphores

A counting semaphore is a semaphore that can be taken several (but limited) times before is becomes
unavailable. It maintains a value which is increased as the semaphore is given, and decreased when is is taken. Is is
comparable to a queue with a certain amount of elements. When created, a counting semaphore can be initialized to be

available an arbitrary number of times.

4.3.1 Counting semaphore routines

4.3.1.1 Creation

As described above, a counting semaphore can be taken a limited maximum times and is initialized to be

available for an arbitrary number of take operations. These characteristics are given when the semaphore is created.

15

Nicolas Melot Study of an operating system: FreeRTOS Resources management

xSemaphoreHandle xSemaphoreCreateCounting(unsigned portBASE TYPE uxMaxCount,
unsigned portBASE_TYPE
uxInitialCount);

Text 13: Creation of a counting semaphore.

uxMaxCount is the capacity of the counting semaphore, its maximum ability to be taken.
uxInitialCount is the new semaphore's availability after it is created.

Returned value is NULL if the semaphore was not created, because of a lack of memory, or a pointer to the new

semaphore and can be used to handle it.

4.3.1.2 Take & give operations
P() and V() operation to counting semaphores are realized using the same function as the one described in

sections 4.1.1.2 and 4.1.1.3.

5 Handling interrupts

An interrupt is a mechanism fully implemented and handled by hardware. Software and more particularly
FreeRTOS tasks or kernel can only give methods to handle a given interrupt, or it can raise some by calling an hardware
instruction. We will suppose we are using a micro controller that handles 7 different levels of interrupts. The more an
interrupt number is important, the more it will be priority over other interrupts. Depending on hardware, this is not

always the case. interrupts priorities are not, in any case, related to tasks priorities, and will always preempt them.

A function defined as an interrupt handler cannot use freely FreeRTOS API: access to queues or semaphores is
forbidden through the normal functions described in previous section, but FreeRTOS provides some specialized
functions to be used in that context: for instance, in an interrupt handler, a V() operation to a semaphore must be
realized using xSemaphoreGiveFromISR() instead of xSemaphoreGive(). The prototypes for these method can be
different as they can involve some particular problems (this is the case of xSemaphoreGiveFromISR() which
implements a mechanism to make the user to be aware that this give operation makes the interrupt to be preempted by a

higher priority interrupt unlocked by this give operation).
Interrupt management can be configured in FreeRTOS using constants available in FreeRTOSConfig.h.
o configKERNEL_INTERRUPT_PRIORITY sets the interrupt priority level for the tick interrupt.

o configMAX_SYSCALL_INTERRUPT_PRIORITY defines the highest interrupt level available to
interrupts that use interrupt-safe FreeRTOS API functions. If this constant is not defined, then any interrupt
handler function that makes a use of FreeRTOS API must execute at

configKERNEL_INTERRUPT_PRIORITY.

Any interrupt whose priority level is greater than configMAX_SYSCALL_INTERRUPT_PRIORITY or
configKERNEL_INTERRUPT_PRIORITY if configMAX_SYSCALL_INTERRUPT_PRIORITY is not defined, will

16

Nicolas Melot Study of an operating system: FreeRTOS Handling interrupts

never be preempted by the kernel, but are forbidden to use FreeRTOS API functions.

Micro-controller provides 7 levels of interrupt
configMAX_SYSTEM_INTERRUPT_PRIORITY =3
configkERNEL_INTERRUPT_PRIORITY =1

Interrupts using

| this level will never
be preemted by the
kernel

Can be used by all
interrupts that don't _|
use any FreeRTOS
API function

Interrupts using
| these priorities can
use API functions

Figure 9: Interrupt organization in FreeRTOS

5.1 Manage interrupts using a binary semaphore

Interrupt handlers are pieces of code run by the micro-controller and therefore are not handled by FreeRTOS.
This can potentially create problems with memory access since the operating system cannot handle these context
changes. This is a reason why several functions exists in two versions: one for regular tasks and another is intended to
interrupts handler. This is the case of queue management functions like xQueueReceive() and
wQueueReceiveFromISR(). For this reason, it is necessary to make interrupts handlers' execution as short as possible.
On way to achieve this goal consists in the creation of tasks waiting for an interrupt to occur with a semaphore, and let

this safer portion of code actually handle the interrupt.

Figure 10 proposes a solution to reduce significantly the time an ISR can run. An ISR “gives” a semaphore and

unblock a 'Handler” task that is able to handler the ISR, making the ISR execution much shorter.

The handle task has an

The ISR executes and | higher priority then the
use a semaphore to ISR returns directly to it.
unblock the 'handle’ Task 1 remains in the
task ready state

ISR

|
| When handler task has
"Handler' task 4 finished its job, it waits
| again the semaphore the
next ISR will provide, and
|

allow the lower priority

[task to run again

Task 1

Task 1 is running when
an interrupt occurs

t1 2 t3 t4

Figure 10: Deferred interrupt processing: a regular tasks
waits for an interrupt to occur with a semaphore, and
handle it.

Nicolas Melot Study of an operating system: FreeRTOS Handling interrupts

5.2 Critical sections

Sometimes a portion of code needs to be protected from any context change so as to prevent a calculation from
being corrupted or an I/O operation being cut or mixed with another. FreeRTOS provides two mechanisms to protect
some as small portions as possible; some protects from any context change, either from a scheduler operation, or an

interrupt event, others only prevents scheduler from preempting the task.

Handling this can be very important as many instructions, affectations for instance, may look atomic but require
several hardware instructions (load variable address to a registry, load a value to another registry and move the value to

the matching memory address using the two registries).

5.2.1 Suspend interrupts

This form or critical section is very efficient but must be kept as short as possible since it makes the whole
system in such a state that any other portion of code cannot be executed. This can be a problem for a task to meet its

time constraint, or an external event to be treated by an interruption.

/* Ensure access to the PORTA register cannot be interrupted by
placing it within a critical section. Enter the critical section. */
taSkENTER_CRITICAL();

/* A switch to another task cannot occur between the call to
taskENTER_CRITICAL() and the call to taskEXIT CRITICAL(). Interrupts
may still execute on FreeRTOS ports that allow interrupt nesting, but
only interrupts whose priority is above the value assigned to the
configMAX SYSCALL INTERRUPT PRIORITY constant — and those interrupts are
not permitted to call FreeRTOS API functions. */

PORTA |= 0x01;

/* We have finished accessing PORTA so can safely leave the critical
section. */
taSkEXIT_CRITICAL();

Text 14: A critical section protected against both scheduler “switch out” operations, and
hardware interrupts.

A task can start a critical section with taskENTER_CRITICAL() and stop it using taskEXIT_CRITICAL(). The
system allow a critical section to be started while an other one is already opened: this makes much easier to call external
functions that can need such a section whereas the calling function also need it. However, it is important to notice that in
order to end a critical section, taskEXIT_CRITICAL() must be called exactly as much as taskSTART_CRITICAL was.

Generaly speaking, these two functions must be called as close as possible in the code to make this section very short.

Such a critical section is not protected from interrupts which priority is greater than
configMAX_SYSCALL_INTERRUPT_PRIORITY (if defined in FreeRTOSConfig.h; if not, prefer to consider the
value configKERNEL_INTERRUPT_PRIORITY instead) to create a context change.

18

Nicolas Melot Study of an operating system: FreeRTOS Handling interrupts

5.2.2 Stop the scheduler

A less drastic method to create a critical section consists in preventing any task from preempting it, but let
interrupts to do their job. This goal can be achieve by preventing any task to leave the “Ready” state to “Running”, it can

be understood as stopping the scheduler, or stopping all the tasks.

Notice it is important that FreeRTOS API functions must not be called when the scheduler is stopped.

/* Write the string to stdout, suspending the scheduler as a method
of mutual exclusion. */
vTaskSuspendAll();

{
printf("%s", pcString);
fflush(stdout);

¥
xTaskResumeAll();

Text 15: Creation of a counting semaphore.

When Calling xTaskResumeAll() is called, it returns pdTRUE if no task requested a context change while

scheduler was suspended and returns pdFALSE if there was.

6 Memory management

In a small embedded system, using malloc() and free() to allocate memory for tasks, queues or semaphores can
cause various problems: preemption while allocating some memory, memory allocation and free can be an

nondeterministic operations, once compiled, they consume a lot of space or suffer from memory fragmentation.

Instead, FreeRTOS provides three different ways to allocate memory, each adapted to a different situation but all
try to provide a solution adapted to small embedded systems. Once the proper situation identified, the programmer can
choose the right memory management method once for all, for kernel activity included. It is possible to implement its
own method, or use one of the three FreeRTOS proposes and which can be found in heap_1.c, heap_2.c or heap_3.c (or

respecctively in sections 8.2, 8.3 and 8.4).

6.1 Prototypes

All implementations respect the same allocation/free memory function prototypes. These prototypes stands in

two functions.

void *pvPortMalloc(size_t xWantedSize);
void pvPortFree(void *pv);

Text 16: Prototypes for memory allocation/deallocation

xWanted size is the size, in byte, to be allocated, pv is a pointer to the memory to be freed. pvPortMalloc returns

a pointer to the memory allocated.

19

Nicolas Melot Study of an operating system: FreeRTOS Memory management

6.2 Memory allocated once for all

It is possible in small embedded systems, to allocate all tasks, queues and semaphores, then start the scheduler
and run the entire application, which will never have to reallocate free any of structures already allocated, or allocate
some new. This extremely simplified case makes useless the use of a function to free memory: only pvPortMalloc is

implemented. This implementation can be found in Source/portable/MemMang/heap_1.c or appendix 8.2

Since the use of this scheme suppose all memory is allocated before the application actually starts, and there will
have no need to reallocate or free memory, FreeRTOS simply adds a task TCB (Task Control Block, the structure
FreeRTOS uses to handle tasks) then all memory it needs, and repeat this job for all implemented tasks. Figure 11 gives

a illustration about how the memory is managed.

This memory management allocates a simple array sized after the constant configTOTAL_HEAP_SIZE in
FreeRTOSConfig.h, and divides it in smaller parts which are allocated for memory all tasks require. This makes the

application to appear to consume a lot of memory, even before any memory allocation.

A B Cc

HEAP_SIZE
Free space

ConfigTOTAL

Figure 11: In A: no memory is allocated yet; in B, memory has
been allocated for blue task; in C, all required memory is
allocated

6.3 Constant sized and numbered memory
An application can require to allocate and deallocation dynamically memory. If in every tasks' life cycle, number
of variables and it's size remains constant, then this second mechanism can be set up. Its implementation can be found

in Source/portable/MemMang/heap_2.c or appendix 8.3.

As the previous strategy, FreeRTOS uses a large initial array, which size depends on configTOTAL_HEAP_SIZE
and makes the application to appears to consume huge RAM. A difference with the previous solution consists in an
implementation of vPortFree(). As memory can be freed, the memory allocation is also adapted. Let's consider the big
initial array to be allocated and freed in such a way that there are three consecutive free spaces available. First is 5 bytes,

second is 25 and the last one is 100 bytes large. A call to pvPortMalloc(20) requires 20 bytes to be free so has to reserve

20

Nicolas Melot Study of an operating system: FreeRTOS Memory management

it and return back its reference. This algorithm will return the second free space, 25 bytes large and will keep the
remaining 5 bytes for a later call to pvPortMalloc(). It will always choose the smallest free space where can fit the

requested size.

L HEAP_SIZE
Free space

ConfigTOTA

Figure 12: The algorithm will always use the smallest free space
where the requested portion can fit.
Such an algorithm can generate a lot of fragmentation in memory if allocations are not regular, but it fits if

allocations remains constant in size and number.

6.4 Free memory allocation and deallocation

This last strategy makes possible every manipulation, but suffers from the same drawbacks as using malloc() and
free(): large compiled code or nondeterministic execution. This implementation wraps the two functions, but make them
thread safe by suspending the scheduler while allocating or deallocating. Text 17 And section 8.4 give the

implementation for this memory management strategy.

21

Nicolas Melot Study of an operating system: FreeRTOS Memory management

void *pvPortMalloc(size_t xWantedSize)
{
void *pvReturn;

vTaskSuspendAll();

{

pvReturn = malloc(xWantedSize);

}

xTaskResumeAll();

return pvReturn;

}
void vPortFree(void *pv)
{
if(pv != NULL)
{
vTaskSuspendAll();
{
free(pv);
}
xTaskResumeAll();
}
}

Text 17: Thread safe wrappers for malloc() and free() are another solution to manage memory.

22

Nicolas Melot Study of an operating system: FreeRTOS Memory management

Conclusion

FreeRTOS is an operating system designed for small embedded system: but if its memory footprint can be very
small, its functionalities are also very limited: no support for thread, minimalist memory management, no driver is
available to handle resources on usual bus such as USB or PCI, no support for any communication protocols such as an
IP stack and nothing is available to handle any file system; even input-output primitives are not available. However basic
functions of an operating system are implemented; this is enough for the design of very small and rather complex

applications.

23

Nicolas Melot Study of an operating system: FreeRTOS Memory management

References

This works makes references to FreeRTOS documentation books “Using the FreeRTOS Real Time kernel”

available to download on http:/www.freertos.org/a00104.html. Illustrations used in this report can be found in this book.

This report also makes reference to FreeRTOS API published on http://www.freertos.org/a00106.html and on the book

FreeRTOS Reference manual http://www.freertos.org/a00104.html.

24

http://www.freertos.org/a00104.html.Every
http://www.freertos.org/a00104.html.qsdqsdq
http://www.freertos.org/a00106.html

Nicolas Melot Study of an operating system: FreeRTOS Ilustrations

7 lllustrations

Figure 1: Simplified life cycle of a task : Only one task can be "running" at a given time, whereas the “not running state

CAN D@ EXPANACA ...ttt ettt ettt s bt et bt et e s bt et e bt et e eb e e bt e bt e bt e bt e sbeeatesbe et e sbe et e sbe et e e sabnee e 7
Figure 2: Life CYCIE OF @ tASK....c.eeuiiiiiitietiniitit ettt sttt ettt et et et ea e bt be et et seee e e eneenaees 9
Figure 3: Every clock tick makes the scheduler to run a "Ready" state task and to switch out the running task............... 13
Figure 4: An hypothetic FreeRTOS application SChedUle............c.eeeuiiiiiiiiiiniiiiiienieeite ettt ettt e e e e 15
Figure 5: Two tasks with a equivalent priority are run after each other in tUIrN..........cocceeviiirieniiiinienieee e 15
Figure 6: Possible scenario with a queue and tWo LaSKS.ccoiieriiiiiiiiienieeeeee et e 21
Figure 7: A binary semaphore is equivalent to a queue which can contain one element............ccecceveereniieinieenieeenneenn. 25
Figure 8: Usual USE CASE Of @ IMIULEX.......eeruteriiiriienieeitieeie ettt ettt et e st e s bt e e bt e bt e s bt e bt e sa bt esbbesabeesbeeenbeesbeeeesnabbbeeessnsnes 27
Figure 9: Interrupt organization in Fre€RTOS..........coouiiiiiiiii ettt sttt st e e e 31
Text 1: A typical tasK SIZNALUIE......c..eoouiitiiriirtieteet ettt ettt ettt s b et s bt et s bt et e bt et eb e e bt ebte bt eatesbeenbaeesabeeebbeesabaees 6
Text 2: TasK CIEAtION TOULIME.c..eeuiriiriititetet ettt ettt ettt sttt et et e bt et eaeeb e e b sae st e b s b sa et e s e neaennene 7
Text 3: A typical task (from “Using the FreeRTOS Real Time Kernel”).........ccoccoverireniinienieniiiienieininceeecscsesienre e 7
Text 4: DEIBtING @ LASK......eeitieiiitieieet ettt ettt ettt ettt et s et e e st e aeeaee s st entesseebesaeenseene e seeneenseene e teeeenteeenteeennees 7
Text 5: normal method to read in a queue: it reads an element then reMOVES t..........cveveeriiienieniiienienieeee e eiree e 10
Text 6: It also possible to read in a queue without without removing the element from it...........ccceeceeveveenieniiiinienieeeennnns 10
Text 7: function to write on a queue in FIFO MOME..........c.oooiiiiiiiiiiiiee ettt ettt seeee e 11
Text 8: xQueueSendToBack: a synonym for xQueSend; xQueueSendToFront write on a queue in LIFO mode.............. 11
Text 9: QUEUE CIEAtiON FUNCHION.cccviieiiiiecteeeetieeeiteee et ee ettt e esbeeesbeeessaeeeseseeesssaeesssaaaassseeasssseessseeaassseesssseesssseeseeeesannns 11
Text 10: CTEAtING @ SEIMAPNOTE........eeeuvieriieriieriieeitertie et ettt ebeestteebeestteebeesbeeebeesateeabeesatesabeesateenseesaseensaesssesnbaesasesnseesseesnnss 13
Text 11: taking @ SEMAPROTE.cc..eitiiiiiiieiieie ettt ettt ettt e a et e at e s bt et e s bt e b e sb e et e ebe e besbt et e ebeenteeaeees 13
Text 12: @IVING @ SEIMAPROTE.cc.eiiuieiiitieie ettt ettt et b et e bt et s bt e bt s bt e s bt e bt e s beea s e bt eabenbeesbeebbeesmbeeennneeas 13
Text 13: Creation of @ COUNtING SEMAPNOTE.......c..cocuiriiiiiiriiiiiieieet ettt ettt st ea e s eesesaeesnesaeenne 16
Text 14: A critical section protected against both scheduler “switch out” operations, and hardware interrupts................ 18
Text 15: Creation of @ COUNtING SEMAPROTE.cc.eeruiriiririirieeieriteeett ettt ettt ettt ettt e e st esbe st esbeebbeesabeeesabeeenabeeanne 19
Text 16: Prototypes for memory allocation/dealloCation.............coeeuirieriiriiniinienienieieeteeeteeet ettt e 19
Text 17: Thread safe wrappers for malloc() and free() are another solution to manage MemOrY..........cceeeeruereereereenveennnns 22

25

Nicolas Melot Study of an operating system: FreeRTOS Appendix

8 Appendix

8 Appendix 26
8.1 An example of FreeRTOSCONTIZN....cc.oiiiiiiiiiie ettt et 27
82 AP L. C ittt bbbttt h bt e a e e bt e a e e eh et bt et e bt en b e eh e e bt e bt e bt eate e bt e e enbeeeanbeeeanaeean 29
BB NEAP_2.C ettt et s at et sa et st et e e h e e et e e s et e e s e saeennesaeenas 31
LI 1 11 o G TN 2O O OO O OO OO OO PP URTPPPPRROPPP 37

26

Nicolas Melot Study of an operating system: FreeRTOS Appendix

8.1 An example of FreeRTOSConfig.h

/*
FreeRTOS V6.0.0 - Copyright (C) 2009 Real Time Engineers Ltd.

ER R R Sk Sk kR S R R I kR R O Sk Sk Sk Sk Sk R Rk kR R R R R Ok Ok ok ok ok R

If you are:

New to FreeRTOS,

Wanting to learn FreeRTOS or multitasking in general quickly
Looking for basic training,

Wanting to improve your FreeRTOS skills and productivity

+ + + +

then take a look at the FreeRTOS eBook

"Using the FreeRTOS Real Time Kernel - a Practical Guide"
http://www.FreeRTOS.org/Documentation

A pdf reference manual is also available. Both are usually delivered
to your inbox within 20 minutes to two hours when purchased between 8am
and 8pm GMT (although please allow up to 24 hours in case of

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* exceptional circumstances). Thank you for your support!
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

kkhkkhkkhkhkhkkhkkhkhkhkhhkhkhkhkhhhhhhhhhhhhhhdhdhdhdhdhdhdhkhkhkhkhkhkhkhkhkhkhkhddkdkdhkhkhhhhhhhhhhhkhk ki k,k,k*x*

This file is part of the FreeRTOS distribution.

FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.

NOTE The exception to the GPL is included to allow you to distribute
a combined work that includes FreeRTOS without being obliged to provide the
source code for proprietary components outside of the FreeRTOS kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.

1 tab == 4 spaces!

http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.

http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.

http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.
*/

#ifndef FREERTOS_CONFIG_H
#define FREERTOS_CONFIG_H

27

Nicolas Melot Study of an operating system: FreeRTOS Appendix

#include <i86.h>
#include <conio.h>

Application specific definitions.

These definitions should be adjusted for your particular hardware and
application requirements.

THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION OF THE
FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.

* % % ok X ¥ F X ¥

See http://www.freertos.org/a00110.html.

#define configUSE_PREEMPTION 1
#define configUSE IDLE HOOK

#define configUSE_TICK_ HOOK

#define configTICK RATE HZ ((portTickType) 1000)
#define configMINIMAL STACK SIZE ((unsigned short) 256) /* This can
be made smaller if required. */

#define configTOTAL HEAP SIZE ((size t) (32 * 1024))

#define configMAX TASK NAME LEN (16)

#define configUSE_TRACE_FACILITY 1

#define configUSE_16_BIT TICKS 1

#define configIDLE SHOULD YIELD 1

#define configUSE_CO_ROUTINES
#define configUSE_MUTEXES 1
#define configUSE COUNTING SEMAPHORES 1
#define configUSE_ALTERNATIVE API 1
#define configUSE_RECURSIVE MUTEXES 1
#define configCHECK FOR STACK OVERFLOW 0
port. */

#define configUSE_APPLICATION TASK TAG 1
#define configQUEUE REGISTRY SIZE 0

= =

=

/* Do not use this option on the PC

#define configMAX PRIORITIES ((unsigned portBASE TYPE) 10)
#define configMAX CO ROUTINE PRIORITIES (2)

/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */

#define INCLUDE vTaskPrioritySet
#define INCLUDE uxTaskPriorityGet
#define INCLUDE_vTaskDelete

#define INCLUDE vTaskCleanUpResources
#define INCLUDE vTaskSuspend

#define INCLUDE_ vTaskDelayUntil 1

#define INCLUDE_vTaskDelay 1

#define INCLUDE uxTaskGetStackHighWaterMark 0 /* Do not use this option on the
PC port. */

el el

/* An example "task switched in" hook macro definition. */
#define traceTASK SWITCHED IN() xTaskCallApplicationTaskHook(NULL, (void *)
Oxabcd)

28

Nicolas Melot Study of an operating system: FreeRTOS Appendix

extern void vMainQueueSendPassed(void);
#define traceQUEUE_SEND(pxQueue) vMainQueueSendPassed()

#endif /* FREERTOS_CONFIG_H */

8.2 heap 1.c

/*
FreeRTOS V6.0.0 - Copyright (C) 2009 Real Time Engineers Ltd.

kkhkkhkkhkhkhkhkhkkhkhkhkhhkhhkhhhhhhhhhhhhhhhdhdhdhdhdhdhkhkhkhkhkhkhkhkhkhkhkhkhddkdhkhkhhhhhhhhhhkhkhkhkhk ki, k,k,**

If you are:

New to FreeRTOS,

Wanting to learn FreeRTOS or multitasking in general quickly
Looking for basic training,

Wanting to improve your FreeRTOS skills and productivity

+ + + +

then take a look at the FreeRTOS eBook

"Using the FreeRTOS Real Time Kernel - a Practical Guide"
http://www.FreeRTOS.org/Documentation

A pdf reference manual is also available. Both are usually delivered
to your inbox within 20 minutes to two hours when purchased between 8am
and 8pm GMT (although please allow up to 24 hours in case of

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* exceptional circumstances). Thank you for your support!
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EE R S

This file is part of the FreeRTOS distribution.

FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.

NOTE The exception to the GPL is included to allow you to distribute
a combined work that includes FreeRTOS without being obliged to provide the
source code for proprietary components outside of the FreeRTOS kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.

1 tab == 4 spaces!

http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.

http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.

http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.

29

Nicolas Melot Study of an operating system: FreeRTOS Appendix

*/

*

* The simplest possible implementation of pvPortMalloc(). Note that this
* implementation does NOT allow allocated memory to be freed again.
*
*

See heap 2.c and heap 3.c for alternative implementations, and the memory
* management pages of http://www.FreeRTOS.org for more information.
*/
#include <stdlib.h>

/* Defining MPU_WRAPPERS_INCLUDED FROM API FILE prevents task.h from redefining
all the API functions to use the MPU wrappers. That should only be done when
task.h is included from an application file. */

#define MPU_WRAPPERS_INCLUDED FROM API_ FILE

#include "FreeRTOS.h"
#include "task.h"

#undef MPU WRAPPERS INCLUDED FROM API FILE

/* Allocate the memory for the heap. The struct is used to force byte
alignment without using any non-portable code. */
static union xRTOS_HEAP
{
#if portBYTE ALIGNMENT ==
volatile portDOUBLE dDummy;
#else
volatile unsigned long ulDummy;
#endif
unsigned char ucHeap[configTOTAL HEAP SIZE];
} XHeap;

static size_t xNextFreeByte = (size t) 0;
void *pvPortMalloc(size_t xWantedSize)
{

void *pvReturn = NULL;

/* Ensure that blocks are always aligned to the required number of bytes.

*/
#if portBYTE ALIGNMENT != 1
if(xWantedSize & portBYTE ALIGNMENT MASK)
{
/* Byte alignment required. */
xWantedSize += (portBYTE ALIGNMENT - (xWantedSize &
portBYTE ALIGNMENT MASK));
}
#endif
vTaskSuspendAll();
{
/* Check there is enough room left for the allocation. */
if(((xNextFreeByte + xWantedSize) < configTOTAL HEAP SIZE) &&
((xNextFreeByte + xWantedSize) > xNextFreeByte))/* Check

for overflow. */

30

Nicolas Melot Study of an operating system: FreeRTOS Appendix

{
/* Return the next free byte then increment the index past
this
block. */
pvReturn = &(xHeap.ucHeap|[xNextFreeByte]);
xNextFreeByte += xWantedSize;
}
}
xTaskResumeAll();
#if(configUSE MALLOC FAILED HOOK == 1)
{
if(pvReturn == NULL)
{
extern void vApplicationMallocFailedHook(void);
vApplicationMallocFailedHook();
}
}
#endif
return pvReturn;
}
2 */
void vPortFree(void *pv)
{
/* Memory cannot be freed using this scheme. See heap 2.c and heap 3.c
for alternative implementations, and the memory management pages of
http://www.FreeRTOS.org for more information. */
(void) pv;
}
2 */
void vPortInitialiseBlocks(void)
{
/* Only required when static memory is not cleared. */
xNextFreeByte = (size t) 0;
}
/e */
size_t xPortGetFreeHeapSize(void)
{
return (configTOTAL_HEAP SIZE - xNextFreeByte);
}
8.3 heap 2.c
/*

FreeRTOS V6.0.0 - Copyright (C) 2009 Real Time Engineers Ltd.

EE R S S R R

If you are:

New to FreeRTOS,

Wanting to learn FreeRTOS or multitasking in general quickly
Looking for basic training,

Wanting to improve your FreeRTOS skills and productivity

* %k ok ok * X
* %k ok ok * ¥

+ + + +

31

Nicolas Melot Study of an operating system: FreeRTOS Appendix

* * X 3k X X

*

*/

then take a look at the FreeRTOS eBook

"Using the FreeRTOS Real Time Kernel - a Practical Guide"
http://www.FreeRTOS.org/Documentation

*
*
*
*
*
*
A pdf reference manual is also available. Both are usually delivered *
to your inbox within 20 minutes to two hours when purchased between 8am *
and 8pm GMT (although please allow up to 24 hours in case of *
exceptional circumstances). Thank you for your support! *
*
*

kkhkkkkhkkhkhkkhkhkkhkkkhkkhkhhkhkhkhhkhkhhkhhkkhkhkkhkhhkhkkhkhhkhkhkhkhkhhkhhkhkhhkhkkhkhkkhkhkkhkkkhkkhkkk,kk*x*x

This file is part of the FreeRTOS distribution.

FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.

NOTE The exception to the GPL is included to allow you to distribute
a combined work that includes FreeRTOS without being obliged to provide the
source code for proprietary components outside of the FreeRTOS kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.

1 tab == 4 spaces!

http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.

http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.

http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.

A sample implementation of pvPortMalloc() and vPortFree() that permits
allocated blocks to be freed, but does not combine adjacent free blocks
into a single larger block.

See heap l.c and heap 3.c for alternative implementations, and the memory
management pages of http://www.FreeRTOS.org for more information.

#include <stdlib.h>

/*

Defining MPU_WRAPPERS_ INCLUDED FROM API FILE prevents task.h from redefining

all the API functions to use the MPU w;appers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED FROM API_FILE

#include "FreeRTOS.h"

32

Nicolas Melot Study of an operating system: FreeRTOS Appendix

#include "task.h"
#undef MPU_WRAPPERS_ INCLUDED_ FROM API_FILE
/* Allocate the memory for the heap. The struct is used to force byte

alignment without using any non-portable code. */
static union xRTOS_HEAP

{
#if portBYTE ALIGNMENT ==
volatile portDOUBLE dDummy;
#telse
volatile unsigned long ulDummy;
#endif
unsigned char ucHeap[configTOTAL HEAP SIZE];
} XHeap;

/* Define the linked list structure. This is used to link free blocks in order
of their size. */
typedef struct A BLOCK_LINK

{

struct A BLOCK LINK *pxNextFreeBlock; /*<< The next free block in the
list. */

size t xBlockSize; /*<< The size of the

free block. */
} xBlockLink;

static const unsigned short heapSTRUCT SIZE = (sizeof(xBlockLink) +
pOrtBYTE ALIGNMENT - (sizeof(xBlockLink) % portBYTE ALIGNMENT));
#define heapMINIMUM BLOCK SIZE ((size_t) (heapSTRUCT SIZE * 2))

/* Create a couple of list links to mark the start and end of the list. */
static xBlockLink xStart, xEnd;

/* Keeps track of the number of free bytes remaining, but says nothing about
fragmentation. */
static size_ t xFreeBytesRemaining;

/* STATIC FUNCTIONS ARE DEFINED AS MACROS TO MINIMIZE THE FUNCTION CALL DEPTH.
*/

/*
* Insert a block into the list of free blocks - which is ordered by size of
* the block. Small blocks at the start of the list and large blocks at the end
* of the list.
*/
#define prvInsertBlockIntoFreeList(pxBlockToInsert)
\

{

xBlockLink *pxIterator;

size_t xBlockSize;

\
xBlockSize = pxBlockToInsert->xBlockSize;

\

33

Nicolas Melot Study of an operating system: FreeRTOS Appendix

\
/* Iterate through the list until a block is found that has a larger size

*/ \
/* than the block we are inserting. */

\
for(pxIterator = &xStart; pxIterator->pxNextFreeBlock->xBlockSize <
xBlockSize; pxIterator = pxIterator->pxNextFreeBlock) \
{
\
/* There is nothing to do here - just iterate to the correct
position. */ \
}
\
\
/* Update the list to include the block being inserted in the correct */
\
/* position. */
\
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
\
pxIterator->pxNextFreeBlock = pxBlockToInsert;
\
}
2 */
#define prvHeapInit()
\
{
\
xBlockLink *pxFirstFreeBlock;
\
\

/* xStart is used to hold a pointer to the first item in the list of free
*/ \
/* blocks. The void cast is used to prevent compiler warnings. */

\
xXStart.pxNextFreeBlock = (void *) xHeap.ucHeap;
\
xStart.xBlockSize = (size t) 0;
\
\
/* xEnd is used to mark the end of the list of free blocks. */
\
xEnd.xBlockSize = configTOTAL HEAP SIZE;
\
xXEnd.pxNextFreeBlock = NULL;
\
\
/* To start with there is a single free block that is sized to take up the
\
entire heap space. */
\
pxFirstFreeBlock = (void *) xHeap.ucHeap;

34

Nicolas Melot Study of an operating system: FreeRTOS Appendix

\
pxFirstFreeBlock->xBlockSize = configTOTAL HEAP_ SIZE;
\
pxFirstFreeBlock->pxNextFreeBlock = &xEnd;
\
\
xFreeBytesRemaining = configTOTAL HEAP SIZE;
\
}
2 */

void *pvPortMalloc(size_t xWantedSize)

{

xBlockLink *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
static portBASE_TYPE xHeapHasBeenInitialised = pdFALSE;
void *pvReturn = NULL;

vTaskSuspendAll();

{
/* If this is the first call to malloc then the heap will require

initialisation to setup the list of free blocks. */
if(xHeapHasBeenInitialised == pdFALSE)
{

prvHeapInit();

xHeapHasBeenInitialised = pdTRUE;

}

/* The wanted size is increased so it can contain a xBlockLink
structure in addition to the requested amount of bytes. */
if(xWantedSize > 0)

{
xWantedSize += heapSTRUCT SIZE;

/* Ensure that blocks are always aligned to the required

number of bytes. */
if(xWantedSize & portBYTE ALIGNMENT MASK)

{
/* Byte alignment required. */
xWantedSize += (portBYTE_ALIGNMENT - (xWantedSize &
portBYTE ALIGNMENT MASK));
}

}

if((xWantedSize > 0) && (xWantedSize < configTOTAL HEAP SIZE))
{
/* Blocks are stored in byte order - traverse the list from
the start
(smallest) block until one of adequate size is found. */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while((pxBlock->xBlockSize < xWantedSize) && (pxBlock-
>pxNextFreeBlock))
{

pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;

35

Nicolas Melot Study of an operating system: FreeRTOS Appendix

/* If we found the end marker then a block of adequate size
was not found. */
if(pxBlock != &xEnd)
{
/* Return the memory space - jumping over the xBlockLink
structure
at its start. */
pvReturn = (void *) (((unsigned char *)
pxPreviousBlock->pxNextFreeBlock) + heapSTRUCT SIZE);

/* This block is being returned for use so must be taken
our of the

list of free blocks. */

pxPreviousBlock->pxNextFreeBlock = pxBlock-
>pxNextFreeBlock;

/* If the block is larger than required it can be split
into two. */
if((pxBlock->xBlockSize - xWantedSize) >
heapMINIMUM BLOCK_SIZE)
{
/* This block is to be split into two. Create a
new block
following the number of bytes requested. The void
cast is
used to prevent byte alignment warnings from the
compiler. */
pxNewBlockLink = (void *) (((unsigned char
*) pxBlock) + xWantedSize);

/* Calculate the sizes of two blocks split from

the single
block. */
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize -
xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* Insert the new block into the list of free
blocks. */
prvInsertBlockIntoFreeList((pxNewBlockLink));
}
xFreeBytesRemaining -= xWantedSize;
}
¥
}
xTaskResumeAll();
#if(configUSE_MALLOC_FAILED HOOK == 1)
{
if(pvReturn == NULL)
{
extern void vApplicationMallocFailedHook(wvoid);
vApplicationMallocFailedHook();
}
}
#endif

36

Nicolas Melot Study of an operating system: FreeRTOS Appendix

return pvReturn;

}

/e */
void vPortFree(void *pv)

{

unsigned char *puc = (unsigned char *) pv;

xBlockLink *pxLink;

if(pv)
{

/* The memory being freed will have an xBlockLink structure

immediately

before it. */
puc -= heapSTRUCT SIZE;

/* This casting is to keep the compiler from issuing warnings. */

pxLink = (void *) puc;
vTaskSuspendAll();
{

/* Add this block to the list of free blocks. */
prvInsertBlockIntoFreeList(((xBlockLink *) pxLink));
xFreeBytesRemaining += pxLink->xBlockSize;

}
xTaskResumeAll();
}
}
2 */
size_t xPortGetFreeHeapSize(void)
{
return xFreeBytesRemaining;
}
2 */
void vPortInitialiseBlocks(void)
{
/* This just exists to keep the linker quiet. */
}

8.4 heap _3.c

/*

FreeRTOS V6.0.0 - Copyright (C) 2009 Real Time Engineers Ltd.

kkhkkhkkhkhkhkhkhkhkhkhkhhkhhkhhhhhhhhhhhhhhhdhdhdhdhdhdhkhkhkhkhkhkhkhkhkhkhkhkhddkddkhhkhhhhhhhhhhhkhkhkhk k k,k,k,**

If you are:

New to FreeRTOS,

Wanting to learn FreeRTOS or multitasking in general quickly
Looking for basic training,

Wanting to improve your FreeRTOS skills and productivity

then take a look at the FreeRTOS eBook

* 0% X 3k ok X 3k F X F F
+ + + +
* % X 3k X X %k F X F F

"Using the FreeRTOS Real Time Kernel - a Practical Guide"

37

Nicolas Melot Study of an operating system: FreeRTOS Appendix

* 0% Sk X ¥ %k X ¥ F* F

http://www.FreeRTOS.org/Documentation

*
*
A pdf reference manual is also available. Both are usually delivered *
to your inbox within 20 minutes to two hours when purchased between 8am *
and 8pm GMT (although please allow up to 24 hours in case of *
exceptional circumstances). Thank you for your support! *

*

*

* % * ok X X ok *

EE R R R R R R R S I S S R R R R R R R R R S S S

This file is part of the FreeRTOS distribution.

FreeRTOS is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License (version 2) as published by the
Free Software Foundation AND MODIFIED BY the FreeRTOS exception.

NOTE The exception to the GPL is included to allow you to distribute
a combined work that includes FreeRTOS without being obliged to provide the
source code for proprietary components outside of the FreeRTOS kernel.
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details. You should have received a copy of the GNU General Public
License and the FreeRTOS license exception along with FreeRTOS; if not it
can be viewed here: http://www.freertos.org/a00114.html and also obtained
by writing to Richard Barry, contact details for whom are available on the
FreeRTOS WEB site.

1 tab == 4 spaces!

http://www.FreeRTOS.org - Documentation, latest information, license and
contact details.

http://www.SafeRTOS.com - A version that is certified for use in safety
critical systems.

http://www.OpenRTOS.com - Commercial support, development, porting,
licensing and training services.

Implementation of pvPortMalloc() and vPortFree() that relies on the
compilers own malloc() and free() implementations.

This file can only be used if the linker is configured to to generate
a heap memory area.

See heap 2.c and heap l.c for alternative implementations, and the memory
management pages of http://www.FreeRTOS.org for more information.

#include <stdlib.h>

/*

Defining MPU_WRAPPERS_ INCLUDED FROM API FILE prevents task.h from redefining

all the API functions to use the MPU w;appers. That should only be done when
task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED FROM API_FILE

#include "FreeRTOS.h"

38

Nicolas Melot Study of an operating system: FreeRTOS Appendix
#include "task.h"

#undef MPU WRAPPERS INCLUDED FROM API FILE

void *pvPortMalloc(size_t xWantedSize)

{

void *pvReturn;

vTaskSuspendAll();
{
pvReturn = malloc(xWantedSize);
}
xTaskResumeAll();
#if(configUSE MALLOC FAILED HOOK == 1)
{
if(pvReturn == NULL)
{
extern void vApplicationMallocFailedHook(void);
vApplicationMallocFailedHook();
}
}
#endif

return pvReturn;

}
2 */
void vPortFree(void *pv)
{
if(pv)
{
vTaskSuspendAll();
{
free(pv);
}
xTaskResumeAll();
}
}

39

	1Tasks
	1.1A task in FreeRTOS
	1.1.1Life cycle of a task

	1.2Creating and deleting a task

	2Scheduling
	2.1Priorities
	2.2Priority-equally tasks
	2.3Starvation

	3Queue management
	3.1Reading in a queue
	3.2Writing to a queue
	3.3Creating a queue

	4Resources management
	4.1Binary semaphores
	4.1.1Handle binary semaphores
	4.1.1.1Creation of a semaphore
	4.1.1.2Taking a semaphore
	4.1.1.3Giving a semaphore

	4.2Mutexes
	4.2.1Priority inheritance

	4.3Counting semaphores
	4.3.1Counting semaphore routines
	4.3.1.1Creation
	4.3.1.2Take & give operations

	5Handling interrupts
	5.1Manage interrupts using a binary semaphore
	5.2Critical sections
	5.2.1Suspend interrupts
	5.2.2Stop the scheduler

	6Memory management
	6.1Prototypes
	6.2Memory allocated once for all
	6.3Constant sized and numbered memory
	6.4Free memory allocation and deallocation

	7Illustrations
	8Appendix
	8.1An example of FreeRTOSConfig.h
	8.2heap_1.c
	8.3heap_2.c
	8.4heap_3.c

