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KAJIAN TENTANG PARAMETER PEMPROSESAN DALAM PEMBUATAN 

GELAS-EPOKSI KOMPOSIT LAMINAT RATA MENGGUNAKAN VAKUM 

BEG PENGAWETAN KETUHAR 

 

ABSTRAK 

Proses pembuatan yang efektif bagi struktur pesawat yang diperbuat daripada 

komposit laminat melibatkan prepreg autoklaf dihasilkan menggunakan vakum beg dan 

autoklaf. Walau bagaimanapun, autoklaf melibatkan modal, kos pembuatan dan tegasan 

sisa yang terlalu tinggi. Pra-membentuk laminat menggunakan vakum beg dan 

pengawetan ketuhar adalah yang terdekat untuk beralih daripada autoklaf. Jadi, kajian 

ini menumpukan kepada kesan teknik pra-pembuatan menggunakan vakum beg di dalam 

pengawetan ketuhar daripada bahan prepreg autoklaf. Ia melibatkan teknik rekabentuk 

eksperimen yang sistematik. Kesan bagi parameter pemprosesan vakum beg yang 

merangkumi teknik pemamapatan vakum sebelum pengawetan dan konfigurasi vakum 

beg ia itu pengudaraan di pinggir laminat, pemberat dan jenis-jenis pelapik yang berbeza 

terhadap udara terperangkap dan kualiti mekanikal laminat yang dihasilkan telah disiasat 

menggunakan kaedah analisis varian. Analisis kualiti fizikal juga dilakukan untuk 

menilai variasi ketebalan dan keabnormalan bagi seluruh laminat. Peratusan 

keabnormalan laminat dikaji menggunakan algoritma pemprosesan imej ultrasonik C-

imbasan. Untuk menilai hubungan antara ciri-ciri udara terperangkap dan kekuatan ricih 

antara laminat, analisis imbasan elektron mikrograf telah digunakan. Kesimpulan yang 

didapati adalah kekuatan ricih antara laminat dan kekuatan tegangan adalah berkait rapat 

dengan peratus kandungan dan saiz udara teperangkap di dalam komposit laminat yang 

juga sensitif kepada parameter pemprosesan. 
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STUDY OF PROCESSING PARAMETERS IN MANUFACTURING OF FLAT 

GLASS-EPOXY COMPOSITE LAMINATES USING VACUUM BAGGING 

OVEN CURING 

 

ABSTRACT 

The effective manufacturing process for aircraft structural parts made from 

composite laminate usually involved autoclave prepreg material manufactured via 

vacuum bagging pre-forming and autoclave. Though, autoclave involves high capital, 

running cost and extortionate residual stress. Vacuum bagging only (VBO) pre-forming 

process with oven curing is the closest out-of-autoclave (OoA) method shifts from 

autoclave. Thus, this study focuses on the vacuum bagging pre-forming process in oven 

cure using the autoclave. This work involved revising the design of experiment (DOE) 

to design the possible experiments to be conducted in a systematic approach. The effects 

of vacuum bagging process of layup technique (debulking) and vacuum bagging 

configurations (edge breather, intensifier and mould release type) towards void content 

and mechanical properties of laminate produced were investigated using analysis of 

variance (ANOVA).  The physical quality analysis is also performed to evaluate the 

thickness variation and abnormalities throughout the laminate. The abnormalities 

percentage of the produced laminate was studied using the image processing algorithm 

of ultrasonic C-scan image. To assess the relationship between void and inter-laminar 

shear strength (ILSS), scanning electron micrograph analysis was employed. It was 

concluded that the ILSS and tensile strength were reflected directly to the void content 

and void dimension which were also sensitive to the processing parameters. 



1 
 

CHAPTER 1 

INTRODUCTION 

“He it is who shapes you in the wombs as He pleases. There is no god but Him, the 

Exalted in Might, the Wise.” (Quran 3:6) 

1.1  Research background 

Laminated composite structures have recently gained enormous attention from 

aircraft industry as it has directly enhanced the capability of vehicle’s structural 

performance as compared to existing traditional materials such as metal alloys, 

aluminium and polymers. It enables the engineers to successfully accomplish a structural 

design with better performance throughout its life cycle, whilst reducing the weight and 

maximizing the reliability, thus decreasing the capital cost, production cost, service cost, 

maintenance cost and manufacturing cost (Nandi et al., 2011). Consequently, the study 

and research on the manufacturing practice of these composite laminate is tremendously 

essential. 

Generally, manufacturing process for aircraft parts made from composite 

laminate material usually involved the prepreg material manufactured via vacuum 

bagging pre-forming and autoclave curing techniques. It was found that autoclave 

moulding provides the most effective curing method in producing low void content in 

laminated composites for critical engineering application especially the aircraft industry, 

which requires a maximum of 1% void content, due to the presence of extremely high 

compaction pressure (Thomas et al., 2008). Though, autoclave cure has raised a quantity 
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of issues and tribulations especially in terms of high capital and manufacturing cost 

along with extortionate residual stress due to the high pressure introduction during cure. 

Consequently, the evolution of out-of-autoclave (OoA) processes consists of oven cure, 

microwave cure, quickstep cure, ultraviolet radiation cure, infrared radiation cure and 

etc. were commenced to replace the traditional autoclave technology. In contrast to 

autoclave technology, the OoA curing offers an alternative solution of trimming down 

the overall cost with the absence of the enormous compaction pressure. The vacuum 

bagging only (VBO) pre-forming process with oven curing is the closest shifts from the 

autoclave curing technology of laminated composite for aircraft parts. In addition, by 

implementing these manufacturing techniques, lesser capital and running cost with lower 

residual stress can be achieved. 

However, due to the absence of the elevated pressure during oven cure, the 

laminated composite laminates exhibit inferior qualities with respect to high void 

content and poorer mechanical performances. These qualities were most affected by the 

manufacturing process involved, during either the vacuum bagging pre-forming or 

curing process. The vacuum bagging construction recommended by prepreg 

manufacturer details in Figure 1.1 entails the mould, mould release, the prepreg plies, 

release film, breather, sealant, nylon vacuum bag and the vacuum port for the vacuum 

suction system during cure.   
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Figure 1.1: Schematic of a typical bagging construction for vacuum bagging pre-
forming process. 

Nonetheless, during the layup, prepreg plies tends to entrap voids and moisture, 

which are typically evacuated in a successful manner via immense compaction during 

conventional autoclave cure. It was found that layup (Yang & Lee, 2002) and bagging 

(Hubert & Poursartip, 2001) techniques in vacuum bagging pre-forming provide 

significant effects in improving the qualities of the cured panels. Therefore, without the 

high pressure in oven cure, numbers of techniques were presented during layup 

processing (e.g. debulking technique) and vacuum bagging (e.g. mould release agent 

type, intensifier weight, edge breather. etc) to relinquish the entrapped air and moisture, 

hence enhancing the void content and mechanical properties of composite panel.  

Debulking is a technique employed by researches during the layup of laminate 

by applying vacuum pressure to compact the plies prior to the cure. Accordingly, the 

debulking technique was exploited in various different manners with respect to number 

of plies and period of debulking. Davies et al. (2006) recommended debulking for 

individual prepreg layup in 20 minutes, while Hubert & Poursartip (2001) stated that 
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debulking has to be executed for every stacked of four prepreg plies. On the other hand, 

Kim et al. (2004) claimed that debulking should be performed to the whole prepreg plies 

for two hours prior to the cure. Nevertheless, there are a lot of misconceptions where the 

debulking procedure was occasionally proved to have reduced the in-plane permeability 

due to the fact that the dimension of permeability is abridged (Louis, 2001, Xin et al., 

2011) and thus increase the void content. However, Kratz & Hubert (2013) divulged a 

contradictory argument where debulking is essential in evacuating the entrapped air to 

further reduce the void content of the laminate especially when the laminate is cured in 

the oven.  

1.2 Problem statements 

The studies pertaining to the qualities of composite laminates manufactured via 

vacuum bagging with oven cure techniques are still in its nascent stage. The scope for 

future studies in this domain is tremendous. The existing work in laminate curing is 

mostly majoring in optimizing the traditional autoclave by temperature and pressure 

cycle along with ex-situ and in-situ monitoring which entails the laminate products 

feature. Moreover, the overall performance measurement (i.e. void content and 

mechanical performances) of the VBO-oven cured laminates using the traditional 

autoclave prepreg have not been conducted exclusively since the development of the 

OoA prepreg materials which exhibit remarkable qualities with any OoA cure 

technology. Provided that new OoA prepreg is more expensive than the customary 

autoclave prepreg, much attraction is expected if the development of laminate 

manufacturing techniques via low cost oven cure can bestow comparable qualities with 

those of the autoclave, using the common cheaper autoclave prepreg.  
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Thus, the effects of VBO-oven curing of common autoclave prepreg material 

need to be further investigated. The influence of each processing parameters including 

the layup technique and bagging configuration are required to provide detailed 

contributions of these imperative factors to the void content and mechanical 

performances of oven-cured laminates. As the oven curing resembles the closest 

alternative on shifting from the conventional autoclave cure for aircraft structural 

composite laminate, this is proved to be highly critical. Besides, with the absence of high 

compaction pressure during cure, the processing parameters may provide significant 

effects on the quality requirement of the composites.  

Moreover, the debulking procedure were claimed to have reduce the void content 

by several researches (Lin et al., 2010, Kim et al., 2004), while others opposed (Louis, 

2001). The debulking technique by previous works was performed in different means 

with respect to ply frequency and period of debulking. Thus, the investigations on the 

effect of debulking process and the accurate consequence of debulking could be 

comprehensively considered. Moreover, the analysis on the quality effects (physical 

quality, void content and mechanical properties) of combining the methods in bagging 

configuration (different type of mould release, intensifier and edge breather) and  layup 

parameters (debulking) during the vacuum bagging only pre-forming of oven cured 

laminate could be thoroughly deliberated. Additionally, since void were claimed to 

reduce the physical and mechanical properties of laminate (Bowles & Frimpong, 1992, 

Guo et al., 2005), the mechanical property investigations should be considered to find 

the relationships between voids and physical along with mechanical performance of 

laminate. 
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1.3  Objectives 

The overall objective of the present study is to investigate the contribution of 

vacuum bagging pre-forming techniques on the quality characteristic of oven-cured flat 

laminate composite using the common autoclave prepreg with respect to physical 

quality, void content and mechanical performances. The study includes the following 

objectives: 

· To determine the effects of intensifier, mould release type and edge breather on the 

physical quality, void content, inter-laminar shear strength (ILSS) and tensile strength of 

VBO-oven cured laminates. 

· To investigate the effects of debulking on the physical quality, void content, ILSS and 

tensile strength of VBO-oven cured laminates. 

· To investigate the relationship of void content with physical quality, ILSS and tensile 

strength of VBO-oven cured laminates. 

· To analyze the effects of void distribution and size towards the ILSS of VBO-oven 

cured laminates with respect to the crack of ILSS. 
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1.4 Scope of study 

 In this thesis report, the work is focused on determining the effects and 

contributions of vacuum bagging only pre-forming processing parameters towards the 

quality of flat composite laminate cured in oven. The composite laminates were made 

using 9 plies of 308 mm by 308 mm (1 ft by 1 ft) dimension of Cycom 7668/7881-1 

plain weave common autoclave glass-epoxy prepreg. A constant stacking sequence of 0 

degree was employed in producing all the laminate panels in this research work. 

During the vacuum bagging only pre-forming process, the prepreg were treated 

according to the designated techniques by 2 factorial design of experiment (DOE) 

method, which were debulking, edge breather, different mould release type and 

intensifier. The curing cycle was performed with heating and cooling rates of 2 oC/min, 

and one dwell section for 120 minutes at 180 ± 12 oC. 

The flat laminate panels produced were then examined by non-destructive 

ultrasonic C-scan attenuation and image processing algorithm to analyze the level of 

abnormalities within the laminate. The destructive tests was carried out based on of 

ASTM D3171-99, ASTM D2344/D2344M-00 and ASTM D 3039 in determining the 

void content, inter-laminar shear strength (ILSS) and tensile properties of the produced 

laminate, respectively. A further investigation of the combined effects of those 

processing parameters was elucidated using ANOVA (Analysis of Variance) method. To 

assess the relationship between void and ILSS, post-test was done to the failed ILSS 

specimen using scanning electron micrograph analysis.  
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1.5  Organization of the thesis 

There are 5 chapters in this thesis and each chapter gives information related to 

the research interest. 

· Chapter 1 encloses introduction of the study. It covers brief introduction on the research 

background, problem statements, aims and objectives, and the organization of the thesis. 

· Chapter 2 contains the literature review which involves briefing explanations regarding 

the material, manufacturing process and quality of flat laminated composite structure for 

general aircraft applications.   

· Chapter 3 contains the information about the methodology utilized with the material, and 

the design of experiment entails in the study. 

· Chapter 4 contains results and discussion. It covers the quality characteristic of the 

laminate produce in terms of void content and mechanical performances with the 

analysis of variance (ANOVA) evaluation. 

· Chapter 5 concludes the findings in chapter 4 with suggestion for future works. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

 This review chapter initiates with an overview of composite material and 

composite laminate. The material used in producing composite laminate parts is 

presented. The topic on the composite laminate manufacturing system which entails pre-

forming and curing processes would be explained in more detail. A brief discussion on 

the processing parameters that are affecting the composite laminate quality is described, 

which then followed with a review of previous studies on the performance and quality of 

laminated composite structure with respect to the manufacturing process involved. This 

section also explains on the quality inspection methods that are usually employed to 

evaluate the performance measurement process for composite laminate produced. 

Finally, the findings of the literature are proposed at the end of the chapter. 

2.2 Composite overview 

 Composite is defined as a combination of two or more distinct materials having a 

distinct feature interface between them in order to achieve an exclusive set of properties.  

The exclusive set of properties was obtained from the optimization of individual 

properties from those constituent materials.  This definition is commonly used for 

materials containing reinforcing material (fiber) bonded together with a matrix (binder) 

material (Campbell, 2004).  Generally, fiber materials can be classified into glass, 

carbon, aramid, organic fibers, boron, continuous silicon carbide and aluminium oxide.  
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Whereas, the matrix are classified into four major types which are polymers, metal, 

ceramic and carbon (Akovali & Kaynak, 2001). The matrix served to bind the fibers 

together by virtue of its cohesive and adhesive quality that enabled the transfer of the 

loads between fibers and protect them from the environments and handlings.  In 

comparison with matrix, the reinforcement is responsible for carrying the load, due to its 

higher stiffness and strength (Gay et al., 2003).  Therefore, most composite material 

have been developed to improve combinations of mechanical, physical, and other 

characteristics such as stiffness, toughness, impact and etc.   

Composite material is further divided into major classes according to 

morphology of the binder (matrix) and the reinforcement, which is listed in Figure 2.1.  

Figure 2.1 represents a various classification scheme for composite structure types 

(Callister, 1997). The most conventional structural form of matrix and reinforced fiber 

combination that results in those material variations after consolidation is called 

laminate (Mallick, 1993), which will be further discussed.  
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Figure 2.1: A classification scheme for various types of composites structure (Callister, 
1997) 
 

2.2.1 Composite laminate 

According to Walker and Smith (2003), composite laminates are stack of laminas 

includes of dry fiber reinforcement layers injected with resin or prepreg ply. A familiar 

technique of composite structure construction is to employ these materials and assemble 

them up as laminate structures. Lamination itself is a technique of manufacturing a 

material in multiple layers to enhance the strength and mechanical performance of 

products.  

During the recent years, laminated composite are found to have an increasing 

number of applications in the scale from simple households to heavy industrial purposes. 

The principal reason for this intensifying attention is related with the fact that laminated 

composites product offer selection flexibility upon designing for the manufacturers due 

to their extensive bounds of features (Walker & Smith, 2003).  The potential 
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improvement in properties of the composites have led the researches to manipulate and 

improvise the qualities of these laminate to successfully accomplish better performances 

throughout its life cycle, whilst reducing the weight and maximizing the reliability, 

decreasing the capital cost, production cost, service cost, maintenance cost and etc. 

(Nandi et al., 2011).  Guo et al. (2005) claimed that the composite laminates have 

recently gained multitudinous attention from the aircraft industry where components of 

high strength to weight ratio and minimum environmental impact were desired to 

directly enhance the vehicle’s performance capability. The composite parts were 

introduced with the attention to yield lighter structure compared to existing traditional 

metallic components, thus reducing the fuel and increasing the payload. There are 

numerous types of composite materials used in the aircraft industry such as carbon fiber 

reinforced polymer (CFRP), glass fiber reinforced plastic and etc. Table 2.1 shows the 

example of composite laminate material in aerospace applications. 

Thus, the engineers have indicated that the composite laminates offer the best 

design consideration for the aircraft’s performance requirements owing to its 

outstanding peculiarity.  Nevertheless, the appropriate selection of material 

manufacturing process for producing aircraft laminated structure is also very crucial 

since ones have to consider especially on the parts quality as well as the  manufacturing 

cost (Silcock et al., 2007).   
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Table 2.1: Example of composite laminate material in aerospace applications 
Authors Aerospace applications Advantages 

Ye et al. 
(2005) 

-Fuselage skin of Vultee BT-15 trainer 
aircraft in 1944 by Dehavilland 
Aircraft Co. 

High damage tolerance, high 
strength, high modulus and high 
fatigue life at a relatively low 
weight. 

Ye et al. 
(2005) 

Boeing and Airbus have also used the 
prepreg material of carbon-fiber 
reinforced epoxy laminated composite 
from prepreg material in the 
manufacturing of fuselage and wing 
structure for Dreamliner B-787 and 
centre wing box, flap track panels and 
upper deck floor beams for jumbo 
commercial A380 aircraft, 
respectively 

Low fuel to low consumption due 
to lighter power to weight ratio and 
better mechanical performance 
during applications 

Soutis 
(2005) 

-Fuselage crown of Europe Airbus 
A380 used hybrid aluminium/glass 
reinforced plastic composite (GLARE) 
laminated composite material.  
-The aircrafts’ wing trailing edge 
panels are made of glass combined 
with CFRP laminate. 

Higher damage tolerance and 
fatigue life with lighter structure 

Kim et al. 
(2004) 

-Nozzle for combustion chamber of 
solid rocket used carbon-phenolic 
thick composite material. 

Heat resistance, ablative and 
tremendous strength qualities. 
Thick laminate of above one inch 
thickness was utilized in the nozzle 
to tolerate high pressure and 
temperature of the combustion gas 
to insulate the other components 
from heat 

Wang et 
al. (2002) 
and 
Mallick 
(1993) 

-Inboard aileron in Lockheed L-1011 
aircraft was made from T-300 carbon 
fiber reinforced epoxy composite 
laminate which includes front spar, 
main ribs and other ribs 

Laminated structure is 23.2% 
lighter than the traditional metallic 
aileron and demonstrates equal to 
or better performance.   

Bellenger 
et al. 
(2005) 

-Structural components in future 
European Supersonic Civil Transport 
(ESCT) aircraft has also employed the 
unidirectional carbon-fiber reinforced 
epoxy laminated composite 

Low fuel to low consumtion due to 
lighter power to weight ratio 
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2.3 Composite Laminate Design and Formulation System 

2.3.1 Material classification 

Fundamentally, pre-impregnated fiber preforms (prepregs) or dry fiber performs 

with injected resin are used extensively as the principal materials for producing 

composite laminate for aircraft applications due to its modest bleeding condition during 

cure (Chandrakala et al., 2008, Shimokawa et al., 2007). The following sections discuss 

details of the composite laminate material classification with regards to the benefit 

offered through the architectural designs and mechanisms.  

Dry preforms with resin 

Dry preforms injected with resin served as an alternative for composite laminate 

material which is typically implemented in Quickstep (Kafi et al., 2011), microwave 

(Papargyris et al., 2008), oven (Cao and Cameron, 2007), and electrical curing processes 

(Zhu and Pitchumani, 2000, Ramakrishnan et al., 2000). The advantage of using this 

material is the bleeding process facilitates the emigration of voids from the laminate 

without of the high autoclave compaction. This void evacuation process was done by 

controlling the amount of resin to be injected into the laminate and bleeds out from the 

laminate. However, this injection method is critical as the quantity of resin content need 

to be correctly determined to attain the accurate quality required for the composite part 

application (Hattabi, 2005). Plus, the fiber wet out mechanism depends largely on the 

fiber architecture of woven, stitched, or braided (Zhou et al., 2008) as well as on the 

fiber morphology, including filament count, fiber bundle length and superficial density 

(Endruweit et al., 2008).  
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Prepreg material 

Prepreg is flat sheet containing reinforcing fibers pre-impregnated with matrix 

resin, usually supplied in a roll form. In a prepreg, the resin is advanced to a B-stage 

condition in which it is in gel condition at room temperature, which melted and cured 

during the cure cycle (Chandrakala, 2008). Prepregs are preferred for the use in high 

performance applications. One of the example of aircraft component that use prepreg is 

the structural window frame on Boeing 787 that employd Hexcel HexMC prepreg for its 

low density and tremendous damage tolerance than conventional aluminium material 

(Feraboli et al., 2010).   

The prepregs are commercially classified based on the fiber bedding and 

morphology; the three common types are unidirectional prepreg tapes, woven prepreg 

and prepreg tows (Akovali & Kaynak, 2001). Nevertheless, Kratz and Hubert (2011) 

claimed that during the past several years, manufacturers have developed two categories 

of prepreg materials according to the processing technology: prepregs for autoclave 

moulding process; and prepreg for out-of-autoclave (OOA) technology. Meanwhile, the 

autoclave prepreg material typically contents much higher resin exceptionally for the 

unique bleeding condition. The particular prepreg system effortlessly exhibited a high 

quality of void-free composite by utilizing high compaction pressure and bleeding 

condition that evacuated the excess resin and entrapped air out from the laminate. This 

type of prepreg is commercially and conventionally used by most of the aircraft 

manufacturers (Shimokawa, 2007). 
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Based on the widely used of composite laminate, Kaufman et al. (2010) reported 

that the common composite used for aircraft parts is the conventional carbon-fiber 

reinforced polymer (CFRP) prepreg that has been utilized for the primary structures 

since the last 20 years due to its high strength-to-weight property. Utilization of this type 

of composite material offers an alternative for a better performance, improves dexterity, 

higher quality and lower fuel-consumption for their optimum design. Nevertheless, 

production of CFRP laminated composite is expensive owing to high labor and material 

costs. Since carbon/graphite fiber is the most expensive fiber reinforcement in 

comparison with other reinforcements such as glass, the CFRP composite outlays much 

higher cost than the other laminated composite materials (Enamul Hossain, 2011).  

Though, the utilization of glass fiber composite in the aircraft industry is insignificant 

due to lacking number of research on the use of such reinforcement for aircraft structural 

purposes (Soutis, 2005).  

On the other hand, the out-of-autoclave (OoA) prepreg exhibits significant 

difference from the traditional autoclave prepreg in that the resin system is created for 

cure optimization at lower pressures and/or lower temperatures with similar product’s 

quality especially in inter-laminar shear strength, compression strength, void content 

percentage, resin distribution and free from dry spots (Xin et al., 2011, Bowles & 

Frimpong, 1992). The fiber is semi impregnated with enhanced formulated resin in order 

to increase the in-plane permeability through the presence of dry-fiber pathway for 

entrapped air and gasses transport evacuation. Since the advanced OoA prepreg is only 

partly impregnated and behaves without the tackiness property, it is proficient in 

removing the entrapped air during kitting and layup as well as via vacuum only 
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mechanism during cure. Because of that, the consolidation pressure to suspend the 

entrapped air resembling the autoclave cure becomes surplus to requirements (Centea 

and Hubert, 2011, Thomas et al., 2008). Consequently, current development on the OoA 

prepreg explicitly for OoA manufacturing practice such as oven, Quickstep, hot press, 

microwave and etc. has trounced this problem (Kratz & Hubert, 2011, Dang et al., 2011, 

Walczyk et al., 2011).  

Several experimental procedures attested that humidity and temperature 

environment during kitting and layup would not increase the void content in the OoA 

prepreg lamina. Thus, the development provides an excellent preference of shifting from 

autoclave to OoA cure process as the composite laminate can be fabricated 

straightforwardly without the demanding environment controlled and size limitation of 

production (Grunenfelder and Nutt, 2010). Nonetheless, the majority of research on 

OoA cure was anchored in attaining an outstanding quality of the prepreg materials, 

which is attributable to the high price tag of OOA prepreg material in contrast to long-

established autoclave prepreg (Kafi et al., 2011). 

In the present study, glass-fiber reinforced epoxy (GRP) prepreg was used. 

Despite the fact that the epoxy polymer resin system that conventionally implemented 

on aircraft parts was claimed to be brittle and has lower damage tolerance than 

thermoplastic resin, the mechanical properties of the resin can yet be optimized and 

improvised with glass fiber reinforcement and reliable processing parameters (Soutis, 

2005). Even though the utilization and research of GRP laminate in aircraft industry is 

still diminutive, the European Airbus A380 has adopted the glass reinforcement which 

results in better aerodynamic performances (Soutis, 2005). Moreover, according to Oh 



18 
 

and Lee (2002) the potential properties enhancement of thicker GRP laminates is 

recognized to have tremendous quality and meet the requirements for producing primary 

aircraft structure and has led to increased applications in the airline industry. In addition, 

Murray et al. (2002) has also verified that the glass fiber possesses out-of-plane stiffness 

and low in-plane axial and high strain capability and highly recommended to be used in 

aircraft wing structure. 

2.3.2 Material design 

Laminated composite could be designed into two, based on their thickness range; 

thick and thin composite laminates (Dufour et al., 2004). Thick laminate is identified to 

have thickness equal and more than one inch (25mm) while the counterpart should 

possess thickness less than that (Oh and Lee, 2002). Due to the difference in the out-of-

plane geometry, the curing of these laminates is proved critical with the intention of 

acquiring and maintaining the uniform temperature distribution especially in the 

thickness plane. Thus, the optimization of the composite manufacturing process is 

critical as non-uniform curing might take placed thus plummeting the high strength 

characteristic needed for such applications (Kim et al., 2004), which will be discussed 

further in the next section. 
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2.4 Composite Laminate Manufacturing Technology 

According to Malick (1993), the composite manufacturing can be mainly 

categorized into phases of pre-forming and curing process. In the former, the 

reinforcement (fibers) and/or the matrix are placed into a structural form, while in the 

curing process, heat and/or pressure application is utilized to fortify the structure. 

Generally, resin transfer moulding (RTM), filament winding, liquid moulding, vacuum 

bagging only (VBO), compression moulding and etc. are implemented as the pre-

forming processing techniques whereas the curing was further ensued in autoclave and 

Out-of-Autoclave (OOA) cure, consisting of oven, room temperature, microwave and 

etc. (Mallick, 1993, Kaynak, 2001, Campbell, 2004).  

2.4.1 Preforming process 

There are a wide variety of preforming processing techniques available for the 

composite productions, including liquid moulding, filament winding, vacuum bagging 

and etc. The liquid moulding process incorporates filling of wet resin into the mould 

where the layup of dry performs are in presence. Via this process, a sufficient fiber 

wetting is critical as incomplete filling leads to faulty parts with dry spots, resin rich 

area, high void content, non-uniform thickness and non-uniform void distributions ( 

Babu et al., 2008). Optimizing the injection rate time is vital to minimize fill-time and 

fluid pressure buildup during the filling by controlling the amount of resin bleeds and 

the compaction during layup to ensure lower cost consumption (Pillai, 2004). However, 

slower injection profile however improved the quality of the component but the 

production cost is expensive (Dong, 2008). Resin transfer moulding (RTM), vacuum 
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assisted resin transfer moulding (VARTM) and resin infusion are considered as cost-

effective liquid moulding preforming processes where short cycle periods, small 

employment requisite, and are capable in producing large parts economically (Park et 

al., 2004).  Figure 2.2 entails a typical RTM preforming in which the fibrous 

reinforcement or prepreg material is placed at the bottom half of two-part closed mould, 

sealed with a controlled velocity and finally clamped with force to desired thickness 

before wet resin is injected and curing begun.   

 
Figure 2.2: Schematic representation of the resin transfer moulding process (Park et al., 
2004). 

 Further enhancements on RTM technique where VARTM is introduced entails a 

similar process to typical RTM, but with the utilization of vacuum pressure and resin 

bleeding system where the void content can be reduced dramatically to an extent of less 

than 1% with more uniform void distribution (Kuentzer et al., 2007). However, liquid 

moulding process has not been widely utilized in the aircraft application since the mould 

is required for each different types and size of panels. The design optimization of the 

mould configuration is as well strenuous and complicated as the imprecise arrangement 



21 
 

of the vents for excess resin bleeding and voids evacuation pathways resulted in 

inhomogeneous resin distribution throughout the fiber perform and high void content 

(Chern et al., 2002). 

In aerospace applications, filament winding is one of the widely used pre-

forming technologies to fabricate spherical and cylindrical aerospace components such 

as high pressure vessels, rocket motor casings and etc. (Morozov, 2006). As illustrated 

in Figure 2.3, the conventional filament winding process engaged tapes or continuous 

fiber reinforcement wetted by resin, which then wrapped around a rotating mandrel and 

subsequently cured typically to produce cylindrical hollow components.  

 
Figure 2.3: A typical filament winding system (Greene, 1999). 

 According to Hassan et al. (2005), the filament winding system is considered to 

have a low capital and running cost for constructing the composite components. 

However, the design optimization on the processing parameter and techniques are highly 

critical and perplexing due to the development of uncontrolled residual stresses which 



22 
 

may promotes warpage or redundant alteration in the curvature radius, thus leads to 

matrix cracking, interply delaminations and failure especially in larger design. 

2.4.1.1 Vacuum bagging only (VBO) 

Meanwhile, the vacuum-bagging-only (VBO) process is the simplest and 

preferred method of pre-forming the laminated composite particularly in aircraft 

composite parts (Crump et al., 2009). VBO is a cost-efficient, high-speed and 

straightforward technique in comparison with other pre-forming process by which the 

laminate is firstly layup, bagged and then cured in any curing process (Davies et al., 

2006). Crump et al. (2009) reported that there was a significant saving of approximately 

30% of manufacturing cost and time with the utilization of VBO in an oven cure to 

produce a 1.5 mm thick laminate (layup of 12 plies of prepreg) face sheet for a single 

skin trailing edge access panel of a secondary wing structure for a passenger aircraft, in 

comparable to that of VBO in autoclave process. In VBO, the composite laminate is 

sealed within an airtight envelope and a vacuum pump is utilized to relinquish air 

entrapped from the inside of the envelope and form the composite laminate into desired 

shape based on the mould design. Figure 2.4 shows detail description of typical VBO 

layout with the consumables, namely; nonporous Teflon release films, breather fabric, 

sealant tapes, bagging films, vacuum valves, vacuum hose, and vacuum pumps (Xin et 

al., 2011). 
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Figure 2.4: Composite laminate in VBO system (Xin et al., 2011). 

The laminated composite parts for aircraft structure are required to have an 

extremely high quality to withstand numerous acting loads during the service. 

Accordingly, during the design phase, the investigation on the determinants that affects 

parts quality is enormously vital for the engineers and researches alike. With reference 

to the established aircraft-standard manufacturing process of VBO- autoclave cure, 

several factors were found to contribute to the laminate quality during the preforming 

and curing conditions, which were conversed in this chapter. 

 The typical pre-forming process of the aircraft composite engages VBO system, 

where the bagging configuration and layup technique are involved. These techniques 

may be altered and design efficiently in order to produce a different quality of laminate 

especially when the compaction pressure is absence during cure practice (Cao and 

Cameron, 2007).  Table 2.2 demonstrates the setup of bagging configuration and layup 

techniques used in previous researches which may alter the quality especially on the 

void content. 
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Table 2.2: Specific bagging and layup optimization techniques in autoclave and oven 
cure. 

Authors Material used Specific bagging and layup 
optimization techniques 

Joshi et al. 
(1999) 

-Thick stack of AS4/3501-6 
graphite/epoxy prepreg 
(140 plies)  

-1 ply release film on mould 
-2 layers of breathers  

Guo et al. (2005) -Thick stack of T300/HD03 
carbon/epoxy prepreg 
(15mm thickness) 

-1 ply release film on mould 
-Caul plate as intensifier (5 mm 
thickness) 
-Dams (25 mm thickness) covered by 
release film on top and 4 edges of 
laminate 

Hubert & 
Poursartip 
(2001) 

-Thin stack of AS4/3501-6  
carbon/epoxy prepreg (32 
plies) 
-Thin stack of AS4/8552 
carbon/epoxy prepreg (24 
plies) 

-Room temperature debulk for every 
stack of 4 prepreg plies 
-Mould coated with release agent 
-A layer of breather cloth 
-Dams (side: silicone rubber, edge: 
sealant tape) 
-In no bleed condition, teflon 
impermeable film on top of laminate 
-In bleed condition, bleeder cloth on 
top of laminate 

Lystrup & 
Andersen (1998) 

-Thin stack of APC-2 ICI 
carbon/PEEK prepreg  
- Thin stack of Quadrax 5 
Harness Satin carbon/PEEK 
prepreg 
- Thin stack of Filmix UD 
carbon/PEEK postpreg 
- Thin stack of Filmix 8 
Harness Satin postpreg  
- Thin stack of Filmix 5 
Harness Satin carbon/PEEK 
postpreg  

-Addition of thin matrix films between 
prepreg.  
- Stainless steel press frame to ensure 
contact between vacuum bag and 
sealant tape. 
- Adhesive tape seals bagging film to 
mould and protects sealant tape during 
cure. 
-Aluminium cover plate placed after 
mould to avoid vacuum bag being 
squeezed between top mould and edge 
mould of laminate.  
-Stainless steel edge mould of 
laminate with same thickness as 
laminate. 

Kim et al. 
(2004) 

-Thin stack of CF3336 8 
Harness Satin 
carbon/phenolic prepreg (9 
plies) 

-Debulk at room temperature for 2 
hours with predetermined compression 
by jig pressure. 
-Laminate was placed in sandwiched 
plate of jig, and fixed by nuts and 
cured under vacuum and low pressure 
autoclave. 
-Dams at the edges of laminate stack. 
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