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Abstract

Phases of matter are splendid, and get more complicated from physical systems to biochemical

systems. Simple physics principles are proposed to categorise various phases of matter. The phys-

ical principles are often exemplified by simple idealised models. When they are applied to more

complicated biochemical systems, some generalisations may be needed.

In this thesis, two idealised models, dipolar dimer liquid and topological metamaterials with odd

elasticity, are discussed. The first model, Dipolar Dimer Liquid (DDL), is motivated by water. It

is a simplified model consisting of dipolar dimers on lattice with a Coulombic interaction between

the dimers. The Coulombic interaction is an idealised model for the hydrogen-bond interaction. It

is found that there exists a liquid-liquid phase transition in this model. To understand this phase

transition, an exact mapping from the DDL to the annealed Ising model on random graphs has been

constructed. Consequently, one may identify the order parameter charactering the liquid-liquid

phase transition of the DDL with the order parameter of the Ising model, magnetisation. One may

further bound the critical temperature with the help of this exact mapping and the exactly solved

Ising models in 2D. The estimation of the critical temperature has been confirmed by the numerical

simulations. A quantum generalisation of the DDL has also been proposed. Interesting interplay of

the Coulombic interaction and the quantum solid-liquid transition is discussed.

The second model is motivated by active matter. In the presence of active energy pumping, a

strange stress response, the odd elasticity, is admissible. In our model, the odd elasticity comes

from an idealised model of metabeams, and the dynamics of the system becomes non-Hermitian.

Interestingly, the topological properties still survive in the non-Hermitian dynamics. But the bulk

modes also become exponentially localised, which is called non-Hermitian skin effect. To characterise

the topological properties, the definition of the Brillouin zone has been generalised, and the definition

of the Zak-Berry phase has been clarified for the non-Hermitian systems. The 1D rotor chain and

2D rotor lattice have been discussed in detail as demonstrating examples.
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Chapter 1

Introduction

One of the central tasks of the condensed matter physics is to understand various phases of matters.

It is now often referred to as Landau’s paradigm of phase transition, where different phases are

distinguished by their symmetries. A phase with higher symmetry is often less ordered. For example,

in a liquid state, atoms do not have fixed distance between each other. Then, after thermal averaging,

the liquid phase has continuous translational and rotational symmetries. While in a solid state, atoms

are arranged according to some crystalline pattern at fixed positions, Therefore, the solid phase has

only discrete crystal symmetries. In the solid-liquid phase transition, when the solid melts, it restores

the translational and rotational symmetries, and reversely when the liquid solidifies, the symmetries

are spontaneously broken. In order to characterise the phases in a more quantitative manner, Landau

introduced order parameter , then the free energy of the system can be written as a functional of the

order parameter [42]. This paradigm turns out to be quite successful, as it applies to a wide variety

of phase transitions, e.g., solid-liquid transitions, magnetic transitions, superconductivity, etc.

In thermodynamics, the free energy F of a system contains of two terms often playing competing

rôles, the energy E and the entropy S. The free energy F and the energy E are related by the

Legendre transformation

F = E − TS, (1.1)

where T is the temperature. The entropy measures the disorderedness of a system. At higher

temperature, the second term weighs more, so the system tends to be less ordered. In the solid-

liquid phase transition, there is often a latent heat, therefore the entropy of the system changes

discontinuously. This kind of phase transition is called first-order transition. On the contrary, in the
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superconducting-normal transition in zero magnetic field, the entropy changes continuously, but its

derivative (e.g., the heat capacity) has a jump. This kind of phase transition is called second-order

transition.

In the second case, Landau assumed that the dependence of the free energy on the order param-

eter near the critical temperature Tc has the form

Fpot =

∫
(dDx)

(
1

2
α(T )(ϕ)2 +

1

4
β(ϕ)4

)
, (1.2)

where D is the spatial dimension, α = a0(T − Tc) changes sign at Tc, and a0 and β are positive

constants. The order parameter may also fluctuate in the space. Therefore, there is also a term

depending on the gradient of the order parameter ∇ϕ in the free energy functional, i.e.,

Fgrad =

∫
(dDx)

1

2
K(∇ϕ)2, (1.3)

where K quantifies the stiffness of the order paramter.

If the fluctuations are strong, the long-range order can be destroyed. It is now known as a

seminal theorem named after Mermin, Wagner, and Hohenberg 1 that a continuous symmetry will

not spontaneously break in systems of dimension D ≤ 2 and with short-range interaction. This is a

consequence of the divergent correlation of the Goldstone mode in the infrared (IR) limit.

In quantum systems, the fluctuations may originate from the quantum effects, e.g., the zero-point

energy in liquid Helium. A phase transition can be achieved by tuning the parameters of the system

even in the limit of T → 0, which is often referred to as quantum phase transition, and the point in

the parameter space separating two phases is called quantum critical point. In 2D antiferromagnetic

Heisenberg model, if one adds a strong enough easy-axis anisotropy, the system will be ordered.

Such an ordered phase is in the universality class of Ising model in the sense of renormalisation

group.

In 1970s, people realised that there are phase transitions beyond Landau’s paradigm [8, 9, 39].

For instance, in 2D XY model, since there is a continuous in-plane rotational symmetry, there

should be no long-range ordered phase according to the Mermin-Wagner-Hohenberg theorem. How-

ever, Berezinskii [8, 9] and Kosterlitz and Thouless [39] respectively noticed that there is a critical

temperature TBKT above which there is a significant contribution to the fluctuations due to the
1Sometimes the name list also includes Berezinskii and Coleman.
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vortices. In Ref. [39], one estimated the free energy for a vortex according to Eq. 1.1,

Fv =
1

2
q2 ln(R/a0)− kBT ln(R/a0), (1.4)

where q denotes the vortex charge, R is the size of the system, and a0 is size of the vortex core.

The first term is the excitation energy of a vortex, and the second term is proportional to its

configurational entropy. Then, the critical temperature TBKT can be estimated as the second term

starts to dominate, i.e., kBTBKT ∼ 1
2q

2. In either case, above or below TBKT, there is no long-range

order in the sense of the order parameter ϕ. But the correlation function ⟨cosϕ(x1) cosϕ(x2)⟩ is

decaying algebraically below TBKT, which is a reminiscent of the long-range order. Below TBKT, the

phonon-like fluctuations destroy the long-range orders, but above the TBKT, vortex pairs are free to

be created and to proliferate. The excitations of the vortices are topological objects. Therefore, this

kind of phase transitions is also called topological phase transition.

Phases of a system bearing topological low-energy excitations or phases themselves characterised

by some topological invariants are called topological phases. Topological phases often have some

properties robust against the perturbations. In quantum systems, the robust properties can be

ground state degeneracy, topologically protected edge states, etc. One of the earliest examples

was pointed out by Haldane [20] that spin-1 antiferromagnetic Heisenberg chain is gapped and

it supports topologically protected spin- 12 excitations at the boundaries [2]. This feature of the

topological phases is often called bulk-edge correspondence.

The discovery of the quantum Hall effects, integral [37] and fractional [79], turns out to be a

milestone. Over the last three decades, the development of the theory of topological phases of matters

branched into two major categories; however both of them can be dated back to the quantum Hall

effects as prototype. The precise quantisation of the Integer Quantum Hall Effect (IQHE) has been

attributed to the topological nature of the Hall conductance [77]

σH =
e2

h
C, (1.5)

where C is an integer called Chern number and σ0 = e2

h is the conductance quantum. (The inverse

of the conductance quantum RK = σ−1
0 is also known as von Klitzing constant.) On the boundaries,

the Landau levels are bended upwards by the confining potential and form the conducting chiral

edge states [23]. A simple but insightful model of IQHE without Landau level was constructed by

Haldane [21], where the Chern number C is equal to the integral of the Berry curvature over the
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Brillouin zone. There also exist C branches of chiral edge states. Haldane’s idea was not well appre-

ciated until around 2005, when the quantum spin Hall effect was proposed theoretically [55, 32] and

soon realised experimentally [38], where the edges consist of pairs of helical states. The 3D corre-

spondence of the quantum spin Hall effect is called topological insulator, i.e., the bulk being gapped

insulator but the surfaces being metallic due to the topologically protected gapless Dirac cones. On

the other hand, the emergence of the fractionally charged excitations in the Fractional Quantum

Hall Effect (FQHE) cannot be understood without interactions. Its topological nature is revealed

by its edge excitations described by the chiral Luttinger liquid [82]. Exotic fractional excitations are

not only of theoretical importance [81], they may also serve as candidates for topological quantum

computation [36].

The concept of classification of phases with symmetry and topology applies not only to the solid

state matters, it may also apply to many other systems that appear quite different. Extensions may

be needed to accommodate new features. Here, we mention two examples that will be heuristic to

the development of the models discussed in Chap. 2 and Chap. 3.

Let us first consider the classical fluid. The classical fluid is described by the Navier-Stokes

equation

∂t(ρu
i) + ∂j(ρu

iuj) = −δij∂jp+ ∂j(µS[δjk∂kui]) + f i, (1.6)

where ρ is the (mass) density of the fluid, u = (ui) is the velocity field, p is the mechanical pressure,

µ is the coefficient of viscosity, and f = (f i) is the body force density [44, 59, 18, 74]. The symbol

S[T ji] means the symmetric traceless part of the tensor T ji. This equation is nothing but Newton’s

equations of motion applied to macroscopically small and microscopically large fluid particles. We

have further equations of continuity and incompressibility

∂t(ρ) + ∂j(ρu
j) =0,

∂j(u
j) =0.

(1.7)

By homogeneity of the water, we also assume the fluid has a constant density ρ. Then, the Navier-

Stokes equation can be written in a form more commonly cited as

∂t(u
i) + uj∂j(u

i) = −δij∂j p̃+ η∆ui, (1.8)
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where p̃ = p
ρ is the reduced pressure, η = µ

ρ is often referred to as kinematic viscosity, ∆ is the

Laplacian, and we have omitted the term of body force. By abuse of language, we will omit the tilde

for the reduced pressure and also call it pressure, which should be clear from the context without

ambiguity. In the incompressible flow, the pressure may be regarded as a Lagrange multiplier for

the constraint of volume conservation.

The Navier-Stokes equation is notorious for its non-linearity in the convection term (second

term on the left hand side of Eq. 1.8). Therefore, the generic existence of the solutions to the

Navier-Stokes equation is still an open problem in mathematics. However, it is also due to this

nonlinear term, various intriguing phenomena arise, particularly the turbulence. Although, rigorous

mathematical study of turbulence turns out to be extremely hard, there are some heuristic physical

methods developed for the turbulent systems. For example, the high frequency fluctuations of the

physical quantities can be taken statistically [52]. This point of view turns out to be fruitful, e.g.,

in understanding the scaling behaviour in turbulent flows in analogy to the critical phenomena

in statistical physics [19]. This example is for demonstrating the application of the concepts of

statistical physics to systems appearing quite different. In this thesis, I will not pursue further in

the theory of turbulence.

The stress response in Eq. 1.6 is not in its most general form. In the quantum Hall fluid, the

antisymmetric part of the viscosity tensor may also contribute to the stress tensor, which is called Hall

viscosity [7]. The Hall viscosity does not dissipate energy, and it is of quantum nature [62, 63, 60].

The non-vanishing Hall viscosity is only possible when the time reversal symmetry is broken. There

is an exact analogy in solid system, where an odd elasticity may contribute to the stress tensor [67].

In contrast to the Hall viscosity, the odd elasticity does not conserve the energy. Therefore, it leads

to non-Hermitian dynamics . Odd elasticity does not appear in ordinary electronic systems, while

it may naturally arise in active matters, which will be discussed in Chap. 3.

The second example is the collective motion of flocks of fishes or birds. The motion is described

by a velocity field v(r). It is intuitive to make an analogy between the ferromagnetic phase to the

flocks collectively moving with a non-vanishing mean velocity. One may assume that a bird may

follow other birds in its sight even if those ones are at a far distance. Therefore, if one would like

to build an effective model based on spins s = v/|v|, there will be non-local interactions [10]. In

microscopic systems of electrons, there is no mechanism of couplings as such from the first principle.

In an effective model, nothing forbids such interactions to arise [72]. A more sophisticated model

describing the motions of the flocks was due to Vicsek et al. [80], which is often referred to as Vicsek

model. In this model, one regards the positions of the birds as dynamic variables in addition to
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the velocities. Although one assumes that a bird only watches other birds within a finite range, an

effective non-local interaction can still arise, because the neighbours of a bird keep varying during

the period of flying. These two points of view of the flocks bear ideas similar to Euler’s view of

a fisherman versus Lagrange’s view of a fish in hydrodynamics [59]. It turns out that biological

systems consisting of self-propelling particles as in Vicsek model may behave in a way quite different

from the classical fluids. The resulting phases may belong to new universality classes.

In this thesis, I studied two systems with motivations from some chemical and biological systems.

Chemical and biological systems provide intriguing test fields for physical theories. Although the

fundamental equations of motion are governed by the Schrödinger or Dirac equation, it is hard to

solve the equations if not impossible. Nevertheless, as various scales emerge, new effective theories

may be needed to reveal the underlying physics.

The first system is motivated by the hydrogen-bond interaction in water. It is known that the

hydrogen-bond interaction is indispensable in understanding some peculiar properties of water, e.g.,

the hydrophobic effect and the anomalous thermal expansion, etc., as well as in many biochem-

ical processes, e.g., the protein folding problem. In the former case, Molecular Dynamics (MD)

simulations provided some evidence how the water molecules are organised in the presence of the

hydrogen-bond interaction. In the latter case, in spite of the huge progress achieved recently base

on deep learning method [70, 16], the underlying physical picture still lacks. Instead of tracking

every detail of the complicated systems, hopefully studying idealised model may help to reveal the

underlying physics more effectively. I proposed a lattice liquid model of dipolar dimers with Coulom-

bic interactions which is named Dipolar Dimer Liquid (DDL). I showed that it has an interesting

phase where the dipolar dimers are ordered by the Coulombic interaction but without breaking the

translational symmetry or the rotational symmetry. Recently, MD simulations of realistic models

of water indicate a second critical point in supercooled water [14]. It seems the result of the MD

simulations echoes the phase transition I found in DDL in various aspects. Furthermore, I studied

its quantum generalisation. In contrast to the classical DDL, the Coulombic interaction does help

to stabilise the solid phase in quantum DDL.

The second system reported in this thesis is motivated by active matters. In superconductors,

when an external magnetic field is applied to it, a current will form so as to screen the magnetic

field. This screening is possible only if the current is dissipationless. Unlike the electrons in solids,

active matters may consist of self-propelling particles as exemplified in the Vicsek model. In active

matter, as the particles are able to propel themselves, there may be a spontaneous current, which

naturally breaks the time reversal symmetry. If the arrangement of the current is chiral, one obtains
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an analogue of quantum Hall effect in active liquid [73]. It should be noticed that the spontaneous

current in active liquid also violates the conservation law of the energy, while this is not surprising as

the active particles eat and convert the chemical energy to kinetic energy. Therefore, the dynamics

of the active matter may well be non-Hermitian. Bearing this in mind, in collaboration with Di

Zhou, we studied a model of active matter with odd elasticity. The concept of the topological

state can still be defined in this system even if it is governed by the non-Hermitian dynamics. In

contrast to the Hermitian electron systems, the bulk states may also be localised, which is called

non-Hermitian skin effect [41, 86]. We also clarified the proper generalisation of the Zak-Berry

phase for the non-Hermitian systems [71], which may still be used to indicate the existence of the

topological modes.
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Chapter 2

Dipolar Dimer Liquid: Water and

Beyond

In this chapter, the model dipolar dimer liquid will be discussed. We first briefly review some basic

aspects about the water molecule that one learnt from ab initio calculations, and the knowledge

about liquid and solid phases of water from MD simulations. One of the very successful models

accounting for the residual entropy in ice was pioneered by Pauling [58]. Lieb considered a more

idealised model than Pauling’s, i.e., a 2D square ice that is also known as the six-vertex model, and

solved it exactly [47]. In Ref. [47], the residual entropy density of the 2D square ice is obtained by

the transfer matrix method, and the constant W =
(
4
3

)3/2 is now often referred to as Lieb’s constant.

Motivated by Pauling’s and Lieb’s thoughts, I proposed a new idealised lattice liquid model, DDL.

In the DDL, molecules are represented by dipolar dimers, and they are free to move. Therefore,

DDL describes a liquid phase. More importantly, the hydrogen-bond interaction is also taken into

account by considering a Coulombic interaction between the dipolar dimers. The precise definition

is given in Sec. 2.1

In Sec. 2.2, it is shown show that there exists a liquid-liquid phase transition in the DDL. In the

ordered phase, no translational or rotational symmetries of the dimer is broken. In fact, the spatial

charge distribution is ordered by the Coulombic interaction. This phase looks very similar to the ice,

but it is NOT ice because the molecules (dimers) do not form a crystal. Furthermore, the partition

function of the system looks like that of a glassy system. Therefore, I named this phase glacia phase. 1

With an involved construction, the DDL can be mapped exactly to the annealed Ising model on
1The word glacia is the Latin word for ice, and it sounds like glass. This name shall remind people of an ice-like

phase with a glass-like partition function.
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random graphs. Resorting to the knowledge of the Ising models (particularly in 2D), one is able to

bound the glacia phase transition of the DDL on 2D lattice quite tightly. It should be emphasised

that the exact mapping constructed in Sec. 2.2 is independent of the dimension. Therefore, we

believe that the glacia phase transition in 3D should also be described by the universality class

of 3D Ising model, which seems to be consistent with a recent report of MD simulations of the

supercooled water [14].

In Sec. 2.3, the Monte Carlo (MC) simulation of the DDL is discussed. The sampling method

is not trivial. When dimers completely covered the lattice, the usual sampling scheme based on

local dimer motions does not work because it cannot run through all possible states. By resorting

to Lieb’s representation of the dimer model [48], the DDL is mapped to two coupled Ising models,

which legitimates the sampling strategy for the MC simulation. The numerical result confirms our

prediction without surprise.

In Sec. 2.4, a generalisation to quantum DDL is described. One observes that, although the

Coulombic interaction does not solidify the DDL, it does help to stabilise the solid phase in quantum

DDL. The Rokhsar-Kivelson point is shifted by the Coulombic interaction, and the critical point for

the quantum solid-liquid transition of the quantum DDL is estimated.

2.1 Modeling the Water

A water molecule consists of one oxygen atom and two hydrogen atoms. The oxygen atom has its

orbitals sp3-hybridised and two of the hybridised orbitals form covalent bonds with the hydrogen

atoms by sharing a pair of electrons for each bond. Two other hybridised orbitals are occupied by

the lone pairs of electrons. Since the lone pairs are not shared with other hydrogen atoms, they are

closer to the core of the oxygen atom, and they make the HOH-bond angle slightly smaller than

that of a tetrahedron (2 arctan
√
2 ≈ 109.5◦). The oxygen site is therefore negatively charged and

the hydrogen sites are positively charged. The OH-bond energy is of the order of several eV. This

picture has been essentially confirmed by ab initio calculations.

If there are two water molecules, they will interact with each other. When they are far apart,

each of the water molecule may be regarded as an electric dipole. This dipole-dipole interaction is

described by

HI,DD = − 1

4πϵ0

3(p1 · r̂)(p2 · r̂)− p1 · p2

r3
, (2.1)

where ϵ0 is the vacuum permittivity, r is the position vector pointing from one dipole to the other,
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r is the length of r and r̂ = r
r is the unit vector in the direction of r.

At Standard Temperature and Pressure (STP) 2, the distance between two ideal gas molecule is

about 3nm. The dipole moment of the water molecule is about pw ≈ 6 × 10−30C · m. By Eq. 2.1

we may estimate the typical energy scale of the dipole-dipole interaction Eg,DD ≈ 0.08meV for two

water molecules in gas phase, which is much smaller than the typical energy scale of the kinetic

energy EK = 3
2kBT ≈ 40meV. When the water molecules are in liquid phase, the typical distance

between the molecule is only one tenth of that in gas phase, so the dipole-dipole interaction can be

a thousand times stronger, i.e., El,DD ≈ 80meV, which is comparable to EK .

Furthermore, the distance between the molecules in liquid phase is comparable to the size of

the molecule. Therefore, Eq. 2.1 is no longer a good approximation. If we assume the polar charge

distribution is pointwise localised on the atoms, then the total interaction energy should be calculated

according to Coulomb’s law by summing up pairwise Coulomb interactions

HI,C =
∑
(i,j)

1

4πϵrϵ0

qiqj
rij

, (2.2)

where qi is the charge carried by atom i and rij is the distance between atom i and atom j. The

relative permittivity ϵr is a mean field approximation of the other molecules as a homogeneous

medium.

In addition to the Coulomb interaction, there are also van der Waals interaction between the

molecules, which is attractive and is proportional to r−6. However, when two molecules are very

close together, the interaction become repulsive. One of the empirical potentials often used in MD

simulations is the Lennard-Jones potential

HI,L−J = 4ϵ

[(σ
r

)12

−
(σ
r

)6
]
, (2.3)

where the minimum of the potential is at rm = 21/6σ and the corresponding potential energy is

Veq = −ϵ.

The interactions in Eq. 2.2 and Eq. 2.3 has been implemented for MD simulations with semi-

empirical parameters. For example, in a model named TIP3P, a water molecule consists of three

rigidly connected atoms (sites) with charges and Lennard-Jones parameters specified for the atoms.

An improved model widely used in MD simulations for water is TIP4P where a fictitious M site (often

massless, where the charge of the oxygen is placed) is added compared to the TIP3P model. There
2Defined by IUPAC, the temperature is 273.15K = 0◦C and the pressure is 1 × 105Pa. The molar volume of the

ideal gas at STP is 0.0227m3.
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are variants of TIP4P model with slightly different parameters, e.g., TIP4P/2005 and TIP4P/Ice

that are often regarded as quite good classical force fields for water in the sense of their ability to

reproduce the stability of various ice phases [1].

Among the complicated interactions between the molecules, it is the hydrogen-bond interaction

that makes water particularly interesting. It is more than the simple Coulomb interactions due to

the partial charges carried by the atoms. From the perspective of quantum chemistry, the hydrogen

atom in one water molecule (covalently bonded with the oxygen atom in the molecule) is interacting

with the oxygen atom in another water molecule by overlapping its antibonding orbital with the

lone pair orbital. Therefore, the covalent OH-bond is weakened by the hydrogen-bond interaction

whereas the hydrogen bond looks partially like a covalent bond in contrast to the Coulomb and

the van der Waals inter-molecule interactions. A typical strength of the hydrogen bond in water is

estimated to be about 200meV. So it is important to handle the hydrogen bond properly so as to

understand various effects in water, e.g., the formation of various phases of ice.

The problems in biological systems are more complicated. The hydrogen-bond interaction does

not only exist in water, it is ubiquitous in biological molecules and is essential for the structures of

DNA, RNA and protein. The good models for pure water, like the ones mentioned above, might

not be good enough in the presence of these biological molecules. After all, in the spirit of Dirac, all

the atoms and the electrons should obey the same “Schrödinger” equation on the very basic level.

There do be recent progress on implementing MD simulations more “fundamentally” than with these

semi-empirical force field models, where the interactions are computed with ab initio methods or

Density Functional Theory (DFT) [91]. I will not pursue further details of various approximation

schemes used in MD simulations. Perspective of MD simulation will be discussed in Sec. 2.5.

An alternative philosophical parcours in contrast to the reductionism is the emergence theory

that has been advocated by one of the pioneers of the condensed matter physics, Philip Ander-

son [6]. A milestone in this spirit is the universality and the renormalisation theory of the critical

phenomena. For instance, the magnetisation, superconductivity and liquid-gas phase transition can

all be described by the same physics law. In this sense, we understand the physics beyond splendid

emergent phenomena. Bearing this in mind, I will propose a simplified model for water. Although

the model may appear crude, hopefully it captures some key ingredients of the problem, and will

help us to understand the physics.

An early example may be dated back to Yang and Lee’s discussion on liquid-gas phase tran-

sition [85, 46]. Yang and Lee studied liquid-gas phase transition of molecules with Lennard-Jones

like interactions, i.e., a short range attractive interaction with a hard core repulsion [85]. The key
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features of this phase transition are quite well captured by a much more simplified model, i.e., the

lattice gas model [46]. They mapped the lattice gas model to the Ising model, while the later has

been exactly solved. It is heuristic to describe their model in more details. Suppose there is a lattice

and each lattice site can be occupied by an atom or left vacant. Two atoms are not allowed to occupy

the same site due to the hard-core repulsion. If two atoms sit on neighbouring sites of the lattice,

they attract each other with an energy u = −2ϵ; if they are far part, then they do not interaction

with each other, or u = 0. So the Hamiltonian of this lattice gas is

HG,LY = −2ϵNnn, (2.4)

where Nnn is number of pairs occupying nearest neighbour sites. The rule of mapping this lattice

gas model to the Ising model is as follows. On each lattice site one put a spin, either pointing up

or down. If a spin is pointing down, it means this site is occupied by an atom; otherwise the site is

vacant. The Hamiltonian can be transcribed in terms of the Ising model as

HI,LY = −J
∑
⟨i,j⟩

SiSj + h(N↓ −N↑), (2.5)

where Si is the spin on site i and NS is the number of spins in state S. Therefore, Nnn = N(↓ ↓), i.e.,

number of neighbouring pairs with both spin down. In this way, the lattice gas model is mapped

to the Ising model exactly. In App. 5.1, we included detail identifications of the parameters in the

notation consistent within this thesis.

Another encouraging example is the residual entropy of square ice discussed by Lieb [47]. Con-

sider a Lieb lattice, i.e., a square lattice with additional sites at the middle points of the edges

of the square lattice. (These additional sites will be referred to as Lieb sites in this thesis.) Put

oxygen atoms on the square lattice sites and put hydrogen atoms on the Lieb sites. If one assigns

two neighbouring hydrogen atoms to each oxygen atom, then it forms a 2D square ice. There are

various ways to assign the hydrogen atoms to the oxygen atoms, which leads to the residual entropy

of square ice. Let us focus on one oxygen atom. If a hydrogen atom covalently bond with this oxy-

gen atom, we put an arrow on the edge of the hydrogen atom pointing towards this oxygen atom;

otherwise we put an arrow pointing in the opposite direction. If one neglects the ionisation effect,

then each oxygen atom should have two arrows in and two arrows out, which is often referred to

as ice rule in the literature. So, there are, in total, six allowed configurations for each oxygen site

(see Fig. 2.1). Therefore, this model is also known as six-vertex model. For a given square ice, the
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Figure 2.1: Square ice model: six allowed configurations of a vertex.

number of all possible configurations are computed exactly with the transfer matrix [47]. Lieb’s 2D

square ice model remained on the paper until it is realised in experiment recently by sandwiching

water molecules betrween two sheets of graphene [5].

In Lieb’s square ice model, the oxygen atoms are fixed on the square lattice sites, and the

molecules cannot move. In order to study the hydrogen-bond interaction in water, we would like to

define a model similar to Lee and Yang’s lattice gas model where molecules are free to move, whereas

the molecules retain degrees of freedom such that some version of the hydrogen-bond interaction

may be defined.

Since the water molecule has a permanent dipole moment and the inter-molecule distance is

comparable to the molecule size, one of the simplest choices for the molecule will be a physical

dipole that consists of two equally charged monomers bonded together. We called it a dipolar

dimer. There are various ways to arrange the dipoles. For example, one may put the dipoles on the

lattice points and allow the dipoles to rotate. This model has been recently reported in experiment

with organic molecules [24]. With frustrations, the dipoles are not oriented at low temperature, and

form a quantum dipole liquid state according to Ref. [24]. However, this is not the model which we

are looking for, because the dimers are not free to move spatially, which is more similar to Lieb’s ice

model.

To fix the dipole pD of a dipolar dimer, we fix the length lD of the dimer. Denote the polar

charges ±qD, so we have

pD = qDlD. (2.6)

Instead of fixing the dimers on the lattice sites, we will put our dipolar dimers on the edges. To

keep our model general, we shall consider a lattice L defined by its lattice sites (vertex set, V ) and

edges linking the lattice sites (edge set, E). More precisely, “lattice” as such is rather called a graph
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Figure 2.2: Dipolar dimer liquid on 2D square lattice.

in mathematics. In most physics context, we will consider L = (V = {v}, E = {e}) with the vertices

being lattice points (in the mathematical sense) and the edges linking the neighbouring vertices. To

avoid possible confusions with the random graphs that we will construct in Sec. 2.2, by abuse of

language, we call L = (V,E) a lattice.

Let the dimers cover the edges, i.e., two ending points of a dimer sit on the vertices of the lattice.

Since all the dimers have the fixed length, dimers can only cover the edges with length matching

the dimer length. This might not be the case, e.g., in the long range RVB model where two spins

spatially far apart can still pair into a dimer. However, this is not a very restrictive condition. Many

2D and 3D lattices satisfy this condition, e.g., triangular lattice, square lattice, and honeycomb

lattice in 2D as well as regular cubic lattice and rhombohedral lattice 3D, etc. Fig. 2.2 shows an

example of the dipolar dimers on the 2D square lattice. To model the water in liquid phase, we

shall adopt some ideas from the lattice gas model. Every dipolar dimer is allowed to move freely on
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the lattice, whereas there is a hard-core repulsion if two dimers encounter, i.e., the dimers are not

allowed to overlap.

It is the interactions between the dipolar dimers that make the system more interesting. At the

relevant energy scale of 102meV as estimated above, the most important interaction is the hydrogen-

bond interaction. Unlike the long range Coulomb interaction, the hydrogen bond can only happen

when a positively charged hydrogen atom becomes close to some lone pair of a strong electronegative

atom (e.g., nitrogen, oxygen or fluorine). So, we shall assign an attractive interaction if two dimers

have their ending points of opposite charge sitting on the nearest neighbouring sites; otherwise

we shall assign a repulsive interaction. This interaction rule has the same sign convention as the

Coulomb’s law. We shall call it Coulombic interaction in this thesis. It should be emphasise that

this Coulombic interaction arises due to the hydrogen bonds, and it has different physical nature

from the Coulomb interaction of the charges.

Mathematically, we may summarise the Hamiltonian as follows.

HDDL =
∑
(a,b)

U(a, b),

U(a, b) =


∞, dimer a and dimer b overlap,

J [N+(a, b)−N−(a, b)], dimer a and dimer b do not overlap,

(2.7)

where the sum is taken over all pairs, and N±(a, b) is the number of edges connecting nearest

neighbouring points of two dimers with charges of the same sign (+) or of the opposite sign (−).

This completes our definition of the (classical) dipolar dimer liquid. This definition is very

general, and it is easy to extend this model to more complicated cases. For example, if electrolytes

are added to the water, one may include charged monomers. If the ions are hydrated, one may

further include trimer, tetramer or other more complicated complexes. However, we shall not be too

ambitious to expect that such an ideal model is comparable directly to the complicated real systems.

If new energy scales emerge, new model should be constructed. In pure water, the self-ionisation

effect is very small, and there are no ions from electrolytes, so we may well content ourselves with

the charge neutral dipolar dimers. (So is it in Lieb’s ice model.)

There are other interesting terms that may be included. In quantum (neutral) dimer model [64,

54], there is a kinetic term and an interaction term. The kinetic term is a local term with off-

diagonal transition elements in the configuration space of the dimers, which allows the dimer to hop

around. The interaction term is a face-to-face interaction between two parallel dimers diagonal in
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the configuration space. The quantum dimer model may be stabilised in the staggered phase or the

columnar phase in the presence of the interactions [54]. When the kinetic is large, the quantum

fluctuation may induce a quantum solid-liquid transition, and the quantum dimers form a quantum

liquid [54]. At room temperature, the kinetic energy of the water molecules is smaller than the

hydrogen-bond interaction by a factor of five. In Sec. 2.2 we shall drop out this quantum term nor

neglect the face-to-face interaction. It should be emphasised that dropping out this kinetic term

does not mean to freeze out the motion of the molecules. Instead, various configurations of the

dimers are taken into account in terms of a combinatoric quantity, which contributes significantly

to the entropy as in the classical dimer model and in the square ice model. The classical limit of

dropping the kinetic energy is analogous to the Hubbard model in the limit of t = 0, i.e., the strong

interaction limit with flat bands. Then, it will not be surprise that the staggered phase and the

columnar phase will help to understand dipolar dimer liquid.

In Sec. 2.2 we will show that there is liquid-liquid phase transition in the classical DDL by

mapping the dipolar dimer liquid to some Ising model. In order to do so, we need an additional mild

condition that the lattice L is bipartite. Mathematically, it means there exist two sets of vertices

VA, VB ⊂ V , such that i) VA ∩ VB = ∅, ii) VA ∪ VB = V , iii) ∀e ∈ E, ∂e ∩ VA ̸= ∅ and ∂e ∩ VB ̸= ∅,

where ∂e = {v1(e), v2(e)} is the set of the ending points of the edge e. This condition simplifies

our problem by excluding the frustrations. It is known that frustrations in dimer liquid will lead to

other interesting physics, like the fractional excitations and topological orders. I believe there are

similar effects in the quantum dipolar dimer liquid on non-bipartite lattices, which will be left for

future researches.

Although our definition of the model is not restricted to 2D, but the statistical physics in 2D

are much better known compared to higher dimensions. We will resort to various exact results (of

2D Ising model) to get insights in to the DDL. For example, we are able to prove the existence of

a liquid-liquid phase transition and to bound the critical temperature quite tightly with the exactly

solved Ising models on square and triangular lattice.

The generalisation of the DDL by including the quantum fluctuations and the face-to-face inter-

action of the quantum dimer model will be discussed in Sec. 2.4. This extension might be beyond our

original scope of modeling water, but it is quite interesting in physics by itself. Another interesting

extension is to include the polymers motivated by the protein problems. In 2D, the configurational

entropy of the dimer liquid can be evaluated exactly even in the presence of the polymers [89]. Com-

parison to MD simulations and recent progress in MD simulations will be commented in Sec. 2.5.
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2.2 Glacia Phase and Annealed Ising Model on Random Graphs

In this section, we will discuss about classical DDL that contains only Coulombic interaction. Even

though the model seems quite simple, there is some interesting physics. Particularly we will show

that there exists a liquid-liquid phase transition. The low temperature phase is ordered but not

solidified, which we named glacia phase. By constructing an exact mapping to Ising model, we

are able to show that the order in glacia phase is equivalent to the magnetisation in Ising model,

therefore the critical point is described by the same universality class of the annealed Ising model

on random graphs. In 2D, the critical temperature can also be bounded quite tightly with the help

of exactly solved Ising models.

Although the interaction in Eq. 2.7 appears innocent, it is not obvious how to handle it alge-

braically. It turns out to be helpful, instead of staring at the dimers, to look at the lattice L = {V,E}.

Each vertex can only be in one of the three states, occupied by a positive charge, empty, or occupied

by a negative charge. If two ending points of an edge ∂e = {v1(e), v2(e)} are covered by two different

dimers, then an interaction energy ±J is assign to that edge, where the sign depends on the charges

on ∂e. It is a simple abstract of the hydrogen-bond interaction.

The infinite hard-core repulsion may be taken as a geometric constraint. Define the configuration

space of the dipolar dimers C to be the set of configurations without any pair of dimers overlapping.

Then, for a given allowed configuration C ∈ C, we define the charge function on the lattice

Q(v|C) =


+1, if it is occupied by a positively charged atom,

0, if it is not occupied by any atom,

−1, if it is occupied by a negatively charged atom.

(2.8)

With the help of this charge function, we are able to rewrite the Hamiltonian of the DDL in Eq. 2.7

in a form more similar to that of an Ising model

HQ(C) =
∑

e∈Enn

JQ(v1(e|C))Q(v2(e|C)), (2.9)

where Enn is a subset of E consisting of the edges linking the nearest neighbours. If L is bipartite

lattice, Enn = E. This Hamiltonian is diagonal in the configuration space of the dipolar dimers

C = {C}.

Although we are at the strong interaction limit compared to the quantum dimer model [64,
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54], it is not obvious there exists a phase transition in the DDL. In quantum dimer model, the

solid phase are stabilised by the face-to-face interaction. The columnar phase is preferred by the

attractive dimers, and the staggered phase is preferred by the repulsive dimers [64, 54]. In DDL,

the interaction depends on the orientations of the dimers. It has been proved by Heilmann and

Lieb [25] that there is NO phase transition in the monomer-dimer system with only hard-core

interaction. In Ref. [26], Heilmann and Lieb considered hard-core dimers with orientation preferred

interaction, and they proved that there exists a phase transition where local rotational symmetry

can be spontaneously broken. Heilmann and Lieb’s model was proposed for the liquid crystals. Since

the nearest neighbour Coulombic interaction in DDL as described by the Hamiltonian in Eq. 2.7

or Eq. 2.9 has no orientation preference, no nematic order would be expected. However, it is not

impossible to have a liquid-liquid phase transition in DDL.

In reverse, if one a priori assumes that there exists an ordered phase, it is heuristic to speculate

what is the order according to the Ising-like Hamiltonian in Eq. 2.9. More precisely, if one regards

Q as spin variable, then J > 0 will support an antiferromagnetic order, i.e., the charge distributes

alternatingly on the lattice .

It was Lieb who first pointed to the author in a private communication [51] that the existence

of such an order in DDL may be proved by the Peierls contour argument in analogy to the Widom-

Rowlinson model. The argument is summarised as follows. On a bipartite lattice, every dimer

occupies an A site and a B site. Color the dimer 3 according to the color of its constituent monomer

on A site. Then, the colored dimers do not interact with each other according to their charges,

but interact according to their colors. The rule of the color interaction is simple: dimers of the

same color attracts each other and dimers of different colors repels each other. After recoloring the

dimers, the model looks similar to a lattice Widom-Rowlinson model, which is known to have a

phase transition in dimension d ≥ 2.

The remarkable ingredient in Lieb’s proof is that the dipolar dimers can be categorised into two

kinds, the “red ones” and the “blue ones”. The dipolar dimers with the same “color” attract each

other and the ones with different “colors” repel each other. This leads to the Widom-Rowlinson

picture. The original model of Widom and Rowlinson’s was proposed to understand the liquid-

vapour transition [83]. For molecules with hard-core repulsion in the continuum, the existence

of the phase transition in Widom-Rowlinson model was proved by Ruelle [65] (as pointed out in

Ref. [51]); and on the lattice by Lebowitz ad Gallavotti [45].
3We follows the convention as illustrated in Fig. 2.2 that a positive charged atom is in red and a negatively charged

atom is in blue.
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Figure 2.3: Dipolar dimer liquid on 2D square lattice and the Ising model on random graph con-
structed according to the dipolar dimer configuration.

Following this idea, I constructed an exact mapping from the DDL on bipartite lattice to the Ising

model. It turns out that the Ising model so obtained is an annealed Ising model on random graphs.

With this mapping, we are not only able to prove the existence of a phase transition, but also i) to

identify the order parameter with the magnetisation of the Ising model, and ii) to bound the critical

temperature with exactly solved Ising models. This exact mapping and the identification of the

order parameter is valid in all dimensions provided the lattice is bipartite. Since the known exactly

solved Ising models are mostly in 2D, so we will mainly focused on the 2D cases, particularly on the

2D square lattice as an example. In 3D, the critical behaviour should also be in some universality

class of the Ising model according to our exact mapping. However, the 3D cases are less known.

The method of the conformal bootstrap for the critical properties in 3D is also open by itself.

The detail construction is as follows. Consider a dipolar dimer on a bipartite lattice L = {V,E},

where the vertex set V has a natural partition V = VA ∪ VB . If the dimer has its positively

charged atom lying on a vertex of A type, one labels the dimer with a positive sign, otherwise

one labels the dimer with a negative sign. 4 Each dimer must be either positive or negative. We

augmented the lattice by adding the middle point of the edges Vm(E). For example, in 2D, the

square lattice is augmented to be the Lieb lattice. For a given dipolar dimer configuration C, we
4To avoid the confusion of the color and charge, here I used ± signs, which is equivalent to Lieb’s color. These

signs will become the spins up and down in the Ising model that we will construct.
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take the middle points associated to the edges which are occupied by the dipolar dimers, and they

form a subset Vm(E|C) of the augmented vertex set Vm(E). Then we put a spin on each vertex

vm(e|C) ∈ Vm(E|C). If the dimer is labelled positive in the previous step, set the spin up; otherwise,

set the spin down. For two given vertices vm(e1|C) and vm(e2|C), count the number edges spanning

from ∂e1 to ∂e2 and draw the same amount of bonds bα(C) spanning from vm(e1|C) to vm(e2|C).

Therefore, we obtain a new diagram Γ(C) = {Vm(E|C), B(C)}, which depends on the dipolar dimer

configuration C. With this construction, we map each dipolar dimer configuration to a random

graph with specified spin orientations.

Fig. 2.3 shows an example of a given DDL configuration on the 2D square lattice mapped to Ising

spins on a random graph generated according to the rules stated above. On 2D square lattice, the

vertices can be classified by a sign σ(v) = (−1)r(v)+c(v) where r(v) and c(v) are the row number and

column number of the vertex v respectively. For any dipolar dimer on edge e, the spin on vm(e|C)

can be calculated S(e) = 1
2σQ(∂e). One notice that on the right hand side, it is independent of

which ending point is used for calculating the spin orientation, therefore it is well-defined on the

edge e.

Another consequence of this mapping worthy to be emphasised is that the random graph Γ(C)

generated by a dipolar dimer configuration C is in dependent of the orientation of the dimers, i.e.,

flipping a dipolar dimer on an edge does not change the topology of the graph generated. In terms

of the Ising model, it is nothing but the fact that the spins are free to flip. Therefore the orientation

degrees of freedom and the translational degrees of freedom are decoupled. The former is associated

to the spin orientations while the later is associated to the connectivity of the random graphs. More

precisely, we transcribe the DDL Hamiltonian in terms of the Ising model for a given dipolar dimer

configuration C as

HS(C) = −4
∑

b∈B(C)

JS(v(1)m (b))S(v(2)m (b)), (2.10)

where v
(i)
m (b) are the ending points of the bond b.

Define D = [C] to be the dimer configuration obtained by neglecting the charges of the dimers

in the configuration C. This identification is an equivalence relation π on C, and dipolar dimer

configuration splits C = D × Σ, where Σ is the space of the orientations of the dimers provided an

underlying dimer configuration D is given. The random graph Γ(C) depends only on the equivalence
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class D = [C]. With this notation, the partition function of the DDL becomes

Z =
∑
C∈C

exp[−βHS(C)] =
∑
D∈D

 ∑
{S(D)}∈Σ

exp[−βHS ]

 . (2.11)

It is not difficult to recognise the term in the curly bracket in Eq. 2.11 is the partition of the

Ising model on the random graph associated to the dimer configuration D. A more generic form of

the partition function of the DDL is

Z =
∑
D∈D

W (D)ZIsing(D), (2.12)

where W (D) is a weight factor proportional to the probability of the underlying dimer configuration

D. If one assumes that all the dimer configurations are equally probable, it simply reduces to

Eq. 2.11. If one includes the face-to-face interaction as in the quantum dimer model [64, 54], the

stagger configuration swill be preferred for repulsive v and columnar configuration will be preferred

in attractive v, and different configurations will have different weights.

The partition function of the form in Eq. 2.12 has a physical interpretation. If one regards

the random graphs associated to the dimer configurations as disorder of the Ising coupling, then

the partition function of the DDL Z is an average of the partition functions of the Ising models

over various disorder configurations. This kind of disordered Ising model is often referred to as

annealed Ising glass. 5 Nevertheless, it is much simpler in our case, because the random graphs do

not really introduce frustrations by construction. So the couplings in our Ising models are always

ferromagnetic. The randomness of the couplings is only due to the connectivity of the graphs, which

is combinatoric. In 2D or higher dimensions, if the Ising models associated to the random graphs

all have a phase transition, it is not surprising that the averaged model has a phase transition as

well. In fact, one may further assert that the critical temperature of the averaged model should

be bounded by the Ising models on random graphs with the maximal critical temperature and the

minimal critical temperature.

This mapping also allows one to identify the order parameter. According to Eq. 2.9, it is intuitive

to speculate that the configurations of low energy should have the charges of different signs close

to each other. On a bipartite lattice, it is always possible to arrange the dipolar dimers in such
5The word annealed is used in contrast to another kind of disordered Ising model, quenched Ising glass, where the

word quenched refers to averaging the free energy over various disorder configurations.
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configurations by flipping each dimer locally. In this regard, one may define the order parameter as

Φ =
1

2|V |
∑
v∈V

σ(v)Q(v), (2.13)

However, it is not obvious that this kind of pattern may persist at finite temperature when the

dimers are free to move, . The problem becomes simpler from the perspective of Ising model. By

construction, this is exactly the magnetisation in the Ising model,

M =
1

|V |
∑

vm∈Vm(E|C)

S(vm). (2.14)

It is not surprising to have a phase transition at finite temperature when the space dimension is no

smaller than 2. In fact, the proof of the existence of the phase transition for the Widom-Rowlinson

model by using the Peierls contour argument as pointed out by Lieb rings the bell of the homological

proof for the Ising model.

In the low temperature phase, the dimers are arranged in a way such that the charges distribute

on the lattice alternatingly. For example, on a 3D cubic lattice completely covered by the dipolar

dimers, this charge order is similar to the ionic crystal of the salt NaCl. It looks like the hydrogen

bond network in ice. But this phase is NOT ice as it has essential differences compared to the ice.

In the 2D square ice model, the water molecules have only degrees of freedom of the resonant bonds

but with the oxygen atoms pinned to the lattice. Therefore, the square ice model describes a solid

with massive entropy. In DDL, the charge order forms mean while the dipolar dimers are still free

to move. No translational or rotational symmetries are spontaneously broken. Therefore, the low

temperature phase is also a liquid phase and this phase transition is a liquid-liquid phase transition.

In this respect, we call this ice-like low temperature phase glacia phase, and this phase transition

glaica phase transition.

Inspecting more details of this mapping, it turns out that more precise conclusions than the

existence of the phase transition may be reached based on the knowledge about the Ising model.

Particularly, Ising models on some 2D lattices are exactly solved, which may be used reversely to

bound the critical temperature of the glacia phase transition.

First, it is heuristic to consider the mean field approximation. In the mean field approxima-

tion, the correlations of the fluctuation of the spins are neglected, and the problem reduces to a

local problem of a single spin in an environment with its neighbours approximated by the average
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alignment. The self-consistent equation reads

M =
1

2
tanh(2βJzM), (2.15)

where z is the coordination number, i.e., the number of neighbours that one spin has. It is well-known

that the critical temperature is determined by the condition

βcJz = 1. (2.16)

The mean field approximation is only precise in the infinite-dimension limit, i.e., z → ∞. When

z is small, it tends to over estimate the order parameter. For example, in the case of 1D Ising

model, z = 2 and the mean field approximation predicts a finite critical temperature, while the

exact solution shows TG
c = 0. In the DDL, although z fluctuates, it is natural to expect that when

⟨z⟩ is small, Tc drops to zero. So, the glacia phase only exists when the density of the DDL is not

too small.

We shall now estimate the critical temperature of the DDL in the high density limit. A typical

realisation of the configuration of the DDL completely covering the 2D square lattice is shown in

Fig. 2.3. If one counts the number of neighbours surrounding a spin, it may various from four

to six. These coordination number recalls the well-known results of the Ising model on square

lattice (z = 4) and that on triangular lattice (z = 6). The former has a critical temperature

kBT
□
c = 2J

ln(1+
√
2)

≈ 2.2692J and the latter kBT
∆
c = 4J

ln 3 ≈ 3.6410J . According to the mean field

result Eq. 2.16, one expects that the former gives a lower bound and the latter gives a upper bound

for the critical temperature of the DDL, i.e.,

2.2692J < kBT
G
c < 3.6410J. (2.17)

Notice that when two parallel dipolar dimers on the same plaquette, their interaction is 2J

instead of J . In our construction, it is represented by the double bonds connecting two Ising spins

on the random graphs. Rather counting the number of bounds for each vertex in the random graphs,

one always finds six, i.e., the random graphs have all the vertices of degree 6. It implies that the

critical temperature of the Ising model on triangular lattice kBT
G
c ≲ 3.6410J may give a more

precise bound. This estimation is confirmed with the numerical simulation. (See Sec. 2.3.)

In fact, the lower bound can be further improved by inspecting the low temperature excitations.
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Figure 2.4: Staggered configuration and columnar configuration of the dipolar dimers.

The energy cost for flipping a spin is proportional to the number of bonds linked to a vertex Since

all the vertices have degree 6, each single spin excitation then costs 6J . If there are multiple spins

flipped, the energy costs is proportional to the number of bounds crossing the domain wall. It two

spins are linked by a double bond and are flipped together, it costs less energy for such kind of

excitations than two separated spins flipped. Therefore, the more double bonds in a random graph

the lower critical temperature the associated Ising model will have.

Two realisations of the dipolar dimers achieving the limit of no double bonds and the limit of

maximal number of double bonds are shown in Fig. 2.4. Following the convention of quantum dimer

model (neglecting the charge degrees of freedom of the dipolar dimers), I referred to the dimer

configuration in the top panel as staggered configuration and to the one in the bottom panel as

columnar configuration. In the staggered configuration, one finds that the associated random graph

is exactly the triangular lattice and naturally there are no double bonds. It reconfirms our previous

estimation from the mean field approximation, i.e., kBT∆
c sets the upper bound. In the columnar

configuration, each spin has four neighbours and two double bonds. Since each vertex is of degree

6 and each spin has to have at least four neighbours, it achieves the maximal possible number of

double bonds. Therefore, it will sets the lower bound of the critical temperature. It is not difficult

to observe that the associated Ising model is on a deformed square lattice, and the couplings in

horizontal direction and in vertical direction are J and 2J respectively. Luckily, this Ising model

is also exactly solved and its critical temperature is kBT
□hv
c ≈ 3.2820J . (See Sec. 5.2, Eq. 5.11 in
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Appendix.)

For a generic random graph constructed according to the dipolar dimer configuration, any vertex

can have zero, one or two double bonds. If a vertex has one double bond, it can be regarded as

a mixture of the staggered and the columnar configurations. Since the total partiition function of

the dipolar dimer liquid is the average of the partition functions of the Ising model over various

random graphs, the critical temperature of the glacia phase cannot exceed the range of the highest

and the lowest critical temperature of the Ising models on two particular graphs we identified above.

Therefore, we tighten the bound of the critical temperature to a quite small range

3.2820J < kBT
G
c ≲ 3.6410J. (2.18)

It is known that there is a version of the Ising model on random graphs being solved exactly

by Kazakov [34]. Kazakov’s model has a critical temperature kBT
K
c = 1

ln 2J ≈ 1.4427J , which is

far more loose than the bound we have in Eq. 2.18. The random graphs in Kazakov’s model come

from the planar Feynman diagrammes of some matrix model. However, at the dense limit of the

DDL, it is not as useful as the estimation we have above, because the random graphs in Kazakov’s

model are somehow different from the random graphs we constructed. Particularly, in Kazakov’s

model, there are essential contributions from the random graphs whose plaquettes can be polygons

of large number of edges. These graphs can only appear when the density of the DDL becomes

lower according to our construction. Hence, it is not surprising that the critical temperature also

becomes lower if the density is lower. Therefore, we expect that the glacia phase persists at finite

temperature even at a lower density. Another interesting feature of the Kazakov’s model is that

the phase transition is a third order transition. We speculate that glacia transition of the DDL

may soften at a lower density. Perhaps, there are other possible instabilities setting in (e.g., phase

separation) before the glacia transition softens.

Another remark I would add here is that, at the time this thesis is written, it is reported that an

evidence of second critical point of water is evidenced in MD simulations by Debenedetti et al. [14].

A liquid-liquid critical point was found in deeply supercooled water and this critical point seems

consistent with the Ising universality class. At their condition, kinetic energy is small which matches

our strong interaction approximation in our model of DDL. The low temperature phase is reported

to be an ice-like phase, which also matches the glacia phase in the DDL. However, it is hard to

compare two models directly. In the MD simulations, density was used as an order parameter. In

our model, we have close packed DDL on a lattice, and the density is a constant. I believe that the
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Figure 2.5: Lieb’s representation of the dimer covering.

DDL does describe some important features of the liquid-liquid phase transition observed in the MD

simulation. More detail comparison will be left for future researches.

2.3 Numerical Method of Simulations

The reasoning of the glacia phase transition in Sec. 2.2 has been confirmed numerically with Monte

Carlo (MC) simulations. When the dimers completely covers the 2D square lattice the simplest

non-trivial dimer move is the two-dimer reorientation (as the T2 term in Eq. 2.20 in Sec. 2.4 for

the quantum dimer model). However, it is known that the configuration space of the dimers on 2D

square lattice splits into various topological sectors [64]. Even though T2 is believed to be ergodic

within each topological sector, one cannot reach a state in a different topological sector by applying

T2 once the initial state is given. Therefore, this intuitive choice of T2 is not eligible for generating

the Markov chain of the states for the MC simulation. In other words, it implies a dynamical

jamming transition, where the ergodicity of the system evolving under the Hamiltonian is broken,

in the classical dimer model. It is direct to observe the fact that, with only T2, the dimers are

completely stuck in the staggered configuration .

To circumvent this difficulty, we may go back to Eq. 2.12, where the degrees of freedom of

the random graphs and the spin configurations are decoupled. The former depends only on the

underlying dimer configuration, while the latter is the spin states of a standard Ising model. Then,

the only task remains is to sample the dimer configurations properly.

Lieb’s solution of the dimer model on square lattice turns out to be very helpful for sampling

the random graphs [48]. Lieb constructed another representation of the dimer model on square lat-

tice [48], where the dimer configurations are mapped to an Ising model on a shifted lattice illustrated

in Fig. 2.5.
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In Ref. [48], Lieb mapped the dimer configurations row-by-row into an associated Ising model.

Then, the partition function of the dimer model can be calculated as the restricted transfer matrix

of the Ising model. An example of a matrix element of the transfer matrix and the corresponding

dimer configuration is shown in Fig. 2.5. In fact, Lieb considered a monomer-dimer covering, which

is more general than we need here. Lieb’s construction rule can be summarised as follows. Consider

a monomer-dimer covering problem on a 2D square lattice. One associate an Ising spin to the middle

point of each vertical bond. For the top row, an additional row of vertical bonds should be added.

In the periodic condition, these extended vertical bonds are shared with the first row. Then we put

the dimers according to the spin configurations row by row. If one has an up spin on a vertical

bond, one puts a dimer on that vertical bond. Then, there are only three possible transitions from

an in-state to an out-state: 1) an up spin propagates vertically upwards with a down spin, or a down

spin propagates with an up spin; 2) a down spin propagates with a down spin; and 3) two down

spins copropagate with two down spins. In the first case, one needs to do nothing. In the second

case, one puts a monomer on the vertex between these two down spins. In the third case, one puts

a horizontal dimer on the vertices in the row sandwiched by these four down spins.

Obviously, it is not allowed to have an up spin propagating with an up spin, otherwise two

vertical dimers will overlap on a vertex. In our case, we do not need monomers. We will respect the

constraint that it is not allowed to have a down spin propagating with a down spin either. Since the

partition function of the dimer system is

ZD =
∑

a0,...,am

Ta0,a1Ta1,a2Ta2,a3 . . . Tam−1,am , (2.19)

where ai run through all the spin configurations in i-th row. 6 If one samples in the space of {ai}, it

is guaranteed to be ergodic in the space of dimer configurations, while this sampling is nothing but

sampling the Ising model associated to the dimer model according to Lieb’s construction in Ref [48].

Now, the sampling of the DDL is equivalent to the sampling of two coupled Ising models. The

result of the MC simulation is shown in Fig. 2.6. One may estimate the critical temperature to be

kBT
G,MC
c = (3.5± 0.1)J , which comfirms theoretical prediction in Eq. 2.18 without surprise.

6The subscript a0 = | ↓ ↓ . . . ⟩ if one has open boundary condition, or a0 ≡ am if one has periodic boundary
condition in the vertical direction.
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Figure 2.6: MC simulation of glacia phase transition.
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2.4 Quantum Dipolar Dimer Liquid

In this section, we discuss about the generalisation of the classical DDL to a quantum DDL. The

total Hamiltonian of the quantum DDL can be summarised pictorially as follows

HQDDL =t1T1 + t2T2 + vV + JVC ,

T1 =| ⊖—⊕⟩⟨⊕—⊖ |,

T2 =|
—

—
⟩⟨| | |+ | | |⟩⟨

—

—
|,

V =| | |⟩⟨| | |+ |
—

—
⟩⟨

—

—
|,

VC =− |⊖ · · · ⊕⟩⟨⊖ · · · ⊕ |

+ | ⊕ · · · ⊕⟩⟨⊕ · · · ⊕ |

+ | ⊖ · · · ⊖⟩⟨⊖ · · · ⊖ |,

(2.20)

where t1, t2, v, J are the coupling constants. The last term JVC is the DDL Hamiltonian defined in

Eq. 2.7.

In the first term T1, symbol ⊕,⊖ represent the polar charges of a dipolar dimer and the short

line stands for the dimer link. Therefore, T1 flips the orientation of a dimer locally. It is trivial for

neutral dimers but not for dipolar dimers. It can be considered as a single-dimer kinetic term for

the dipolar dimers.

The second term and the third term are the same as the kinetic term and the face-to-face interac-

tion term in quantum dimer model [53]. We adopt the same pictorial representation for the dipolar

dimers with charges suppressed in this pictorial representation. Since V does not change dimer

configurations, it has a natural extension from neutral dimers to dipolar dimers, i.e., it counts the

interaction of two face-to-face dipolar dimers as if they are neutral dimer. This charge independent

interaction can be consider as a short range extension of the (zero-range) hard core repulsion. It can

be attractive v < 0 or repulsive v > 0. The extension of T2 is a little more complicated. There can

be two natural ways to extend this two-dimer reorientation term. 1) If one regards T2 in the neutral

dimer model as two-dimer reconnection, then the natural extension of T2 will also reconnect ending

points of the dipolar dimers and leave the charges of the dipolar dimers unmoved. However, this

might not be always possible for any pair of dipolar dimers due to the charge neutral condition that

requires each dimer to be neutral in total. In order that the reconnections respect the charge neutral
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condition, one may further assume all those reconnections violating the charge neutral condition are

of zero amplitude. This simple assumption introduces additional combinatoric restrictions for the

transitions among the dipolar dimer configurations. 2) An alternative interpretation is to regard

this term as two-dimer rotation. Then its has an extension to dipolar dimers without obstruction

form charge neutral condition, whereas it inevitably changes the spatial charge distribution. To

distinguish from the former case, we will denote this term as T̃2 if we adopt this second way of

extension.

The quantum DDL is also well defined on lattice at higher dimension or at other fillings. However,

the associated Ising model are less known. Even though our construction of the exact mapping from

the DDL to the Ising model on random graphs does not depend on details of the bipartite lattice L,

and we can always apply the mapping, less quantitative information can be extracted from the Ising

model side. Therefore, we will focus only on the close packed quantum DDL on 2D square lattice.

The term T1 is a single-dimer flipping term. It turns out to have a simple interpretation in the

picture of the Ising model described in Sec. 2.2. Since T1 term is diagonal in C, it only contribute

to the ZIsing(C). With the notations we defined in Sec. 2.2, for a given C, T1 may be transcribed as

t1T1 ↔ t1HT1(C) = t1
∑

vm∈Vm(E|C)

|S̄(vm)⟩⟨S(vm)|, (2.21)

where S̄(vm) means flipping the spin S(vm) on vertex vm. Therefore, combining Eq. 2.10 and

Eq. 2.21, we have an Ising model on graph Γ([C]) with transverse field and t1 is exactly the strength

of the transverse field.

The second term T2 in Eq. 2.20 is a two-dimer reorientation term. As described above, there

are two ways to extend the two-dimer reorientation term from neutral dimer model to DDL. If one

takes the reconnection T2 that acts trivially on charge degrees of freedom, it does not allow the

factorisation of the partition function as in Eq. 2.11 in general. But it does not introduce additional

fluctuations for the spatial charge order either. In this sense, it is a weak coupling between the spatial

charge order and the dimer motions. At low temperature kBT ≪ J , the spatial charge distribution

is ordered. In this limit, the spatial charge order does not obstruct T2, therefore T2 becomes almost

the same as it is for neutral dimer, and the partition function approximately factorises as in Eq. 2.11.

At high temperature or large t1 (in the spin disordered phase), the charge distribution does not have

long range order, and there are strong local charge fluctuations. The combinatoric obstruction from

the charge neutral condition can not completely suppress T2. We expect when t2 becomes much

larger than |v|, the quantum DDL will still go through a quantum phase transition from solid to
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liquid, though the critical value may be larger than that of the quantum dimer model.

If one takes the rotation T̃2, then it disturbs both charge order and dimer configuration simulta-

neously. In quantum dimer model, RVB liquid phase is stabilised by this quantum fluctuation and

a solid-liquid transition happens at Rokhsar-Kivelson point [64] t2 ∼ v. However, when J is much

larger than v and t2, the fluctuation of dimer configuration is suppressed by charge order. The gain

of energy for the state of disordered dimer configuration by this fluctuation is about t22
J in stead of t2.

So a transition of ordered dimer configuration to disordered dimer configuration will happen around
√
vJ in analogy to the Rokhsar-Kivelson point. It should be emphasised that the spatial charge

order of the DDL persists over this phase transition. If t1 is much larger than J , the spatial charge

distribution is disordered according to the associated Ising model. In this case T̃2 will be much less

suppressed. Although t1 is only a disorder field for the Ising model and not directly coupled to the

dimer motions, it drives both quantum phase transitions of the spatial charge order and the dimer

configuration order in the DDL.

2.5 Conclusion and Discussion

We proposed a new dimer model, DDL, which consists of dipolar dimers. It has Coulombic inter-

action between the dipolar dimers, which is an idealised model motivated by the hydrogen-bond

interaction. Independent of the dimer configuration order, the DDL may exhibit a spatial charge

order. We called the charge ordered phase glacia phase. We constructed exact mapping of the

DDL to the annealed Ising model on random graphs, which helps to understand various properties

of the DDL and its quantum generalisation. Particularly, in 2D, we are able to bound the critical

temperature of the spatial charge order quite precisely with the help of various exactly solvable Ising

models.

We discussed the effects of quantum fluctuations. In our construction, the single-dimer flipping

is exactly mapped to the transverse field in the Ising model on random graphs. Furthermore, the

spatial charge order and dimer configuration order are coupled. We argued that in the regime of

strong Coulombic interaction, the charge fluctuation due to the single-dimer flipping may induce

quantum phase transitions for both orders.

Although the Coulombic interaction does not prefer particular dimer configuration, it can help

stabilise the solid phase by suppressing the quantum fluctuations of the dimer configuration. In

real systems, a manifestation of this effect is the well-known fact that water, hydrogen fluoride and

ammonia have higher melting point compared to the other compounds in their respective families
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due to the hydrogen bonds in spite of their relatively small molecular weights. At finite temperature,

it has been recently reported that the solid columnar phase melts undergoing a KT transition for

classical dimer model [4]. It is then intriguing to study how the Coulombic interaction in DDL will

modify the critical exponents, which we leave for future researchers.

The hydrogen-bond interaction endows water some distinguishing features. The hydrophobic

effect and anomalous thermal expansion are believed to be related to the “hydrogen bond network”

formed by the water molecules in the liquid phase according to MD simulations. More recently,

it has been reported that MD simulations indicate a two-critical-point scenario of water [14]. In

Ref. [14], an unusual critical point for a liquid-liquid phase transition is evidenced to be in the

Ising universality class. It seems that various features of this newly discovered liquid-liquid phase

transition in the MD simulations match the spatial charge order phase transition of the DDL.

Although we have constructed an exact mapping of the DDL to the annealed Ising model on random

graphs, a direct comparison between the DDL and the more realistic models in MD simulations is

hard. The critical exponents may be good indicators to test this speculation, which we will also

leave for future researches.

Before closing this chapter, it deserves to mention some recent progresses in MD simulations [91]

and in protein folding problem [70, 16]. In both cases, the method of deep learning has been

implemented for bio-physico-chemical systems. It becomes possible to achieve high-enough precisions

only recently due to the rapid development of the computation power. Nevertheless, these success of

the numerical methods does not diminish the meaning of the model study. Even though the training

data of the Deep Potential come from the ab initio calculations and density functional theory,

the “force field” becomes a black box. From an alternative perspective, perhaps the conventional

concept of the force field is no longer a good picture to understand the complicated systems. In

the protein folding problem, from electronic structure of the amino acids to protein quaternary

structure, multiple scales are involved. The machine trained by deep learning can well be taken

as a good phenomenological theory. As Laudau’s theory of phase transition, one may start from

it and apply it to magnetism, superconductivity, turbulence, etc.; one may also connect it to some

microscopic theory and achieve deeper understanding of the physics. Attempts to deconstruction

the black box is underway, e.g., Ref. [28], which might help us to handle the complicated systems

with multiple scales.
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Chapter 3

Topological Metamaterials with Odd

Elasticity

The Vicsek model described in Chap. 1 demonstrates that active system may behave in a quite

different way compared to solid materials. Contre the dictation of the Mermin-Wagner-Hohenberg

theorem, a long-range order may establish even in 2D. A continuum model describing the flocks

merging the Ginsburg-Landau theory and the Navier-Stokes theory has been proposed by Toner

and Tu [78]. It demonstrates that concepts developed in solid materials may help us to understand

various complicated systems. In some cases, the concepts borrowed from solid materials may require

proper extensions.

It is heuristic to observe some important features from the active fluid. The Toner-Tu system

can be considered as a combination of the Ginsburg-Landau theory and the Navier-Stokes equation.

In Sec. 3.1, we first briefly review several intriguing points of the Navier-Stokes equation. In the

“dissipationless” limit, the Navier-Stokes equation may still dissipate energy, while in the “dissipation”

limit, the Navier-Stokes equation restores the time-reversal symmetry. In order that the small active

particles are able to swim in water, the way they swim has to break the time-reversal symmetry.

More interestingly, in Toner-Tu system, the active fluid may form a spontaneous chiral current, and

it has been shown that the chiral current may leads to some topological modes of sound waves in

analogy to the quantum Hall effect [73].

On the other hand, in analogy to the Hall viscosity, it is natural to consider the odd elasticity [67]

in some active material if the stress responses to the strain instead of the strain rate. Notice that the

odd elasticity violates the energy conservation. In the presence of the odd elasticity, the dynamics
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of the system becomes non-Hermitian,

In Sec. 3.3, a 1D rotor chain connected by metabeams with odd elasticity is discussed. This

rotor chain may be considered as a generalisation of the Su-Schrieffer-Heeger (SSH) model [31]

with non-Hermitian dynamics. The 1D rotor chain admits topological modes. In order to discuss

the topological feature, the definition of the Brillouin zone should be generalised [87, 93], and

the definition of the Zak-Berry phase needs to be clarified [71, 93]. Similar to the non-Hermitian

electronic systems, the bulk modes are localised, which is referred to as non-Hermitian skin effect [41,

86, 93]. The generalisations in 2D are discussed in Sec. 3.4.

3.1 From Navier-Stokes Equation to Active Matter

Classical hydrodynamics is governed by the Navier-Stokes equation (Eq. 1.6). It is known that

turbulence often occurs when the flow is fast. Mathematically this arises due to the non-linear

convection term in the Navier-Stokes equation. On the contrary, if one neglects the convection

term and the pressure term, the Navier-Stokes equation reduces to a simple linear equation same

as the heat equation, i.e., the viscosity term describes the diffusion of the velocity. To quantify the

strengths of the convection (inertial) term and dissipation, with simple dimensional analysis, one

may introduce a dimensionless ratio

Re =
U/L

η/L2
=

UL

η
, (3.1)

where U and L are typical scales of velocity and length in the system. The number Re is called

Reynolds number.

Turbulence tends to occur at high Reynolds number. This can happen 1) when η is small, and 2)

when UL is large. This categorisation is not mathematical, since with proper nondimensionalisation,

both cases mean a large Reynolds number Re. It is somehow intuitive to guide the physical designs.

Controlling U and L in an experiment setup is often achievable, for example, in the wind tunnel

experiments, while varying η over orders of magnitude can be harder for a given fluid.

Physicists apply statistical methods for studying turbulence [52]. Mathematicians resort to some

different ways. An interesting limit is to take η → 0, which leads to large Reynolds number with

finite U and L. If one naïvely sets the viscosity η = 0, the Navier-Stokes equation reduces to the
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Euler equation

∂t(u
i) + uj∂j(u

i) = −δij∂j p̃. (3.2)

The Euler equation is much simpler than the Navier-Stokes equation. By taking the curl, one may

get rid of the potential term. Instead, one obtains a set of equation for the velocity u and the

vorticity ω. With the help of this transformation, it is possible to prove the long term existence of

the solution for the 2D incompressible flow for the Euler equation [18].

Nevertheless, this is not the happy ending of the fairy tale. The limit of η → 0 is singular for the

Navier-Stokes equation, as the viscosity term contains the highest order derivative in the equation.

Therefore, in the limit of η → 0, a solution of Navier-Stokes equation may not converge to a solution

of Euler’s equation in a simple way. Onsager argued [56] that there exist weak solutions to the

Euler equation violating the energy conservation with Hölder regularity Cα less than or equal to

the threshold α̂ = 1
3 , which is now often referred to as Onsager’s conjecture. It is still an active

research direction in mathematics. The positive part of the conjecture, i.e., weak solutions with

Hölder regularity better than α̂ = 1
3 conserves the energy, was proved by Eyink [17] and Constantin,

E, and Titi [13] in 1994; while the negative part was proved quite recently by Isett [29] based on the

method of convex integration developed by De Lellis and Székelyhidi (see Ref. [12], Ref. [29], and

references listed therein). This method has also been applied for proving non-uniqueness of weak

solutions to the Navier-Stokes equation by Buckmaster and Vicol [11].

If one considers more regular flows without turbulence, some exact solutions are known. For

example, consider a laminar flow along x-direction between two infinite parallel plates perpendicular

to the y-axis with distance H apart. If we look for a solution in dependent of x and z, one can solve

the velocity profile in y direction [44]

ux(y) = − G

2η
y(y −H), (3.3)

where G is the negative pressure gradient along the x direction. This configuration is often referred

to as plane Poiseuille flow. The velocity profile is a parabolic dome with maximal at y = H/2 and

vanishing at y = 0,H. Recently, Ilani’s group and collaborators reported that electrons in graphene

can be controllably tuned from ballistic regime to the Poiseuille regime [76]. The spatial resolved

voltage and current profile is mapped by a single electron transistor mounted on the tip of a scanning

probe [15].
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Electrons are charged particles. A more general theory of hydrodynamics for fluids consisting

of charged particles is called magnetohydrodynamics, where the Maxwell equation and the Navier-

Stokes equation should be considered simultaneously. The magnetohydrodynamics is crucial for

understanding various phenomena, e.g. the corona of the Sun, stability of magnetically confined

plasma, etc. I will not discuss about the magnetohydrodynamics in this thesis. Nevertheless, the

charge degree of freedom does allow one to manipulate the electrons with electric and magnetic

fields. In most cases for electrons in solids or ions in liquids, problems can be simplified.

A particular example is the Hall effect, where a background magnetic field is applied to the sys-

tem. Since the magnetic field break the time-reversal symmetry, the Hall fluid has some distinguished

properties. One may consider a more general response of the stress due to the viscosity.

Tab = ηabcdS[δce∂eud]. (3.4)

where the stress tensor Tab can always be chosen to be symmetric [43]. Therefore, the viscosity tensor

ηabcd splits into symmetric and antisymmetric parts with respect to the pair of first two indices and

the pair of last two indices. If we further assume the fluid is isotropic, the most general form of the

viscosity tensor is

ηabcd =η

(
δacδbd + δadδbc −

2

3
δabδcd

)
+ ζδabδcd + ηAEabcd,

Eabcd =
1

2
(ϵacδbd + ϵadδbc + ϵbcδad + ϵbdδac).

(3.5)

For an incompressible flow, ζ can be set to zero, and η is the shear viscosity same as the one we

have in Eq. 1.8. In Ref. [7], it is pointed out that the antisymmetric component ηA can also be

non-vanishing when the time-reversal symmetry is broken. As this term is considered for the Hall

fluid Ref. [7], it is called Hall viscosity. In quantum Hall fluid, the Hall viscosity has a quantum

origin, and it is proportional to the shift [62, 63, 60].

Back to the Navier-Stokes equation, let us consider a red blood cell in blood vessels. The typical

size of a red blood cell is about 10−5m. The kinematic viscosity of water is of the order 10−6m2 ·s−1.

The typical velocity of the blood flow in vein or artery is about 0.2m · s−1, and that in capillaries

can be three orders of magnitude smaller. The Re estimated for a blood cell in blood vessels ranges

from 10−3 to 2. Flows in this regime are often referred to as flows with low Reynolds number. The

Navier-Stokes equation simplifies significantly as the non-linear convection term may be dropped out.

The resulting equation together with the incompressibility equation is also called Stokes equations,
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and the flows are also called Stokes flows. The Stokes flow has time-reversal symmetry, but it is not

dull. An impressive experiment has been demonstrated by Heller where a drop of dye in Couette

viscometer mixed with the rest of the liquid can be unmixed if one reverses the rotation [27]. A

non-trivial consequence of this nontrivial time reversibility is vividly summarised as Purcell’s scallop

theorem, i.e., a scallop cannot move forward if it swims with a periodic motion and the motion is

reversible in time in each period. The approximation of the Stokes flow is often a good approximation

for microbes in water or in many other biological context. According to Purcell’s scallop theorem,

if a bacteria or a sperm would like to swim actively, one has to whip tits flagella in a way not

reversible in time or to spin the tail in a helical motion. The mechanical energy is not conserved

in these motions. In fact, these motions are energised chemically by ATP (or in some systems by

proton pump). So if one consider a fluid made of active particles, the active energy pumping also

needs to be taken in to account.

On a quite different scale, similar physics may happens. The collection motions of the flocks

can be abstracted as a fluid of self-propelling particles. More interestingly, the flocks described by

Toner-Tu equation [78] may have a spontaneous flow (breaking the time-reversal symmetry) similar

to the phase transition described by the Ginsburg-Landau theory. More precisely, in Ref. [73], it is

shown that the Toner-Tu equation for self-propelled particles in the overdamped regime reduces to

∂t(ρ) + v0∂j(ρp
j) = Dρ∆ρ,

∂t(p
i) + λv0p

j∂j(ρp
i) = (α− β|p|2)pi − ṽ1∇ρ+ η∆pi,

(3.6)

where ρ is the density of active particles, p is the local velocity polarisation of the active fluid, and

v0 is the local mean speed. The details of the derivation may be found in Ref. [73] and the references

therein. However, it is worthy to emphasise that the first term containing coefficient α and β on

the right hand side of Eq. 3.6 in second the line is of the form of Ginsburg-Landau free energy. The

order parameter is the local velocity polarisation. In the symmetry-broken phase, the active fluid

form spontaneous flow. In Ref. [73] it has also been shown that the coupled channels can be designed

in a way to guide a chiral spontaneous flow. In analogy to the quantum Hall effect, it leads to the

topological sound waves.

Before closing this section, I will also discuss about elastic active metamaterials. In contrast to

Eq. 3.4, in elastic material, the stress tensor response with respect to the strain instead of the strain
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rate, and up to linear terms we have

Tab = CabcdS[δce∂eqd], (3.7)

where (Cabcd) is the elastic modulus tensor [43]. If we assume that the metamaterial is isotropic,

one has a decomposition of elastic modulus similar to that of the viscosity tensor (Eq. 3.5)

Cabcd =M

(
δacδbd + δadδbc −

2

3
δabδcd

)
+Kδabδcd +KoEabcd, (3.8)

where M is the shear modulus, K is the bulk modulus, and Ko is the odd elasticity [67]. The odd

elasticity term does not appear in the expansion of the free energy in quadratics of the strains [43],

because it does not conserve the energy. Therefore, this term is only possible when there is an energy

pumping in the system or the system is driven by external force, which is not forbidden in principle

in active metamaterials. In Sec. 3.2, we will describe a model of metabeams with odd elasticity [67].

Then, we substitute the metabeams for the springs in a mechanical SSH model. It turns out that

the topologically protected modes can still appear. In order to describe the topological features, one

has to generalise the usual notion of the topology for the systems described by some non-Hermitian

dynamics.

3.2 Topological Modes: Beyond the Electrons in Solids

Topological phases of matter has been one of the main topics over the past three decades. Most

discussions are based on electrons in solids with prototype that can be dated back to SSH model or

quantum Hall effect.

Quantum simulator of cold atoms provides a non-electron platform with great tunability. Since

the atoms are neutral, they do not couple to the magnetic field directly. In order to realise the

topological phase as the quantum Hall state, one may synthesise an effective gauge field with the

help of the Berry phase (cf. Ref. [88] and references listed there). Analogy of Haldane’s model has

been achieved experimentally with cold atoms [30]. In a similar spirit, artificial gauge fields can also

be engineered for photons, which has been demonstrated experimentally in Ref. [68]. Protocols to

realise the fractional quantum Hall states with high fidelity has also been proposed [90]. In Ref. [90],

the effective magnetic field is achieved by making the atoms rotate. Instead of stirring the atoms,

one injects the angular momentum by two-photon adiabatic Raman transition. The experimental
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Figure 3.1: One dimensional rotor chain with metabeams.

realisation still remains for future researches.

Another analogy of Haldane’s model was proposed in photonic crystals [61, 22]. The photon

dispersion in a triangular lattice has a pair of Dirac points at the Brillouin zone corner. The

Dirac points are well separated from other TE and TM modes. Raghu and Haldane proposed to

open a topologically nontrivial gap with the Faraday-effect that breaks the time-reversal symmetry.

Consequently, at the edges of the photonic crystal, there exist “chiral” photon edge modes similar

to the edge states in the quantum Hall effect. An interesting application has been demonstrated in

Ref. [15, 76], where lasing modes are protected topologically against the defect scattering.

Active fluid can also be made topological [73]. In Sec. 3.1, we see that the active fluid may

form spontaneous flow. If one guides the flow with a superlattice of annuli, one obtains a vortex

lattice [73]. The vortices plays a rôle of magnetic field. If there is a net flux, the collective modes of

the fluid is then coupled to a background flow that breaks the time-reversal symmetry, Therefore,

the topological sound modes emerges.

In spite of various interesting demonstration of realising quantum Hall analogues without elec-

trons, in this thesis we will follow another track of topological model prototyped by SSH model.

The 1D SSH model was originally proposed for understanding solitons in polyacetylene [75]. In SSH

model, the topological modes are a half of the degrees of freedom of a unit cell localised at each

ending of a chain. The Haldane chain [20]/AKLT model [2] and the Kitaev chain [36] also fall in

this category. The edge modes consist of a half of a spin-1 (i.e., a spin- 12 ) and a half of a charged

fermion (i.e., a Majorana) respectively.

Recently, an intriguing analogy to the SSH model in the mechanical system was discussed by

Kane and Lubensky [31]. Topological floppy modes in quasicrystals and disordered networks were

discussed in Ref. [94] and Ref. [95]. Since our 1D rotor chain (Sec. 3.3) will be related to Kane and

Lubensky’s model, I will describe the latter in more details here. Let us consider a chain (along x-
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axis) of evenly spaced rotors with their moving ends connected by a spring. Fig. 3.1 shows a typical

configuration of the rotors. The angular position of the rotor on site n is measured from positive

y-direction if n is odd, and from negative y-direction if n is even. If all the rotors are at the angular

position θn = 0 in the equilibrium state, it corresponds to the gapless point of this mechanical SSH

model. If the rotors are tilted at an angular position θn = ⟨θ⟩ > 0 in the equilibrium state, there

exists another equilibrium state with θn = −⟨θ⟩ < 0. This is analogous to the two-fold degenerated

gapped ground states for an infinite SSH chain.

The dynamics of the 1D rotor chain is described by Newton’s law. Near the equilibrium config-

uration one has the linearised equation of motion

θ̈n =
∑
m

Dn,mθm, (3.9)

where D is called dynamic matrix. The dynamic matrix D is semi-positive for a stable equilibrium

configuration. A naïve counting degrees of freedom leads to ν = Nf −Nb, where Nf is the number

of rotors and Nb is the number of springs. A tentative physical interpretation of ν is the number of

zeros modes N0. This intuitive picture is not exact, but quite close. There can be states of self-stress

which make the springs stretched or compressed without net force acting on the rotors. So, more

precisely, ν = N0 −Nss, where Nss counts the number of states of self-stress.

The origin of these zero modes and the states of self-stress can be understood mathematically in

a way similar to the flat band in an imbalanced bipartite lattice according to Lieb [49, 50]. Kane

and Lubensky [31] factorised the dynamic matrix as D = QQT and rewrote the equation of motion

in a first order form with a Hamiltonian-like matrix

H =

 0 Q

QT 0

 . (3.10)

Then, ν can be related to the index of Q as

ν = IndQ = dimkerQT − dimkerQ. (3.11)

In Ref. [31], it has also been shown that the topologically protected zeros modes are related to the

winding number

n =
1

2πi

∫
dkTr

[
Q−1(k)∇kQ(k)

]
. (3.12)
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Figure 3.2: Metabeams with odd elasticity.

In Sec. 3.1, we have seen that the active matter may admit a term of odd elasticity (Eq. 3.8)

that does not appear in the usual electronic systems. Since the odd elasticity violates the energy

conservation, it is only possible in a system with active energy pumping, which is the case for many

biological systems. In Sec. 3.3 we will define a generalised SSH model with odd elasticity arising

from some metabeam as described in Ref. [67]. It is intriguing to study how the odd elasticity

will modify the properties of a topological system. It turns out that such a system breaks the PT

and has a complex spectrum in general. Therefore, a theory of non-Hermitian topological system

is needed. The topological modes can still be well-defined, while the definitions of the Zak-Berry

phase and winding number also need to be properly generalised. The bulk modes are modified by

the non-Hermitian skin effect.

3.3 1D Rotor Chain with Odd Elasticity

In this section, a one-dimensional non-Hermitian generalisation of the SSH model is discussed.

Same as in Ref. [31], we consider a 1D rotor chain, with massless rotors of radius r0 attached to

the equally spaced lattice points by ideal pivots, i.e. the rotors are free to rotate around the lattice

points. Lattice points with rotors tilted upwards are called A sites, and those with rotors tilted

downwards are called B sites. Connect the neighbouring tips of A and B rotors by the merabeams

with odd elasticity.

The tilted angle with respect to the normal direction (upwards for A sites and downwards for B

sites) are denoted as θA,B respectively as shown in Fig. 3.1. Denote uA,B the displacement of the

rotors with respect to their equilibrium position respectively. We have

uA =|uA|(cos θA,− sin θA)
T ,

uB =|uB |(cos θB , sin θB)T .
(3.13)
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Figure 3.3: Spectrum of 1D rotor chain. The topological edge modes are indicated with red stars.

For small displacement, up to linear term the force of the metabeam can be written in the form

of Hooke’s law

F (u) = −(kn̂+ koϕ̂)(u · n̂), (3.14)

where n̂ is the unit vector along the metabeam and ϕ̂ is the unit vector of the transverse direction

obtained by rotation n̂ by 90 degrees counterclockwise. The first term containing k is evidently

same as the usual spring constant, whereas the interesting new term containing ko leads to the odd

elasticity. For a metabeam connecting two neighbouring sites, we measure the angular position of n̂

from the normal direction associated site on the right side and denote it by θ1,2. We shall emphasise

here that the force of odd elasticity is not conservative. This is easy to be verified by considering the

following cycle. First stretch the metabeam along radius direction, then rotation by a small angle

while keep the length of the meta beam, after that squeeze the metabeam back to its original length,

and finally rotate the metabeam back to its original position. In the first step and third step, as the
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Figure 3.4: Two topological edge modes of 1D rotor chain.
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Figure 3.5: A typical bulk mode with non-Hermitian skin effect.
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force of odd elasticity is perpendicular to the displacement, the energy change is due to the usual

elastic force which is zero after the metabeam is squeezed back to its original length. However, in the

second and fourth step, the work done by the odd elastic forces does not cancel. (Obviously, in step

four, the meta beam resumes its original lenghth therefore no force on it at all.) As we discussed in

Sec. 3.1, nonconservation of mechanical energy may naturally arise in biological systems as chemical

energy may be used for driving rotational motions of flagella or molecular motors. The dynamics is

then non-Hermitian.

Then the equation of motions for the system is given by Newton’s law

müA,n =+ c1uB,n−1 − auA,n + buB,n,

müB,n =+ b′uA,n − a′uB,n + c′1uA,n+1;

a =(k + ko cotΘA) sin
2 ΘA + (k − ko cotΘ′

A) sin
2 Θ′

A,

a′ =(k + ko cotΘB) sin
2 ΘB + (k − ko cotΘ′

B) sin
2 Θ′

B ,

b =(k + ko cotΘA) sinΘA sinΘB ,

b′ =(k + ko cotΘB) sinΘA sinΘB ,

c1 =(k − ko cotΘ′
A) sinΘ

′
A sinΘ′

B ,

c′1 =(k − ko cotΘ′
B) sinΘ

′
A sinΘ′

B .

(3.15)

The eigen modes for a system of 2N sites is determined by the eigenvalue problem

−λu = Du, (3.16)

where u = (uA,1, uB,1, uA,2, uB,2, . . . uA,N , uB,N )T and D is called dynamic matrix with entries given

by {a, a′, b, b′, c1, c′1}.

In the quantum theory of solids, the translational symmetry of the system ensures that the

eigenstates of the Hamiltonian can also be the eigenstates of translation operator. In the unitary

representations of the eigenstates, the irreducible representations of the translation operator are all

of one dimension, i.e., the eigenvalue must be ei
2πn
N under the translation by a unit cell. It leads

strong constraints for the form of the wave functions according to Bloch’s theorem.

In non-Hermitian system, there is no such unitary requirement. Even in the presence of the

translational symmetry (continuous or discrete) for the dynamics matrix, “wave functions” are not

necessarily invariant under translation and the momentum or quasi-momentum are not well defined. 1

1A symmetry of the equation of motions is not necessarily the symmetry for its solution. In quantum field theory,
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This can be illustrated by a simple ODE as follows.

d2

dx2
u = −(ϵ+ iγ)u;

u(x) = A exp
(
±i

√
(ϵ+ iγ)x

)
.

(3.17)

A generic value of the square root in the above equation has a non-vanishing imaginary part, therefore

the solution is always exponentially decaying or increasing. It turns out to be a generic feature for

the non-Hermitian systems, which is often referred to as non-Hermitian skin effect.

In fact, to solve Eq. 3.16 one has to specify the boundary conditions. We have intensionally

organised the terms in a way similar to the usual one dimensional string of coupled oscillators. Since

each oscillator is coupled to two neighbours, this is an equation of second order in space (compared

to the discretised version of Laplacian), therefore two boundary conditions are needed.

Two intuitive choices of the boundary conditions same as the Hermitian cases are the fixed

boundary condition and the periodic boundary condition. In the Hermitian case, the spectrum

obtained for the fixed boundary condition and the periodic boundary condition has only small

differences. They agree with each other in the thermodynamics limit N → ∞, except for the

boundary modes. This is not the case for the non-Hermitian systems. The spectrum for the periodic

boundary condition is quite different to that of the fixed boundary condition. In fact the periodic

boundary condition requires the solutions to be invariant under the translation by N unit cells, while

the solutions to the fixed boundary condition explicitly break the translation symmetry and are all

localised exponentially.

Nevertheless, if one only compares the real part of the spectrum, two choices of the boundary

conditions have the solutions covering the same intervals. This motivates us to associate these

localised modes found in fixed boundary condition still to the “bulk” modes. However, what we

mean by “bulk” modes is generalised.

This generalisation can be justified by the transfer matrix in real space formalism. The dynamic

matrix in real space in Eq. 3.16 is band diagonal. This allows us to solve uA,n+1, uB,n in terms of

it is known as the spontaneous symmetry breaking. More interestingly, it is pointed out by Polyakov in a lecture of
modern classical mechanics that even the solution possesses the symmetry, a local observation within measurement
uncertainty may overlook the symmetry. For example, suppose an observable evolves as O = A exp(αt)+A exp(−αt),
which is invariant under time reversal symmetry. At a time t large enough, one may not be able to resolve the
exponentially small part and the time reversal symmetry appears broken.
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uA,n, uB,n−1.

−λuA,n =+ c1uB,n−1 − auA,n + buB,n,

−λuB,n =+ b′uA,n − a′uB,n + c′1uA,n+1;

uB,n =
−(λ− a)

b
uA,n − c1

b
uB,n−1,

uA,n+1 =− b′

c′1
uA,n +

−(λ− a′)

c′1
uB,n

=− b′

c′1
uA,n +

(λ− a′)

c′1

(λ− a)

b
uA,n +

(λ− a′)

c′1

c1
b
uB,n−1.

(3.18)

The third line is obtained directly from the first line. The fourth line is to obtained by manipulating

the second line in a similar way, and one substitutes the third line for uB,n. The result of Eq. 3.18

may be organised more concisely as

 uB,n

uA,n+1

 = QR

uB,n−1

uA,n

 ,

QR =

 − c1
b

−(λ−a)
b

(λ−a′)
c′1

c1
b

[
− b′

c′1
+ (λ−a′)

c′1

(λ−a)
b

]
 ,

(3.19)

The physical meaning of the matrix QR defined above is self-evident, i.e., once the amplitudes of

the n-th unit cell {uA,n, uB,n−1} is given, the amplitudes of the (n+ 1)-th unit cell {uA,n+1, uB,n}

is obtained by multiplying the matrix QR. In other words, QR is nothing but the right transfer

matrix.

Instead of the boundary condition problem defined by the dynamic matrix, we now consider

the initial value problem defined by the right transfer matrix. It is obvious that two methods are

equivalent. The translational symmetry is now also obvious as QR is independent n.

Denote A = bc′1,B = bb′ + c1c
′
1 − (a − λ)(a′ − λ), C = b′c1, and ∆ = B2 − 4AC. We have the

eigenvalues and eigenvectors of QR

β(±) =
1

2A
(−B ±∆);

ξ(±) ∼

 B ±
√
∆

2c1(λ− a′)

 ∼

2c′1(λ− a)

B ±
√
∆

 .
(3.20)
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Now any solution must be a linear combination of ξ(±), i.e.,

 uB,n

uA,n+1

 = u−

[
β(−)

]n
ξ(−) + u+

[
β(+)

]n
ξ(+), (3.21)

where u± are constants determined by the initial conditions or the boundary conditions.

Recall that, the bulk modes for fixed boundary condition should be defined as the system size

N → ∞. Let N0 be a finite size cut-off, then we have fixed boundary condition uA,N0+1 = 0 at

n = N0. In fact, we requires this to be true for arbitrarily large cut-off N0. This cannot be true

unless

|β(+)| = |β(−)| (3.22)

This is the bulk mode condition.

In the Hermitian case, β = exp(ika). It is not surprising that β is the eigenvalue of the translation

operator by a unit cell. In fact the right transfer matrix is a representation of the translation operator.

In the non-Hermitian case, this representation is not unitary, therefore the norm of a generic β is

not 1. This confirms the existence of the non-Hermitian skin effect.

Now that the bulk modes are defined, we are able to tell if an eigen mode is a bulk mode or an

edge mode even though both of then are exponentially localised. Then a natural question will be

wether the edge modes (if they exist) are topological? Furthermore, if so, how do we characterise

it?

It is well known in the quantum Hall effect, the existence of the chiral edge states is topological.

The topological nature is revealed in Ref. [77], where the Hall conductance is associated to the bulk

Chern number. In SSH model, it is the Zak phase modulo 2π indicating the topological edge states.

Both the Chern number and the Zak phase are obtained by integrating the Berry curvature (2-form)

or Berry connection (1-form) over the Brillouin zone.

Nevertheless, the Brillouin zone in the non-Hermitian system is not obviously defined as the

quasi-momentum are not well defined. We will show that, instead of the quasimomentum k, the

eigenvalue β of the transfer matrix Q can be used for generalising the definition of the Brillouin

zone.

Let us come back to the transfer matrix Eq. 3.19 and its solution Eq. 3.21. Although it is

equivalent to the eigenvalue problem defined by the dynamic matrix (Eq. 3.18), for more complicated
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cases (more sites within a unit cell, couplings to farther neighbours etc.), it is almost impossible to

solve explicitly QR explicitly. Furthermore this method will also be hard to generalise to higher

dimensions. However, It is heuristic to observe that the form of the solution in Eq. 3.21 resembles

the Bloch waves. We shall then take this as our ansatz for generalised Bloch waves in non-Hermitian

systems

uA,n

uB,n

 = βn

uA

uB

 . (3.23)

Substitute Eq. 3.23 for the corresponding terms in the equation of motions (Eq. 3.18) we have

− λuA = +c1β
−1uB − auA + buB ,

− λuB = +b′uA − a′uB + c′1βuA;

− λ

uA

uB

 = D(β)

uA

uB

 ,

D(β) =

 −a b+ c1β
−1

b′ + c′1β −a′

 .

(3.24)

This eigenvalue problem has non-trivial solution only when det(D(β) + λ) = 0, i.e.

(λ− a)(λ− a′)− (b+ c1β
−1)(b′ + c′1β) = 0,

bc′1β
2 + (bb′ + c1c

′
1 − (λ− a)(λ− a′))β + b′c1 = 0.

(3.25)

Without surprise we arrive at the same equation for β as the transfer matrix method.

It is worth a remark here that Eq. 3.24 is not just a reproduce of the derivation of the transfer

matrix. Since β is a generalisation of exp(ika) for non-Hermitian systems, D(β) is an analogy to

H(k) in ordinary band theory. We call D(β) reduced dynamic matrix. In our case, all the allowed β

form a loop in complex plane homeomorphic to S1, although their norm are not 1 in general. This

loop now can be considered as a generalised Brillouin zone. Particularly, one may choose arg β as

a parameterisation of the generalised Brillouin zone for the non-Hermitian system. By abuse of the

notation we will denote q = arg β for convenience. It should be emphasise this q has nothing to do

with the quasi-momentum, while its meaning should be evident and unambiguous from the context.

Now we move to the definition of the Zak-Berry phase. In the Hermitian system, one use the
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periodic part to define the Berry connection

A = i⟨u(k)|d|u(k)⟩. (3.26)

In the non-Hermitian case, this definition of the Berry connection can be formally retained with

⟨u| and |u⟩ being left and right eigenvectors of the reduced dynamic matrix D(β). This choice is

justified by the biorthogonality of the eigenvectors of the non-Hermitian matrix [93]. For a generic

non-Hermitian D(β) the right eigenvectors are not orthogonal to each other with respect to the

canonical Hermitian metric. In the defective limit, two eigenvectors will coalign. 2 However, the

left and right eigenvectors associated to the different eigenvalues are canonically orthogonal. The

tensor product of a pair of left and right eigenvectors associated to the same eigenvalues can be

canonically normalised. (It still leaves an arbitrariness for the normalisation for each individual

of them.) Therefore by using left-and right-eigenvector pairs, we have the orthonormality and

the completeness, which is important in many derivations of the formulae. This point has been

overlooked in Ref. [71].

One defines

γ =

∮
C
A(β)dqβ , (3.27)

This is a topological indicator. The phase diagram of the 1D rotor chain has been summarised

in Fig. 3.6. When |c1c′1| > |bb′|, the system is in the topological non-trivial phase. There are

topologically protected edge modes. When |c1c′1| < |bb′|, the system is in the trivial phase.

3.4 2D Rotor Lattice with Odd Elasticity

In this section, we consider 2D lattice with odd elasticity. Fig. 3.7 shows a unit cell of 2D rotors

attached to the honeycomb lattice and connected with the metabeams. The unit cell is defined by

vector a1,2 =
(
∓

√
3
2 a, 3

2a
)T

, where a is the edge length of the honeycomb lattice. In each unit cell

there are two lattice points which we call A site and B site. The site A (resp. site B) is connected to

three site B’s (resp. site A’s) with three metabeams. The angular positions of the rotors (specified

by the tangential vectors) are denoted as θA,B , and the angular positions of the metabeams are
2In our case, the defective case will not bother us as it always has two degenerate eigenvalues. As we assume the

spectrum of our system should always have a gap, the defective case is excluded. Nevertheless, when one tries to
generalise the Dirac/Weyl semimetals to the non-Hermitian correspondence, defective point can be a way two band
touches. This will be an interesting question for future researches beyond the current thesis.
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Figure 3.6: Phase diagram of 1D rotor chain.
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denoted as θi, i = 1, 2, 3. All the angles are measured with respect to the x-axis. To simplify the

notations, we denote ΘAi = θA − θi and ΘBi = θB − θi. Then, we have the equations of motion

linearised near equilibrium position

müA,n1n2
=+ c1uB,(n1−1)n2

+ c2uB,n1(n2−1) − auA,n1n2
+ buB,n1n2 ,

müB,n1n2 =+ b′uA,n1n2 − a′uB,n1n2 + c′1uA,(n1+1)n2
+ c′2uA,n1(n2+1),

(3.28)

where the parameters are given by

a =
∑

i=1,2,3

(k + ko tanΘAi) cos
2 ΘAi,

a′ =
∑

i=1,2,3

(k + ko tanΘBi) cos
2 ΘBi,

b =(k + ko tanΘA3) cosΘA3 cosΘB3,

b′ =(k + ko tanΘB3) cosΘB3 cosΘA3,

c1 =(k + ko tanΘA1) cosΘA1 cosΘB1,

c′1 =(k + ko tanΘB1) cosΘB1 cosΘA1,

c2 =(k + ko tanΘA2) cosΘA2 cosΘB2,

c′2 =(k + ko tanΘB2) cosΘB2 cosΘA2.

(3.29)

As we have seen in Sec. 3.3, the spectrum of the non-Hermitian system is sensitive to the boundary

conditions. We will only discuss the fixed boundary conditions, i.e., the amplitudes of the sites on

the boundaries vanish.

Fig. 3.8 shows a typical bulk mode (left panel) and a typical edge mode (right panel). The markers

have their size proportional to the amplitude. The left panel shows a mode that would be symmetric

with respect to the diagonals of the rhombus in the absence of the odd elasticity. Nevertheless, it is

obvious that the weight of the mode is heavier in the lower half rhombus, which is a manifestation

of the non-Hermitian skin effect. In fact, the non-Hermitian skin effect exists no matter the system

is in the topologically non-trivial phase or in the topologically trivial phase. Fig. 3.9 shows a (bulk)

mode similar to the bulk mode in the left panel of Fig. 3.8 but in a topologically trivial phase.

It is interesting to observe that the edge modes reside only on the upper right edge and the

bottom left edge but not on the other two edges. It is in contrast to the quantum Hall effect

(Haldane model), where the topological edge modes are chiral modes localised on all four edges and

forming a closed loop. It turns out that the topological edge modes are still characterised by some
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Figure 3.7: Unit cell of 2D rotor lattice.
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Figure 3.8: A bulk mode and an edge mode of 2D rotor lattice in topological non-trivial phase.
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Figure 3.9: A bulk mode of 2D rotor lattice in topological trivial phase.
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winding number as a generalisation of the one we defined in Sec. 3.3. A closer analogy in the electron

systems can be the polarisation model of King-Smith and Vanderbilt [35].

More quantitatively, we use the ansatz of the generalised Bloch wave

uA,n1n2

uB,n1n2

 = e−iωtβn2
2 βn1

1

uA

uB

 . (3.30)

It transforms the equations of motion to an eigenvalue problem for a 2-by-2 dynamical matrix

D(β1, β2) =

 a −(b+ c1β
−1
1 + c2β

−1
2 )

−(b′ + c′1β1 + c′2β2) a′

 (3.31)

For a given β2, we may solve β1 from the eigenvalue problem

β
(±)
1 =

1

2A
(−B ±

√
∆), (3.32)

where

λ =mω2,

A =bc′1 + c′1c2β
−1
2 ,

B =bb′ + c1c
′
1 + c2c

′
2 + bc′2β2 + b′c2β

−1
2 − (a− λ)(a′ − λ),

C =b′c1 + c1c
′
2β2,

∆ =B2 − 4AC.

(3.33)

A bulk mode means |β(+)
1 | = |β(−)

1 |, i.e., Eq. 3.32 gives a pair of conjugate β1, or equivalently AC/B2

being real as well as ∆ < 0. From these conditions we solve the norm of β2

|β2| =

√
b′c2
bc′2

, bb′c2c
′
2 > 0. (3.34)

Reciprocally, we also have the norm of β1

|β1| =

√
b′c1
bc′1

, bb′c1c
′
1 > 0. (3.35)

The norms of β1 and β2 are not unital in general, which describes localisation of the bulk modes

due to the non-Hermitian skin effect.
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We define the Berry phases γi along each direction of the base vector ai

γ1(β2) =

∮
Ci

A1(β1, β2)dqβ1 ,

γ2(β1) =

∮
Ci

A2(β1, β2)dqβ2 ,

Ai({βi}) =i⟨u(L)(βi, β2)|∂qβi
|u(R)(βi, β2)⟩.

(3.36)

where Ci is the fundamental loop in the generalised Brillouin zone parameterised by the argument of

βi. In Eq. 3.36, the dependence of γ1 on β2 and the dependence of γ2 on β1 has been made explicit.

In contrast to the 1D case, the Berry phase so defined is not integral multiples of π for all generic

βi in the generalised Brillouin zone. Similar to the 1D case, we have a symmetry transformation

ID(βi)I−1 = D(β∗
i ). Therefore, γ1(β2) = −γ1(β

∗
2)( mod 2π) and γ1(β2) = −γ1(β

∗
2)( mod 2π). If

we average the Zak-Berry phase, we have

γ1 =
1

2π

∫ π

−π

γ1(β2)dqβ2 ,

γ2 =
1

2π

∫ π

−π

γ2(β1)dqβ1 ,

(3.37)

being integral multiples of π. These are topological indicators of the topological edge modes. In the

Hermitian case, the symmetry I has a simple physical interpretation, i.e., the inversion symmetry.

Fig. 3.10 summarieses the phase diagram of the 2D rotor lattice. When (γ1, γ2) = (π, 0), the

topological edge modes are localised on the upper-left edge and bottom-right edge; when (γ1, γ2) =

(0, π), the topological edge modes are localised on the upper-right edge and bottom-rleft edge. When

(γ1, γ2) = (0, 0), the system is topologically trivial, and there are no topological edge modes. (But

the bulk modes also have exponential envelope profile due to the non-Hermitian skin effect.) There

is a region in the parameter space where the spectrum is not separable.

3.5 Conclusion and Discussion

We discussed 1D rotor chain and 2D rotor lattice connected by metabeams with odd elasticity. The

system is described by some non-Hermitian dynamic matrix D. In analogy to the SSH model, there

exist topological modes in these systems. In order to characterise the topological modes, we associate

the bulk modes to the generalised Brillouin zone. The definition of the Zak-Berry phase has been

clarified in biorthogonal Bloch vectors. The Zak-Berry phase can be used as topological indicators

for the topological modes, which is a generalisation of the bulk-boundary correspondence to the
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Figure 3.10: Phase diagram of 2D rotor lattice.
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non-Hermitian system. As a generic feature, even in the presence of the translational symmetry, the

transfer matrix does not have unital eigenvalues, therefore even the bulk modes are also localised

exponentially, which is known as non-Hermitian skin effect.

In Ref. [93], we also discussed 2D honeycomb lattice, where the mass points are free from the

rotor constraints. It turns out the non-Hermitian skin effect is absent in the 2D honeycomb lattice

even if the metabeams have non-vanishing odd elasticity.
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Chapter 4

Outlook

In this thesis, two idealised models have been studied. Both of them were motivated by some bio-

chemical systems. Concepts of topology and phase transition have been applied to the models, while

extensions are also needed to accommodate new features compared to the conventional electronic

systems. The non-Hermitian dynamics arise from the odd elasticity can only be realised in the

systems with active energy pumping. In general, more complicated dynamics can arise in active

matter, e.g., systems driven far from equilibrium, and non-linear effect. New types of topological

phase transition have also been found arising due to the non-linearity [92].

The models discussed in this thesis are just like a drop of water in the ocean of the condensed

matter physics, whereas one tries to peek the world through the droplet. A system is considered

well understood if one can make predictions of the system based on simple principles, which forms

a paradigm of epistemology of the natural philosophy or the natural sciences. On the other hand,

even though we know the physical fundamentals, understanding complicated phenomena emerging

at multiple scales is still beyond our current scope. Protein folding problem i is such a problem

remaining open. Deep learning sheds a light on this problem thanks to the development of the com-

putation power over the past four score years. Yet it does not provide a satisfactory understanding

from physics point of view. Within the expectable future, quantum computation will even boost

our computation power. It provides a revolutionary tool to explore the complicated systems from

bottom up. Perhaps as entropy and temperature is to the statistical physics versus the classical

mechanics, with the inflation of the data scale and computation power, revolutionary new concepts

may be also needed.
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Chapter 5

Appendices

5.1 Lee-Yang Lattice Gas

Lee and Yang had a heuristic and insightful view on the phase transition. In Ref. [85] and Ref. [46],

they considered the zero points of the partition function for complex fugacity. In Ref. [46], a

lattice gas model was mapped to an Ising model. Therefore, properties of the liquid-gas phase

transition may be tracked with the help of the knowledge of the Ising model. The model in Chap. 2

was also motivated by a similar spirit. In this section of the Appendices, we shall transcribe the

correspondence of the lattice gas model and the Ising model in Ref. [46] with a notation consistent

in this thesis.

Consider lattice gas consisting of monomers occupying vertices of a lattice L = {V,E}. The

monomers have hard-core repulsion, therefore two monomers are not allowed to occupy the same

vertex site. If one also consider the nearest neighbour interaction, i.e., two monomers attract each

other with a potential energy u if they sit on nearest neighbouring sites.

Instead of focusing on the monomers, one may regard the occupation of the lattice L. Therefore,

one may define an occupation function

Q(v) =


+1, if v is occupied by a monomer,

0, if v is empty.
(5.1)

Then the density of the gas is

n =
1

|V |
∑
v∈V

Q(v). (5.2)
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The nearest neighbour interaction u can be mapped to an Ising model with ferromagnetic cou-

plings if u < 0 or with antiferromagnetic couplings if u > 0. Let spin up represents empty site and

spin down represent occupied site. The spin configuration is related to the occupation function as

S(v) =
1

2
−Q, (5.3)

where we have normalised spins to 1
2 . The order parameter (magnetisation) of the ferromagnetic

Ising model is

M =
1

|V |
∑
v∈V

S(v). (5.4)

So M = 1
2 − n.

The Hamiltonian of the lattice gas can be transcribed by the occupation function

HQ =

e∈Enn∑
v1,v2∈∂e

uQ(v1(e))Q(v2(e)). (5.5)

In terms of Ising model we have equivalently

Hnn =

e∈Enn∑
v1,v2∈∂e

uS(v1(e))S(v2(e))−
1

2

∑
v∈V

uznn(v)S(v) +
1

4
u|Enn|, (5.6)

where znn(v) is the nearest neighbour coordination number of vertex v. In addition to the nearest

neighbour interaction, there is also a chemical potential term −µN = −µ
∑

v∈V Q(v) in the lattice

gas model, which is equivalent to Hµ = µ
∑

v∈V S(v)− 1
2µ|V |.

So up to an additive constant, the Ising model associated to the lattice gas model is described

by the Hamiltonian

HIsing = −J

e∈Enn∑
v1,v2∈∂e

S(v1(e))S(v2(e))− h
∑
v∈V

S(v), (5.7)

where J = −u and h = 1
2uznn − µ.

5.2 Ising Models

In this section, results of the Ising model used in this thesis is summarised.

Peierls contour argument is useful for proving the existence of a phase transition. We follows
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Ref. [3] for the Peierls contour argument. Consider an Ising model with the cost of a single bond

excitation being 2J . Let γ be a contour on a lattice L such that the spins in the interior region

and the spins in the exterior region take constant values but with opposite sign. The probability of

contour γ in terms of the Gibbs measure has an upper bound

P (γ) =

∑
{σ}∈Σ 1γ({σ}) exp[−βHI({σ})]∑

{σ}∈Σ exp[−βHI({σ})]

≤
∑

{σ}∈Σ 1γ({σ}) exp[−βHI({σ})]∑
{σ}∈Σ 1γ({σ}) exp[−βHI(T{σ})]

= e−β(2J|γ|),

(5.8)

where |γ| is the length of the contour, and 1γ({σ}) is the indicator function of appearance of γ on

the spin configuration space. In the second step of the inequality, we retain a subset of the sum in

the denominator, where the spin configuration T{σ} is obtained by flipping the spins in the interior

of γ. Then, there there is a one-to-one correspondence for the terms in the numerator and in the

denominator, while each term in the denominator gains an energy of 2J |γ| over the corresponding

term in the numerator due to the elimination of the domain wall γ.

Let us assume that on the boundary of the lattice, all the spins are pointing upwards. We would

estimate the probability of a spin on a generic site v ∈ L far from the boundary pointing downwards.

In order that such event can happen, it is necessary to have a contour γ encircling v. Therefore, the

probability P (σ(v) = ↓) has an upper bound

P (σ(v) = ↓) ≤
∑

γ:v∈D̊γ

P (γ)

=
∑
l≥l0

N [γ|v ∈ D̊γ , |γ| = l]e−β(2Jl)

≤
∑
l≥l0

l2zlnne
−β(2Jl)

(5.9)

where N [γ|v ∈ D̊γ , |γ| = l] counts the number of contours of length l such that v is in the interior

region D̊γ . The sum in the last line is uniformly controlled by the exponential function. So, there

exists a large enough but finite β such that the probability P (σ(v) = ↓) < 1
2 , which means the

average magnetisation does not vanish.

The estimations in Eq. 5.8 and Eq. 5.9 are definitely not optimal. The inequality in Eq. 5.8 is due

to numerous terms discarded for the sum in the denominator. The first inequality in Eq. 5.9 comes

from the necessary but not sufficient condition of existence of γ encircling v. The counting in the

last step is very loose without taking detail conditions of the γ into account. It can be improved e.g.,
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by counting only self-avoiding loops, which can be quite involved. Because of these disadvantages,

the Peierls contour argument is often useful to demonstrate the existence of the phase transition but

hard to be used for estimating the critical temperature.

In spite of Onsager’s ingeneous solution of the Ising model [57], Kramers and Wannier obtained

the critical temperature with the duality argument [40] before Onsager’s solution. Intuitively, the

duality may be understood as a correspondence of the terms in the low temperature expansion

and the high temperature expansion of the partition function. In the low temperature expansion,

contours encircling excited spins as domain walls, which is similar to what we described in Peierls

contour argument. At high temperature

Z =
∑

{σ}∈Σ

exp[−βH({σ})] =
∑

{σ}∈Σ

∏
e∈E

exp[βJσ(v1(e))σ(v2(e))]

=
∑

{σ}∈Σ

∏
e∈E

[1 + βJσ(v1(e))σ(v2(e)) + . . . ].

(5.10)

For each σ, the sum is taken positive value and negative value symmetrically. Therefore, terms in

the expansion of the product with odd number of some spin σ does bot contribute to the partition

function. Then, the leading terms in the high temperature expansion are the terms with edges

forming loops.

Onsager obtained the critical temperature of 2D Ising model on square lattice with anisotropic

couplings determined by

sinh(2βcJ∥) sinh(2βcJ⊥) = 1. (5.11)

It is hard to understand Onsager’s algebraic method even with subsequent simplifications [33, 84].

An alternative way to solve the Ising model was given by Schultz, Mattis, and Lieb based on

transfer matrix [69]. They mapped the Ising model to free fermions. At the critical temperature, the

mass gap of the fermions vanishes and the conformal symmetry emerges. In 3D, an exact solution

like the one obtained by Onsager seems hopeless, while the conformal symmetry at the critical point

may help understand the phase transition and extract the critical exponents [66].

Another variant of the Ising model was considered by Kazakov [34]. One consider the following

action for the two matrix model

S = Tr(U2 + V 2 − 2cUV +
g

n
(U4 + V 4)), (5.12)
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where c = exp(−2βJ) in our notation. Perturbative expansion leads to the diagrams consist of

vertices of degree 4. When the rank of the matrices N → ∞, only the planar diagrams retains. On

the other hand, n → ∞ corresponds to the thermal dynamic limit, i.e., the diagrams with infinite

vertices. In this representation, two spin states are associated to two species of matrices on the

vertices. A single critical point is obtained at c = 1
4 , therefore kBTc =

J
ln 2 .

5.3 List of Other Published or Unpublished Works

[1] H. Zheng, JYZ, and R. Berndt, A Minimal Double Quantum Dot, Sci. Rep., 7, 10764 (2017).

Double quantum dots formed by neighbouring doping atoms in ZnO is studied by STM/STS

(scanning tunnelling microscopy/scanning tunnelling spectroscopy). I proposed a model of interact-

ing electrons for understanding the system. I calculated the charge stability diagram which agrees

well with the measurement of STM/STS. I also discussed about potential applications for preparing

entangled pairs with coherent microwave driving.

[2] JYZ and F. D. M. Haldane, Surface corrections to the chiral anomaly in the Weyl semimetals,

unpublished

Chiral anomaly in the Weyl semimetals may lead to negative magnetoresistance. Surface correc-

tions caused by the Fermi arcs has been discussed.

[3] JYZ and F. D. M. Haldane, Landau levels on constantly curved space, unpublished

An algebraic method to solve the Landau levels on hyperbolic plane has been worked out. The

Landau level raising and lowering operators A† and A have been constructed explicitly. The spectrum

can be obtained according to the modified oscillator algebra generated by A† and A.

[4] JYZ, EIT-Enhanced Coupled-Resonance Spectroscopy, arXiv:1707.09559

An improvement by using the EIT effect to enhance the signal of the coupled-resonance spec-

troscopy has been proposed. A scheme for locking two lasers of different wave lengths to the same

atomic source has been designed.

[5] JYZ, Testing Case Number of Coronavirus Disease 2019 in China with Newcomb-Benford

Law, arXiv:2002.05695 [physics.soc-ph]

A criterion of detecting frauds based Newcomb-Benford Law has been applied to the reported

data of COVID19 from China. It indicates a high confidence of no detection of frauds.
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