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Abstract. Using a global Landau fluid code in toroidal geometry, an electromagnetic ion temperature

gradient (ITG) driven turbulence-zonal mode system is investigated. Two different types of zonal flows,

i.e. stationary zonal flows in a low q (safety factor) region and oscillatory ones in a high q region which are

called geodesic acoustic modes (GAM), are found to be simultaneously excited in a torus. The stationary

flows efficiently suppress turbulent transport, while the oscillatory ones weakly affect the turbulence due

to their time varying nature. Therefore in the low q region where the zonal flows are stationary, the zonal

flows are dominant over the turbulence. On the other hand, the turbulence is still active in the high q

region where the zonal flows are oscillatory.

1 Introduction

Magnetically confined fusion plasmas contain phenomena with various spatiotemporal
scales such as macroscopic MHD modes, ion scale drift waves and small scale electron
modes. In most cases each scale has been analyzed separately. However there are phenom-
ena extending into multi-spatiotemporal scales like the formation of an internal transport
barrier (ITB) which is necessary for advanced tokamak operation with good confinement
properties. The interaction among different turbulence fluctuations is a new issue [1]. It
is widely recognized that zonal flows may regulate turbulent structure and then transport.
The zonal flows as well as zonal fields can be generated by different scale fluctuations.
In core plasma simulations strong steady zonal flows are often observed. At the same
time, local fluid simulations and experiments have shown that the zonal flows near the
edge have an oscillatory nature due to the coupling with poloidally asymmetric pressure
perturbations. The oscillations are called geodesic acoustic modes (GAM) [2, 3, 4]. The
oscillatory zonal flows are less effective in suppressing the turbulence than the stationary
ones[5]. Hence, the nature of zonal flows in the whole tokamak is important in under-
standing the ITB physics and controlling the transport. In order to study these issues we
have developed an electromagnetic global Landau fluid code in toroidal geometry, which
can cover MHD fluctuations and ion scale turbulence. Landau fluid model is useful for
turbulence simulations covering a broad range of spatial and temporal scales because the
required computational resource is small. Therefore it has been utilized for transport sim-
ulation studies including turbulence [6, 7]. In this paper we analyze the change of zonal
flow characteristics with the safety factor profile and the nonlinear dynamics between the
zonal flows and the turbulence.

2 Model Equations

We use five-field (density n, electrostatic potential φ, parallel component of magnetic
vector potential A, parallel ion velocity v and ion temperature T ) Landau fluid equation
system to describe the global electromagnetic turbulence in tokamak plasmas. Compared
to the previous resistive drift-Alfvén model (three-field)[8], the five-field model includes a
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parallel equation of motion for ion fluid and an ion temperature equation with Hammett-
Perkins closure[9]. In the electrostatic limit with adiabatic electrons the five-field model
reduces to the three-field ion Landau fluid model. Nonlinear evolution equations for these
fields consist of continuity equation

dn

dt
= a

dneq

dr
∇θφ − neq∇‖v + ∇‖j + ωd(neqφ− pe) + Dn∇

2
⊥n, (1)

vorticity equation
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equation of motion for the ion fluid in the parallel direction
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equation of motion for the electron fluid in the parallel direction or Ohm’s law
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ion temperature equation
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and parallel current is related with the magnetic potential through the Ampère’s law

j = −∇2
⊥A, (6)

where, pe = τTeqn, neq (Teq) is an equilibrium density (ion temperature) normalized by
the central value nc (Tc), τ = Te0/Ti0 is a ratio of electron and ion equilibrium tem-
peratures, β = (ncTc)/(B

2
0/µ0) is a half of beta value evaluated on the plasma center,

ηi = d ln Teq/d ln neq, B0 is a toroidal magnetic field on the magnetic axis and Γ = 5/3 is a
ratio of specific heats. It is noted that an electron Landau damping term is added in the
Ohm’s law[10]. We assume a circular tokamak geometry (r, θ, ζ), where r is a radius of
magnetic surface, θ and ζ are poloidal and toroidal angles, respectively. Then operators
are defined as

df

dt
= ∂tf + [φ, f ], ∇‖f = ε∂ζf − β[A, f ],

ωd · f = 2ε[r cos θ, f ],
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)

where ε = a/R is an inverse aspect ratio, a and R are minor and major radii, respectively.
Here the normalizations are tvti/a → t, r/ρi → r, ρi∇⊥ → ∇⊥, a∇‖ → ∇‖,
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,
eφ

Tc
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vti
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βB0ρi
,
Ti

Tc
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where vti =
√

Tc/mi, ρi = vti/ωci, ωci = eB0/mi. Artificial dissipations (Dn, DU , Dv, DT )
are included to damp the small scale fluctuations.
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3 Global Structure of Zonal Flows in Tokamak Plasmas

Using the developed global Landau-fluid code, we have performed electromagnetic ITG
turbulence simulations. Parameters used in the calculations are R/a=4, ρi/a=0.0125,
Te=Ti, β=0.1%, neq = 0.8+0.2e−2(r/a)2, Teq = 0.35+0.65(1− (r/a)2)2, q = 1.05+2(r/a)2.
The density and temperature profiles are fixed in the calculations. In these parameters a
dominant linear instability is the ITG mode which is stabilized by the finite β effect. The
numerical calculations are done by Fourier mode expansion in the poloidal and toroidal
directions and finite difference in the radial direction. The Fourier modes included in the
calculations are ones having resonant surfaces between 0.2 < r/a < 0.8 in the range of
m 5 80 and n 5 50, and nonresonant (m, n) = (0, 0), (1, 0) components, where m and n
are poloidal and toroidal mode numbers, respectively. Only even toroidal modes are kept
to reduce computational time. The number of radial grid is 256.

Figure 1 shows the E×B zonal flows as a function of radius and time (a) and radial
variation of the zonal flow frequency spectra (b). Two types of E×B zonal flows are
excited, i.e. one is the almost stationary zonal flow in the inner low q region (r/a . 0.45)
and the other is the oscillatory one which is called the GAM in the outer high q region
(r/a & 0.45). The frequency change of the zonal flows is clearly seen in FIG. 1(b), in
which the pure GAM frequency fGAM = ωGAM/2π and the pure parallel sound frequency of

the (m,n)=(1,0) mode fsound = ωsound/2π are also plotted. Here ωGAM =
√

2(Γ + τ )Teq
a
R

which is derived from the zonal flow and the (1,0) pressure perturbation equations without
nonlinear terms in q � 1 and electrostatic limit and ωsound =

√

(Γ + τ )Teq
a

qR
which is

from the (1,0) pressure and the (1,0) parallel ion velocity equations in q � 1 limit[11].
Although the oscillatory zonal flows have small peaks along fGAM, large peaks are located
between fGAM and fsound lines. Since the GAM is the oscillation between the zonal flow
and the (1,0) pressure perturbation, the zonal flows cannot oscillate without the (1,0)
pressure perturbations. When fsound is higher than the frequency of the oscillatory zonal
flows by decreasing q, the (1,0) pressure perturbations relax along the magnetic field
before they change the zonal flow direction. Therefore only the stationary zonal flows can
exist in the low q region.
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FIG. 1: E×B zonal flows as a function of radius and time (a) and radial variation of zonal
flow frequency spectra (b). In the right panel the pure GAM frequency fGAM = ωGAM/2π
and the pure parallel sound wave frequency of the (1,0) mode fsound = ωsound/2π are also
plotted.
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4 Energy Flow between ITG Turbulence and Zonal Flows

It is important to identify the energy transfer channel for the zonal flows. Zonal flow
energy is dominated by Reynolds stress, Maxwell stress, and geodesic transfer as described
in the following zonal flow energy equation,

∂

∂t

1

2
〈vE〉

2 = −〈ṽErΩ̃〉〈vE〉
︸ ︷︷ ︸

Reynolds

+
β̂

neq

〈B̃r j̃〉〈vE〉

︸ ︷︷ ︸

Maxwell

−
2

neq

a

R
〈p sin θ〉〈vE〉

︸ ︷︷ ︸

geodesic transfer

, (7)

where 〈·〉 denotes the flux surface average, 〈vE〉 = ∂φ0

∂r
is the zonal flow, ṽEr = − 1

r
∂φ̃
∂θ

is

the radial E×B drift velocity, Ω̃ = ∇2
⊥φ̃ is vorticity, 〈p sin θ〉 is the (1,0) pressure per-

turbation and p = pi + pe = neqTi + Teqn + τTeqn is total pressure. Here a viscous term
is neglected. The geodesic transfer is due to the coupling with (1,0) pressure perturba-
tions. Figure 2 shows time averaged zonal flow energy drives as a function of radius.
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FIG. 2: Time averaged E×B zonal flow
energy drives as a function of radius.

The Reynolds stress drive is positive in al-
most whole region. The zonal flow energy is
supplied from the turbulence by the Reynolds
stress as usual. Meanwhile, the geodesic
transfer is negative, so that the zonal flow
energy goes to the (1,0) pressure perturba-
tions through the geodesic transfer. It is
noted that the Reynolds drive in the station-
ary zonal flow region (r/a . 0.45) is higher
than the oscillatory zonal flow region. The
Maxwell stress drive is small compared to the
other drives, but it increases with β. There-
fore the Maxwell stress may affect the zonal
flow generation in high β plasmas in which
the kinetic ballooning mode is dominant.

The equation describing time evolution of
the (1,0) pressure perturbation energy is
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a
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︸ ︷︷ ︸
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√
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R
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︸ ︷︷ ︸
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. (8)

Here magnetic nonlinearity ([Ã, ṽ],[Ã, j̃]) related terms, coupling with Alfvén waves
(〈j cos θ〉 term), source terms from the equilibrium pressure gradient and a viscous term
are neglected. Figure 3 shows time averaged drives for the (1,0) pressure perturbations
〈p sin θ〉 in the above equation as a function of radius. In the stationary zonal flow region
(r/a . 0.45) most of the energy transferred from the zonal flows goes to the (1,0) parallel
ion velocity 〈v cos θ〉. On the other hand, the energy channel is different in the oscillatory
zonal flow or GAM region (r/a & 0.45). The energy flow to 〈v cos θ〉 is much smaller than
that in the stationary zonal flow region. Instead energy transfer to the ITG turbulence by
nonlinear coupling of the electrostatic potential and pressure perturbations is dominant.
This is the same result as the drift-Alfvén turbulence simulation in Ref. [4].
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Figure 4 shows time averaged 〈v cos θ〉 energy drives in the following equation,

∂

∂t

1

2
〈v cos θ〉2 = −〈[φ̃, ṽ] cos θ〉〈v cos θ〉

︸ ︷︷ ︸
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−
1

neq

a

qR
〈v cos θ〉〈p sin θ〉

︸ ︷︷ ︸

sound wave

, (9)

where a magnetic nonlinearity ([Ã, p̃]) related term, a source term from the equilibrium
pressure gradient and a viscous term are neglected. The energy transferred from 〈p sin θ〉
tends to balance the nonlinear energy flow to the turbulence, which leads to saturation
of the stationary zonal flows[12].

5 Turbulent Transport

Figure 5 shows electrostatic component of ion heat flux 〈T̃iṽEr〉=−〈T̃i
1
r

∂φ̃
∂θ
〉 as a function

of radius and time (a) and temporal evolution of the heat flux and the zonal flow energy
at r/a = 0.4 (b) and r/a = 0.6 (c). It is noted that electromagnetic component of ion
heat flux is negligibly small. The heat flux in the inner region is effectively suppressed by
the stationary zonal flows. As shown in FIG. 5(b), the stationary zonal flows correlate
well with the heat flux. When the heat flux increases, subsequently the zonal flow energy
increases and the heat flux is reduced by the zonal flow. On the other hand, the heat flux
in the outer region with the oscillatory zonal flows is large, and the correlation between
the heat flux and the zonal flow is not so strong compared to the stationary zonal flow
region (FIG. 5(c)). The effective shearing rate of the oscillatory zonal flows is smaller than
that of the stationary zonal flows[5]. Since the frequencies of the oscillatory zonal flows
are of the same order as those of the ITG modes, suppression of the ion heat flux by the
oscillatory zonal flows is weaker than that by the stationary zonal flows. The oscillatory
zonal flows, however, still have suppression effect on the turbulent transport[13]. When
the zonal flows are artificially turned off, the heat flux in the oscillatory zonal flow region
increases about twice compared with that in the case including the zonal flows.

As a result of the differences between the stationary zonal flows and the oscillatory ones,
the tokamak plasma divides into zonal flow dominant region and turbulent region. Figure
6 shows a ratio of the zonal flow energy to the total E×B kinetic energy (dφ0/dr)2/|∇φ̃|2

as a function of radius and time. In the low q region (r/a < 0.45) where the zonal flows are
stationary, the ratio is near unity and the zonal flows are dominant over the turbulence.
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FIG. 5: Electrostatic component of heat flux as a function of radius and time (a), and
temporal evolution of heat flux (solid line) and zonal flow energy (dashed line) at r/a=0.4
(b) and r/a=0.6 (c).

On the other hand, the ratio in the high q region (r/a > 0.45) where the zonal flows are
oscillatory is not so high compared to the stationary zonal flow region.

6 Control of Zonal Flow Behaviour by Safety Factor Profile

The stationary zonal flows in the low q (q ∼ 1) region are favourable for the suppression
of the turbulence. Therefore the turbulent transport will be reduced in wider region of
the plasma if the q profile has wider low q region where the stationary zonal flows are
excited. We have performed the calculation with the q profile having wider low q region,
q = 1.05 + 2(r/a)3.5, as shown in FIG. 7. Radial variation of the zonal flow frequency
spectra in this case is shown in FIG. 8. The stationary zonal flow region (r/a . 0.6)
becomes wider than that in the previous case (r/a . 0.45) because the fsound line shifts
to the higher frequency. It is noted that the width of the stationary zonal flows becomes
wider due to lower magnetic shear. The electrostatic component of heat flux and the
ratio of zonal flow energy to total E×B kinetic energy (dφ0/dr)2/|∇φ̃|2 in the case with
q = 1.05 + 2(r/a)3.5 are shown in FIG. 9. It is seen that the heat flux in the stationary
zonal flow region is reduced and the zonal flow dominant region extends to r/a ' 0.6.
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7 Summary and Conclusions

We have performed the electromagnetic ITG turbulence simulations in tokamak plasmas
using the developed global Landau-fluid code. Two types of zonal flows, stationary and
oscillatory modes, are possible in tokamak plasmas with a realistic q profile. The zonal
flow behaviour is changed by the safety factor q. In the low q region where the parallel
sound frequency of the (1,0) mode is higher than that of the oscillatory zonal flows, the
stationary zonal flows are dominant. The stationary zonal flows suppress the turbulence
effectively and become dominant over the turbulence. On the other hand, the zonal flows
in the high q region oscillate with the (1,0) pressure perturbations. The oscillatory zonal
flows are less effective in suppressing the turbulence. The both types of zonal flows are
driven by the Reynolds stress. In the quasi steady state the zonal flow energy supplied by
the Reynolds stress goes to the (1,0) pressure perturbations via the geodesic transfer. For
the stationary zonal flows the zonal flow energy goes to the (1,0) parallel flows through
the (1,0) pressure perturbations. On the other hand, the energy transferred from the
oscillatory zonal flows to the (1,0) pressure perturbations is mainly consumed by the
nonlinear transfer to the ITG turbulence as well as the Landau damping.
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FIG. 9: Electrostatic component of heat flux (a) and ratio of zonal flow energy to total
E×B kinetic energy (dφ0/dr)2/|∇φ̃|2 (b) as a function of radius and time in the case with
q = 1.05 + 2(r/a)3.5.

The turbulent transport can be controlled through the control of the zonal flow be-
haviour by the q profile. These results may be helpful to understand the experimentally
observed ITBs, although to investigate a relation with the ITB formation the inclusion of
neoclassical effect and heating is necessary like in Refs. [6, 7].
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