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ABSTRACT 

 

This report presents a study of a demonstration bridge designed with concrete-filled 

tubular flange girders (CFTFGs), conducted for the Pennsylvania Department of 

Transportation (PENNDOT). A CFTFG consists of a conventional web plate and bottom 

flange plate, with the top flange fabricated with a rectangular tube that is then filled with 

concrete. The main advantage of the CFTFG is an increased torsional stability that 

enables the number of diaphragms (or cross-frames) needed to brace the girders under 

construction loading conditions to be reduced. As a result, the time and cost of fabricating 

and erecting the bridge girder system can be reduced. 

The CFTFGs of the demonstration bridge are designed to be constructed as simple 

spans for dead loads, and are then made continuous for superimposed dead loads and live 

loads by adding continuity at the pier. This construction sequence reduces the design 

moments and shears for the interior-pier section of the girder and for the field splice at 

the pier. The bridge is also designed to be constructed with precast deck panels to 

promote accelerated construction. 

Design criteria for CFTFGs were developed in a format compatible with the 2000 

PENNDOT Design Manual Part 4 (PENNDOT 2000) and the 2004 AASHTO LRFD 

Bridge Design Specifications (AASHTO 2004). A preliminary design of the CFTFGs for 

the two-span demonstration bridge was developed. In addition, preliminary designs of the 

field splice over the pier and of the precast concrete deck were developed. Finally, finite 

element analyses of the stability of the CFTFGs under critical construction loading 

conditions were conducted. 
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CHAPTER 1 INTRODUCTION 

 

1.1 OVERVIEW 

The tubular flange girder system is one of several innovative steel bridge girder 

systems proposed by Wassef et al. (1997) and Sause and Fisher (1996) over the past 

several years. Research funded by the Federal Highway Administration (Wimer and 

Sause 2004, and Kim and Sause 2005) has taken tubular flange girders from concept to 

laboratory prototype (Figure 1.1). This research has established fundamental information 

on the behavior of these girders under simulated bridge loading conditions. The concrete-

filled tubular flange girders (CFTFGs) shown in Figure 1.1 have several advantages 

compared to conventional I-girders (Kim and Sause 2005). Two main advantages are: (1) 

the concrete-filled tubular flange provides more strength, stiffness, and lateral torsional 

stability than a flat plate flange with the same amount of steel, and (2) the vertical 

dimension of the tube reduces the web depth, thereby reducing the web slenderness. In 

particular, the increased torsional stability of the girders will reduced the number of 

diaphragms (or cross-frames) needed to brace the girders, thus reducing the time and cost 

of fabricating and erecting the bridge girder system. 

This report presents a design study of a tubular flange girder demonstration bridge, 

conducted for the Pennsylvania Department of Transportation (PENNDOT). The bridge 

girders are CFTFGs comprised of a conventional web plate and bottom flange plate, and 

a top flange fabricated from a rectangular tube that is then filled with concrete.  

The CFTFGs are designed to be constructed as simple spans for dead loads, and are 

then made continuous for superimposed dead loads and live loads by adding continuity at 
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the pier. This construction sequence reduces the loads carried by the continuous girders 

so that the design moments and shears for the interior-pier sections of the girders and for 

the field splices at the pier are reduced. Also, to promote accelerated construction, the 

bridge is designed to be constructed with precast deck panels. 

 

1.2 COMPLETED TASKS 

The study included the following completed tasks: 

(1) Develop Design Criteria 

Based on the results of previous research on CFTFGs, CFTFG design criteria were 

developed in a format (i.e., LRFD format) compatible with the 2000 PENNDOT Design 

Manual Part 4 (PENNDOT 2000) and the 2004 AASHTO LRFD Bridge Design 

Specifications (AASHTO 2004). This task considered the main loading conditions 

considered in bridge design (maximum load, overload, fatigue, etc.) and particularly 

emphasized construction conditions, where CFTFGs provide their greatest benefits. 

(2) Preliminary Design of CFTFGs for Demonstration Bridge 

A preliminary design of the CFTFGs for the demonstration bridge was developed. 

The bridge is a two-span bridge, designed to be constructed as simple spans for dead load, 

which are made continuous for superimposed dead loads and live loads by adding 

continuity at the pier. The preliminary design was developed for spans of 100 ft. 

Preliminary dimensions of the CFTFGs were developed. The process of selecting these 

dimensions illustrates the application of the design criteria. The resulting girder 

dimensions were used in the remaining tasks, and will provide a starting point for 

engineers responsible for the design of the demonstration bridge. 
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(3) Preliminary Design of Field Splice 

The demonstration bridge is a two-span bridge, which requires a field splice that is 

located at the pier. A preliminary design of the splice was developed. This design 

provides a starting point for engineers responsible for the design of the demonstration 

bridge. 

(4) Preliminary Design of Precast Concrete Deck 

A preliminary design for a precast concrete deck for the demonstration bridge was 

developed. 

(5) Finite Element Analyses 

Based on CFTFG stability analyses conducted by previous research, finite element 

analyses of the stability of the demonstration bridge girders under critical construction 

loading conditions were conducted. These analyses validated the design criteria, and 

provide information for the engineers responsible for the design of the demonstration 

bridge. 
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Figure 1.1 Tubular flange girders 
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CHAPTER 2 DESIGN CRITERIA FOR TUBULAR FLANGE                     

BRIDGE GIRDERS 

 

2.1 INTRODUCTION 

Design criteria for concrete-filled tubular flange girders (CFTFGs) recommended 

herein were developed from the results of an analytical and experimental investigation 

conducted by Kim and Sause (2005). This investigation studied CFTFGs with steel yield 

strengths of 70 ksi and 100 ksi.  The design criteria are considered applicable for 

CFTFGs with yield strength ranging from 50 ksi to 100 ksi. 

 

2.2 GENERAL 

Design criteria presented here apply to flexure of straight CFTFGs that are 

symmetrical about a vertical axis in the plane of the web. These criteria cover the 

following types of CFTFGs. 

• CFTFGs that are composite with a concrete deck in positive flexure, where the 

concrete-filled tubular flange is the top (compression) flange. 

• CFTFGs that are non-composite with a concrete deck in positive or negative flexure, 

where the concrete-filled tubular flange is the compression flange. 

When the CFTFG is loaded in positive or negative flexure so that the concrete-filled 

tubular flange is the tension flange, then the concrete in the steel tube is neglected, and 

the CFTFGs can be designed based on the 2004 AASHTO LRFD Bridge Design 

Specifications (AASHTO 2004).  

The design criteria presented here are compatible with the 2004 AASHTO LRFD 
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specifications (AASHTO 2004). Criteria are given for the design of CFTFGs for the 

following requirements. Other requirements may need to be considered. 

• The Strength I limit state requirements. 

• The Constructibility requirements. 

• The Service II limit state requirements. 

• The Fatigue limit state requirements. 

 Strength I limit state requirements ensure that strength and stability, both local and 

global, are provided to resist the set of loading conditions that represents the maximum 

loading under normal use of the bridge. Constructibility requirements ensure that 

adequate strength is provided to resist the set of loading conditions that develop during 

critical stages of construction, but under which nominal yielding or reliance on post-

buckling resistance is not permitted. Service II limit state requirements restrict yielding 

and permanent deformation of the steel structure under the set of loading conditions that 

represent normal service conditions. Fatigue limit state requirements restrict the stress 

range due to the passage of the fatigue design truck. 

 

2.3 CFTFGS COMPOSITE WITH CONCRETE DECK  

Sections consisting of a CFTFG section connected with sufficient shear connectors 

to a concrete deck to provide composite action and lateral support are considered 

composite sections. 
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2.3.1 Strength I Limit State 

Flexural Strength 

Composite sections are designed as compact sections by satisfying the following 

conditions: 

• Compact section web slenderness limit: 

ycweb

cp

F
E76.3

T
D

2 ≤                                                                                                   (2.1) 

• Tube local buckling requirement: 

yctube

tube

F
E7.1

T
B

≤                                                                                                    (2.2) 

where, cpD  is the depth of the web in compression at the composite compact section 

moment, sc
ccM ,which is given below, webT  is the web thickness, E  is the elastic modulus 

of the steel, ycF  is the yield stress of the compression flange (tube steel), Btube is the tube 

width, and Ttube is the tube thickness. Equation (2.2) is adopted from Article 6.9.4 of the 

2004 AASHTO LRFD specifications (AASHTO 2004). It allows the tubular flange to 

yield before buckling locally in compression, and is conservative for a concrete-filled 

tube. Equations (2.1) and (2.2) replace Equation 6.10.6.2.2-1 from Article 6.10.6.2.2 and 

Equations 6.10.2.2-1 and 6.10.2.2-3 from Article 6.10.2.2 of the 2004 AASHTO LRFD 

specifications (AASHTO 2004). 

The design criterion for flexure of composite CFTFGs for the Strength I limit state 

is as follows: 

nfu MM φ≤                                                                                                              (2.3) 
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where, uM  is the largest value of the major-axis bending moment in the girder due to the 

factored loads as specified in Chapter 3 of the 2004 AASHTO LRFD specifications 

(AASHTO 2004), fφ  is the resistance factor for flexure, taken as 1.0 in the 2004 

AASHTO LRFD specifications (AASHTO 2004), and nM  is the nominal flexural 

strength. Equation (2.3) replaces Equation 6.10.7.1.1-1 from Article 6.10.7.1.1 of the 

2004 AASHTO LRFD specifications (AASHTO 2004). 

The nominal flexural strength is taken as: 

sc
ccn MM =                                                                                                                 (2.4) 

sc
ccM  is determined using an equivalent rectangular stress block for the concrete and an 

elastic perfectly plastic stress-strain curve for the steel. The maximum usable strain at the 

extreme concrete compression fiber, which is at the top of the deck, is taken as 0.003. 

Note that for the calculation of sc
ccM , the concrete in the haunch is ignored. Figures 2.1 

and 2.2 compare stress distributions based on the actual response, simple plastic theory, 

and strain compatibility for composite compact-section CFTFGs at the positive flexural 

strength limit, when the plastic neutral axis (PNA) is located in the deck and girder, 

respectively. β1 shown in these figures is based on the compressive strength (fc') of the 

concrete deck. If fc' is less than or equal to 4 ksi, then β1 is 0.85, and β1 is reduced 

continuously by 0.05 for each 1 ksi of strength in excess of 4 ksi. These figures indicate 

that the strain compatibility approach reasonably approximates the actual stress 

distribution regardless of the PNA location and steel grade, and thus the method should 

accurately estimate the flexural strength. Equation (2.4) generally replaces the nominal 

flexural resistance calculations of Article 6.10.7.1.2 of the 2004 AASHTO LRFD 
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specifications (AASHTO 2004), although the limit on nM  given by Equation 6.10.7.1.2-

3 from Article 6.10.7.1.2 should be applied. 

 

Shear Strength 

The design criterion for shear of composite CFTFGs for the Strength I limit state is 

as follows: 

nvu VV φ≤                                                                                                                (2.5) 

where, uV  is the shear in the web at the section under consideration due to the factored 

loads as specified in the 2004 AASHTO LRFD specifications (AASHTO 2004), vφ  is 

the resistance factor for shear, taken as 1.0 in the 2004 AASHTO LRFD specifications 

(AASHTO 2004), and nV  is the nominal shear strength determined as specified in Article 

6.10.9.2 of the 2004 AASHTO LRFD specifications (AASHTO 2004) without 

modification. Note that Equation (2.5) simply restates Equation 6.10.9.1-1 from Article 

6.10.9.1 of the 2004 AASHTO LRFD specifications (AASHTO 2004). All of the vertical 

shear force is assumed to be carried by the web. 

 

2.3.2 Constructibility 

The design criteria presented here pertain to conditions before the CFTFG is made 

composite with the concrete deck. These criteria apply only when the following 

conditions are satisfied: 

• Web slenderness limit for “stocky web” under flexure: 
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yc
b

web

c

F
E

T
2D

λ≤                                                                                                     (2.6) 

• Web slenderness limit to minimize web distortion: 

3
1

yctweb

web

F
E11

T
D

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≤                                                                                                  (2.7) 

• The tube local buckling requirement given by Equation (2.2) is satisfied. 

• Transverse stiffeners are provided at three (or more) equally-spaced locations along 

the span (i.e., quarter-span, mid-span, and three quarter-span) plus the bearing 

locations (more details are presented below). 

In Equations (2.6) and (2.7), cD  is the depth of the web in compression at the yield 

moment ( yM ) for the CFTFG when it is non-composite with the concrete deck, bλ  is a 

coefficient related to the boundary conditions provided to the web by the flanges, webD  is 

the web depth, and yctF  is the smaller of the yield stress for the compression flange and 

the yield stress for the tension flange. Equation (2.6) replaces Equation 6.10.3.2.1-3 from 

Article 6.10.3.2.1 of the 2004 AASHTO LRFD specifications (AASHTO 2004). 

If the area of the compression flange (the area of the steel tube plus the transformed 

area of the concrete infill) is less than that of tension flange, the value of bλ  is 4.64, 

otherwise, the value of bλ  is 5.76 as given in Article 6.10.4.3.2 of the 1998 AASHTO 

LRFD specifications (AASHTO 1998).  

The web slenderness requirement given by Equation (2.7) is based on finite element 

analysis results for CFTFGs with a stiffener arrangement having three intermediate 

stiffeners equally spaced along the span and stiffeners at each bearing. The details behind 
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this equation are discussed in Kim and Sause (2005). 

The arrangement of three intermediate transverse stiffeners along the span, suggested 

here, minimizes the effect of section distortion on the LTB strength without requiring too 

many stiffeners. The stiffeners should be placed in pairs, one on each side of the web, and 

the stiffeners should be spaced equally along the span. The following suggestions are 

made: 

• The bearing and intermediate transverse stiffeners are made identical to simplify 

fabrication. 

• The total width of each pair of stiffeners, including the web thickness, is 95% of the 

smaller of the tube width and the bottom flange width. 

• The yield stress of the stiffeners is equal to yield stress of the steel elements of the 

girder cross-section. 

The design criterion for flexure of composite CFTFGs for Constructibility is 

nfu MM φ≤ , which is identical in form to Equation (2.3). Again, uM  is the largest value 

of the major-axis bending moment in the girder due to factored loads specified in 

Chapter 3 of the 2004 AASHTO LRFD specifications (AASHTO 2004). Here, Equation 

(2.3) is used in place of Equations 6.10.3.2.1-1 and 6.10.3.2.1-2 from Article 6.10.3.2.1 

and Equation 6.10.3.2.2-1 from Article 6.10.3.2.2, and the calculation of nM  (given 

below) replaces the calculation of ycF , ncF , and ytF  for a noncomposite section from 

Article 6.10.3.2.1 and Article 6.10.3.2.2, which refer to Article 6.10.8 of the 2004 

AASHTO LRFD specifications (AASHTO 2004). 

The nominal flexural strength, nM , is taken as: 



 20

)MandM(MM ds
br
dn ≤=                                                                           (2.8) 

where, br
dM  is the design flexural strength for torsionally braced CFTFGs, sM  is the 

cross-section flexural capacity which can be taken as the yield moment, yM , when the 

steel tube yield stress is 70 ksi or less, and dM  is an ideal design flexural strength that 

corresponds to buckling between the brace points (assuming each diaphragm provides 

perfect lateral and torsional bracing at the brace point). Note that if the tube yield stress is 

large (e.g., 100 ksi) and the compressive strength of the concrete infill is small (e.g., 4 

ksi), then the non-composite compact section moment capacity, sc
nccM , may be less than 

yM . In this case, sc
nccM should be calculated and used for sM  (Kim and Sause 2005). 

yM  for a CFTFG non-composite with the concrete deck is taken as the smaller of the 

yield moment based on analysis of a linear elastic transformed section, tr
yM , and the yield 

moment based on strain compatibility, sc
yM , which uses an equivalent stress block for 

concrete in the tube. yM  is also the smaller of the yield moment with respect to the 

compression flange, ycM , and the yield moment with respect to the tension flange, ytM . 

In calculating tr
yM , the concrete in the steel tube is transformed to an equivalent area of 

steel using the modular ratio as shown in Figure 2.3 (
cE

En = , where, cE  is the elastic 

modulus of concrete). sc
yM  is calculated based on an equivalent rectangular stress block 

for the concrete in the steel tube and a linear elastic stress-strain curve for the steel with 

the yield strain, yε , reached at either the top or bottom fiber. Note that for the calculation 
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of sc
yM , the strain in the concrete in the steel tube is not calculated, because the strain is 

limited to the yield strain of the tube. Figure 2.4 shows sc
yM  when either the top 

(compression) or the bottom (tension) flange yields first. A suggestion, that must be used 

with care, is that when the ratio of the yield stress of the tube steel, ytubeF , to the 

compressive strength of the concrete infill, fc', is smaller than 8.5, yM  is taken as tr
yM . 

Otherwise, yM  is taken as sc
yM .  

sc
nccM  is the flexural strength based on strain compatibility, and is determined using 

an equivalent rectangular stress block for the concrete and an elastic perfectly plastic 

stress-strain curve for the steel as shown in Figure 2.5. The maximum usable strain is 

assumed to be 0.003 at the top of the concrete in the steel tube. The stress distributions 

based on the actual response, simple plastic theory, and strain compatibility for non-

composite compact-section CFTFGs at the positive flexural limit state are shown in 

Figure 2.5. 

The ideal design flexural strength is given by 

sssbd MMCM ≤α=                                                                                          (2.9) 

where, bC  is the moment gradient correction factor and sα  is the strength reduction 

factor. The moment gradient correction factor is given by either  

CBAmax

max
b M3M4M3M5.2

M5.12
C

+++
=                                                              (2.10a) 

or 

3.2
M
M3.0

M
M05.175.1C

2

2

1

2

1
b ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=                                                           (2.10b) 
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where in Equation (2.10a), maxM  is the absolute value of the maximum moment in the 

unbraced segment and AM , BM , and CM  are the absolute values of the moment at the 

quarter, center, and three-quarter points in the unbraced segment, respectively. In 

Equation (2.10b), 1M  is the moment at the bracing point opposite to the one 

corresponding to 2M , and is taken as positive when it causes compression and negative 

when it causes tension in the flange under consideration. 2M  is the largest major-axis 

bending moment at either end of the unbraced length causing compression in the flange 

under consideration, and is taken as positive. Equation (2.10a) provides more accurate 

results for cases with non-linear moment diagrams, and has been used in calculations 

made for the preliminary design of the CFTFGs for the demonstration bridge discussed in 

Chapter 3.  Equation (2.10a) was given in the commentary of past editions of the 

AASHTO LRFD specifications, but is not in the 2004 AASHTO LRFD specifications 

(AASHTO 2004), which provide specific guidance on definition of 1M   and 2M  for non-

linear moment diagrams to make the results from Equation (2.10b) conservative.  

The strength reduction factor is given by 

0.1
M
M

2.2
M
M

8.0
cr

s

2

cr

s
s ≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=α                                                            (2.11) 

where, crM  is the elastic LTB moment, given by 

( )2
yb

2
tr

2

trT
yb

cr rL
Ad

467.2AK385.0
rL

EM +
π

=                                                       (2.12) 

where, E is the elastic modulus of steel, bL  is the unbraced length, yr  is the radius of 
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gyration, TK  is the St. Venant torsional inertia of the transformed section (using the 

short-term modular ratio), trA  is the transformed section area (using the short-term 

modular ratio), and d  is the section depth. The radius of gyration is given by 

tr

bftf
y A

II
r

+
=                                                                                                       (2.13) 

where, tfI  and bfI  are the moments of inertia of the top and bottom flanges about the 

vertical axis, respectively. Note that tfI  is based on a transformed section for the 

concrete-filled steel tube using the short-term modular ratio to account for the concrete in 

the tube. 

For Equation (2.8), the design flexural strength for torsionally braced CFTFGs, br
dM , 

is considered because research (Kim and Sause 2005) shows that the bracing provided to 

a CFTFG by a typical system of interior diaphragms may not be sufficiently stiff to brace 

the CFTFGs so that lateral buckling occurs only between the brace points. The approach 

taken here is given by Kim and Sause (2005) and is based on the approach described by 

Yura et al. (1992). br
dM  is given by 

s
br
sbu

br
d MCM α=                                                                                                     (2.14) 

where, buC  is the moment gradient correction factor corresponding to the girder when it 

is braced only at the ends of the span (without interior bracing within the span), obtained 

by applying Equation (2.10) to the entire girder span and br
sα  is a strength reduction 

factor for the torsionally braced girder. The strength reduction factor for the torsionally 

braced girder is given by  
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where, br
crM  is the elastic LTB moment including the torsional brace stiffness, which is 

based on the approach described by Yura et al. (1992), and given by  

2
br2

bu

2
bb2ubr

cr
br
cr M

C
C

MM +=                                                                                    (2.16) 

where, ubr
crM  is the elastic LTB moment for the girder without interior bracing within the 

span, bbC  is the moment gradient correction factor corresponding to the unbraced 

segment under investigation, assuming the adjacent brace points provide perfect bracing, 

obtained by applying Equation (2.10) to the unbraced segment, and brM  is the moment 

including the torsional bracing effect, given later. ubr
crM  is given by  

( )2
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2

trT
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467.2AK385.0

rL
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π
=                                                           (2.17) 

Note that Equation (2.17) is Equation (2.12) with bL  replaced by the span length L . The 

moment including the torsional bracing effect, brM , which is derived by Yura et al. 

(1992), is given by 

L2.1
nIE

M effT
br

β
=                                                                                                (2.18) 

where, Tβ  is the effective brace stiffness, effI  is the effective vertical axis moment of 

inertia of the girder to account for singly-symmetric sections, and n  is the number of 

interior braces within the span. The effective brace stiffness is given by (Yura et al. 1992) 
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where, bβ  is the discrete brace stiffness, secβ  is the stiffness of the web and stiffeners, 

and gβ  is the stiffness of the girder system. bβ , gβ , and secβ  have dimensions of force-

length. For multi-girder systems connected with diaphragms, they can be calculated from 

the following equations (Yura et al. 1992). 
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In Equations (2.20) to (2.22), S  is the spacing of girders, bI  is the moment of inertia of 

the bracing member about the strong axis, xI  is the horizontal axis moment of inertia of 

the girder, gn  is the number of girders, h  is the distance between flange centroids, N  is 

the contact length of the torsional brace, wt  is the web thickness, st  is the stiffener 

thickness, and sb  is the stiffener width. N  can be taken as the thickness of the 

diaphragm connection plate. The effective vertical axis moment of inertia of the girder is 

given by 

ytyceff I
c
tII +=                                                                                                       (2.23) 

where, ycI  and ytI  are the vertical axis moment of inertia of the compression and tension 

flanges respectively, and c and t are the distances from the neutral axis to the centroid of 
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the compression and tension flanges respectively. 

 

2.3.3 Service II Limit State 

The design criterion for composite CFTFGs for the Service II limit state is as 

follows: 

yfhf FR95.0f ≤                                                                                               (2.24) 

where, ff  is the flexural stress in the flanges caused by the factored loads as specified in 

Chapter 3 of the 2004 AASHTO LRFD specifications (AASHTO 2004), hR  is the 

hybrid factor, and yfF  is the yield stress of the flange. Note that hR  accounts for the 

nonlinear variation of stresses caused by yielding of the lower strength steel in the web of 

a hybrid girder (a coefficient ≤  1.0) as specified in Article 6.10.1.10.1 of the 2004 

AASHTO LRFD specifications (AASHTO 2004).  

Equation (2.24) replaces Equations 6.10.4.2.2-1 and 6.10.4.2.2-2 from Article 

6.10.4.2.2 of the 2004 AASHTO LRFD specifications (AASHTO 2004). Equations (2.1), 

(2.6), and (2.7) are intended to prohibit the use of slender webs in CFTFGs.  For 

CFTFGS that are composite with the concrete deck and under positive flexure, no further 

check on web slenderness is needed, and Equation 6.10.4.2.2-4 from Article 6.10.4.2.2 of 

the 2004 AASHTO LRFD specifications (AASHTO 2004) is not considered.  However, 

for CFTFGs that are composite with a concrete deck under negative flexure with the 

concrete-filled tubular flange as the compression (bottom) flange (a condition that is not 

covered by the design criteria presented in this chapter), Equation 6.10.4.2.2-4 from 

Article 6.10.4.2.2 of the 2004 AASHTO LRFD specifications (AASHTO 2004) should 
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be considered. 

Two different approaches are used to include the concrete in the steel tube in the 

calculation of the flexural stress. The first approach uses a transformed section to include 

the concrete in the tube, and the second approach uses an equivalent rectangular stress 

block for the concrete. 

When sc
y

tr
y MM ≤ , then the transformed section approach is used for the concrete in 

the steel tube, and the flexural stresses are calculated as the sum of the stresses due to 

following individual loading conditions (Figure 2.6): 

• The factored DC moment acting on the non-composite section, where the long-term 

modular ratio is used to account for the concrete in the steel tube (which makes a 

significant contribution to the stiffness and strength of the non-composite section). 

• The factored DW moment acting on the long-term composite section, including the 

concrete deck but neglecting the concrete in the steel tube (which makes a negligible 

contribution to the stiffness and strength of the composite section). 

• The factored LL moment acting on the short-term composite section, including the 

concrete deck but neglecting the concrete in the steel tube. 

When sc
y

tr
y MM > , then the equivalent rectangular stress block approach is used for 

the concrete in the steel tube, and the flexural stresses are calculated as the sum of the 

stresses due to following individual loading conditions (Figure 2.7): 

• The factored DC moment acting on the non-composite section, where the equivalent 

rectangular stress block is used to account for the concrete in the steel tube. 

• The factored DW moment acting on the long-term composite section, including the 
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concrete deck but neglecting the concrete in the steel tube. 

• The factored LL moment acting on the short-term composite section, including the 

concrete deck but neglecting the concrete in the steel tube. 

The long-term composite section is a transformed section based on an increased 

modular ratio (i.e., the long-term modular ratio equal to 3n) to account for the creep of 

the concrete that will occur over time. The short-term composite section is a transformed 

section based on the usual modular ratio (i.e., the short-term modular ratio equal to n). 

 

2.3.4 Fatigue Limit State 

The design criterion for composite CFTFGs for the Fatigue limit state is as follows: 

( ) ( )nFf Δ≤Δγ                                                                                                        (2.25) 

where, γ  is the load factor and fΔ  is the stress range due to the fatigue load as specified 

in Chapter 3 of the 2004 AASHTO LRFD specifications (AASHTO 2004).  ( )nFΔ  is the 

nominal fatigue resistance as specified in Article 6.6.1.2.5 of the 2004 AASHTO LRFD 

specifications (AASHTO 2004). Equation (2.25) is a restatement of Equation 6.6.1.2.2-1 

from Article 6.6.1.2.2 of the 2004 AASHTO LRFD specifications (AASHTO 2004). 

fΔ  is calculated using the transformed section approach. The concrete in the steel 

tube and concrete deck are transformed to an equivalent area of steel using the short-term 

composite section (Figure 2.8). The provisions of Article 6.10.5.3.1 of the 2004 

AASHTO LRFD specifications (AASHTO 2004) should be considered, but are unlikely 

to control for CFTFGs with stocky webs.  
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2.4 CFTFGS NON-COMPOSITE WITH CONCRETE DECK 

Sections consisting of a CFTFG that is not connected to the concrete deck by shear 

connectors are considered non-composite sections. 

2.4.1 Strength I Limit State 

Flexural Strength 

Non-composite sections are designed to be either compact sections or non-compact 

sections by satisfying the following conditions: 

• Compact sections satisfy the compact section web slenderness limit given by 

Equation (2.1): 

• Non-compact sections satisfy the non-compact section web slenderness limit given 

by: 

ycweb

c

F
E7.5

T
D

2 <                                                                                                   (2.26) 

• Compact sections and non-compact sections satisfy the tube local buckling 

requirement given by Equation (2.2): 

The design criterion for flexure of non-composite CFTFGs for the Strength I limit 

state is expressed in the same form as Equation (2.3). In Equation (2.3), uM  is, again, the 

largest value of the major-axis bending moment within an unbraced length due to the 

factored loads as specified in Chapter 3 of the 2004 AASHTO LRFD specifications 

(AASHTO 2004). The nominal flexural strength,  nM , is determined from Equation (2.8) 

with small modifications. If the girders are laterally braced by the deck, it is assumed that 

the attachments to the deck provide perfectly lateral and torsional bracing. Therefore, for 

calculating br
dM  for Equation (2.8), the unbraced length (Lb) between attachments to the 
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deck is used instead of the span length (L) in Equations (2.17) and (2.18). If the deck 

does not brace the girders, the span length (L) is used to calculate br
dM  for Equation (2.8). 

In both cases, the cross-section flexural capacity, sM , is taken as 

ycpcs MRM =                                                                                                         (2.27) 

where, pcR  is the web plastification factor for the compression flange as specified in 

Article A6.2 of the 2004 AASHTO LRFD specifications (AASHTO 2004), and ycM  is 

the yield moment with respect to the compression flange, described earlier in Section 

2.3.2. 

 

Shear Strength 

The design recommendations for shear of non-composite CFTFGs for the Strength I 

limit state are the same as those for composite CFTFGs given in Section 2.3.1. 

 

2.4.2 Constructibility 

Design recommendations for non-composite CFTFGs for Constructibility are the 

same as those for composite CFTFGs given in Section 3.2. 

 

2.4.3 Service II Limit State 

The design criterion for non-composite CFTFGs for the Service II limit state is as 

follows: 

yfhf FR80.0f ≤                                                                                               (2.28) 

where, ff  is the flexural stress in the flanges caused by the factored loads as 
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specified in Chapter 3 of the 2004 AASHTO LRFD specifications (AASHTO 2004), hR  

is the hybrid factor, and yfF  is the yield stress of the flange. Equation (2.28) replaces 

Equations 6.10.4.2.2-3 from Article 6.10.4.2.2 of the 2004 AASHTO LRFD 

specifications (AASHTO 2004). Equation 6.10.4.2.2-4 from Article 6.10.4.2.2 of the 

2004 AASHTO LRFD specifications (AASHTO 2004) should be considered. 

Similar to composite CFTFGs, two different approaches (i.e., the transformed 

section approach and the equivalent rectangular stress block approach) are used to 

include the concrete in the steel tube in the calculating the flexural stress.  

When sc
y

tr
y MM ≤ , then the transformed section approach is used for the concrete in 

the steel tube, and the flexural stresses are calculated as the sum of the stresses due to 

following individual loading conditions (Figure 2.9): 

• The factored DC moment and DW moment acting on the non-composite section, 

where the long-term composite section is used to account for the concrete in the 

steel tube. 

• The factored LL moment acting on the non-composite section, where the short-term 

composite section is used to account for the concrete in the steel tube. 

When sc
y

tr
y MM > , then the equivalent rectangular stress block approach is used for 

the concrete in the steel tube, and the flexural stresses are calculated as the sum of the 

stresses due to following individual loading conditions (Figure 2.10): 

• The factored DC, DW, and LL moments acting on the non-composite section, where 

the equivalent rectangular stress block is used to account for the concrete in the steel 

tube. 



 32

2.4.4 Fatigue Limit State 

Design recommendations for non-composite CFTFGs for the Fatigue limit state are 

the same as those for composite CFTFGs given in Section 3.4, except for the calculation 

of fΔ . The calculation of fΔ  is based on the short-term composite section, including 

only the steel girder and the concrete in the steel tube (Figure 2.11). 
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Figure 2.1  Comparison of stress distribution based on actual response, simple plastic 
theory, and strain compatibility for composite compact-section flexural strength when 

PNA is in deck 
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Figure 2.2  Comparison of stress distribution based on actual response, simple plastic 
theory, and strain compatibility for composite compact-section flexural strength when 

PNA is in girder 
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Figure 2.3  Transformed section for CFTFG 
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Figure 2.4  Yield moment based on strain compatibility 
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Figure 2.5  Comparison of stress distribution based on actual response, simple plastic 
theory, and strain compatibility for non-composite compact-section flexural strength 
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Figure 2.6  Flexural stress for composite CFTFG under Service II loading conditions 
(transformed section approach) 
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Figure 2.7  Flexural stress for composite CFTFG under Service II loading conditions 
(equivalent rectangular stress block approach) 
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Figure 2.8  Flexural stress for composite CFTFG under Fatigue loading conditions 
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Figure 2.9  Flexural stress for non-composite CFTFG under Service II loading conditions 
(transformed section approach) 
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Due to DC, DW, and LL 

Figure 2.10  Flexural stress for non-composite CFTFG under Service II loading 
conditions (equivalent rectangular stress block approach) 

 
Short-term

 

Figure 2.11  Flexural stress for non-composite CFTFG under Fatigue loading conditions 
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CHAPTER 3 PRELIMINARY DESIGN OF CFTFGS                                           

FOR DEMONSTRATION BRIDGE 

 

3.1 INTRODUCTION 

A design study of a two-span continuous composite CFTFG demonstration bridge 

with spans of 100 ft-100 ft is summarized here. This study developed a preliminary 

flexural design of the critical positive moment section and the interior-pier section of the 

CFTFGs for the demonstration bridge. The study also developed a preliminary design of 

the field splice at the pier. The interior-pier section design and the field splice design 

were actually completed after precast concrete deck design, presented in the next chapter, 

was completed, but the design results are included in this chapter. 

 

3.2 BRIDGE CROSS-SECTION 

The demonstration bridge cross-section was provided by PENNDOT, and consists 

of four girders spaced at 8 ft-5.5 in centers with 3 ft overhangs (Figure 3.1). The concrete 

deck is 8 in. thick. ASTM A 709 Grade 50 steel and concrete with compressive strength 

of 4 ksi were used. This design study considers the 2004 AASHTO LRFD Bridge Design 

Specifications (AASHTO 2004) and the PENNDOT Design Manual Part 4 (PENNDOT 

2000) as well as the design criteria given in Chapter 2. The design study results are based 

on several assumptions: (1) end diaphragms, but no interior diaphragms within the spans 

under construction conditions (during erection and deck placement) and one interior 

diaphragm at mid-span under service conditions, (2) diaphragms are W21X57 steel 

sections, (3) bearing stiffeners and three equally-spaced intermediate transverse stiffeners 
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(per span) with Category C′ fatigue details, (4) similar cross-sections for the positive 

moment section and the pier section, and (5) a field splice located at the pier section.  

 

3.3 GIRDER DESIGN 

Two construction sequence options, shown in Figures 3.2 and 3.3, were considered 

for the bridge. For Construction Option 1 (Figure 3.2), precast concrete deck panels are 

placed on top of the girders except for the pier section where the field splice is located. 

The field splice is then made and the final deck panel is placed. For Construction Option 

2, the precast concrete deck panels are placed on top of the girders after the field splice is 

made. Consequently, Construction Option 1 has less dead load applied to the continuous 

span, which affects the design of the interior-pier section and the design of the field splice.  

 

3.3.1 Design Loads 

The girders were designed for various dead and live load conditions. Lateral loads 

such as wind loads and earthquake loads were not considered in this study, however they 

could be treated as they are in a conventional steel I-girder bridge. 

The dead loads considered include the weight of all components of the structure, the 

wearing surface, and the attached appurtenances. The dead load is divided into two 

categories: (1) the weight of the bridge components and girders (Dc) and (2) the weight of 

the future wearing surfaces (Dw). Dc includes the weight of the girders, the weight of the 

deck, the weight of the haunch, the weight of the secondary steel (diaphragms, etc), and 

the weight of the barriers. Dw includes the weight of the non-integral wearing surface. Dc 

is also divided into two categories according to the time of field splice. Dc1 is Dc applied 
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to the simple spans and Dc2 is Dc applied to continuous spans. The dead loads were 

computed as a weight per linear foot of bridge girder. The numerical values of these loads 

are summarized in Table 3.1. 

The live loads (LL) consist of either a design truck or design tandem acting 

coincident with a uniformly distributed design lane load. The 2004 AASHTO LRFD 

specifications (AASHTO 2004) specify the values and positions of these loads. The 

design lane load is a 0.64 k/ft force distributed across a 10 ft design lane and over the 

bridge such to cause the greatest load effect.  In general, the live load analysis treats one 

design truck or one design tandem on the bridge at a time, and this load is placed on the 

bridge to cause the greatest load effect. Multiple presence factors account for loading in 

more than one lane. Note that for the negative moment section at pier, as specified in the 

2004 AASHTO LRFD specifications (AASHTO 2004), 90% of the effect of two design 

trucks spaced a minimum of 50 ft between the lead axle of one truck and the rear axle of 

the other truck was considered (along with 90% of the design lane load). 

The design truck is an HS-20 truck, based on the 2004 AASHTO LRFD 

specifications (AASHTO 2004) and the 2000 PENNDOT Design Manual Part 4 

(PENNDOT 2000). The HS-20 truck includes three axle loads, the first is 8 kips, and the 

second and the third are 32 kips. There is 14 ft between the first and second axle and 14 

to 30 ft between the second and the third axle. The distance between the second and third 

axle is varied to cause the greatest load effect on each girder.  

The tandem load is a military loading which consists of a pair of 31.25 kip axles 

spaced 4 ft apart (PENNDOT 2000). These loads are 125% of the AASHTO LRFD 

design tandem (AASHTO 2004).  
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The fatigue load is based on an HS-20 truck with the axle spacing fixed at 14 ft 

between the first and second axle and 30 ft between the second and the third axle. The 

fatigue load consists of one such truck placed where it causes the greatest load effect. The 

design lane load is not included in the fatigue load. 

The live loads are increased by a dynamic load allowance to account for the 

dynamic response. For most load cases, the effects of the design truck or tandem are 

increased by 33% (AASHTO 2004). The dynamic load allowance is 15% for the fatigue 

load effects. The lane load is not increased by the dynamic load allowance.  

The live loads are given as lane loads and are not directly applied to each girder. 

The loads are transmitted though the deck to the girders, and then to the supporting 

substructure. Article 4.6.2.2 of the 2004 AASHTO LRFD specifications (AASHTO 

2004) has live load distribution provisions to distribute the lane loads to the girders. 

Distribution factors are applied to the live loads to determine the load applied to a girder, 

and these distributed loads are used in calculating the girder moment and shear demands. 

The distribution factors are calculated by using formulas in the specifications or by the 

lever rule. The distribution factor formulas depend on the type of deck and the spacing 

between the girders. In the lever rule, the fraction of live load distributed to each girder is 

calculated by placing the loads on the bridge and summing moments about the adjacent 

girder line. In addition, Article 4.6.2.2.2d of the 2004 AASHTO LRFD specifications 

(AASHTO 2004) requires an additional distribution factor calculation which distributes 

loads to an exterior girder by an analysis that treats the bridge cross-section as a rigid 

cross-section that deflects and rotates as a rigid body under live loads (called the “rigid 

body rule” distribution factor).  
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 For interior girders, the specification formulas for a steel girder bridge with 

concrete deck were used to calculate the distribution factors for shear and moment for the 

girders of the demonstration bridge. For exterior girders, the lever rule was used with one 

design lane loaded, the specification formulas were used with two or more design lanes 

loaded to calculate the distribution factors for shear and moment. For the exterior girders, 

the rigid body rule was also applied to both the one lane-loaded and the two or more lane-

loaded cases to calculate distribution factors for moment, and these distribution factors 

controlled.  

Tables 3.2 and 3.3 show the live load distribution factors for the non-fatigue limit 

states and the Fatigue limit state, respectively. The interior and exterior girders of the 

demonstration bridge were designed for same shear and moment, using the largest 

distribution factors from those given in Tables 3.2 and 3.3. These distribution factors 

were applied for both the positive and negative bending regions of the girders.  

Figures 3.4, 3.5, 3.6, and 3.7 summarize the unfactored dead and live load girder 

moment envelopes and shear envelopes for Construction Option 1 and Construction 

Option 2. As shown in these figures, the girder dead and live load analyses generated 

results at 10 ft intervals along the girder length. The figures show that the envelopes for 

live load (LL) plus dynamic load allowance (IM) and for dead load due to the wearing 

surface (Dw) are the same for Construction Option 1 and Construction Option 2. The 

envelopes for dead load due to Dc1 and Dc2 vary for the different options. More Dc1 is 

applied for Construction Option 1 than for Construction Option 2, but less Dc2 is applied 

for Construction Option 1 than for Construction Option 2. As shown in Figures 3.4 and 

3.6, Construction Option 1 has smaller negative moment at interior-pier section and field 
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splice location than Construction Option 2. Therefore, the design study was conducted 

based on Construction Option 1. 

With Construction Option 1 selected and the construction sequence more clear, the 

dead load (Dc) can be further refined as follows.  Dead load is applied to girders that may 

be either simple-span or continuous and either non-composite with the deck or composite 

with the deck.  Dead load Dc1, as defined earlier, is applied to simple-span non-composite 

girders, and includes the weight of the girders, the weight of the deck, and the weight of 

the secondary steel (diaphragms, etc).  Dead load Dc2, as defined earlier, is applied to 

either non-composite or composite girders. Specifically, the weight of the haunch 

(defined as Dc2a) is applied to girders that are continuous, but non-composite with the 

deck, and the weight of the barriers (defined as Dc2b) is applied to girders that are 

continuous and composite with the deck. Dw is also applied to girders that are continuous 

and composite with the deck. 

 To simplify the preliminary design of the CFTFGs for the demonstration bridge 

these various dead loads were treated as follows: 

• To design the positive moment section, Dc1 and Dc2a are treated as Dc dead loads 

applied to non-composite girders. When Dc1 is applied to the simple-span girders, 

the maximum positive moment is at midspan. When the remaining loads are applied 

to the continuous girders, the maximum positive moment is 40 ft from the abutment 

end of the girders. For simplicity, these maximum positive moments were treated as 

if they acted at the same cross section.  More accurate design calculations would 

treat these two cross sections independently.    

• To design the negative moment region and splice at the pier, Dc1 which is applied to 
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the simple-span girders is omitted. Dc2a and Dc2b are treated as Dc dead loads applied 

to continuous girders that are composite with the deck, even though the haunch (Dc2a) 

is actually placed when the girders are non-composite. Since the haunch weight is 

small, this simplification should have little effect on the design results.  

 

3.3.2 Limit States 

Similar to the 2004 AASHTO LRFD specifications (AASHTO 2004), the proposed 

design criteria presented in Chapter 2 consider the following limit state categories: (1) 

strength limit states, (2) service limit states, and (3) fatigue and fracture limit states. 

Extreme event limit states are treated by the 2004 AASHTO LRFD specifications 

(AASHTO 2004), but were not considered in this preliminary design study. Each limit 

state has a corresponding load combination with different load factors. The load 

combinations considered in this study correspond to the Strength I, Service II, and 

Fatigue limit states. With consideration of the Strength I load combination load factors, a 

construction load combination (“Constructibility”) was developed.  To simplify the 

preliminary design process, the load factor on the Dc dead load acting during deck 

placement (Dc1 and Dc2a)  was increased from 1.25 to 1.50, and construction live load was 

neglected (which is equivalent to assuming that the factored construction live load was 

25% of the Dc1 dead load, approximately 0.32 kip/ft per girder). The load combinations 

and corresponding load factors considered in the study are shown in Table 3.4. 

The effective width of the deck for conditions when the girders are composite with 

the deck was calculated for both the interior and exterior girders. The effective width was 

smaller for the exterior girders, and the exterior girder effective width was used for the 
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calculations of flexural stresses and flexural resistance of the composite girders. 

For the design of the positive moment section, each limit state was considered as 

follows: 

• For the Strength I limit state, the flexural strength was calculated using Equation 2.4 

based on the section shown in Figure 2.2, and the shear strength was determined as 

specified in Article 6.10.9 of the 2004 AASHTO LRFD specifications (AASHTO 

2004). 

• For Constructability, the flexural strength was calculated using Equation 2.8. 

• For the Service II limit state, the flexural stress in the flanges was calculated based 

on the section shown in Figure 2.6. 

• For the Fatigue limit state, the stress range due to the fatigue load was calculated 

based on the section shown in Figure 2.8. 

For the design of the negative moment section (pier section), each limit state was 

considered as follows: 

• For the Strength I limit state, the flexural strength was determined as specified in 

Appendix A (Article A6.3.3) of the 2004 AASHTO LRFD specifications (AASHTO 

2004). The unbraced length of the girder of the demonstration bridge, which is 50 ft, 

is in the inelastic range. However, the inelastic lateral-torsional buckling strength of 

the girder is larger than the section capacity due to the large St. Venant torsional 

constant (KT) and large moment gradient correction factor (Cb). As a result, lateral-

torsional buckling is not a controlling limit state. The flexural strength was 

calculated by considering the steel girder with the cut out in the steel tube (needed to 

make the pier splice), and the post-tensioned strands (neglecting the concrete deck 
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and concrete in the steel tube) as shown in Figure 3.8 (a). As discussed in Chapter 4, 

120 post-tensioned strands are used in the longitudinal direction of the bridge deck, 

and 30 of these strands were assigned to each girder for calculating the negative 

moment section flexural capacity.  Note that the Cb factor for the unbraced length 

adjacent to the pier was calculated based on Figure 3.9, which is the factored 

moment envelope for the Strength I loading (based on Construction Option 1). For 

calculating KT, the steel girder section with the complete top flange tube (neglecting 

the presence of the cut out) and neglecting the concrete in the steel tube was used. 

• The post-tensioned strands have a significant contribution to the negative moment 

section flexural capacity used for the Strength I limit state check. Because of the 

post-tensioning, the strands have substantial tensile stress at the time when the deck 

decompresses, much larger than would be calculated from a simple section analysis 

of a combined cross section of steel girder and strands (without concrete) under the 

Strength I moment demand. Therefore, calculations are needed to account for the 

stresses in the post-tensioned strands and the steel girder when the deck 

decompresses. These stresses are then added to the additional stresses that develop 

on the combined cross section of steel girder and strands (without concrete) under 

the Strength I maximum load condition. 

• For the Strength I limit state, the shear strength was determined as specified in 

Article 6.10.9 of the 2004 AASHTO LRFD specifications (AASHTO 2004). 

• During the application of the Dc1 loads, the CFTFGs are not continuous, and 

therefore the flexural demand at the pier section is zero for Dc1.  

• For the Service II limit state, the flexural stress in the flanges and concrete deck was 
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calculated for a transformed section including the steel girder with the cut out in the 

tube and the short-term modular ratio for the concrete deck (but neglecting the 

concrete in the steel tube) as shown in Figure 3.8 (b). 

• For the Fatigue limit state, the stress range due to the fatigue load was calculated 

based on the section shown in Figure 3.8 (b). The Fatigue limit state was checked 

for the bearing stiffener/diaphragm connection plate (as a Category C' detail) and for 

shear studs attached to the tube (as a Category C fatigue detail) to make the girders 

composite with the deck.  Other Fatigue limit state checks were made for the field 

splice at the pier, as discussed later. 

 

3.3.3 Design Results 

Figure 3.10 shows the girders (CFTFGS) for the demonstration bridge that resulted 

from the design calculations. The calculations are given in Appendix A, and the 

performance ratios (factored load effect over factored resistance) for selected critical 

limit states are listed in Table 3.5. The girder cross-section satisfied the maximum girder 

depth of 36 in imposed on the girders for the demonstration bridge. Note that as 

mentioned previously, transverse stiffeners are needed at three intermediate locations 

along the span (i.e., quarter-span, mid-span, and three quarter-span) and at the bearings. 

 

3.4 FIELD SPLICE DESIGN 

The bolted field splice was located at the pier to simplify the erection of the bridge. 

The alternative of putting the splice at the location of dead load contraflexure would 

either increase the number of field pieces and number of splices (from two to three and 
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one to two, respectively) for each girder, or increase the length of the longer of the two 

field pieces, if the same number of pieces were used. Consequently, the girders are 

designed as simple spans for dead load and continuous for superimposed dead load and 

live loads.  

 

3.4.1 Design Procedures 

The bolted field splice design is based on AASHTO LRFD specifications 

(AASHTO 2004). Similar to the girder design, Strength I, Service II, and Fatigue limit 

states were considered. The field splice was designed to be a slip-critical connection for 

Service II loading, and a bearing-type connection, with threads excluded from the shear 

planes, for Strength I loading. The splice (Figure 3.11) uses 7/8 in. diameter A325 bolts 

in standard holes. The splice plates are A709 Grade 50 steel. The sections shown in 

Figures 3.8 (a) and (b) were considered to design the bearing-type connection for 

Strength I loading, and the slip-critical connection for Service II loading, respectively. 

For the design of bottom flange splice, the design force demand for the bottom 

flange was calculated from the girder moment at the splice location. The number of bolts 

was determined based on the following: (1) to develop the Strength I design force in the 

flange with the bolts in bearing and (2) to develop the Service II design force in the 

flange with the bolts designed as slip-critical. A single splice plate was used for the 

bottom flange. Yielding and fracture of the splice plate and of the flange plate were 

checked based on the Strength I design force. Also, the Fatigue limit state was checked 

for the splice plate and the flange plate using stresses based on the section in Figure 3.8 

(b), and treating the bolt hole as a Category B fatigue detail. Based on these design 
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considerations, the dimensions of the splice plate were determined. 

For the design of top flange (tube) splice, the approach was similar to that used for 

the bottom flange splice. However, instead of using single splice plate, double splice 

plates were used on both the top and bottom walls of the tube. The following load-

induced fatigue conditions were checked: (1) the tube walls and the splice plates with bolt 

holes using stresses based on the section shown in Figure 3.8 (b), treating the bolt hole as 

a Category B fatigue detail; and (2) the tube wall at the end of the cut out shown in Detail 

A of Figure 3.11, considering the stress concentration from the cut out where the nominal 

stress in the tube wall (based on the section in Figure 3.8 (b)) is factored by 2 and treating 

the base metal in the tube as a Category A fatigue detail. 

For the design of the web splice, the portion of the moment resisted by the web, and 

the horizontal force carried by the web, due to the difference in design forces carried by 

the top and bottom flanges, were considered. Double splice plates were used on the web. 

 

3.4.2 Design Results 

From the field splice design results, it was found that more bolts are required for the 

bearing-type connection under Strength I loading than for the slip-critical connection 

under Service II loading. Based on these findings, the field splice was designed as a 

bearing-type connection based on Strength I loading. Slip does not occur under Service II 

loading. The design calculations are given in Appendix B. Figure 3.11 shows the final 

results of the field splice design.  
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Table 3.1  Dead loads for demonstration bridge with four I-girders 

Type Component Calculation Load/Length 
Dc1 Slab 

ft.*in*
ft
k.

ft
in

58
12
8150 3  

ft
k85.0  

Dc1 Steel Girder 
(assume 60 in2 steel area) 

2

2144
60*49.0

2

3
ft
in

in
ft
k  ft

k20.0  

Dc1 Concrete Infill 
(assume 126 in2 concrete area) 

2

2144
126150

2

3
ft
in

in*
ft
k.  ft

k.130  

Dc1 Secondary Steel 0.10*steel girder wt. 
ft
k.040  

Dc2 Concrete Haunch 
inin

ft
k

ft
in

3*
144
16*15.0

2

23  
ft
k05.0  

Dc2 Miscellaneous 
(Parapet, railing, lights, etc.) 

(assumed) 
ft
k275.0  

DW Future Wearing Surface 
girders

ft
ft
k

4
28*03.0 2  

ft
k21.0  

 

Table 3.2  Live load distribution factor for non-fatigue limit states 

Interior Girder Exterior Girder 

 One Design 

Lane Loaded 

Two Design 

Lanes Loaded 

One Design 

Lane Loaded 

Two Design 

Lanes Loaded

Bending Moment 0.598 0.706 0.685 0.714 

Shear 0.698 0.847 0.677 0.619 
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Table 3.3  Live load distribution factor for Fatigue limit state 

Interior Girder Exterior Girder 

 One Design 

Lane Loaded 

Two Design 

Lanes Loaded 

One Design 

Lane Loaded 

Two Design 

Lanes Loaded

Bending Moment 0.498 - 0.571 - 

Shear 0.582 - 0.564 - 

 

 

Table 3.4  Load factors and load combinations 

Limit state DC DW LL+IM 

Strength I 1.25 1.50 1.75 

Constructability 1.50 - - 

Service II 1.00 1.00 1.30 

Fatigue - - 0.75 

 

 

Table 3.5  Performance ratios for positive moment section 

Limit State Performance Ratio 
(Load Effect/Resistance) Controlling Design Check 

Strength I 0.82 Flexure 

Constructability 0.79 Lateral-Torsional Buckling 

Service II 0.88 Flexure (Bottom Flange) 

Fatigue 0.73 Transverse Stiffeners 
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Figure 3.1  Demonstration bridge cross-section 
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Step 1: Place four girders with temporary bracing on one span

Step 2: Place four girders with temporary bracing on the other span

Step 3: Place permanent diaphragms

Step 4: Place pre-cast concrete deck except at splice location

Step 5: Make field splice

Step 6: Place pre-cast concrete deck at splice location and complete deck

 

Figure 3.2  Option 1 for construction sequence of bridge (Construction Option 1) 
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Step 1: Place four girders with temporary bracing on one span

Step 2: Place four girders with temporary bracing on the other span

Step 3: Place permanent diaphragms

Step 4: Make field splice

Step 5: Place and complete pre-cast concrete deck (or cast-in-place deck) 

 

Figure 3.3  Option 2 for construction sequence of bridge (Construction Option 2) 
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Figure 3.4  Unfactored dead and live load moment envelopes for Construction Option 1 
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Figure 3.5  Unfactored dead and live load shear envelopes for Construction Option 1 
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Figure 3.6  Unfactored dead and live load moment envelopes for Construction Option 2 
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Figure 3.7  Unfactored dead and live load shear envelopes for Construction Option 2 
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Figure 3.8  Sections considered for pier section design 
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Figure 3.9  Factored moment envelopes due to Strength I loading                                    

for Construction Option 1 
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Figure 3.10  Girders of demonstration bridge 
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Figure 3.11  Field splice design  
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CHAPTER 4 PRELIMINARY DESIGN OF PRECAST CONCRETE DECK 

 

4.1 INTRODUCTION 

To promote accelerated construction, the demonstration bridge was designed to be 

built with precast deck panels. This design reduces the effort needed to cast a concrete 

deck in the field, including installation of forms and steel reinforcement. This deck 

design also eliminates the time (weeks) required for the concrete to cure. The preliminary 

design of the precast concrete deck uses concepts and procedures outlined by Shelala 

(2006) and some details in a test specimen deck described by Kim and Sause (2005). 

 

4.2 DESIGN PROCEDURES 

The precast concrete deck consists of twenty five precast panels, which are the full 

width of the bridge deck. The size of the panels was selected based on shipping and 

handling considerations. Each precast concrete panel is 8 in thick, 31.375 ft wide, and 8 ft 

long. A general view of the precast concrete deck system is shown in Figure 4.1. The 

panels were designed with a compressive strength of 4 ksi, but higher strength could be 

easily achieved in a precast concrete plant. Each panel is designed with mild steel 

reinforcing bars, pre-tensioned strands, and post-tensioned strands.  

The mild steel reinforcing bars were designed as if the concrete deck system was a 

cast-in-place (CIP) deck, and the equivalent strip method was used (Shelala 2006). For 

the equivalent strip method analysis, the girders act as supports, and the deck acts as a 

continuous beam spanning from support to support. In the transverse direction, which is 

perpendicular to the girders, the interior spans and the overhangs were designed for live 
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load moments determined using Table A4-1 in Appendix A4 of Chapter 4 of the 

AASHTO LRFD Bridge Design Specifications (AASHTO 2004). The table provides 

positive and negative live load moments, based on girder spacing and distance from the 

center of the girder to the design section for negative moment. The flexural strength of 

the deck was checked for the Strength I limit state load combination, and flexural 

cracking was checked with allowable stress in the tensile reinforcement for the Service II 

limit state load combination.  

In the longitudinal direction of the girders, the mild steel reinforcing bars located in 

the lower layer were designed to satisfy the distribution requirement. This reinforcement 

is considered secondary reinforcement, and has an effect on distributing the wheel loads 

in the longitudinal direction of the girders to the primary reinforcement in the transverse 

direction. The mild steel reinforcing bars located in the upper layer were designed to 

satisfy temperature and shrinkage requirements. 

Pre-tensioned strands were included in the transverse direction of the deck. These 

strands were designed to prevent cracking of the deck panels in the transverse direction 

(i.e., longitudinally oriented cracks) caused by the shipping and handling of the panels. 

To create continuity between the panels (i.e., to prevent the transverse joints from 

opening and closing), the deck is post-tensioned in the longitudinal direction after all 

panels are in place on the girders. The post-tensioned strands were designed to keep the 

critical transverse joint, that is, the joint between the middle panel over the pier and the 

adjacent panel, closed. This critical joint is under maximum tension from the negative 

bending moment, and no mild steel reinforcing bars cross this joint (or the other joints). 

Opening of this joint was checked for the Service II limit state loading. This check 
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compared the compressive stress in the deck due to the post-tensioned strands with the 

tensile stress in the top fiber of the concrete deck, calculated using the short-term 

composite section for the deck and girder, under the Service II loading.  

 The calculation of the tensile stress in the top fiber of the deck was performed using 

Service II moment at the pier centerline for the cross section with the cut out in the steel 

tube (needed to make the pier splice) and neglecting the concrete in the steel tube (see 

Figure 3.8(b)). The calculation of the compressive stress considered the time dependent 

losses in post-tensioning stresses. For the interior girders of the bridge, the compressive 

stress equaled the tensile stress, indicating that the joint would not open. For the exterior 

girders of the bridge, the tensile stress exceeded the compressive stress by about 10%, 

suggesting that the joint might open. The main difference between the interior and 

exterior girders is the effective slab width used to calculate the short-term composite 

section for the deck and girder. However, since the critical deck joint is actually located 

one half of the panel width from the pier centerline, where the Service II moment is 

smaller, further calculations may show that the joint stays closed. Alternatively, if needed, 

the deck properties could be slightly modified to ensure the critical joint stays closed 

under Service II load effects. 

 

4.3 DESIGN RESULTS 

Figure 4.2 shows schematic drawings of the final design of the precast concrete deck 

panels. All the panels had an identical configuration. 

The mild steel reinforcing bars in the transverse direction are as follows:  

• No. 4 at 5.5 in spacing in the upper layer and lower layer (i.e., 17 No. 4 equally 
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spaced in the upper layer and lower layer per panel). 

The mild steel reinforcing bars in the longitudinal direction are as follows:  

• No. 4 at 8 in spacing in the upper layer and lower layer (i.e., 47 No. 4 equally 

spaced in the upper layer and lower layer per panel) 

For the pre-tensioned strands in the transverse direction, 0.5 in diameter 7-wire low-

relaxation prestressing strands with 270 ksi tensile strength were used. The initial 

prestress in the strands was assumed to be 70% of the tensile strength after anchorage 

seating and elastic shortening at transfer. The time dependent losses were assumed to be 

15% of the initial prestress. The transverse pre-tensioned strands are as follows:  

• 5 strands in the upper layer and 5 strands in the lower layer with equal spacing per 

panel 

For the post-tensioned strands in the longitudinal direction, 0.6 in diameter 7-wire 

low-relaxation prestressing strands with 270 ksi tensile strength were used. The initial 

post-tensioning stress in the strands was assumed to be 70% of the tensile strength after 

friction losses, anchorage seating, and any initial elastic shortening during the post-

tensioning operation. The time dependent losses were assumed to be 15% of the initial 

post-tensioning stress. The longitudinal post-tensioned strands are as follows: 

• 120 strands at the center of the panel thickness with equal spacing using 5 strands 

per bundle with 24 bundles and ducts 

 

4.4 ADDITIONAL CONSIDERATIONS 

This section includes other issues, which were not considered in the preliminary 

design presented in this report, but should be considered for the final design.  
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The panels should be cast with voids or pockets at girder location. These pockets 

house the shear studs, providing the composite connection to the supporting girders. The 

pocket dimensions are dependent on the width of the top flange and the number of rows 

of shear studs placed in each pocket. Figure 4.3 shows the schematic drawings of the 

precast concrete deck panels with pockets. As shown in this figure, each panel is assumed 

to have 8 pockets (2 pockets per girder), and some of the mild steel reinforcing bars in the 

transverse direction and the longitudinal direction can be excluded because of the 

contribution of the pre-tensioned strands and post-tensioned strands, respectively. The 

mild steel reinforcing bars and pre-tensioned strands are relocated to provide the pocket 

space.  

The panels should be leveled to eliminate eccentricity when the panels are post-

tensioned longitudinally. One possible option is to use leveling bolts cast into the panels. 

A minimum of two leveling bolts per girder is suggested to be used to allow the dead 

load of the precast panels to be distributed to each support girder. Grout may be needed 

for the joints between panels, and the joints should be detailed for this grout. 

In the preliminary precast deck design, the longitudinal post-tensioned strands run 

the full length of the deck to permit post-tensioning from the ends. Therefore, the 

concrete deck has a significant longitudinal prestress (approximately 1.4 ksi) in the 

positive moment region (before dead loads Dc2b and Dw and live loads are on the bridge). 

This concrete prestress was not considered in the positive moment region girder design. 

Further design calculations should be made to consider the effect of the deck prestress on 

the flexural strength of the positive moment cross section and to consider the effect of 

creep due to prestress on the positive moment region section behavior.  If the longitudinal 
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prestress needs to be reduced, some of the post-tensioned strands can be debonded in the 

positive moment region.    
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Figure 4.1  General overview of precast concrete deck system  
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Figure 4.2  Schematic drawings of precast concrete deck panels 

 

Mild steel reinforcing bars in transverse direction

Mild steel reinforcing bars in longitudinal direction

Pre-tensioned strands in transverse direction

Post-tensioned strands in longitudinal direction

- 17 No. 4 at upper layer and lower layer

- 47 No. 4 at  per panelupper layer and lower layer

- 5 ½ in dia. 270 ksi low-relaxation strand at  per panelupper layer and lower layer

- 120 0.6 in dia. 270 ksi low-relaxation strand at the center of panel thickness
- Use 5 strands per one bundle

per panel 
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Figure 4.3  Schematic drawings of precast concrete deck panels including pockets 

 

Pre-tensioned strands in transverse direction

Post-tensioned strands in longitudinal direction

Mild steel reinforcing bars in transverse direction

- 12 No. 4 at upper layer and lower layer

Mild steel reinforcing bars in longitudinal direction

- 35 No. 4 at  per panelupper layer and lower layer

- 5 ½ in dia. 270 ksi low-relaxation strand at  per panelupper layer and lower layer

- 120 0.6 in dia. 270 ksi low-relaxation strand at the center of panel thickness
- Use 5 strands per one bundle

per panel 
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CHAPTER 5 FINITE ELEMENT SIMULATION OF CFTFGS DURING 

DEMONSTRATION BRIDGE CONSTRUCTION 

 

5.1 INTRODUCTION 

An analytical study of finite element (FE) models of the concrete-filled tubular 

flange girders (CFTFGs) of the demonstration bridge was conducted. The study 

simulated construction loading conditions before the field splice is made and before the 

girders are connected with shear connectors to a concrete deck. Therefore, the FE models 

were simple span girders. The results of the study validate the design criteria for the 

lateral-torsion buckling strength of the arrangement of girders and diaphragms in the 

demonstration bridge. 

 

5.2 FE ANALYSIS MODELS 

The FE models were developed using ABAQUS (ABAQUS 2002). To understand 

the possible buckling modes, elastic buckling analyses of the FE models were conducted. 

To investigate the flexural strength, nonlinear load-displacement analyses of the FE 

models, including both material and geometric nonlinearity, were conducted. 

As mentioned previously, simple span girders were analyzed. However, to 

investigate the influence of adjacent girders, single girder and multiple girder models (i.e., 

two girders, three girders, and four girders) were developed and analyzed. Two different 

diaphragm arrangements were also studied. Scheme 9 (S9) has three diaphragms, 

including two end diaphragms and one interior diaphragm. Scheme 10 (S10) has only the 

two end diaphragms. The diaphragms are W21X57 steel sections. The girder cross-
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section used in the model is shown in Figure 3.10.  

A simply supported boundary condition was applied both in plane and out of plane 

at the locations of the bearing stiffeners at each end of each girder. This boundary 

condition simulates the combined effect of the end diaphragms, bearing stiffeners, and 

bearings to provide stiff lateral and torsional bracing at the bearings. A uniformly 

distributed load was applied on top of the tube along the entire length to simulate the 

weight of the girders, the weight of the diaphragms, and the weight of the deck. 

The tube, web, and bottom flange were modeled using four node three-dimensional 

shell (S4R) elements. The steel material was modeled using a linear elastic isotropic 

model in the elastic range and the ABAQUS metal plasticity model in the inelastic range. 

The plasticity model uses the Von Mises yield criterion, associated plastic flow theory, 

and isotropic hardening. A simplified bilinear stress-strain curve with no strain hardening 

was used. Residual stresses in the steel were not included. 

The concrete infill was modeled using eight node three-dimensional solid (C3D8R) 

elements. The concrete material was modeled using a linear elastic isotropic model in the 

elastic range and a multiaxial plasticity model in the inelastic range. For the multiaxial 

plasticity model, a linear Drucker-Prager model with a non-associated flow rule, and 

isotopic hardening and softening behavior was used. The linear Drucker-Prager model is 

defined by a stress-strain curve under uniaxial compression, and three parameters, 

namely, the ratio of the yield stress in triaxial tension to the yield stress in triaxial 

compression (K), the friction angle (β), and the dilation angle (ψ). An empirical stress-

strain model for unconfined concrete developed by Oh (2002) was used as the stress-

strain curve under uniaxial compression for the concrete infill. The value of K was 
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assumed to be 1. Values of β and ψ were determined by calibrating the compressive 

strength of confined concrete to the empirical expression from Richart et al. (1928) and 

calibrating the ratio of transverse strain to axial strain at the peak stress to the value of 0.4 

proposed by Oh (2002). The resulting values of β and ψ were 56.7 and 15.0 degrees, 

respectively. 

The interface between the steel tube and concrete infill was modeled as a rigid 

connection based on the results of the previous study by Kim and Sause (2005). 

Initial geometric imperfections were introduced into the model for nonlinear load-

displacement analyses. The imperfection shapes were defined by scaling the buckling 

mode shapes obtained from an elastic buckling analysis (see Table 5.1). Several 

imperfection shapes were considered, and the shapes were scaled so the flange out-of-

straightness (sweep) had a magnitude of either L/1000 or L/2000. If the buckling mode is 

a single half sine wave, only the magnitude of L/1000 was considered. However, if the 

buckling mode is a double half sine wave, two cases, with magnitudes of L/1000 and 

L/2000, respectively, were considered. 

 

5.3 FE ANALYSIS RESULTS 

Table 5.1 shows the elastic buckling analysis results for different FE models with 

different numbers of girders and the two bracing arrangements, S9, with the interior 

diaphragm, and S10, without the interior diaphragm. The buckling mode shape and the 

elastic buckling strength (given as the maximum moment reached at mid-span) are 

included in this table.  

From the elastic buckling analysis results, the following observations were made: 
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• The buckling mode shape with a single half sine wave shape results in a smaller 

buckling strength than the buckling mode shape with a double or triple half sine 

wave shape. 

• As the number of girders increases, the buckling strength increases due to 

contributions of the diaphragms. 

• The girders with the S9 bracing arrangement have larger buckling strengths than the 

girders with the S10 bracing arrangement. 

• For the multi girder systems, regardless of whether the girders buckle in a single or 

double half sine wave, a symmetric buckling mode shape along the longitudinal axis 

of the girder, in which the diaphragm is deformed in single curvature, results in a 

smaller buckling strength than asymmetric buckling mode shape along the 

longitudinal axis of the girder, in which the diaphragm is deformed in double 

curvature. 

• The smallest buckling strength, which is 49720 k-in is larger than the yield moment 

of the girder (35401 k-in), so the elastic buckling results shown in the table do not 

control the strength, which is controlled by inelastic buckling. The inelastic buckling 

capacity is obtained from nonlinear load-displacement analysis. 

Tables 5.2 through 5.5 show the nonlinear load-displacement analysis results. For 

these analyses, different numbers of girders, different bracing arrangements, and different 

imperfection modes and magnitudes were considered. The maximum moment (Mmax) 

obtained from the analyses were compared with the yield moment (My = 35401 k-in) and 

the plastic moment (Mp= 44709 k-in) obtained from a cross-section analysis; the mid-

span moment produced by the factored design loads for the construction loading 



 72

condition (1.5MDC = 26982 k-in, where MDC is the mid-span moment due to Dc1 and 

Dc2a); and the design flexural strength (Md
br which varies as the number of girders is 

varied) obtained from the design flexural strength formula (Equation 2.8). Note that Mp is 

calculated from simple plastic theory using an equivalent rectangular stress block for the 

concrete in the steel tube and the yield stress for the steel. 

Figures 5.1 compares the design flexural strength for single and multiple girders (i.e., 

two, three, and four girders) and the mid-span moment produced by the factored design 

loads under the construction loading condition. 

From the nonlinear load-displacement analysis results, the following observations 

were made: 

• The maximum moments obtained from the FE analyses are at least 42% larger than 

the mid-span moment produced by the factored design loads. 

• The maximum moments obtained from the FE analyses are at least 14% larger than 

the design flexural strength for construction loading conditions. 

Note that the design flexural strength equation for construction loading (Equation 

2.8) was not developed to represent the maximum moment during lateral-torsional 

buckling, but represents the minimum of: (1) the bending moment at the onset of lateral-

torsional instability, (which is the moment when an incremental strain reversal occurs at 

any location on the cross-section due to lateral bending), and (2) the bending moment at 

first yielding on the cross-section (Kim and Sause 2005). The moment at the onset of 

instability or first yielding is always less than the maximum moment. This difference 

produces the 14% difference between the maximum moment from the finite element 

analyses and the design flexural strength from Equation (2.8) 
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From the above observation, it is concluded that the girders with either S10 or S9 

bracing arrangement are safe under the construction loading conditions considered in the 

study, and the actual strength under construction conditions is conservatively estimated 

by the proposed design flexural strength equation.  
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Table 5.1  Elastic buckling analysis results 

No of 
Girders 

Bracing 
Type Buckling Mode & Buckling Strength (k-in) 

   

- 1 - 

49720 98180 173600 - 

    
2 S10 

51890 53790 98680 99120 

   

- 2 S9 

74450 99640 101000 - 

    
3 S10 

52720 56250 72780 98870 

  
3 S9 

93510 100180 102450 103267 
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Table 5.1  Elastic buckling analysis results (continued) 

No of 
Girders 

Bracing 
Type Buckling Mode & Buckling Strength (k-in) 

 

52460 52650 54880 56190 

 

4 S10 

98810 98860 99400 99730 

 

100100 100200 101900 103000 

- - - 

4 S9 

105800 - - - 
 

 

Table 5.2  Nonlinear load-displacement analysis results for single girder 

No. of Bracing

Girders Arrangement Mode Mag.

1 L/1000 1.107 0.876 1.452 1.317

L/1000 1.102 0.873 1.446 1.311

L/2000 1.169 0.926 1.534 1.391

Mmax/Md
br

1 S10
2

Imperfection
Mmax/My Mmax/Mp Mmax/1.5MDC
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Table 5.3  Nonlinear load-displacement analysis results for two girders 

No. of Bracing

Girders Arrangement Mode Mag.

1 L/1000 1.084 0.859 1.423 1.290

2 L/1000 1.090 0.863 1.429 1.296

L/1000 1.105 0.875 1.450 1.315

L/2000 1.159 0.918 1.521 1.379

L/1000 1.105 0.875 1.450 1.315

L/2000 1.158 0.917 1.520 1.378

1 L/1000 1.174 0.930 1.540 1.282

L/1000 1.109 0.878 1.454 1.211

L/2000 1.174 0.929 1.540 1.282

L/1000 1.117 0.884 1.465 1.219

L/2000 1.177 0.932 1.544 1.286

Mmax/Md
br

2

S10 3

4

S9
2

3

Imperfection
Mmax/My Mmax/Mp Mmax/1.5MDC

 
 

Table 5.4  Nonlinear load-displacement analysis results for three girders 

No. of Bracing

Girders Arrangement Mode Mag.

1 L/1000 1.080 0.855 1.417 1.285

2 L/1000 1.124 0.890 1.475 1.337

3 L/1000 1.170 0.927 1.536 1.392

L/1000 1.104 0.874 1.449 1.314

L/2000 1.159 0.918 1.521 1.379

L/1000 1.106 0.876 1.451 1.316

L/2000 1.169 0.925 1.533 1.390

L/1000 1.106 0.876 1.451 1.315

L/2000 1.168 0.925 1.532 1.389

1 L/1000 1.209 0.958 1.587 1.230

L/1000 1.128 0.893 1.480 1.148

L/2000 1.183 0.937 1.553 1.204

L/1000 1.126 0.891 1.477 1.145

L/2000 1.183 0.937 1.553 1.204

L/1000 1.142 0.904 1.499 1.162

L/2000 1.195 0.946 1.568 1.216

Mmax/Md
br

3

S10
4

5

6

S9

2

3

4

Imperfection
Mmax/My Mmax/Mp Mmax/1.5MDC
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Table 5.5  Nonlinear load-displacement analysis results for four girders 

No. of Bracing

Girders Arrangement Mode Mag.

1 L/1000 1.093 0.866 1.434 1.300

2 L/1000 1.086 0.860 1.425 1.292

3 L/1000 1.101 0.872 1.444 1.309

4 L/1000 1.112 0.881 1.459 1.323

L/1000 1.104 0.874 1.449 1.314

L/1000 1.145 0.906 1.502 1.362

L/1000 1.104 0.874 1.449 1.313

L/2000 1.165 0.922 1.528 1.386

L/1000 1.105 0.875 1.450 1.314

L/2000 1.165 0.923 1.529 1.386

L/1000 1.106 0.876 1.451 1.316

L/2000 1.168 0.925 1.532 1.389

L/1000 1.140 0.903 1.495 1.140

L/2000 1.192 0.944 1.564 1.192

L/1000 1.146 0.907 1.503 1.146

L/2000 1.198 0.949 1.572 1.198

L/1000 1.142 0.905 1.499 1.142

L/2000 1.198 0.949 1.572 1.198

L/1000 1.163 0.921 1.526 1.163

L/2000 1.210 0.958 1.588 1.210

5 L/1000 1.223 0.968 1.604 1.223

3

4

Mmax/Md
br

4

S10

5

6

7

8

S9

1

2

Imperfection
Mmax/My Mmax/Mp Mmax/1.5MDC
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Figure 5.1  Design flexural strength for construction loading conditions 
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CHAPTER 6 SUMMARY AND CONCLUSIONS 

 

6.1 SUMMARY 

This report presents a design study of a demonstration bridge with concrete-filled 

tubular flange girders (CFTFGs), conducted for the Pennsylvania Department of 

Transportation (PENNDOT). The bridge girders consist of a conventional web plate and 

bottom flange plate, with the top flange fabricated from a rectangular tube that is then 

filled with concrete.  

From previous research on CFTFGs at Lehigh University, funded by the Federal 

Highway Administration (Wimer and Sause 2004, and Kim and Sause 2005), it was 

founded that CFTFGs have several advantages. Two main advantages are: (1) the 

concrete-filled tubular flange provides more strength, stiffness, and lateral torsional 

stability than a flat plate flange with the same amount of steel, and (2) the vertical 

dimension of the tube reduces the web depth, thereby reducing the web slenderness. In 

particular, the increased torsional stability of the girders will reduce the number of 

diaphragms (or cross-frames) needed to brace the girders, thus reducing the time and cost 

of fabricating and erecting the bridge girder system. 

For this project, CFTFGs are designed to be constructed as simple spans for dead 

loads, and are then made continuous for superimposed dead loads and live loads by 

splicing the CFTFGs at the pier. This construction sequence reduces the design moments 

and shears for the interior-pier sections of the CFTFGs and for the field splices at the pier. 

The bridge is also designed to be constructed with precast deck panels to promote 

accelerated construction. 
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To accomplish the project, the following tasks were conducted: (1) develop design 

criteria, (2) preliminary design of CFTFGs for the demonstration bridge, (3) preliminary 

design of the field splice, (4) preliminary design of the precast concrete deck, and (5) 

finite element analyses. 

(1) Develop Design Criteria 

Design criteria for CFTFGs were developed based on the results of previous 

analytical and experimental investigations (Wimer and Sause 2004, Kim and Sause, 

2005). The design criteria are generally compatible with the 2000 PENNDOT Design 

Manual Part 4 (PENNDOT 2000) and the 2004 AASHTO LRFD Bridge Design 

Specifications (AASHTO 2004).  

(2) Preliminary Design of CFTFGs for Demonstration Bridge 

A preliminary design of a two-span continuous composite tubular flange girder 

bridge with spans of 100 ft-100 ft was developed. This study developed a preliminary 

design of the critical positive moment section, the interior-pier section, and the field 

splice. The CFTFGs were designed as simple spans for dead loads and continuous spans 

for superimposed dead loads and live loads. 

The demonstration bridge cross-section was provided by PENNDOT and consists of 

four girders spaced at 8 ft-5.5 in centers with 3 ft overhangs. The concrete deck was 8 in. 

thick. Grade 50 steel and concrete with a compressive strength of 4 ksi were used. The 

design study considers the 2004 AASHTO LRFD Bridge Design Specifications 

(AASHTO 2004) and the PENNDOT Design Manual Part 4 (PENNDOT 2000) as well 

as the design criteria developed by the project. The design study results are based on 

several assumptions: (1) end diaphragms, but no interior diaphragms within the spans 
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under construction conditions (during erection and deck placement) and one interior 

diaphragm at mid-span under service conditions, (2) bearing stiffeners and three equally-

spaced intermediate transverse stiffeners (per span) with Category C′ fatigue details, (3) 

similar cross-sections for the positive moment section and the pier section, and (4) a field 

splice located at the pier section. 

(3) Preliminary Design of Field Splice 

The demonstration bridge is a two-span bridge with a field splice located at the pier. 

A preliminary design of the bolted field splice located at the pier was provided.  

(4) Preliminary Design of Precast Concrete Deck 

To promote accelerated construction, the demonstration bridge deck was designed to 

be built with precast concrete deck panels. The size of the panels was selected based on 

shipping and handling considerations. The panels were designed with a concrete 

compressive strength of 4 ksi, but higher strength could be easily achieved in a precast 

concrete plant.  Each panel was designed with mild steel reinforcing bars, pre-tensioned 

strands, and post-tensioned strands.  

(5) Finite Element Analyses 

An analytical study of finite element (FE) models of the concrete-filled tubular 

flange girders (CFTFGs) of the demonstration bridge was conducted under simulated 

construction loading conditions using ABAQUS (ABAQUS 2002). Conditions before the 

field splice is made and before the girders are connected with shear connectors to the 

precast concrete deck were simulated. Therefore, the FE models were simple span girders 

non-composite with the deck. 

To understand the possible buckling modes, elastic buckling analyses of the FE 
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models were conducted. To investigate the lateral-torsional buckling strength, nonlinear 

load-displacement analyses of the FE models, including both material and geometric 

nonlinearity, were conducted. Single girder and multiple girder models (i.e., two girders, 

three girders, and four girders) were developed and analyzed to investigate the influence 

of adjacent girders. Two different diaphragm arrangements were studied. Scheme 9 (S9) 

has three diaphragms, including two end diaphragms and one interior diaphragm. Scheme 

10 (S10) has only the two end diaphragms. 

The FE analyses validated the design criteria and validated the preliminary design of 

the demonstration bridge for the construction conditions that were considered. 

 

6.2 CONCLUSIONS 

Based on the results of the accomplished tasks, the following conclusions are drawn: 

• The CFTFGs designed for the demonstration bridge have enough lateral torsional 

stability under the construction loading conditions that were considered, even with 

no interior bracing within the span, so that fabrication and erection effort can be 

reduced by eliminating diaphragms. 

• The field splice at the pier can simplify fabrication and erection, and reduce the 

dead load effects at the pier section. With this splice, the CFTFGs are constructed 

as simple spans for the weight of the CFTFGs and the bridge deck, but are made 

continuous for superimposed dead loads and live loads. As a result, the design 

moments and shears for the interior-pier section and for the field splice at the pier 

are reduced. 

• The precast concrete deck can reduce the time needed for construction, compared to 
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a cast-in-place concrete deck, by reducing the time needed to place forms and 

reinforcing steel, and eliminating the time needed for the concrete to cure. 

• The CFTFGs designed for the demonstration bridge with either the S9 (one interior 

diaphragm and two end diaphragms) or the S10 (no interior diaphragm and two end 

diaphragms) bracing arrangement are adequate for the construction loading 

conditions that were considered in the study.  



 84

REFERENCES 

 

ABAQUS (2002). ABAQUS/Standard User’s Manuals: Volume I – III, Hibbitt, Karlsson, 

and Sorenson, Inc., Pawtucket, Rhode Island. 

AASHTO (1998). LRFD Bridge Design Specifications, American Association of State 

Highway and Transportation Officials, Washington, D.C. 

AASHTO (2004). LRFD Bridge Design Specifications, American Association of State 

Highway and Transportation Officials, Washington, D.C. 

Kim, B.-G. and Sause, R. (2005). “High Performance Steel Girders with Tubular 

Flanges,” ATLSS Report, 05-15, ATLSS Research Center, Lehigh University, 

Bethlehem, PA. 

Oh, B. (2002). “A Plasticity Model for Confined Concrete under Uniaxial Loading,” 

Ph.D. Dissertation, Department of Civil and Environmental Engineering, Lehigh 

University, Bethlehem, PA. 

PENNDOT (2000). Design Manual Part 4 (DM-4), Structures Procedures-Design-Plans 

Presentation PDT-PUB No. 15M, Commonwealth of Pennsylvania, Department of 

Transportation. 

Richart, F.E., Brandtzaeg, A., and Brown, R.L. (1928). “A Study of the Failure of 

Concrete under Combined Compressive Stresses,” Engineering Experiment Station, 

Bulletin No. 185, University of Illinois-Urbana Champaign, IL. 

Sause, R., and Fisher, J.W. (1996). “Application of High-Performance Steel in Bridges,” 

Proceedings, 12th U.S.-Japan Bridge Engineering Workshop, Buffalo, New York, 

October 1996, pp. 317-331. 



 85

Shelala, J. (2006). M.S. Thesis (in progress), Department of Civil and Environmental 

Engineering, Lehigh University, Bethlehem, PA. 

Wassef, W.G., Ritchie, P.A., and Kulicki, J.M. (1997). “Girders with Corrugated Webs 

and Tubular Flanges – An Innovative Bridge System,” Proceedings, 14th Annual 

Meeting, International Bridge Conference, Pittsburgh, Pennsylvania, June 1997, pp. 

425-432. 

Wimer, M. and Sause, R. (2004). “Rectangular Tubular Flange Girders with Corrugated 

and Flat Webs,” ATLSS Report 04-18, ATLSS Research Center, Lehigh University, 

Bethlehem, PA. 

Yura, J.A., Philips, B., Raju, S., and Webb, S. (1992). “Bracing of Steel Beams in 

Bridges,” Research Report 1239-4F, Center for Transportation Research, University 

of Texas at Austin, Austin, TX.. 

 



Appendix A. Positive Moment Region Preliminary Design
BRIDGE PARAMETERS (yellow highlight indicates input data)
Description:  Two span continuous (for superimposed dead load and live load) composite CFTFG with each span of 100 ft and
width of 31 ft - 4.5 in.  The bridge cross section consists of 4 girders spaced at 8 ft - 5.5 in with 3 ft overhangs.

Bridge Width (in) Span Length (in) Girder Spacing (in) Number of girders Overhang (from girder centerline) (in)

W 376.5:= L 1200:= s 101.5:= ng 4:= se 36:=

Yield Strength (ksi) Young's Modulus (ksi) Concrete Strength (ksi) Slab Thickness (in) Haunch Thickness (in)

Fy 50:= Rh 1:= E 29000:= fcprime 4:= Tslab 8:= Thaunch 3:=

Concrete Modulus (ksi) Modular ratio (input) Modular ratio (actual) Long-term modular ratio Resistance Factor

Ec
57000 fcprime 1000⋅⋅

1000
:= n 8:= ns n:=

E
Ec

8.044= nl 3 n⋅:= Φ 1.0:=

MAXIMUM UNFACTORED MOMENTS DUE TO UNFACTORED LOADS    
DC1 is weight of girders, slab, and bracing. DC2 is weight of haunch and barrier. DW is weight of wearing surface. Note that DC1
acts on simple spans and the max positive moment is at midspan. Remaining dead load and live load act on continuous spans and
the max positive moment is at 40 ft. from abutment bearings (analysis of sections spaced at 10 ft). For simplicity, these moments are
treated as if they act at the same section. More accurate calculations would consider each section separately.
Mdc1_pos 18300:= kip*in Mdc2_pos 2730:= kip*in Mdw_pos 1764:= kip*in Mll_pos 19232:= kip*in

moment applied to non-composite
section including haunchMDC Mdc1_pos

0.050
0.275 0.050+

⎛⎜
⎝

⎞⎟
⎠

Mdc2_pos⋅+⎡⎢
⎣

⎤⎥
⎦

:= MDC 18720= kip*in

MAXIMUM FATIGUE + IMPACT MOMENT 
Mfat_pos 8325:= kip*in

MAXIMUM UNFACTORED SHEAR FORCES DUE TO UNFACTORED LOADS 
Vdc1_pos 61:= kips Vdc2_pos 12.19:= kips Vdw_pos 7.88:= kips Vll_pos 93.44:= kips

shear applied to non-composite
section including haunchVDC Vdc1_pos

0.050
0.275 0.050+

⎛⎜
⎝

⎞⎟
⎠

Vdc2_pos⋅+⎡⎢
⎣

⎤⎥
⎦

:= VDC 62.9= kips

MAXIMUM FATIGUE + IMPACT SHEAR FORCES
Vfat_pos 38.2:= kips Vfat_neg 42.6−:= kips

FACTORED LOAD COMBINATIONS
Mconst_pos 1.5 MDC⋅:= Mconst_pos 28080= kip*in

MstI_pos 1.25 Mdc1_pos⋅ 1.25 Mdc2_pos⋅+ 1.5 Mdw_pos⋅+ 1.75 Mll_pos⋅+( ) 0.95⋅:= MstI_pos 59460= kip*in

MsvII_pos 1.0 Mdc1_pos⋅ 1.0 Mdc2_pos⋅+ 1.0 Mdw_pos⋅+ 1.3 Mll_pos⋅+:= MsvII_pos 47795.6= kip*in

Mfat_pos 0.75 Mfat_pos⋅:= Mfat_pos 6243.8= kip*in

Vconst_pos 1.5VDC:= Vconst_pos 94.3= kips

VstI_pos 1.25 Vdc1_pos⋅ 1.25 Vdc2_pos⋅+ 1.5 Vdw_pos⋅+ 1.75 Vll_pos⋅+( ) 0.95⋅:= VstI_pos 253.5= kips

Vfat_pos Vdc1_pos Vdc2_pos+ Vdw_pos+ 2 0.75 Vfat_pos⋅( )+:= Vfat_pos 138.4= kips

GIRDER DIMENSIONS
Tube horizontal plate thickness Tube vertical plate thickness Bottom flange thickness Web thickness

Tt1
3
8

:= inches Tt2
3
8

:= inches Tbf 1.5:= inches Tweb
8
16

:= inches

Tube horizontal plate width Tube vertical plate width Bottom flange width

Bt1 16:= inches Bt2 7.25:= inches Bbf 18:= inches

A-1



Web depth Dweb 36 2 Tt1⋅− Bt2− Tbf−:= Dweb 26.5= inches

Total girder depth Dgirder Tbf Dweb+ 2 Tt1⋅+ Bt2+:= Dgirder 36= inches

Depth including deck Dtotal Dgirder Thaunch+ Tslab+:= Dtotal 47= inches

GIRDER AREAS

Abf Bbf Tbf⋅:= Abf 27= in2 Area of bottom flange

Atube 2 Tt1⋅ Bt1⋅ 2 Tt2⋅ Bt2⋅+:= Atube 17.44= in2 Area of tube

Aw Dweb Tweb⋅:= Aw 13.25= in2 Area of web

Asteel Aw Atube+ Abf+:= Asteel 57.69= in2 Total steel area

Acon
Bt2 Bt1 2 Tt2⋅−( )⋅

ns
:= Acon 13.82= in2 Equivalent area of concrete in tube (short term)

Aclong
Bt2 Bt1 2 Tt2⋅−( )⋅

nl
:= Aclong 4.607= in2 Equivalent area of concrete in tube (long term)

EFFECTIVE WIDTH OF SLAB (INTERIOR GIRDER) 

beff1
L
4

:= beff1 300= beff2 s:= beff2 101.5= beff3 12 Tslab⋅
Bt1
2

+:= beff3 104=

The smallest beff governs
Beffi beff1 beff1 beff2≤ beff1 beff3≤∧if

beff2 beff2 beff1≤ beff2 beff3≤∧if

beff3 otherwise

:=

Beffi 101.5= in

EFFECTIVE WIDTH OF SLAB (EXTERIOR GIRDER) 

beff4
s
2

⎛⎜
⎝

⎞⎟
⎠

se+:= beff4 86.75=

The smallest beff governs
Beffe beff1 beff1 beff2≤ beff1 beff3≤∧if

beff4 beff4 beff1≤ beff4 beff3≤∧if

beff3 otherwise

:=

Beffe 86.75= in

SELECT EFFECTIVE WIDTH OF SLAB (use Beffi for interior girder, Beffe for exterior girder, or minimum) 

Beff min Beffe Beffi, ( ):= Beff 86.75= Note: here the minimum is used, which is for an exterior girder.

TUBE THICKNESS REQUIREMENT

Ct1
Bt1 2 Tt2⋅−

Tt1
:= Ct1 40.67= Ct2

Bt2
Tt2

:= Ct2 19.33= Dt 1.7
E
Fy

⋅:= Dt 40.94=

Ratiotubethickness1
Ct1

Dt
:= Ratiotubethickness1 0.993= Ratiotubethickness2

Ct2

Dt
:= Ratiotubethickness2 0.472=

Ratiotubethickness Ratiotubethickness1 Ratiotubethickness1 Ratiotubethickness2>if

Ratiotubethickness2 otherwise

:=

Ratiotubethickness 0.993=  <  1  therefore wall thickness is okay

MINIMUM DEPTH OF GIRDER 

A-2



Dgirdermin 0.027 L⋅:= Dgirdermin 32.4= inches Dgirder 36= > Dgirdermin 32.4= o.k.

CONSTANT FOR CALCULATING  KT

β .257:= β is a constant dependent upon (Bt1-2*Tt2)/Bt2

SECTION PROPERTIES

Calculate the elastic neutral axis for
1.  Noncomposite steel section with short term concrete (n) and with long term concrete (3n) in tube
2.  Short term composite (with deck) section (n) with short term concrete (n) in tube
3.  Long term composite (with deck) section (3*n) with long term concrete (3*n) in tube

1.  Steel section elastic neutral axis (reference line taken at the top of the top flange)

Assuming short term concrete in tube

Agirder Acon Atube+ Aw+ Abf+:=

ENAgirder

Acon Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅ Atube Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+ Aw 2 Tt1⋅ Bt2+
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Abf 2 Tt1⋅ Bt2+ Dweb+
Tbf

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+

Agirder
:=

ENAgirder 19.00= in                                 from the top of the girder <== short term concrete in tube

Assuming long term concrete in tube

Agirderlong Aclong Atube+ Aw+ Abf+:=

ENAgirderlong

Aclong Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅ Atube Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+ Aw 2 Tt1⋅ Bt2+
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Abf 2 Tt1⋅ Bt2+ Dweb+
Tbf

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+

Agirderlong
:=

ENAgirderlong 21.21= in                                 from the top of the girder <== long term concrete in tube

Assuming no concrete in tube

Agirdernoconc Atube Aw+ Abf+:=

ENAgirdernoconc

Atube Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅ Aw 2 Tt1⋅ Bt2+
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Abf 2 Tt1⋅ Bt2+ Dweb+
Tbf

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+

Agirdernoconc
:=

ENAgirdernoconc 22.59= in                                from the top of the girder <== no concrete in tube

2.  Short term elastic neutral axis (reference line taken at the top of the concrete deck)

ENA(short) = the elastic neutral axis of the short term composite (with deck) section with short term concrete in tube

Btr(hshort) = transformed width of the haunch for short term composite section

Btr(short) = transformed width of the slab for the short term composite section
(here taken as zero to neglect haunch area, otherwise =Bt1/ ns)

Btrshort
Beff

ns
:= Btrhshort 0:=

Q 1..5 = first moment of area
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Q1 Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+
Tbf

2
+⎡⎢

⎣
⎤⎥
⎦

⋅:=

Q2 Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+
Dweb

2
+⎡⎢

⎣
⎤⎥
⎦

⋅:=

Q3 Atube Tslab Thaunch+ Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

⋅:=

Q4 Acon Tslab Thaunch+ Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

⋅:=

Q5 Thaunch Btrhshort⋅ Tslab
Thaunch

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Tslab Btrshort⋅
Tslab

2
⋅+:=

Ashort Agirder Thaunch Btrhshort⋅+ Tslab Btrshort⋅+:=

ENAshort
Q1 Q2+ Q3+ Q4+ Q5+

Ashort
:= ENAshort 15.75= in                             from the top of the slab

Assuming no concrete in tube

Ashortnoconc Agirdernoconc Thaunch Btrhshort⋅+ Tslab Btrshort⋅+:=

ENAshortnoconc
Q1 Q2+ Q3+ Q5+

Ashortnoconc
:= ENAshortnoconc 15.82= in                             from the top of the slab

3.  Long term elastic neutral axis

ENA(long) = the elastic neutral axis of the long term composite (with deck) section with long term concrete in tube

Btr(hlong) = transformed width of the haunch for long term composite section

Btr(long) = transformed width of the slab for the long term composite section
(here taken as zero to neglect haunch area, otherwise =Bt1/ nl)

Btrlong
Beff

nl
:= Btrhlong 0:=

Q1 Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+
Tbf

2
+⎡⎢

⎣
⎤⎥
⎦

⋅:=

Q2 Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+
Dweb

2
+⎡⎢

⎣
⎤⎥
⎦

⋅:=

Q3 Atube Tslab Thaunch+ Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

⋅:=

Q4 Aclong Tslab Thaunch+ Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

⋅:=

Q5 Thaunch Btrhlong⋅ Tslab
Thaunch

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Tslab Btrlong⋅
Tslab

2
⋅+:=
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Along Agirderlong Thaunch Btrhlong⋅+ Tslab Btrlong⋅+:=

ENAlong
Q1 Q2+ Q3+ Q4+ Q5+

Along
:= ENAlong 23.27= in                             from the top of the concrete

Assuming no concrete in tube

Alongnoconc Atube Aw+ Abf+ Thaunch Btrhlong⋅+ Tslab Btrlong⋅+:=

ENAlongnoconc
Q1 Q2+ Q3+ Q5+

Alongnoconc
:= ENAlongnoconc 23.709= in                             from the top of the concrete

Calculate the moment of inertia for
1.  Steel section with short term concrete (n) in tube and with long term concrete(3n) in tube
2.  Short term  composite (with deck) section (n) with short term concrete(n) in tube
3.  Long term composite (with deck) section (3*n) with long term concrete(3*n) in tube

1.  Steel section moment of inertia 

Ix(girder) = moment of inertia of the steel section with short term concrete in tube

Ix1
1
12

Bbf⋅ Tbf 3
⋅ Abf 2 Tt1⋅ Bt2+( ) Dweb+

Tbf
2

+ ENAgirder−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2
1
12

Tweb⋅ Dweb3
⋅ Aw ENAgirder 2 Tt1⋅ Bt2+( )−

Dweb
2

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAgirder Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅

ns

Bt1 2 Tt2⋅−( ) Bt2⋅

ns
ENAgirder Tt1

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ixgirder Ix1 Ix2+ Ix3+ Ix4+:= Ixgirder 15269= in4 <== short term concrete in tube

Ix(girderlong) = moment of inertia of the steel section with long term concrete in tube 

Ix1lo
1
12

Bbf⋅ Tbf 3
⋅ Abf 2 Tt1⋅ Bt2+( ) Dweb+

Tbf
2

+ ENAgirderlong−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2lo
1
12

Tweb⋅ Dweb3
⋅ Aw ENAgirderlong 2 Tt1⋅ Bt2+( )−

Dweb
2

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=
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Ix3lo
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAgirderlong Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4lo

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅

nl

Bt1 2 Tt2⋅−( ) Bt2⋅

nl
ENAgirderlong Tt1

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ixgirderlong Ix1lo Ix2lo+ Ix3lo+ Ix4lo+:= Ixgirderlong 12850= in4 <== long term concrete in tube

Ix(girdernoconc) = moment of inertia of steel section assuming no concrete in tube

Ix1nc
1
12

Bbf⋅ Tbf 3
⋅ Abf 2 Tt1⋅ Bt2+( ) Dweb+

Tbf
2

+ ENAgirdernoconc−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2nc
1
12

Tweb⋅ Dweb3
⋅ Aw ENAgirdernoconc 2 Tt1⋅ Bt2+( )−

Dweb
2

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3nc
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAgirdernoconc Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ixgirdernoconc Ix1nc Ix2nc+ Ix3nc+:= Ixgirdernoconc 11356= in4 <== no concrete in tube

Ixgirdermidnoconc Ixgirdernoconc:=

2.  Short term moment of interia

Ix(short) = the moment of intertia for the short term composite (with deck) section with short term concrete in tube

Ix1
1
12

Bbf⋅ Tbf 3
⋅ Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+

Tbf
2

+ ENAshort−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2
1
12

Tweb⋅ Dweb3
⋅ Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+

Dweb
2

+ ENAshort−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAshort Tslab− Thaunch− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅

ns

Bt1 2 Tt2⋅−( ) Bt2⋅

ns
ENAshort Tslab− Thaunch− Tt1

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix5
1
12

Btrshort⋅ Tslab3
⋅ Btrshort Tslab( )⋅ ENAshort

Tslab
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=
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Ix6
1
12

Btrhshort⋅ Thaunch3
⋅ Btrhshort Thaunch⋅ ENAshort Tslab−

Thaunch
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ixshort Ix1 Ix2+ Ix3+ Ix4+ Ix5+ Ix6+:= Ixshort 42221= in4

Ix(shortnoconc) = the moment of inertia for the short term composite (with deck) section assuming no concrete in tube

Ix1nc
1
12

Bbf⋅ Tbf 3
⋅ Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+

Tbf
2

+ ENAshortnoconc−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2nc
1
12

Tweb⋅ Dweb3
⋅ Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+

Dweb
2

+ ENAshortnoconc−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3nc
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAshortnoconc Tslab− Thaunch− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4nc 0:=

Ix5nc
1
12

Btrshort⋅ Tslab3
⋅ Btrshort Tslab( )⋅ ENAshortnoconc

Tslab
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix6nc
1
12

Btrhshort⋅ Thaunch3
⋅ Btrhshort Thaunch⋅ ENAshortnoconc Tslab−

Thaunch
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ixshortnoconc Ix1nc Ix2nc+ Ix3nc+ Ix5nc+ Ix6nc+:= Ixshortnoconc 42152= in4

3. Long term moment of inertia     

Ix(long) = the moment of intertia  for the long term composite (with deck) section with long term concrete in tube

Ix1
1
12

Bbf⋅ Tbf 3
⋅ Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+

Tbf
2

+ ENAlong−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2
1
12

Tweb⋅ Dweb3
⋅ Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+

Dweb
2

+ ENAlong−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAlong Tslab− Thaunch− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅

nl

Bt1 2 Tt2⋅−( ) Bt2⋅

nl
ENAlong Tslab− Thaunch− Tt1

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix5
1
12

Btrlong⋅ Tslab3
⋅ Btrlong Tslab( )⋅ ENAlong

Tslab
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix6
1
12

Btrhlong⋅ Thaunch3
⋅ Btrhlong Thaunch⋅ ENAlong Tslab−

Thaunch
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=
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Ixlong Ix1 Ix2+ Ix3+ Ix4+ Ix5+ Ix6+:= Ixlong 28725= in4

Ix(longnoconc) = the moment of inertia for the long term composite (with deck) section assuming no concrete in tube

Ix1nc
1
12

Bbf⋅ Tbf 3
⋅ Abf Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+ Dweb+

Tbf
2

+ ENAlongnoconc−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix2nc
1
12

Tweb⋅ Dweb3
⋅ Aw Tslab Thaunch+ 2 Tt1⋅ Bt2+( )+

Dweb
2

+ ENAlongnoconc−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix3nc
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1 2 Tt2⋅−( )⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube ENAlongnoconc Tslab− Thaunch− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

2
⋅+:=

Ix4nc 0:=

Ix5nc
1
12

Btrlong⋅ Tslab3
⋅ Btrlong Tslab( )⋅ ENAlongnoconc

Tslab
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix6nc
1
12

Btrhlong⋅ Thaunch3
⋅ Btrhlong Thaunch⋅ ENAlongnoconc Tslab−

Thaunch
2

−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ixlongnoconc Ix1nc Ix2nc+ Ix3nc+ Ix4nc+ Ix5nc+ Ix6nc+:= Ixlongnoconc 28373= in4

Calculate the section modulus for   (Sx)
1.  Steel section with short term filled concrete(n) and with long term filled concrete(3n)
2.  Short term  composite section (n) with short term filled concrete(n)
3.  Long term composite section (3*n) with long term filled concrete(3*n)

1.  Steel section modulus

Sx(girder1) = section modulus about the elastic neutral axis of the steel section only with respect to the compression steel tube

Sxgirder1
Ixgirder

ENAgirder
:= Sxgirder1 803.8= in3 Sxgirder1long

Ixgirderlong

ENAgirderlong
:= Sxgirder1long 605.8= in3

Sx(girder1noconc) = section modulus about the elastic neutral axis of the steel section assuming no concrete in tube with
      respect to the compression steel tube

Sxgirder1noconc
Ixgirdernoconc

ENAgirdernoconc
:= Sxgirder1noconc 502.8= in3

Sx(girder2) = section modulus about the elastic neutral axis of steel section with respect to the tension flange

Sxgirder2
Ixgirder

Dgirder ENAgirder−
:= Sxgirder2 898.0= in3

Sxgirder2long
Ixgirderlong

Dgirder ENAgirderlong−
:= Sxgirder2long 869.1= in3
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Sx(girder2noconc) = section modulus about the elastic neutral axis of the steel section assuming no concrete in tube with respect
                                     to the tension flange

Sxgirder2noconc
Ixgirdernoconc

Dgirder ENAgirdernoconc−
:= Sxgirder2noconc 846.743= in3

2.  Short term section modulus

Sx(short1) =  the section modulus about the elastic neutral axis for the compression steel tube of the short term composite section 

Sxshort1
Ixshort

ENAshort Thaunch− Tslab−
:= Sxshort1 8896= in3

Sx(short1noconc) = the section modulus about the elastic neutral axis for the compression steel tube of the short term composite 
                                   section assuming there is no concrete in the tube

Sxshort1noconc
Ixshortnoconc

ENAshortnoconc Thaunch− Tslab−
:= Sxshort1noconc 8749.9= in3

Sx(short2) =  the section modulus about the elastic neutral axis for the tension flange of the short term composite section 

Sxshort2
Ixshort

Dtotal ENAshort−
:= Sxshort2 1350.9=

Sx(short2noconc) = the section modulus about the elastic neutral axis for the tension flange of the short term composite section 
                                    assuming there is no concrete in the tube

Sxshort2noconc
Ixshortnoconc

Dtotal ENAshortnoconc−
:= Sxshort2noconc 1351.8= in3

3.  Long term section modulus

Sx(long1) =  the section modulus about the elastic neutral axis for the  compression steel tube of the long term composite section 

Sxlong1
Ixlong

ENAlong Thaunch− Tslab−
:= Sxlong1 2341.3= in3

Sx(long1noconc) = the section modulus about the elastic neutral axis for the compression steel tube of the long term composite 
                                  section assuming there is no concrete in the tube

Sxlong1noconc
Ixlongnoconc

ENAlongnoconc Thaunch− Tslab−
:= Sxlong1noconc 2232.6= in3

Sx(long2) =  the section modulus about the elastic neutral axis for the tension flange of the long term composite section

Sxlong2
Ixlong

Dtotal ENAlong−
:= Sxlong2 1210.5= in3

Sx(long2noconc) = the section modulus about the elastic neutral axis for the tension flange of the long term composite section 
                                    assuming there is no concrete in the tube
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Sxlong2noconc
Ixlongnoconc

Dtotal ENAlongnoconc−
:= Sxlong2noconc 1218.2= in3

STRESS IN COMPRESSION FLANGE (TUBE)  (fc) AND TENSION FLANGE (ft) DUE TO CONSTRUCTION LOADING
BASED ON TRANSFORMED SECTION

fc
Mconst_pos

Sxgirder1
:= fc 34.933= ksi ft

Mconst_pos
Sxgirder2

:= ft 31.27= ksi

fincon
ENAgirder Tt1−

ENAgirder

fc
ns

⋅:= stress in concrete within tube under construction
loading based on transformed section analysisfincon 4.28= ksi

YIELD MOMENT OF STEEL SECTION WITH SHORT TERM CONCRETE IN TUBE FROM TRANSFORMED SECTION

My = yield moment of the girder, taken as Fy times the section modulus.

Mygirder1 Fy Sxgirder1⋅:= Mygirder1 40190.991= k-in

Mygirder2 Fy Sxgirder2⋅:= Mygirder2 44898.016= k-in

Mygirder_ts Mygirder1 Mygirder1 Mygirder2<if

Mygirder2 Mygirder1 Mygirder2≥if

:=

Mygirder_ts 40190.991= k-in

SECTION PROPERTIES FROM STRAIN COMPATIBILITY CALCULATIONS USING STRESS BLOCK
(This is from other calculation sheets)

Mpcom_pos_sb 80985:= kip*in Capacity for section composite with deck using strain compatibility and stress
block for deck (from Appendix C)

Depth of web in compression when composite section capacity is reached (from
Appendix C)

Yield moment for section non-composite with deck using strain compatibility and
stress block for concrete inside tube (from Appendix D)

Elastic neutral axis depth from top of flange for section non-composite with deck
using stress block for concrete inside of tube (from Appendix D)

Stress in top fiber of steel tube for MDC (MDC on page A-1) for section
non-composite with deck based on strain compatibility and stress  block for
concrete inside tube (from Appendix D, used for Service II check)

Corresponding stress in bottom flange

Dcpcom_pos_sb 0:= in

Mygirder_pos_sb 35401:= kip*in

ENAgirder_pos_sb 19.984:= in

fstopMDC 16.820:= ksi

fsbottomMDC 20.372:= ksi
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CONSTRUCTION LOADING CHECK FOR FLEXURE

Yield moment of the steel section
Mygirder_ts 40191= transformed section My

Mygirder_pos Mygirder_ts Mygirder_ts Mygirder_pos_sb<if

Mygirder_pos_sb Mygirder_ts Mygirder_pos_sb≥if

:= Mygirder_pos_sb 35401= strain compatibility (stress block) My

Mygirder_pos 35401= k-in

Calculate depth of web in compression for construction, Dc

Dc_ts ENAgirder 2Tt1 Bt2+( )−:= Dc_ts 11.00= in

Dc_pos_sb ENAgirder_pos_sb 2Tt1 Bt2+( )−:= Dc_pos_sb 11.98= in

Dc_pos Dc_ts Mygirder_ts Mygirder_pos_sb<if

Dc_pos_sb Mygirder_ts Mygirder_pos_sb≥if

:=

Dc_pos 11.98= in

Web Slenderness Limit for "stocky web"

Atf
Bt2 Bt1 2 Tt2⋅−( )⋅

ns
Atube+:= Atf 31.258= in2 Abf 27= in2

λb 5.76 Atf Abf≥if

4.64 Atf Abf<if

:=
λb 5.76=

Aw 2
Dc_pos
Tweb

⋅:= Fw λb
E
Fy

⋅:= Ratioweb_stocky
Aw

Fw
:=

if Ratioweb_stocky 0.346= < 1 then this section has stocky web

Web Slenderness Limit to minimize web distortion

Aw_dist
Dweb
Tweb

:= Fw_dist 11
E
Fy

⎛⎜
⎝

⎞⎟
⎠

1

3
⋅:= Ratioweb_dist

Aw_dist

Fw_dist
:=

if Ratioweb_dist 0.578= < 1 then this section is ok

General Cross Section Properties

Iyc
1
12

Bt2 2 Tt1⋅+( )⋅ Bt13
⋅

1
12

Bt2⋅ Bt1 2 Tt2⋅−( )3
⋅−

1
12

Bt2⋅ Bt1 2 Tt2⋅−( )3
⋅

ns
+:= Iyc 855.8= in4

Iyt
1
12

Tbf⋅ Bbf 3
⋅:= Iyt 729.0= in4

Iy
1
12

Dweb⋅ Tweb3
⋅ Iyt+ Iyc+:= Iy 1585.1= in4
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ry
Iyc Iyt+

Agirder
:= ry 4.71= in

Torsional Properties

KT
Dweb Tweb3

⋅

3
Bbf Tbf 3

⋅

3
+

β Bt1 2 Tt2⋅−( )⋅ Bt23
⋅

ns
+

2 Tt2⋅ Tt1⋅ Bt1 Tt2−( )2
⋅ Bt2 Tt1+( )2

⋅

Bt1 Tt2−( ) Tt2⋅ Bt2 Tt1+( ) Tt1⋅+
+:= KT 665.9= in4

Calculate the nominal moment capacity for lateral torsional buckling (LTB)
For demonstration purposes, calculate the nominal LTB capacity twice: 
(1)  without the midspan cross frame and (2) including the midspan cross frame. 
Normally the calculation would be done only once for the appropriate bracing condition 

1. Here the calculation is performed for no interior bracing within the span. The nominal LTB flexural strength is
calculated assuming the entire span is the unbraced length with fixed brace points at the ends of the span (known as the
ideal flexural strength). 

For the parabolic moment diagram with M=0 at the ends, Cb = 1.0 by 2004 AASHTO.  Here use more accurate Cb=1.136

Lb0 L:= Lb0 1200= in
Cb0 1.136:=

Using equations for ideal design flexural strength 

Lb Lb0:= Cb Cb0:=

Critical elastic LTB moment

Mcr
π E⋅
Lb

ry

0.385 KT⋅ Agirder⋅
2.467 Dgirder2

⋅ Agirder
2

⋅

Lb
ry

⎛⎜
⎝

⎞⎟
⎠

2
+⋅:= Mcr 48725.6= k-in

Cross section moment capacity

Ms Mygirder_pos:= Ms 35401.0= k-in

Strength reduction factor to account for LTB

αs_var 0.8
Ms
Mcr

⎛⎜
⎝

⎞⎟
⎠

2
2.2+

Ms
Mcr

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅:= αs αs_var αs_var 1.0≤if

1.0 otherwise

:= αs 0.74=

Design flexural strength accounting for LTB

Md_var Cb αs⋅ Ms⋅:= Md0 Md_var Md_var Ms≤if

Ms otherwise

:= Md0 29762.2= k-in
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2. Here, the calculation is performed for one interior brace at the midspan of the span. So the torsionally braced nominal
flexural strength is calculated assuming the unbraced length is one half the span.

First, the ideal design flexural strength that corresponds to LTB between the brace points is calculated (i.e., using the
unbraced length equal to 1/2 of the span and the appropriate Cb).  This is upper bound on the nominal LTB flexural strength. 

For the parabolic moment diagram with M=0 at one end and Mmax at the other end, Cb is calculated according to 2004
AASHTO as follows (using moment instead of stress since section is constant).

Lb1
L
2

:= Lb1 600= in

Determine M1 and M2 (maximum moment moment at midspan brace).  Here M0 = 0 (the moment at the
end of the span, and Mmid = the moment at the quarter point, which is 3/4 of the midspan moment

M0 0:= Mmid 0.75 Mconst_pos⋅:= kip-in M2 Mconst_pos:= M2 28080= kip-in

M1 2 Mmid⋅ M2−:= M1 14040= > M0 0= OK

Determine Cb from M1 and M2

Cb1 1.75 1.05
M1
M2

⎛⎜
⎝

⎞⎟
⎠

⋅− 0.3
M1
M2

⎛⎜
⎝

⎞⎟
⎠

2
⋅+:= Cb1 1.3=

Ideal design flexural strength for LTB between braces calculated as above with the following Lb and Cb

Lb Lb1:= Cb Cb1:=

Mcr
π E⋅
Lb

ry

0.385 KT⋅ Agirder⋅
2.467 Dgirder2

⋅ Agirder
2

⋅

Lb
ry

⎛⎜
⎝

⎞⎟
⎠

2
+⋅:= Mcr 99410.5= k-in

Ms Mygirder_pos:= Ms 35401.0= k-in

αs_var 0.8
Ms
Mcr

⎛⎜
⎝

⎞⎟
⎠

2
2.2+

Ms
Mcr

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅:= αs αs_var αs_var 1.0≤if

1.0 otherwise

:= αs 0.935=

Md_var Cb αs⋅ Ms⋅:= Md1 Md_var Md_var Ms≤if

Ms otherwise

:= Md1 35401= k-in

Then, the design flexural strength for the torsionally braced CFTFGs is calculated.

Consider the entire span length and corresponding moment diagram. For the parabolic moment diagram with M=0 at the ends,
Cb = 1.0 according to 2004 AASHTO. Here use more accurate Cb=1.136

Cbu 1.136:=
Critical elastic LTB moment for girder without interior bracing in span (note Lb=L in formula)

Mcr_ubr
π E⋅
L

ry

0.385 KT⋅ Agirder⋅
2.467 Dgirder2

⋅ Agirder
2

⋅

L
ry

⎛⎜
⎝

⎞⎟
⎠

2
+⋅:= Mcr_ubr 48725.6= k-in

A-13



Critical moment including the bracing effect  - required input regarding bracing properties

nb 1:= Number of interior bracing per span

Ib 1170:= in4 Moment of inertia of bracing member about strong axis

N 1:= in Contact length of torsional brace

ts 1.5:= in stiffener thickness

bs 16:= in stiffener width

Critical moment including the bracing effect -  calculate Ieff, β, etc.

c Dc_pos Tt1+
Bt2
2

+:= c 15.98= in t Dgirder Dc_pos− 2 Tt1⋅− Bt2−
Tbf

2
−:= t 15.27= in

Ieff Iyc
t
c

Iyt⋅+:= Ieff 1552.0= Effective vertical axis moment of inertia

h
Bt2
2

Tt1+ Dweb+
Tbf

2
+:= h 31.25= Distance between flange centroids

βb
6 E⋅ Ib⋅

s
:= βb 2.006 106

×=

βg
24 ng 1−( )2

⋅

ng

s2 E⋅ Ixgirder⋅

L3
⋅:= βg 1.426 105

×=

βsec 3.3
E
h

⋅
N 1.5 h⋅+( ) Tweb3

⋅

12
ts bs3

⋅

12
+

⎡
⎢
⎣

⎤
⎥
⎦

⋅:= βsec 1.569 106
×=

βT 1:= Determine βT

eq βT( )
1

βb
1

βsec
+

1
βg

+
1

βT
−:= βT root eq βT( ) βT, ( ):= βT 1.227 105

×=

Critical moment including the bracing effect.

Mbr
βT E⋅ Ieff⋅ nb⋅

1.2 L⋅
:= Mbr 61927= k-in

Critical elastic LTB moment including torsional brace effect

Cbb Cb1:= Cbb 1.3=

Mcr_br Mcr_ubr2 Cbb2

Cbu2
Mbr2⋅+:= Mcr_br 86002= k-in

Strength reduction factor for torsionally braced girder

αs 0.935=
αs_br_var 0.8

Ms
Mcr_br

⎛⎜
⎝

⎞⎟
⎠

2
2.2+

Ms
Mcr_br

−
⎡
⎢
⎣

⎤
⎥
⎦

⋅:= αs_br αs_br_var αs_br_var 1.0≤if

1.0 otherwise

:=
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Design flexural strength for torsionally braced CFTFG

Md_br_var Cbu αs_br⋅ Ms⋅:= Md_br_var 36279.8= k-in

Check that ideal flexural strength is not exceeded

Md_br1 Md_br_var Md_br_var Md1≤if

Md1 otherwise

:= Md_br1 35401= k-in

Check the nominal moment capacity for lateral torsional buckling (LTB) against the demand from construction load.
For demonstration purposes, check the nominal LTB capacity twice: 
(1)  without the midspan cross frame and (2) including the midspan cross frame. 
Normally the calculation would be done only once for the appropriate bracing condition 

1. With no interior bracing within the span. 

Ratioltbresistance0
Mconst_pos

Φ Md0⋅
:= Ratioltbresistance0 0.943=  < 1  therefore ok for construction

2. With one interior brace at the midspan of the span. 

Ratioltbresistance1
Mconst_pos
Φ Md_br1⋅

:= Ratioltbresistance1 0.793=  < 1  therefore ok for construction

CONSTRUCTION LOADING CHECK FOR SHEAR

The web is quite stocky and the stiffeners are widely spaced, so the web was designed for the Strength I limit state as unstiffened.
Calculations given below for the Strength I limit state show that the web shear capacity (Vn = Vcr) equals Vp (i.e., C = 1.0) when the
web is treated as unstiffened (AASHTO LRFD Article 6.10.9.2). Tension field action is not included (or needed).  Also, note that
the web thickness and depth are constant, so the calculations apply to all regions of the web. As shown later, the shear capacity
exceeds the shear demand for the Strength I load combination  (VstI_pos) and therefore the requirement of AASHTO LRFD Article
6.10.3.3 (Vu = Vconst_pos <  Vcr) is also satisfied.  (Strictly speaking, since the web is treated as unstiffened, AASHTO LRFD
Article 6.10.3.3 does not apply).  If Vn=Vcr were less than Vp and tension field action was included in calculating Vn = Vcr for the
Strength I limit state, then a separate calculation of  Vcr according to Article 6.10.9.3.3 would be needed and this Vcr would be
checked against Vconst_pos here. 
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SERVICE  II  LIMIT STATE CHECK FOR FLEXURE

f(DC1+DC2a) = flexural stress due to the dead load acting on steel girder (with concrete in tube)
f(DC2b) = flexural stress due to the dead load acting on (long term) section composite with deck
f(DW) = flexural stress due to dead load acting on (long term) section composite with deck
f(LL) = flexural stress of due to live load acting on (short term) section composite with deck

Calculate f(DC1+DC2a)

Using transformed section

account for haunch
fDC_ts

Mdc1_pos
0.050

0.275 0.050+
⎛⎜
⎝

⎞⎟
⎠

Mdc2_pos⋅+

Sxgirder2long
:= fDC_ts 21.54= ksi

fDCT_ts

Mdc1_pos
0.050

0.275 0.050+
⎛⎜
⎝

⎞⎟
⎠

Mdc2_pos⋅+

Sxgirder1long
:= fDCT_ts 30.9= ksi

Using stress block
fDC_sb fsbottomMDC:= fDC_sb 20.37= ksi fDCT_sb fstopMDC:= fDCT_sb 16.82= ksi

Find correct result

fDC fDC_ts Mygirder_ts Mygirder_pos_sb<if

fDC_sb otherwise

:= fDC 20.37= ksi

fDCT fDCT_ts Mygirder_ts Mygirder_pos_sb<if

fDCT_sb otherwise

:= fDCT 16.82= ksi

Calculate f(DC2b)

account for barrier
fDC2

0.275
0.275 0.050+

⎛⎜
⎝

⎞⎟
⎠

Mdc2_pos⋅

Sxlong2noconc
:= fDC2 1.896= ksi

fDC2T

0.275
0.275 0.050+

⎛⎜
⎝

⎞⎟
⎠

Mdc2_pos⋅

Sxlong1noconc
:= fDC2T 1.035= ksi

Calculate f(DW)

fDW
Mdw_pos

Sxlong2noconc
:= fDW 1.448= ksi

fDWT
Mdw_pos

Sxlong1noconc
:= fDWT 0.79= ksi
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Calculate f(LL)

fLL
Mll_pos

Sxshort2noconc
:= fLL 14.227= ksi fLLT

Mll_pos

Sxshort1noconc
:= fLLT 2.198= ksi

Check Service II limit state for bottom (tension) flange 

fF fDC fDC2+ fDW+ 1.3 fLL⋅( )+:= fF 42.21= ksi

fallowable 0.95 Fy⋅:= fallowable 47.5= ksi

RatioserviceII2
fF

fallowable
:= RatioserviceII2 0.89= < 1  therefore section is okay for service II

Check Service II limit state for top (compression) flange 

fFT fDCT fDC2T+ fDWT+ 1.3 fLLT⋅( )+:= fFT 21.5=

RatioserviceII1
fFT

fallowable
:= RatioserviceII1 0.453= < 1  therefore section is okay for service II

RatioserviceII RatioserviceII1 RatioserviceII1 RatioserviceII2>if

RatioserviceII2 otherwise

:=

RatioserviceII 0.89= < 1  therefore section is okay for service II 
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CHECK  STRENGTH  I  LIMIT STATE  FOR FLEXURE 

Since   Dcpcom_pos_sb 0=  The depth of the web in compression at the plastic moment is zero.

The web-slenderness requirement is satisfied. Therefore, the section qualifies as a compact section.  The ductility
check is not required because the plastic moment is determined through strain compatibility.

 Check the section capacity against the upper limit on section capacity for continuous spans

 Calculate My according to AASHTO 2004

Bottom (tension) flange 

MAD Sxshort2noconc Fy 1.25 fDC fDC2+( )⋅ 1.5 fDW⋅+⎡⎣ ⎤⎦−⎡⎣ ⎤⎦⋅:= MAD 27025.4= k-in

My_bf_st MAD 1.25 Mdc1_pos Mdc2_pos+( )+ 1.5 Mdw_pos⋅+:= My_bf_st 55958.9= k-in

Top (compression) flange 

MADT Sxshort1noconc Fy 1.25 fDCT fDC2T+( )⋅ 1.5 fDWT⋅+⎡⎣ ⎤⎦−⎡⎣ ⎤⎦⋅:= MADT 231840.8= k-in

My_tf_st MADT 1.25 Mdc1_pos Mdc2_pos+( )+ 1.5 Mdw_pos⋅+:= My_tf_st 260774.3= k-in

 Upper limit on section capacity according to AASHTO 2004

Mn_pos_max 1.3 Rh⋅ min My_bf_st My_tf_st, ( )⋅:= Mn_pos_max 72746.6= k-in

 Section capacity.

Mn min Mn_pos_max Mpcom_pos_sb, ( ):= Mn 72746.6= k-in

Check Strength I limit state for flexure

RatioIflexure
MstI_pos

Φ Mn⋅
:= RatioIflexure 0.8174= <  1  therefore ok
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CHECK  STRENGTH  I  LIMIT STATE FOR SHEAR 

Nominal shear resistance (transverse stiffener spacing is 1/4 of span so essentially unstiffened web ( k=5 and no tension field))

Av
Dweb
Tweb

:= Bv 1.12
E 5⋅
Fy

⋅:= Cv 1.40
E 5⋅
Fy

⋅:=

Av 53= Bv 60.314= Cv 75.392=

C 1.0 Av Bv<if

1.12
Av

E 5⋅
Fy

⋅ Bv Av≤ Cv≤if

1.57

Av
2

E 5⋅
Fy

⋅ Av Cv>if

:= :  plastic

:  inelastic

:  elastic

Vp 0.58 Fy⋅ Dweb⋅ Tweb⋅:= Vp 384.25=  kip  plastic shear resistance of web

C 1= Vn C Vp⋅:= Vn 384.25=  kip  nominal shear resistance of an unstiffened web

Check shear resistance 

Ratioshear
VstI_pos

Φ Vn⋅
:= Ratioshear 0.66= <  1  therefore ok
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CHECK FATIGUE AND FRACTURE LIMIT STATE FOR FLEXURE

Load Induced Fatigue

ADTT = number of trucks per day in one direction averaged over the design life
a = fraction of trucks in traffic for a rural class of highway designation
p = fraction of truck traffic in a single lane
ADT = average daily traffic including all vehicles
ADTT(singlelane) = the number of trucks per day in a single-lane averaged over the design life

ADT 20000:= vehicles per lane per day a 0.15:= fraction of trucks in traffic p 1:= for 1 lane available to trucks

ADTT ADT a⋅:= ADTT 3000= trucks/day

ADTTsinglelane ADTT p⋅:= ADTTsinglelane 3000= trucks/day  

Check the base metal at stiffener/connection plate weld. Assume transverse stiffener is located at the maximum
moment section and is welded directly to the tension flange

Δf = the force effect, live load stress range due to the passage of the fatigue load
ΔF = the nominal fatigue resistance 

Δf
Mfat_pos

Ixshort
Dtotal ENAshort− Tbf−( )⋅:= Δf 4.4= ksi

Category C ' 

Condition 1:

n 1.0 L 480>if

2.0 L 480≤if

:=
n = number of stress range cycles per truck passage

N 365 75⋅ n⋅ ADTTsinglelane⋅:= N 8.213 107
×= Condition 2:

A 44 108
⋅:= For Fatigue Category C' : ΔF_TH 12:=

ΔFn_1
A
N

⎛⎜
⎝

⎞⎟
⎠

1

3
:= ΔFn_1 3.77= ΔFn_2

1
2

ΔF_TH⋅:= ΔFn_2 6=

ΔFn ΔFn_1 ΔFn_1 ΔFn_2≥if

ΔFn_2 otherwise

:= ΔFn 6=

Δf 4.4= < ΔFn 6= O.K.

Ratiofatigue_stiffener
Δf

ΔFn
:= Ratiofatigue_stiffener 0.733= <     1     therefore ok
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CHECK FATIGUE AND FRACTURE LIMIT STATE FOR WEBS (SHEAR)

The web is quite stocky and the stiffeners are widely spaced, so the web was designed for the Strength I limit state as unstiffened.
Calculations given below for the Strength I limit state show that the web shear capacity (Vn = Vcr) equals Vp (i.e., C = 1.0) when the
web is treated as unstiffened (AASHTO LRFD Article 6.10.9.2). Tension field action is not included (or needed).  Also, note that
the web thickness and depth are constant, so the calculations apply to all regions of the web. As shown later, the shear capacity
exceeds the shear demand for the Strength I load combination  (VstI_pos) and therefore the requirement of AASHTO LRFD Article
6.10.5.3 (Vu = Vfat_pos <  Vcr) is also satisfied.  (Strictly speaking, since the web is treated as unstiffened, AASHTO LRFD Article
6.10.3.3 does not apply).  If Vn=Vcr were less than Vp and tension field action was included in calculating Vn = Vcr for the Strength
I limit state, then a separate calculation of  Vcr according to Article 6.10.9.3.3 would be needed and this Vcr would be checked
against Vfat_pos here. 

SUMMARYOF LIMIT STATE CHECKS

Strength I Construction

RatioIflexure 0.8174= Ratioweb_stocky 0.3456=

Ratioshear 0.6597= Ratioweb_dist 0.5778=

Ratioltbresistance1 0.7932=

Service II Fatigue Tube Requirement

RatioserviceII 0.8887= Ratiofatigue_stiffener 0.7334= Ratiotubethickness 0.9933=
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Appendix B. Pier Section and Negative Moment Region Preliminary Design

Part 1. Negative Moment Region Preliminary Design

I. Cross Section Information (yellow highlight indicates input data) 

16x8x0.375

26.5x0.5

18x1.5
(unit: in)

Yield strength: Fy 50:= ksi

Tensile strength: Fu 65:= ksi

Tube horizontal plate thickness: Tt1
3
8

:= in Note that tube has 5 in.
cut out on each side
wall for splice access.Tube vertical plate thickness: Tt2

3
8

:= in

Tube horizontal plate width: Bt1 16:= in

Tube vertical plate width: Bt2 7.25:= in

Tube depth: Dtube Bt2 2 Tt2⋅+:= Dtube 8.00= in

Bottom flange thickness: Tbf 1.5:= in

Post-tensioning in Deck (per girder)Bottom flange width: Bbf 18:= in Number of Strands: Nstr 30:=

Web thickness: Tweb 0.5:= in Area of Strands: Astr Nstr 0.217⋅:= in2

Web depth: Dweb 26.5:= in Astr 6.51= in2

Girder depth: Dgird Dtube Dweb+ Tbf+:= Dgird 36.00= in
Fu_str 270:= ksi

Strand Strength:
Fy_str 0.9 Fu_str⋅:=Deck Thickness: Tslab 8:= in
Fy_str 243= ksiHaunch Thickness: Thaunch 3:= in

Deck Concrete Strength: fcprime 4:= ksiDeck Width: W 376.5:= in
Short-term Modular Ratio: ns 8:=Span Length: L 1200:= in

Girder Spacing: s 101.5:= in Number of Girders: ng 4:=

Overhang (from girder centerline): se 36:= in

Girder Areas

Abf Bbf Tbf⋅:= Abf 27= in2

Atube 2 Tt1⋅ Bt1⋅ 2 Tt2⋅ Bt2⋅+ 2 0.375⋅ 5⋅−:= Atube 13.69= in2 Includes cut-out

Aw Dweb Tweb⋅:= Aw 13.25= in2

Agird Aw Atube+ Abf+:= Agird 53.94= in2
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EFFECTIVE WIDTH OF SLAB (INTERIOR GIRDER) 

beff1
L
4

:= beff1 300.00= beff2 s:= beff2 101.50= beff3 12 Tslab⋅
Bt1
2

+:= beff3 104.00=

The smallest beff governs
Beffi beff1 beff1 beff2≤ beff1 beff3≤∧if

beff2 beff2 beff1≤ beff2 beff3≤∧if

beff3 otherwise

:=

Beffi 101.50= in

EFFECTIVE WIDTH OF SLAB (EXTERIOR GIRDER) 

beff4
s
2

⎛⎜
⎝

⎞⎟
⎠

se+:= beff4 86.75=

The smallest beff governs
Beffe beff1 beff1 beff2≤ beff1 beff3≤∧if

beff4 beff4 beff1≤ beff4 beff3≤∧if

beff3 otherwise

:=

Beffe 86.75= in

SELECT EFFECTIVE WIDTH OF SLAB (use Beffi for interior girder, Beffe for exterior girder, or minimum) 

Beff min Beffe Beffi, ( ):= Beff 86.75= Note: here the minimum is used, which is for an exterior girder.

Deck Transformed Cross Section Area:

Ad_tr
Beff Tslab⋅ Astr−

ns
Astr+:= Ad_tr 92.45= in2

SECTION PROPERTIES

Calculate the elastic neutral axis for steel girder section with post-tensioning steel in the
deck. The concrete in the tube is neglected since it is not present at the pier centerline
section where the splice is made. The tube cross section includes the cut out for the splice.
The reference line is taken at the bottom of the bottom flange.

Agird_pt Agird Astr+:= Agird_pt 60.45= in2

ENAgird_pt

Astr Dgird Thaunch+
Tslab

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Atube Tbf Dweb+
Dtube

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Aw Tbf
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Abf
Tbf

2
⎛⎜
⎝

⎞⎟
⎠

⋅+

Agird_pt
:=

ENAgird_pt 15.45= in                                 from the bottom of the girder

Calculate the corresponding moment of inertia for steel girder section with post-tensioning steel.

Ix1
1
12

Bbf⋅ Tbf 3
⋅ Abf

Tbf
2

ENAgird_pt−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix2
1
12

Tweb⋅ Dweb3
⋅ Aw Tbf

Dweb
2

+ ENAgird_pt−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=
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Ix3
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube Tbf Dweb+
Dtube

2
+ ENAgird_pt−⎛⎜

⎝
⎞⎟
⎠

2
⋅+:=

Ix4 Astr Dgird Thaunch+
Tslab

2
+ ENAgird_pt−⎛⎜

⎝
⎞⎟
⎠

2
⋅:=

Ixgird_pt Ix1 Ix2+ Ix3+ Ix4+:= Ixgird_pt 15486= in4

Calculate the corresponding section moduli for steel girder section with post-tensioning steel. 

Sx to bottom of bottom flange: Sxgird_pt_bf_bot
Ixgird_pt−

ENAgird_pt−
:= Sxgird_pt_bf_bot 1003= in3

Sx to middle of bottom flange: Sxgird_pt_bf_mid
Ixgird_pt−

Tbf
2

ENAgird_pt−

:= Sxgird_pt_bf_mid 1054= in3

Sx to middle of top flange: Sxgird_pt_tf_mid
Ixgird_pt−

Tbf Dweb+
Dtube

2
+ ENAgird_pt−

:= Sxgird_pt_tf_mid 935−= in3

Sx to top of top flange: Sxgird_pt_tf_top
Ixgird_pt−

Dgird ENAgird_pt−
:= Sxgird_pt_tf_top 753−= in3

Sx to post-tensioning steel: Sxgird_pt_pt
Ixgird_pt−

Dgird Thaunch+
Tslab

2
+ ENAgird_pt−

:= Sxgird_pt_pt 562−= in3

Sx to bottom of deck: Sxgird_pt_deck_bot
Ixgird_pt−

Dgird Thaunch+ ENAgird_pt−
:= Sxgird_pt_deck_bot 657−= in3

Calculate the elastic neutral axis for steel girder with the composite deck using the short-term
loading modular ratio. The concrete in the tube is neglected since it is not present at the pier
centerline section where the splice is made. The tube cross section includes the cut out for
the splice. The reference line is taken at the bottom of the bottom flange.

Ashort Agird Ad_tr+:= Ashort 146.38= in2

ENAshort

Ad_tr Dgird Thaunch+
Tslab

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Atube Tbf Dweb+
Dtube

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Aw Tbf
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+ Abf
Tbf

2
⎛⎜
⎝

⎞⎟
⎠

⋅+

Ashort
:=

ENAshort 31.62= in                                 from the bottom of the girder
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Calculate the corresponding moment of inertia for steel girder with short-term composite deck.

Ix1
1
12

Bbf⋅ Tbf 3
⋅ Abf

Tbf
2

ENAshort−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix2
1
12

Tweb⋅ Dweb3
⋅ Aw Tbf

Dweb
2

+ ENAshort−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ix3
1
12

Bt1⋅ Bt2 2 Tt1⋅+( )3
⋅

1
12

Bt1⋅ Bt23
⋅−⎡⎢

⎣
⎤⎥
⎦

Atube Tbf Dweb+
Dtube

2
+ ENAshort−⎛⎜

⎝
⎞⎟
⎠

2
⋅+:=

Ix4
1
12

Beff
ns

⎛
⎜
⎝

⎞
⎟
⎠

Tslab3
⋅ Ad_tr Dgird Thaunch+

Tslab
2

+ ENAshort−⎛⎜
⎝

⎞⎟
⎠

2
⋅+:=

Ixshort Ix1 Ix2+ Ix3+ Ix4+:= Ixshort 42893= in4

Calculate the corresponding section moduli for steel girder with short-term composite deck. 

Sx to bottom of bottom flange: Sxshort_bf_bot
Ixshort−

ENAshort−
:= Sxshort_bf_bot 1356= in3

Sx to middle of bottom flange: Sxshort_bf_mid
Ixshort−

Tbf
2

ENAshort−

:= Sxshort_bf_mid 1389= in3

Sx to middle of top flange: Sxshort_tf_mid
Ixshort−

Tbf Dweb+
Dtube

2
+ ENAshort−

:=

Sxshort_tf_mid 113328−= in3

Sx to top of top flange: Sxshort_tf_top
Ixshort−

Tbf Dweb+ Dtube+ ENAshort−
:=

Sxshort_tf_top 9796−= in3

Sx to top of deck: Sxshort_deck_top
Ixshort−

Tbf Dweb+ Dtube+ Thaunch+ Tslab+ ENAshort−
:=

Sxshort_deck_top 2789−= in3
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II. Pier Section Design Loads (yellow highlight indicates input data)

Girder Moment at Pier Section: Girder Shear in Negative Moment Region:
DC1: Mdc1 0:= kip-in DC1: Vdc1 61:= kip

DC2: Mdc2 4875−:= kip-in DC2: Vdc2 20.3:= kip

DW: Mdw 3150−:= kip-in DW: Vdw 13.1:= kip

LL(positive): Mpll 0:= kip-in LL: Vll 109.7:= kip

LL(negative): Mnll 19715−:= kip-in

Fatigue(positive): Mpfll 0:= kip-in Fatigue: Vfll 42.6:= kip

Fatigue(negative): Mnfll 4843−:= kip-in

Compute Flange Stresses at Top of Top Flange, Bottom of Bottom Flange, and Top of Deck

No positive moment at pier centerline section so consider only  Dead Load + Negative Live Load

DC2:
fDC2_short_tf_top

Mdc2
Sxshort_tf_top

:= fDC2_short_tf_top 0.50= ksi Tension

fDC2_short_bf_bot
Mdc2

Sxshort_bf_bot
:= fDC2_short_bf_bot 3.59−= ksi Compression

fDC2_short_deck_top
Mdc2

Sxshort_deck_top ns⋅
:= fDC2_short_deck_top 0.22= ksi Tension

DW:
fDW_short_tf_top

Mdw
Sxshort_tf_top

:= fDW_short_tf_top 0.32= ksi Tension

fDW_short_bf_bot
Mdw

Sxshort_bf_bot
:= fDW_short_bf_bot 2.32−= ksi Compression

fDW_short_deck_top
Mdw

Sxshort_deck_top ns⋅
:= fDW_short_deck_top 0.14= ksi Tension

LL:

fNLL_short_tf_top
Mnll

Sxshort_tf_top
:= fNLL_short_tf_top 2.01= ksi Tension

fNLL_short_bf_bot
Mnll

Sxshort_bf_bot
:= fNLL_short_bf_bot 14.53−= ksi Compression

fNLL_short_deck_top
Mnll

Sxshort_deck_top ns⋅
:= fNLL_short_deck_top 0.88= ksi Tension
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Fatigue:
fNFLL_short_tf_top

Mnfll
Sxshort_tf_top

:= fNFLL_short_tf_top 0.49= ksi Tension

fNFLL_short_bf_bot
Mnfll

Sxshort_bf_bot
:= fNFLL_short_bf_bot 3.57−= ksi Compression

Compute Force Effects for Strength I, Service II. and Fatigue Limit State Load Combinations

Strength I Limit State: Dead Load + Negative Live Load Effect  

MNLL_st 1.25 Mdc2⋅ 1.5 Mdw⋅+ 1.75 Mnll⋅+( ):= MNLL_st 45320−= kip-in Negative

Vst 1.25 Vdc1 Vdc2+( )⋅ 1.5 Vdw⋅+ 1.75 Vll⋅+⎡⎣ ⎤⎦:= Vst 313.25= kip

Service II Limit State: Dead Load + Negative Live Load  

MNLL_sv 1.0 Mdc2⋅ 1.0 Mdw⋅+ 1.3 Mnll⋅+( ):= MNLL_sv 33655−= kip-in Negative

ftf_top_sv 1.0 fDC2_short_tf_top⋅ 1.0 fDW_short_tf_top⋅+ 1.3 fNLL_short_tf_top⋅+( ):=

ftf_top_sv 3.44= ksi Tension

fbf_bot_sv 1.0 fDC2_short_bf_bot⋅ 1.0 fDW_short_bf_bot⋅+ 1.3 fNLL_short_bf_bot⋅+( ):=

fbf_bot_sv 24.81−= ksi Compression

fdeck_top_sv 1.0 fDC2_short_deck_top⋅ 1.0 fDW_short_deck_top⋅+ 1.3 fNLL_short_deck_top⋅+( ):=

fdeck_top_sv 1.51= ksi Tension

Fatigue Limit State: Negative Live Load  

ftf_top_fat 0.75 fNFLL_short_tf_top⋅( ):= ftf_top_fat 0.37= ksi Tension

fbf_bot_fat 0.75 fNFLL_short_bf_bot⋅( ):= fbf_bot_fat 2.68−= ksi Compression

Vfat Vdc1 Vdc2+ Vdw+ 2 0.75 Vfll⋅( )+:= Vfat 158.30= kip
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III. Pier Section Design Checks
The concrete in the tube is neglected since it is not present at the pier centerline section
where the splice is made. The tube cross section includes the cut out for the splice.

Strength I Limit State: Negative Flexure (First determine the sequence of events under flexure) 

Plastic moment capacity of section without concrete assuming the plastic neutral axis is in web. The reference
axis is the bottom of the bottom flange. 

Comp x( ) Abf− Fy⋅ x Tweb⋅ Fy⋅−:=

Tens x( ) Astr Fy_str⋅ Atube Fy⋅+ Dweb x−( ) Tweb⋅ Fy⋅+:= Func x( ) Tens x( ) Comp x( )+:=

x 1:= Dcp root Func x( ) x, ( ):=
Dcp 31.58= in

PNA Dcp Tbf+:=
PNA 33.08= in PNA is not in web Dtp Dweb Dcp−:=
Dtp 5.08−= in

M1 Fy_str Astr⋅ Dgird Thaunch+
Tslab

2
+⎛⎜

⎝
⎞⎟
⎠

⋅:= strands M1 68023= kip-in

M2 Fy Atube⋅ Tbf Dweb+
Dtube

2
⎛⎜
⎝

⎞⎟
⎠

+⎡⎢
⎣

⎤⎥
⎦

⋅:= tube M2 21900= kip-in

web in
tensionM3 Fy Tweb Dtp( )⋅[ ]

Dtp
2

PNA+⎛⎜
⎝

⎞⎟
⎠

⋅⎡⎢
⎣

⎤⎥
⎦

⋅:= M3 3875−= kip-in

web in
compressionM4 Fy− Tweb Dcp( )⋅[ ]⋅

Dcp
2

Tbf+⎛⎜
⎝

⎞⎟
⎠

⋅:= M4 13647−= kip-in

bottom
flangeM5 Fy− Abf⋅

Tbf
2

⎛⎜
⎝

⎞⎟
⎠

⋅:= M5 1013−= kip-in

Mp_web M1 M2+ M3+ M4+ M5+:= Mp_web 71388= kip-in

Plastic moment capacity of section without concrete assuming the plastic neutral axis is in middle of tube
bottom wall. Because of cut-out, treat area of tube as concentrated at top wall and bottom wall. The reference
axis is the bottom of the bottom flange.

Comp2 Abf− Fy⋅ Dweb Tweb⋅ Fy⋅−
Atube

4
Fy⋅−:= Comp2 2184−= kip

OK
Tens2 Astr Fy_str⋅

3Atube
4

⎛⎜
⎝

⎞⎟
⎠

Fy⋅+:= Tens2 2095= kip

Dcp Dweb:=Dcp 26.50= in
PNA Dcp Tbf+:=PNA 28.00= in
Dtp Dweb Dcp−:=Dtp 0.00= in

M1 Fy_str Astr⋅ Dgird Thaunch+
Tslab

2
+⎛⎜

⎝
⎞⎟
⎠

⋅:= strands M1 68023= kip-in

M2 Fy
Atube

2
⎛⎜
⎝

⎞⎟
⎠

⋅ Tbf Dweb+ Dtube+( )⋅:= top wall
of tube

M2 12319= kip-in
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bottom wall
of tubeM3 0:= M3 0= kip-in

web
M4 Fy− Tweb Dweb( )⋅[ ]⋅

Dweb
2

Tbf+⎛⎜
⎝

⎞⎟
⎠

⋅:= M4 9772−= kip-in

bottom
flangeM5 Fy− Abf⋅

Tbf
2

⎛⎜
⎝

⎞⎟
⎠

⋅:= M5 1013−= kip-in

Mp_tube M1 M2+ M3+ M4+ M5+( )−:= Mp_tube 69557−= kip-in

Determine conditions when deck decompresses at top surface. Use  transformed section based
on short-term loading concrete in deck.  Prestress in deck is based on an estimate of 15% time
dependent prestress losses and an initial prestress of 70% of Fu of strands.

0.7 Fu_str⋅ 189= ksi

Moment when deck decompresses at top surface .  

f_str_losses 0.7 Fu_str⋅ 1 0.15−( )⋅:= f_str_losses 161= ksi

bridge_deck_width W:= bridge_deck_width 376.50= in

fdeck_prestress
4 Astr⋅ f_str_losses⋅

Tslab bridge_deck_width( )⋅
:= fdeck_prestress 1.389= ksi

Mdeck_top_decomp ns Sxshort_deck_top⋅ fdeck_prestress⋅:= Mdeck_top_decomp 30990−= kip-in

Stresses when deck decompresses at top surface.  

fdeck_top_decomp_bf_bot
Mdeck_top_decomp

Sxshort_bf_bot

⎛
⎜
⎝

⎞
⎟
⎠

:= fdeck_top_decomp_bf_bot 22.85−=

fdeck_top_decomp_tf_top
Mdeck_top_decomp

Sxshort_tf_top

⎛
⎜
⎝

⎞
⎟
⎠

:= fdeck_top_decomp_tf_top 3.16=

Determine conditions when deck fully decompresses.  These conditions control the stresses
that develop on the section without the deck (the steel girder and post-tensioning strands),
under moments that exceed the moment causing deck decompression.   

Moment when deck fully decompresses.  

M1full_decomp f_str_losses− Astr⋅ Dgird Thaunch+
Tslab

2
+ ENAgird_pt−⎛⎜

⎝
⎞⎟
⎠

⋅:= M1full_decomp 28818−= kip-in

M2full_decomp fdeck_prestress ns⋅ Sxgird_pt_deck_bot⋅:= M2full_decomp 7305−= kip-in

Mfull_decomp M1full_decomp M2full_decomp+:= Mfull_decomp 36123−= kip-in
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Stresses when deck fully decompresses.  

ffull_decomp_bf_bot
f_str_losses− Astr⋅

Agird

M2full_decomp
Sxgird_pt_bf_bot

⎛
⎜
⎝

⎞
⎟
⎠

+:= ffull_decomp_bf_bot 26.68−= ksi

ffull_decomp_bf_mid
f_str_losses− Astr⋅

Agird

M2full_decomp
Sxgird_pt_bf_mid

⎛
⎜
⎝

⎞
⎟
⎠

+:= ffull_decomp_bf_mid 26.32−= ksi

ffull_decomp_tf_top
f_str_losses− Astr⋅

Agird

M2full_decomp
Sxgird_pt_tf_top

⎛
⎜
⎝

⎞
⎟
⎠

+:= ffull_decomp_tf_top 9.69−= ksi

ffull_decomp_tf_mid
f_str_losses− Astr⋅

Agird

M2full_decomp
Sxgird_pt_tf_mid

⎛
⎜
⎝

⎞
⎟
⎠

+:= ffull_decomp_tf_mid 11.58−= ksi

ffull_decomp_pt f_str_losses
M2full_decomp

Sxgird_pt_pt

⎛
⎜
⎝

⎞
⎟
⎠

+:= ffull_decomp_pt 173.65= ksi

Determine moments which cause yielding.  Determine the additional moment needed to cause
yield (using section without concrete) and add to moment at time deck fully decompressed  

Myield_bf Sxgird_pt_bf_bot Fy− ffull_decomp_bf_bot−( )⋅ Mfull_decomp+:= Myield_bf 59509−= kip-in

Myield_tf Sxgird_pt_tf_top Fy ffull_decomp_tf_top−( )⋅ Mfull_decomp+:= Myield_tf 81096−= kip-in

Myield_pt Sxgird_pt_pt Fy_str ffull_decomp_pt−( )⋅ Mfull_decomp+:= Myield_pt 75099−= kip-in

Strength I Limit State: Negative Flexure (sequence of events)

Deck decompresses at top surface (joint would open if at pier centerline)•

Bottom flange yields•

Section reaches plastic moment•

Post-tensioning steel yields based on elastic section (inaccurate)•

Top flange yields based on elastic section (inaccurate) •

Factored design Strength I design moment•

Mdeck_top_decomp 30990−= kip-in

Myield_bf 59509−= kip-in

Mp_tube 69557−= kip-in

Myield_pt 75099−= kip-in

Myield_tf 81096−= kip-in

MNLL_st 45320−= kip-in
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Strength I Limit State: Negative Flexure (section capacity using Appendix A of AASHTO)

Dc ENAgird_pt Tbf−:= Dc 13.95= in
λw 2

Dc
Tweb

:= λrw 5.7
29000

Fy
:=

Dcp 26.50= in

λw 55.78= < λrw 137.27= OK, Appendix A can be used

Consider the web slenderness and calculate the web plastification factors  

Mp Mp_tube:= Mp 69557= kip-in

Myt Myield_tf:= Myt 81096= kip-in

Myc Myield_bf:= Myc 59509= kip-in
My min Myt Myc, ( ):= My 59509= kip-in

λpw1

29000
Fy

0.54
Mp
My

0.09−

:= λpw1 44.50= λpw2 λrw
Dc
Dcp

⎛⎜
⎝

⎞⎟
⎠

⋅:= λpw2 72.24=

λpw min λpw1 λpw2, ( ):=

2Dcp
Tweb

106.00= > λpw 44.50= Not compact section

λw 55.78= < λrw 137.27= Noncompact web section

λpw3 λpw
Dc
Dcp

⎛⎜
⎝

⎞⎟
⎠

⋅:= λpw3 23.42=

Rpc 1 1
Myc
Mp

−⎛⎜
⎝

⎞⎟
⎠

λw λpw3−

λrw λpw3−
−⎡⎢

⎣
⎤⎥
⎦

Mp
Myc

:= Rpc 1.12= < Mp
Myc

1.17= OK

Rpt 1 1
Myt
Mp

−⎛⎜
⎝

⎞⎟
⎠

λw λpw3−

λrw λpw3−
−⎡⎢

⎣
⎤⎥
⎦

Mp
Myt

:= Rpt 0.90= < Mp
Myt

0.86= NG

Rpt
Mp
Myt

:=
Nominal resistance for tension flange yielding 

Mnt Rpt Myt⋅:= Mnt 69557= kip-in

Consider the compression flange slenderness  

λf
Bbf

2 Tbf⋅
:= λpf 0.38

29000
Fy

⋅:=

λf 6.00= < λpf 9.15= Compact flange

Mnc_cf Rpc Myc⋅:= Mnc_cf 66701= kip-in
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Consider lateral-torsional buckling  

rt
Bbf

12 1
1
3

⎛⎜
⎝

⎞⎟
⎠

Dc Tweb⋅

Bbf Tbf⋅
⋅+⎡⎢

⎣
⎤⎥
⎦

:= rt 4.99=

KT
Dweb Tweb3

⋅

3
Bbf Tbf 3

⋅

3
+

2 Tt2⋅ Tt1⋅ Bt1 Tt2−( )2
⋅ Bt2 Tt1+( )2

⋅

Bt1 Tt2−( ) Tt2⋅ Bt2 Tt1+( ) Tt1⋅+
+:=

J KT:= J 479= in4

Sxc Sxgird_pt_bf_bot:= Sxc 1003= in3

Sxt Sxgird_pt_tf_top:= Sxt 753= in3

h Dweb
Dtube

2
+

Tbf
2

+:= h 31.25= in

Fyr1 0.7Fy:= Fyr2 Fy
Sxt
Sxc

⎛⎜
⎝

⎞⎟
⎠

⋅:=

Fyr min Fyr1 Fyr2, ( ):= Fyr 35.00= ksi

Lp rt
29000

Fy
⋅:= Lp 120= in

Lr 1.95 rt⋅
29000

Fyr
⎛⎜
⎝

⎞⎟
⎠

⋅
J

Sxc h⋅
1 1 6.76

Fyr
29000

Sxc h⋅
J

⋅⎛⎜
⎝

⎞⎟
⎠

2
⋅++⋅:= Lr 1416= in

Lb
100 12⋅

2
:= Span is 100 ft. Single cross-frame at midspan Lb 600= in

Cb calculation:
M0 will be midspan moment

Mdc1_pos_midspan 17500:= Mdc2_pos_midspan 2700:= Mdw_pos_midspan 1700:= Mll_neg_midspan 7200−:=

Mmidspan_min 1.25 Mdc1_pos_midspan Mdc2_pos_midspan+( )⋅ 1.5 Mdw_pos_midspan⋅+ 1.75 Mll_neg_midspan⋅+⎡⎣ ⎤⎦:=

Mmidspan_min 15200= kip-in

M0 Mmidspan_min−:= M0 15200−=

Mmid will be moment halfway between pier and midspan

Mdc1_pos_q 13000:= Mdc2_pos_q 0:= Mdw_pos_q 0:= Mll_neg_q 11000−:=

Mq_min 1.25 Mdc1_pos_q Mdc2_pos_q+( )⋅ 1.5 Mdw_pos_q⋅+ 1.75 Mll_neg_q⋅+⎡⎣ ⎤⎦:=

Mq_min 3000−= kip-in

Mmid Mq_min−:= Mmid 3000=
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Determine M1 and M2 (moment at pier)

M1 2 Mmid⋅ M2−:= M1 6319−= > M0 15200−= OK

M2 MNLL_st−:= M2 45320= kip-in

Determine Cb from M1 and M2

Cb 1.75 1.05
M1
M2

⎛⎜
⎝

⎞⎟
⎠

⋅− 0.3
M1
M2

⎛⎜
⎝

⎞⎟
⎠

2
⋅+:= Cb 1.90=

Since Lp<Lb<Lr

Mnc1 Cb 1 1
Fyr Sxc⋅

Rpc Myc⋅
−⎛⎜

⎝
⎞⎟
⎠

Lb Lp−

Lr Lp−
⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅ Rpc⋅ Myc⋅:= Mnc1 104620= kip-in

Mnc2 Rpc Myc⋅:= Mnc2 66701= kip-in

Mnc_ltb min Mnc1 Mnc2, ( ):= Mnc_ltb 66701= kip-in

Nominal resistance for compression flange 

Mnc min Mnc_cf Mnc_ltb, ( ):= Mnc 66701= kip-in

Strength I Limit State: Negative Flexure (section capacity check) Note: The pier section design is
controlled by splice. These
calculations only show adequacy
of cross section away from splice.

Mu MNLL_st:= ϕf 1.0:=

Mu 45320= kip-in

Mu 45320= < ϕf Mnc⋅ 66701= O.K.

< ϕf Mnt⋅ 69557= O.K.

Strength I Limit State: Shear

Nominal shear resistance. Transverse stiffener spacing is 1/4 of span. Design as unstiffened web with k=5):

Vp 0.58 Fy⋅ Dweb⋅ Tweb⋅:=

Av1
Dweb
Tweb

:= Bv1 1.12
29000 5⋅

Fy
⋅:= Cv1 1.40

29000 5⋅
Fy

⋅:=

Av1 53.00= Bv1 60.31= Cv1 75.39=

C 1.0 Av1 Bv1<if

1.10
Av1

29000 5⋅
Fy

⋅ Bv1 Av1≤ Cv1≤if

1.52

Av1
2

29000 5⋅
Fy

⋅ Av1 Cv1>if

:= :  plastic

:  inelastic

:  elastic

C 1.00=
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Vn C Vp⋅:= Vn 384.25= kip Vr 1 Vn⋅:= Vr 384.25= kip

Vst 313.25= < Vr 384.25= O.K.

Service II Limit State: Negative Flexure (composite section with Rh=1)  

ftf_top_sv 3.44= ksi Top flange (Tension)

fbf_bot_sv 24.81−= ksi Bottom Flange (Compression)

fallowable 0.95 Fy⋅:= fallowable 47.50= ksi

ftf_top_sv 3.44= < fallowable 47.50= O.K.

fbf_bot_sv 24.81= < fallowable 47.50= O.K.

Service II Limit State: Check Compressive Stress Against Web Bend Buckling  

Dc ENAshort Tbf−:= Dc 30.12= kw
9

Dc
Dweb

⎛⎜
⎝

⎞⎟
⎠

2
:= kw 6.97=

Fcrw 0.9( ) 29000⋅
kw

Dweb
Tweb

⎛⎜
⎝

⎞⎟
⎠

2
⋅:= Fcrw 64.72= ksi

fbf_bot_sv 24.81= < Fcrw 64.72= O.K.

Service II Limit State: Check Moment at Post-Tensioned Deck Joint Opening

As determined above:

Moment at which deck decompresses at top surface (joint would open if•
at pier centerline).

Service II Limit State Moment at pier section•

Service II Limit State Moment at pier section exceeds the moment at•
which the deck decompresses at the top surface by 10%. This is only a
problem if the deck joint is located directly at the pier section. If the center
deck panel is centered on the pier section, the tensile stress of the
concrete can be utilized, and the nearest joints may not open.

Note that these calculations are based on the exterior girder Beff.  A•
similar check was performed for the interior girder, and the deck does
not decompress at the top surface under the Service II Limit State
Moment at the pier, because the wider Beff of the interior girder
increases the section modulus.

Mdeck_top_decomp 30990−= kip-in

MNLL_sv 33655−= kip-in
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Fatigue Limit State: Negative Flexure  

ftf_top_fat 0.37= ksi Tension

fbf_bot_fat 2.68−= ksi Compression - Do Not Consider

Nominal fatigue resistance at bearing stiffener near pier section:

Condition 1: Condition 2:

n 1.5:= ADTT_SL 3000:=

N 365 75⋅ n⋅ ADTT_SL⋅:= N 1.23 108
×=

A_bs 44 108
⋅:= For Fatigue Category C' : ΔF_TH_bs 12:=

ΔFn_bs1
A_bs

N
⎛⎜
⎝

⎞⎟
⎠

1

3
:= ΔFn_bs1 3.29= ΔFn_bs2

1
2

ΔF_TH_bs⋅:= ΔFn_bs2 6.00=

ΔFn_bs ΔFn_bs1 ΔFn_bs1 ΔFn_bs2≥if

ΔFn_bs2 otherwise

:= ΔFn_bs 6.00=

ftf_top_fat 0.37= < ΔFn_bs 6.00= O.K.

Nominal fatigue resistance at shear stud near pier section:

Condition 1: Condition 2:

ΔF_TH_s 10:=A_s 44 108
⋅:= For Fatigue Category C :

ΔFn_s1
A_s
N

⎛⎜
⎝

⎞⎟
⎠

1

3
:= ΔFn_s1 3.29= ΔFn_s2

1
2

ΔF_TH_s⋅:= ΔFn_s2 5.00=

ΔFn_s ΔFn_s1 ΔFn_s1 ΔFn_s2≥if

ΔFn_s2 otherwise

:= ΔFn_s 5.00=

ftf_top_fat 0.37= < ΔFn_s 5.00= O.K.

Fatigue Limit State: Shear

Vfat 158.30= kip

Note: The web was designed for the Strength I limit state as unstiffened.  Calculations for the Strength I
limit state show that the web shear capacity (Vn = Vcr) equals Vp (i.e., C = 1.0) even though the web is
treated as unstiffened (AASHTO LRFD Article 6.10.9.2).  As shown, the shear capacity exceeds the shear
demand for the Strength I load combination (Vst) and therefore the requirement of AASHTO LRFD Article
6.10.5.3 (Vu = Vfat <  Vcr) is also satisfied.  (Strictly speaking, since the web is treated as unstiffened, and
also because this is an end panel  AASHTO LRFD Article 6.10.3.3 does not apply).    
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Part 2. Bolted Field Splice Preliminary Design at Pier Section

I. Cross Section Information (yellow highlight indicates input data) 

Yield strength: Fy 50= ksi

16x8x0.375

26.5x0.5

18x1.5
(unit: in)

Tensile strength: Fu 65:= ksi

Tube horizontal plate thickness: Tt1 0.38= in
Note that tube has 5 in.
cut out on each side
wall for splice access.Tube vertical plate thickness: Tt2 0.38= in

Tube horizontal plate width: Bt1 16.00= in

Tube vertical plate width: Bt2 7.25= in

Bottom flange thickness: Tbf 1.50= in

Bottom flange width: Bbf 18.00= in

Web thickness: Tweb 0.50= in

Post-tensioning in Deck (per girder)Web depth: Bweb Dweb:= Dweb 26.50= in

Number of Strands: Nstr 30=
Bolt diameter: dbolt 0.875:= in

Area of Strands: Astr 6.51= in2
Bolt std. hole width: dhole 1.0:= in

Bolt tensile strength: Fubolt 120:= ksi Short-term Modular Ratio: ns 8=

Area of bottom flange Abf 27= in2

Area of tube at cut-out at pier section Atube 13.6875= in2

Area of one bolt Abolt
π

4
dbolt2⋅:= Abolt 0.6013= in2

II. Flange Splice Design Loads

Girder Moment at Splice Locations:
DC1: Mdc1 0= kip-in

DC2: Mdc2 4875−= kip-in

DW: Mdw 3150−= kip-in

LL(positive): Mpll 0.00= kip-in

LL(negative): Mnll 19715−= kip-in

Fatigue(positive): Mpfll 0= kip-in

Fatigue(negative): Mnfll 4843−= kip-in
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Splices are designed for Strength I, Service II, and Fatigue Limit States.

Section Modulus - at midthickness of the top flange (tube) and bottom flange
For steel girder plus post-tensioning steel

Stoppt Sxgird_pt_tf_mid:= Stoppt 935−= in3

Sbotpt Sxgird_pt_bf_mid:= Sbotpt 1054= in3

For steel girder with short term concrete deck

Stopshort Sxshort_tf_mid:= Stopshort 113328−= in3

Sbotshort Sxshort_bf_mid:= Sbotshort 1389= in3

Sdeckshort Sxshort_deck_top:= Sdeckshort 2789−= in3

Flange Stress Computation:

Case 1: Dead Load + Positive Live Load (there is no positive moment at pier centerline section)
Case 2: Dead Load + Negative Live Load
==> Case 2 controls, therefore only check Case 2

DC2: fdeckDC2_short
Mdc2

Sdeckshort ns⋅
:= fdeckDC2_short 0.22= ksi Tension

ftopDC2_short
Mdc2

Stopshort
:= ftopDC2_short 0.04= ksi Tension

fbotDC2_short
Mdc2

Sbotshort
:= fbotDC2_short 3.51−= ksi Compression

fdeckDW_short
Mdw

Sdeckshort ns⋅
:= fdeckDW_short 0.14= ksi TensionDW:

ftopDW_short
Mdw

Stopshort
:= ftopDW_short 0.03= ksi Tension

fbotDW_short
Mdw

Sbotshort
:= fbotDW_short 2.27−= ksi Compression

-LL:
fdeckNLL_short

Mnll
Sdeckshort ns⋅

:= fdeckNLL_short 0.88= ksi Tension

ftopNLL_short
Mnll

Stopshort
:= ftopNLL_short 0.17= ksi Tension

fbotNLL_short
Mnll

Sbotshort
:= fbotNLL_short 14.19−= ksi Compression
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Strength I Limit State: Dead Load + Negative Live Load 

MNLL_st 1.25 Mdc2⋅ 1.5 Mdw⋅+ 1.75 Mnll⋅+( ):= MNLL_st 45320−= kip-in Negative

Flange stresses are stresses when deck fully decompresses plus additional
stresses for remaining moment up the Strength Limit State moment demand. 

ftopNLL_st ffull_decomp_tf_mid
MNLL_st Mfull_decomp−

Stoppt
+:= ftopNLL_st 1.75−=

fbotNLL_st ffull_decomp_bf_mid
MNLL_st Mfull_decomp−

Sbotpt
+:= fbotNLL_st 35.05−=

Service II Limit State: Dead Load + Negative Live Load  

ftopNLL_sv 1.0 ftopDC2_short⋅ 1.0 ftopDW_short⋅+ 1.3 ftopNLL_short⋅+( ):= ftopNLL_sv 0.30= ksi Tension

fbotNLL_sv 1.0 fbotDC2_short⋅ 1.0 fbotDW_short⋅+ 1.3 fbotNLL_short⋅+( ):= fbotNLL_sv 24.22−= ksi Compression

MNLL_sv 1.0 Mdc2⋅ 1.0 Mdw⋅+ 1.3 Mnll⋅+( ):= MNLL_sv 3.37− 104
×= kip-in Negative

fdeckNLL_sv 1.0 fdeckDC2_short⋅ 1.0 fdeckDW_short⋅+ 1.3 fdeckNLL_short⋅+( ):= fdeckNLL_sv 1.508= ksi Compression

Fatigue Limit State: Negative Live Load  

ftopNFLL_short
Mnfll

Stopshort
:= ftopNFLL_short 0.04= ksi Tension

fbotNFLL_short
Mnfll

Sbotshort
:= fbotNFLL_short 3.49−= ksi Compression

ftopNLL_fa 0.75 ftopNFLL_short⋅:= ftopNLL_fa 0.03= ksi Tension

fbotNLL_fa 0.75 fbotNFLL_short⋅:= fbotNLL_fa 2.61−= ksi Compression

MNLL_fa 0.75 Mnfll⋅:= MNLL_fa 3.63− 103
×= kip-in Negative
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Strength I Minimum Design Force - Controlling Flange:

From above results, the bottom flange is the controlling flange for the Strength I Limit State.

Minimum design stress for the controlling (bottom) flange:

Rh 1.0:= α 1.0:= ϕf 1.0:= Fcf2 0.75 α⋅ ϕf⋅ Fy⋅:= Fcf2 37.50=

Fcf1_NLL

fbotNLL_st
Rh

α ϕf⋅ Fy⋅+

2
:= Fcf1_NLL 42.52=

Fcf_NLL max Fcf1_NLL Fcf2, ( ):= Fcf_NLL 42.52= ksi

Pcu_NLL Fcf_NLL Abf⋅:= Pcu_NLL 1.15 103
×= kip

Strength I Minimum Design Force - Noncontrolling Flange:

From above results, the top flange is the noncontrolling flange for the Strength I Limit State.

Minimum design stress for the noncontrolling (top) flange:

ftopNLL_st 1.75−= Fcf_NLL 42.52= fbotNLL_st 35.05−=

Rcf_NLL
Fcf_NLL

fbotNLL_st
:= Rcf_NLL 1.21=

Fncf1_NLL Rcf_NLL
ftopNLL_st

Rh
⋅:= Fncf1_NLL 2.12=

Fncf_NLL max Fncf1_NLL Fcf2, ( ):= Fncf_NLL 37.50= ksi

Pncu_NLL Fncf_NLL Atube⋅:= Pncu_NLL 513= kip

Service II Limit State Flange Force:

Ps_bf fbotNLL_sv Abf⋅:= Ps_bf 654−= kip

Ps_tf ftopNLL_sv Atube⋅:= Ps_tf 4.06= kip

Fatigue Limit State Stresses:

Δf_bf fbotNLL_fa:= Δf_bf 2.61= ksi

Δf_tf ftopNLL_fa:= Δf_tf 0.03= ksi
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III. Design Bottom Flange Splice (yellow highlight indicates input)

Splice Plate Dimensions:

Try 1.5 x 18" outside splice plate (no inside plate)

Thickness of the outside splice palte: Tout 1.5:= in

Width of the outside splice plate: Bout 18:= in

Aout Tout Bout⋅:= Aout 27.00= in2

Yielding and Fracture of Splice Plates:
Compression.

Pcu_NLL 1148=

Check compression yielding of outside splice plate:

Prout_yield_comp 0.90 Fy⋅ Tout⋅ Bout⋅:= Prout_yield_comp 1215= kip

Pcu_NLL 1148= < Prout_yield_comp 1215= O.K.

Compression stress on actual net section of outside splice plate.
This stress check is not required, but shows that the net section
is somewhat small when 6 bolts per row are used:

nb 6:=

Pcu_NLL

Aout nb dbolt
1
16

+⎛⎜
⎝

⎞⎟
⎠

⋅ Tout⋅⎡⎢
⎣

⎤⎥
⎦

−

61.85= ksi

Yielding of Flange  and Fracture of Flange at Holes:

Compression. Note that flange stress and the flange splice
design stress are both less than yield stress.

fbotNLL_st 35.05−= ksi O.K.

Stress on flange and splice plate are similar. They have the
same width and thickness. Fcf_NLL 42.52= ksi O.K.

Bolts - Shear:

Determine the number of bolts for the bottom flange splice plates that are required to develop the Strength I
design force in the flange in shear assuming the bolts in the connection have slipped and gone into bearing.

Pcu_NLL 1148=

Assume that the threads are excluded from the shear planes and the design force acts on one shear plane.

Ns1 1:=

Rn_bf 0.48 Abolt⋅ Fubolt⋅ Ns1⋅:= Rn_bf 34.64= kip

Ru_bf 0.80 Rn_bf⋅:= Ru_bf 27.71= kip

Nbf_eachside
Pcu_NLL

Ru_bf
:= Nbf_eachside 41.44=

The minimum number of bolts required on each side of the splice to resist the Strength I flange design force
in shear is 42. The number of bolts used is 48, 8 rows of 6 bolts.
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Bolts - Slip Resistance:

Bolted flange splice designed as slip-critical connections for the Service II flange design force.

Ps_bf 654−=

Determine the factored resistance per bolt assuming a Class B surface condition.

Minimum required bolt tension: Pt 39:= kip

Hole size factor: Kh 1.0:=

Surface condition factor for Class B surface conditions: Ks 0.5:=

Rn_slip_bf Kh Ks⋅ Ns1⋅ Pt⋅:=

Rr_slip_bf Rn_slip_bf:= Rr_slip_bf 19.50= kip

Nbf_eachside_slip_bf
Ps_bf

Rr_slip_bf
:= Nbf_eachside_slip_bf 33.54=

The minimum number of bolts required on each side of the splice to resist the Service II flange design force
against slip is 34. The number of bolts used is 48, 8 rows of 6 bolts.

Bolts - Minimum Spacing:

dbolt 0.875= s_min 3 dbolt⋅:= s_min 2.625= in

Bolts - Edge Distance and Spacing for Splice Plate:

The edge distance is 1.5in. and the bolt spacing is 3*dbolt= 2.625 in.

Bolts - Bearing at Bolt Holes on Splice Plate:

Pcu_NLL 1148=

The clear end distance between the edge of the hole and the end of the splice plate:

Lc1_bf 1.5
dhole

2
−:= Lc1_bf 1.00= in

The clear distance between edges of adjacent holes in the direction of the force is computed as:

Lc2_bf 3 dbolt⋅ dhole−:= Lc2_bf 1.63= in

For the outside splice plate:

n1:     Number of bolts in the end row n1 6:=

n2:     Number of remaining bolts n2 48 n1−:=
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Rn1 n1 1.2 Lc1_bf⋅ Tout⋅ Fu⋅( )⋅:= Rn2 n2 1.2 Lc2_bf⋅ Tout⋅ Fu⋅( )⋅:=

Rn_bf_bearing Rn1 Rn2+:= Rn_bf_bearing 8.69 103
×= kips

Rr_bf_bearing 0.80 Rn_bf_bearing⋅:= Rr_bf_bearing 6.95 103
×= kips

Pcu_NLL 1148= < Rr_bf_bearing 6950= O.K.

Bolts - Bearing at Bolt Holes on Flange:

Note flange is same thickness as splice plate and edge distance is greater - no check required.

Fatigue of Flange at Bolt Holes:

Load-induced fatigue:

Δf_bf 2.61= ksi

Nominal fatigue resistance:

Condition 1: Condition 2:

n 1.5:= ADTT_SL 3000:= ΔF_TH 16:=

N 365 75⋅ n⋅ ADTT_SL⋅:= N 1.23 108
×=

A 120 108
⋅:= For Fatigue Category B:

ΔFn1
A
N

⎛⎜
⎝

⎞⎟
⎠

1

3
:= ΔFn1 4.60= ΔFn2

1
2

ΔF_TH⋅:= ΔFn2 8.00=

ΔFn ΔFn1 ΔFn1 ΔFn2≥if

ΔFn2 otherwise

:= ΔFn 8.00=

Δf_bf 2.61= < ΔFn 8.00= O.K.

Fatigue of Splice Plate at Bolt Holes:

Load-induced fatigue:

Δf_out Δf_bf
Abf
Aout

⋅:= Δf_out 2.61= ksi < ΔFn 8.00= O.K.

B-21



IV. Design Top Flange Splice (yellow highlight indicates input)
Splice plates are on top wall and bottom wall of tube.•
The top wall top splice plate, the top wall bottom splice plate, and the bottom wall top splice plate•
are identical. Call this plate the outside plate.
The bottom wall bottom splice plate pair (adjacent to web) differ. Call these plates the inside plate.•

Splice Plate Dimensions:
Try 0.5 x 13.5" plate for outside splice plate

Thickness of the outside splice plate: Tout_tf 0.5:= in

Width of the outside splice plate: Bout_tf 13.5:= in

Try (2) 0.5 x 6.0" plates for inside splice plate

Thickness of the inside top wall splice plate: Tin_tf 0.5:= in

Width of the inside top wall splice plate: Bin_tf 2 6⋅:= in

Aout_tf Tout_tf Bout_tf⋅:= Aout_tf 6.75= in2

Ain_tf Tin_tf Bin_tf⋅:= Ain_tf 6.00= in2

n1_tf:     Number of bolts across the width of single splice plate n1_tf 4:=

Check 1
Ain_tf
Aout_tf

−⎛⎜
⎝

⎞⎟
⎠

100⋅ 11.11= The areas are essentially within ten percent ==> O.K.

Yielding and Fracture of Splice Plates:
Total Tension (apply 1/2 to set of plates on each tube wall and apply 1/2 of that to each plate): 

Pncu_NLL 513=

For yielding on the outside splice plate :

Prout_yield_ten 0.95 Fy⋅ Tout_tf⋅ Bout_tf⋅:= Prout_yield_ten 320.63= kip

Pncu_NLL
2 2⋅

128= < Prout_yield_ten 321= O.K.

For yielding on the inside splice plates :

Prin_yielding_ten 0.95 Fy⋅ Tin_tf⋅ Bin_tf⋅:= Prin_yielding_ten 285.00= kip

Pncu_NLL
2 2⋅

128= < Prin_yielding_ten 285= O.K.

For fracture of the outside splice plate:
→

Bn_out_tf Bout_tf n1_tf dhole⋅−:= Bn_out_tf 9.50= in

An_out_tf Bn_out_tf Tout_tf⋅:= An_out_tf 4.75= in2

Prout_fra_tf 0.8 Fu⋅ An_out_tf⋅:= Prout_fra_tf 247.00= kip

Pncu_NLL
2 2⋅

128= < Prout_fra_tf 247= O.K.
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For fracture of the inside splice plates:

Bn_in_tf Bin_tf n1_tf dhole⋅−:= Bn_in_tf 8.00= in

An_in_tf Bn_out_tf Tin_tf⋅:= An_in_tf 4.75= in2

Prin_fra_tf 0.80 Fu⋅ An_in_tf⋅:= Prin_fra_tf 247.00= kip

Pncu_NLL
2 2⋅

128= < Prin_fra_tf 247= O.K.

Yielding of Tube Flange and Fracture of Tube Flange at Holes:

Note that flange stress and the flange splice design stress are both less than yield stress.
ftopNLL_st 1.75−= ksi < Fy 50= ksi O.K.

Fncf_NLL 37.50= ksi < Fy 50= ksi O.K.

For checking net section fracture of the top flange at cut-out (AASHTO 6.10.1.8).
Note that the number of holes on the net section is 2 times number of holes in one bolt row on splice plates.

n_holes_tube 2 n1_tf⋅:= Ft_max 0.84
Atube n_holes_tube dhole⋅ Tt1⋅−

Atube
⋅ Fu⋅:=

ftopNLL_st 1.75−= ksi < Ft_max 42.63= ksi O.K.

Fncf_NLL 37.50= ksi < Ft_max 42.63= ksi O.K.

Alternate check of net section fracture of the top flange at cut-out.

Ptube_cutout_fracture_ten 0.80 Fu⋅ Atube n_holes_tube dhole⋅ Tt1⋅−( )⋅:= Ptube_cutout_fracture_ten 556=

Pncu_NLL 513= < Ptube_cutout_fracture_ten 556= O.K.

Bolts - Shear:

Number of bolts for each wall of the tube required to develop the Strength I design force assuming bolts
have slipped and gone into bearing. Design for 1/2 of the following top flange force:

Pncu_NLL 513.28=

Assume that the threads are excluded from the shear planes and the design force acts on two shear planes
(double shear).

Ns2 2:=

Rn_tf 0.48 Abolt⋅ Fubolt⋅ Ns2⋅:= Rn_tf 69.27= kip

Ru_tf 0.80 Rn_tf⋅:= Ru_tf 55.42= kip
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Ntf_eachside

Pncu_NLL

2

Ru_tf
:= Ntf_eachside 4.63=

The minimum number of bolts required on each side of the splice to resist the 1/2 of the Strength I flange
design force in shear is 5.  The number of bolts used is 8, 2 rows of 4 bolts.

Bolts - Slip Resistance:
Number of bolts for the top flange top wall splice required for  slip-critical connection. Design for 1/2 the
following Service II flange design force.

Ps_tf 4.06=

Determine the factored resistance per bolt assuming a Class B surface condition.

Minimum required bolt tension: Pt 39.00= kip

Hole size factor: Kh 1.00=

Surface condition factor for Class B surface conditions: Ks 0.50=

Rn_slip_tf Kh Ks⋅ Ns2⋅ Pt⋅:= Rr_slip_tf Rn_slip_tf:= Rr_slip_tf 39.00= kip

Ntf_eachside_slip

Ps_tf

2

Rr_slip_tf
:= Ntf_eachside_slip 0.05=

The minimum number of bolts required on each side of the splice to resist the 1/2 of the Service II flange
design force in shear is 1.  The number of bolts used is 8, 2 rows of 4 bolts.

Bolts - Minimum Spacing:
s_min 2.63= in

Bolts - Edge Distance and Spacing for Splice Plates:

The edge distance is 1.5in. and the bolt spacing is 3*dbolt= 2.625 in.

Bolts - Bearing at Bolt Holes on Splice Plate:

Check bolt bearing strength for the Strength I design force assuming bolts have slipped and gone into
bearing. For each wall of tube, design for 1/2 of the following top flange force and apply 1/2 to each plate :

Pncu_NLL 513=

The clear end distance between the edge of the hole and the end of the splice plate:

Lc1_tfsp 1.5
dhole

2
−:= Lc1_tfsp 1.00= in

The clear distance between edges of adjacent holes in the direction of the force is computed as:

Lc2_tfsp 3 dbolt⋅ dhole−:= Lc2_tfsp 1.63= in

Both the outside and inside splice plates have the same thickness so the calculation is the same:
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n1:     Number of bolts holes in the end row n1_tf 4=

n2:     Number of remaining bolts holes n2_tf 8 n1_tf−:=

Rn1_tfsp n1_tf 1.2 Lc1_tfsp⋅ Tout_tf⋅ Fu⋅( )⋅:= Rn2_tfsp n2_tf 1.2 Lc2_tfsp⋅ Tout_tf⋅ Fu⋅( )⋅:=

Rn_tfsp_bearing Rn1_tfsp Rn2_tfsp+:= Rn_tfsp_bearing 410= kips

Rr_tfsp_bearing 0.80 Rn_tfsp_bearing⋅:= Rr_tfsp_bearing 328= kips

Pncu_NLL
2 2⋅

128= < Rr_tfsp_bearing 328= O.K.

Bolts - Edge Distance and Spacing for Tube Flange:
The edge distance is 2.125 in., leaving 1/2 in between girder field pieces at pier.
The bolt spacing is 3*dbolt= 2.625 in.

Bolts - Bearing at Bolt Holes on Tube Flange:

Check bolt bearing strength for the Strength I design force assuming bolts have slipped and gone into
bearing. For each wall of tube, design for 1/2 of the following top flange force:

Pncu_NLL 513=

The clear end distance between the edge of the hole and the end of the splice plate:

Lc1_tf 2.125
dhole

2
−:= Lc1_tf 1.63= in

The clear distance between edges of adjacent holes in the direction of the force is computed as:

Lc2_tf 3 dbolt⋅ dhole−:= Lc2_tf 1.63= in

Rn1_tf n1_tf 1.2 Lc1_tf⋅ Tt1⋅ Fu⋅( )⋅:= Rn2_tf n2_tf 1.2 Lc2_tf⋅ Tt1⋅ Fu⋅( )⋅:=

Rn_bf_bearing_tf Rn1_tf Rn2_tf+:= Rn_bf_bearing_tf 380= kips

Rr_bf_bearing_tf 0.80 Rn_bf_bearing_tf⋅:= Rr_bf_bearing_tf 304= kips

Pncu_NLL
2

257= = Rr_bf_bearing_tf 304= O.K.

Fatigue of Flange at Bolt Holes:
Load-induced fatigue:

Δf_tf 0.032= ksi

Nominal fatigue resistance:

Condition 1: Condition 2:

N 1.23 108
×= ΔF_TH 16.00=
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A 1.20 1010
×= For Fatigue Category B:

ΔFn1 4.60= ΔFn2 8.00=

ΔFn ΔFn1 ΔFn1 ΔFn2≥if

ΔFn2 otherwise

:=
ΔFn 8.00=

Δf_tf 0.03= < ΔFn 8.00= O.K.

Fatigue of Splice Plates at Bolt Holes:

Inside splice plates have smallest area so calculate for the inside plate.

Load-induced fatigue:

Δf_tf_in Δf_tf
Atube

4Ain_tf
⋅:= Δf_tf_in 0.018= ksi < ΔFn 8.00= O.K.

Fatigue at Cutout Location:

Stop3short
44253

14.522 8− 3−
:= Stop3short 1.26 104

×=

ftopNFLL_short3
Mnfll

Stop3short
:= ftopNFLL_short3 0.39−=

ftopNLL_fa3 0.75 ftopNFLL_short3⋅:= ftopNLL_fa3 0.29−=

Δf_tf3 ftopNLL_fa3 2⋅:= Δf_tf3 0.58=

Nominal fatigue resistance:

Condition 1: Condition 2:

N 1.23 108
×= ΔF_TH3 24:=

A3 250 108
⋅:= For Fatigue Category A:

ΔFn2_3
1
2

ΔF_TH3⋅:= ΔFn2_3 12.00=

ΔFn1_3
A3
N

⎛⎜
⎝

⎞⎟
⎠

1

3
:= ΔFn1_3 5.88=

ΔFn3 ΔFn1_3 ΔFn1_3 ΔFn2_3≥if

ΔFn2_3 otherwise

:=
ΔFn3 12.00=

Δf_tf3 0.58= < ΔFn3 12.00= O.K.
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V. Compute Web Splice Design Loads (yellow highlight indicates input)

Girder Shear Forces at Splice Locations:
DC1: Vdc1 0:= kip

DC2: Vdc2 0:= kip

DW: Vdw 0:= kip

LL(positive): Vpll 0:= kip

LL(negative): Vnll 0:= kip

Fatigue(positive): Vpfll 0:= kip

Fatigue(negative): Vnfll 0:= kip

Web Moments and Horizontal Force Resultant:
Muw :  Portion of the flexural moment assumed to be resisted by the web
Huw  :  Horizontal design force resultant
Vuw  : Design shear force
Muv  : Moment due to the eccentricity of the design shear ( Muv = Vuw x e )
e      : Distance from the centerline of the splice to the centroid of the connection on the side of the joint 

under consideration
Mtotal = Muw + Muv

e 2.375 2.625+:= e 5.00= in Based on three verical rows of bolts in each side

Strength I Limit State:
Design Shear:
The nominal shear resistance:

Av
Bweb
Tweb

:= Bv 1.10
29000 5⋅

Fy
⋅:= Cv 1.38

29000 5⋅
Fy

⋅:=

Av 53.00= Bv 59.24= Cv 74.32=

Vp 0.58 Fy⋅ Bweb⋅ Tweb⋅:=

C 1.0 Av Bv<if

1.10
Av

29000 5⋅
Fy

⋅ Bv Av≤ Cv≤if

1.52

Av
2

29000 5⋅
Fy

⋅ Av Cv>if

:= :  plastic

:  inelastic

:  elastic

C 1.00=

Vn C Vp⋅:= Vn 384.25= kip Vr 1 Vn⋅:= Vr 384.25= kip

The factored shear for the negative live load:

Vu_NLL 1.25 Vdc1⋅ 1.25 Vdc2⋅+ 1.5 Vdw⋅+ 1.75 Vnll⋅+( ) 0.95⋅:= Vu_NLL 0.00= kip
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Therefore, with Vu Vu_NLL:= Vu 0.00= Vr 384.25=

AASHTO requires the following web splice design shear:

Vuw 0.75 Vr⋅ Vu 0.5 Vr⋅<if

Vu Vr+

2
otherwise

:= Vuw 288.19= kip However, since web splice is over the 
bearing, set the design shear to zero:

Vuw 0:= kip

Web Moments and Horizontal Force Resultants:

 Dead Load + Negative Live Load:
fbotNLL_st 35.05−= ksi Maximum elastic flexural stress due to the factored loads at the

midthickness of the controlling flange

Fcf_NLL Fcf_NLL−:= Design stress for the controlling flange

Fcf_NLL 42.52−= ksi

ftopNLL_st 1.75−= ksi Maximum elastic flexural stress due to the factored loads at the
midthickness of the noncontrolling flange

Rcf_NLL 1.21=

Portion of the flexural moment to be resisted by the web:

Mw_st_neg
Tweb Bweb2

⋅

12
Rh Fcf_NLL⋅ Rcf_NLL ftopNLL_st⋅−⋅:= Mw_st_neg 1.18 103

×= kip-in

Total web moment:

Mtot_st_neg Mw_st_neg Vuw e⋅+:= Mtot_st_neg 1.18 103
×= kip-in

Horizontal force resultant:

Hw_st_neg
Tweb Bweb⋅

2
Rh Fcf_NLL⋅ Rcf_NLL ftopNLL_st⋅+( )⋅:= Hw_st_neg 295.78−= kip

Service II Limit State:
Design Shear:
The factored shear for the negative live load:

Vser_NLL 1.0 Vdc1⋅ 1.0 Vdc2⋅+ 1.0 Vdw⋅+ 1.3 Vnll⋅+:= Vser_NLL 0.00= kip

Therefore

Vw_ser Vser_NLL:= Vw_ser 0.00= kip

Web Moments and Horizontal Force Resultants:

 Dead Load + Negative Live Load:
fbotNLL_sv 24.22−= ksi Maximum Service II midthickness flange stress 

ftopNLL_sv 0.30= ksi Service II midthickness flange stress in other flange
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Portion of the flexural moment to be resisted by the web:

Mw_ser_neg
Tweb Bweb2

⋅

12
fbotNLL_sv ftopNLL_sv−⋅:= Mw_ser_neg 717.45= kip-in

Total web moment:

Mtot_ser_neg Mw_ser_neg Vw_ser e⋅+:= Mtot_ser_neg 717.45= kip-in

Horizontal force resultant:

Hw_ser_neg
Tweb Bweb⋅

2
fbotNLL_sv ftopNLL_sv+( )⋅:= Hw_ser_neg 158.51−= kip

Fatigue Limit State:
Design Shear:
The factored shear for the negative live load:

Vfat_NLL 0.75 Vnfll⋅:= Vfat_NLL 0.00= kip

Web Moments and Horizontal Force Resultants:

 Negative Live Load:
fbotNLL_fa 2.61−= ksi

ftopNLL_fa 0.03= ksi

Portion of the flexural moment to be resisted by the web:

Mw_fat_neg
Tweb Bweb2

⋅

12
fbotNLL_fa ftopNLL_fa−( )⋅:= Mw_fat_neg 77.43−= kip-in

Total web moment:

Mtot_fat_neg Mw_fat_neg Vfat_NLL e⋅+:= Mtot_fat_neg 77.43−= kip-in

Horizontal force resultant:

Hw_fat_neg
Tweb Bweb⋅

2
fbotNLL_fa ftopNLL_fa+( )⋅:= Hw_fat_neg 17.11−= kip
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VI. Design Web Splice (yellow highlight indicates input)

Web Splice Configuration:

1. Three vertical rows of bolts with eight bolts per row.
2. 1/2" x 21.5" splice plates on each side of the web.

twp
1
2

:= dwp 21.5:=

Bolts - Minimum Spacing:
dbolt 0.875= s_min 3 dbolt⋅:= s_min 2.625= in

Bolts - Edge Distance:

The smallest edge distance is 1.5in. and the bolt spacing is 3*dbolt= 2.625 in.

Bolts - Shear:

m 3:= : Number of vertical rows of bolts

n 8:= : Number of bolts in one verical row

s 2.625:= in : Vertical pitch

g 2.625:= in : Horizontal pitch

Ip
n m⋅
12

s2 n2 1−( )⋅ g2 m2 1−( )⋅+⎡⎣ ⎤⎦⋅:= Ip 978.47= in2 : Polar moment of inertia

Nbw n m⋅:= Nbw 24.00= : Total number of web bolts on each side
of    the splice

Strength I Limit State:

Assume that the threads are excluded from the shear planes 

Ru_web Ru_tf:= Ru_web 55.42= kip

Dead Load + Negative Live Load:

Vuw 0.00= kip Mtot_st_neg 1.18 103
×= kip-in Hw_st_neg 295.78−= kip

Vertical shear force in the bolts due to applied shear force:

Pv_st
Vuw
Nbw

:= Pv_st 0.00= kip

Horizontal shear force in the bolts due to horizontal force resultant:

Ph_st_neg
Hw_st_neg

Nbw
:= Ph_st_neg 12.32= kip
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Horizontal and vertical components of the bolt shear force on the extreme bolt due to the total moment in
the web:

x
g
2

:= x 1.31= in y
15 s⋅

2
:= y 19.69= in

Pmv_st_neg
Mtot_st_neg x⋅

Ip
:= Pmv_st_neg 1.59= kip

Pmh_st_neg
Mtot_st_neg y⋅

Ip
:= Pmh_st_neg 23.79= kip

Pr_st_neg Pv_st Pmv_st_neg+( )2 Ph_st_neg Pmh_st_neg+( )2
+:= Pr_st_neg 36.15=

Pr_st Pr_st_neg:=

Pr_st 36.15= < Ru_web 55.42= O.K.

Service II Limit State:

Determine the factored resistance per bolt assuming a Class B surface condition.

Rr_slip_web Rr_slip_tf:= Rr_slip_web 39.00= kip

Dead Load + Negative Live Load:

Vw_ser 0.00= kip Mtot_ser_neg 717.45= kip-in Hw_ser_neg 158.51−= kip

Vertical shear force in the bolts due to applied shear force:

Ps_ser
Vw_ser

Nbw
:= Ps_ser 0.00= kip

Horizontal shear force in the bolts due to horizontal force resultant:

Ph_ser_neg
Hw_ser_neg

Nbw
:= Ph_ser_neg 6.60= kip

Horizontal and vertical components of the bolt shear force on the extreme bolt due to the total moment in
the web:

Pmv_ser_neg
Mtot_ser_neg x⋅

Ip
:= Pmv_ser_neg 0.96= kip

Pmh_ser_neg
Mtot_ser_neg y⋅

Ip
:= Pmh_ser_neg 14.44= kip

Pr_ser_neg Ps_ser Pmv_ser_neg+( )2 Ph_ser_neg Pmh_ser_neg+( )2
+:= Pr_ser_neg 21.06= kip

Pr_ser Pr_ser_neg:=

Pr_ser 21.06= < Rr_slip_web 39.00= O.K.
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Shear Yielding of Splice Plates:
Vuw 0.00= kip

Nwp 2:= : Number of splice plates

twp 0.50= in : Thickness of splice plate

dwp 21.50= in : Depth of splice plate

Agross_wp Nwp twp⋅ dwp⋅:= Agross_wp 21.50= in2

Rr_wp 0.58 Fy⋅ Agross_wp⋅:= Rr_wp 623.50= kip

Vuw 0.00= < Rr_wp 623.50= O.K.

Fracture of Splice Plates:

Nfn n:= Nfn 8.00= : Number of bolts along one plane

Avn Nwp dwp Nfn dhole⋅−( )⋅ twp⋅:= Avn 13.50= in2

A85 0.85 Agross_wp⋅:= A85 18.27= in2

Avn 13.50= < A85 18.27= O.K.

Rr_web_fra 0.80 0.58 Fu⋅ Avn⋅( )⋅:=

Vuw 0.00= < Rr_web_fra 407.16= O.K.

Flexural Yielding of Splice Plates:

Sp1
1
6

Agross_wp⋅ dwp⋅:= Sp1 77.04= in3

Mtot_st_neg 1.18 103
×= kip-in Hw_st_neg 295.78−= kip

fst_neg
Mtot_st_neg

Sp1
Hw_st_neg
Agross_wp

+:= fst_neg 29.10= ksi

fst_neg 29.10= < Fy 50.00= O.K.
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Bolts - Bearing at Bolt Holes in Splice Plate:

The clear distance between the edge of the hole and the edge of the splice plate:

Lc1_web_sp 1.5
dhole

2
−:= Lc1_web_sp 1.00= in

The clear distance between holes:

Lc2_web_sp 3.0 dbolt⋅ dhole−:= Lc2_web_sp 1.63= in

The clear distance to edge of plate controls.

Rn_web_sp_bearing 1.2 Lc1_web_sp⋅ twp⋅ Fu⋅:= Rn_web_sp_bearing 39.00= kips

Rr_web_sp_bearing 0.80 Rn_web_sp_bearing⋅:= Rr_web_sp_bearing 31.20= kips

Pr_st
2

18.07= < Rr_web_sp_bearing 31.20= O.K.

Bolts - Bearing at Bolt Holes in Web:
The edge distance is 2.125 in., leaving 1/2 in between girder field pieces at pier.
The bolt spacing is 3*dbolt= 2.625 in.

The clear distance between the edge of the hole and the edge of the girder:

Lc1_web 2.125
dhole

2
−:= Lc1_web 1.63= in

The clear distance between holes:

Lc2_web 3.0 dbolt⋅ dhole−:= Lc2_web 1.63= in

The two clear distances are the same.

Rn_web_bearing 1.2 Lc1_web⋅ Tweb⋅ Fu⋅:= Rn_web_bearing 63.38= kips

Rr_web_bearing 0.80 Rn_web_bearing⋅:= Rr_web_bearing 50.70= kips

Pr_st 36.15= = Rr_web_bearing 50.70= O.K.

Fatigue of Splice Plates:

Nominal stresses at the bottom edge of the splice plates due to the total positive and negative fatigue-load
web moments and the coresponding horizontal force resultants:

Case 2 - Negative Live Load:

Mtot_fat_neg 77.43−= kip-in Hw_fat_neg 17.11−= kip

ffat_neg
Mtot_fat_neg

Sp1
Hw_fat_neg
Agross_wp

+:= ffat_neg 1.80−= ksi Δf_w_sp ffat_neg:= Δf_w_sp 1.80=

Δf_w_sp 1.80= < ΔFn 8.00= O.K.
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Appendix C. Plastic Moment for Composite Section

1. Procedure
-  Calculate the axial force and the moment of the rectangular CFT flange part including the slab in
terms of the plastic neutral axis (PNA).

-  Combine those results with compression or tension forces of the web and flat tension flange in terms
of the PNA.

-  Determine the location of the PNA, referenced from the top of the concrete slab, by the equilibrium
   condition.

-  Calculate the plastic moment.

2. Properties and Dimensions (yellow highlight indicates input data)
BRIDGE PARAMETERS

Description:  Two span continuous (for superimposed dead load and live load) composite CFTFG with each span of
100 ft and width of 31 ft - 4.5 in.  The bridge has 4 girders spaced at 8 ft - 5.5 in with 3 ft overhangs.

Bridge Width (in) Bridge Span Length (in) Slab Thickness (in) Haunch Thickness (in) Girder Spacing (in)

W 376.5:= L 1200:= Tslab 8:= Thaunch 3:= s 101.5:=

Number of Girders Overhang (from girder centerline) (in) Combined Slab and Haunch Thickness (in)

ng 4:= se 36:= Tconc Tslab Thaunch+:= Tconc 11=

MATERIAL PROPERTIES

Yield Strength (ksi) Young's Modulus (ksi) Concrete Strength (ksi) Modular ratio (input)

Fy 50:= E 29000:= fc 4:= n 8:=

Yield Strain (ksi) Concrete Modulus (ksi) Concrete Stress
Block Parameter

Max. Concrete Strain Modular ratio (actual)

εy
Fy
E

:= Ec
57000 fc 1000⋅⋅

1000
:= β1 0.85:= εuslab 0.003:=

E
Ec

8.04=

STEEL GIRDER DIMENSIONS

Tube horizontal plate
thickness

Tube vertical plate
thickness

Bottom flange
thickness

Web
thickness

Tt1
3
8

:= inches Tt2
3
8

:= inches Tbf 1.5:= inches Tweb
8
16

:= inches

Tube horizontal plate
width

Tube vertical plate
width

Bottom flange
width

Bt1 16:= inches Bt2 7.25:= inches Bbf 18:= inches

Web depth Dweb 36 2 Tt1⋅− Bt2− Tbf−:= Dweb 26.5= inches

Total girder depth Dgirder Tbf Dweb+ 2 Tt1⋅+ Bt2+:= Dgirder 36= inches

Depth including deck Dtotal Dgirder Thaunch+ Tslab+:= Dtotal 47= inches
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COMPOSITE GIRDER PROPERTIES

Abf Bbf Tbf⋅:= Abf 27= in2 Area of bottom flange

Atube 2 Tt1⋅ Bt1⋅ 2 Tt2⋅ Bt2⋅+:= Atube 17.44= in2 Area of tube

Aw Dweb Tweb⋅:= Aw 13.25= in2 Area of web

Asteel Aw Atube+ Abf+:= Asteel 57.69= in2 Total steel area

Acon
Bt2 Bt1 2 Tt2⋅−( )⋅

n
:= Acon 13.82= in2 Equivalent area of concrete in tube (short term)

EFFECTIVE WIDTH OF SLAB (INTERIOR GIRDER) 

beff1
L
4

:= beff1 300= beff2 s:= beff2 101.5= beff3 12 Tslab⋅
Bt1
2

+:= beff3 104=

The smallest beff governs
Beffi beff1 beff1 beff2≤ beff1 beff3≤∧if

beff2 beff2 beff1≤ beff2 beff3≤∧if

beff3 otherwise

:=

Beffi 101.5= in

EFFECTIVE WIDTH OF SLAB (EXTERIOR GIRDER) 

beff4
s
2

⎛⎜
⎝

⎞⎟
⎠

se+:= beff4 86.75=

The smallest beff governs
Beffe beff1 beff1 beff2≤ beff1 beff3≤∧if

beff4 beff4 beff1≤ beff4 beff3≤∧if

beff3 otherwise

:=

Beffe 86.75= in

SELECT EFFECTIVE WIDTH OF SLAB (use Beffi for interior girder, Beffe for exterior girder, or minimum) 

Beff min Beffe Beffi, ( ):= Beff 86.75= Note: here the minimum is used, which is for an exterior girder.

ELASTIC NEUTRAL AXIS (of transformed section from top of slab)

A
Bt1 2 Tt2⋅−( ) Bt2⋅

n
Asteel+

1
n

Tslab⋅ Beff⋅
1
n

Thaunch⋅ Bt1⋅+⎛⎜
⎝

⎞⎟
⎠

+:= A 164.3= in2 transformed section area of
composite girder

Num1
Bt1 2 Tt2⋅−( ) Bt2⋅

n
Tconc Tt1+

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 Bt1⋅ Tt1⋅ 2 Bt2⋅ Tt2⋅+( ) Tconc Tt1+
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

:=

Num2 Dweb Tweb⋅ Tconc 2 Tt1⋅+ Bt2+
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Bbf Tbf⋅ Tconc 2 Tt1⋅+ Bt2+ Dweb+
Tbf
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

:=

Num3
1
n

Tslab⋅ Beff⋅
Tslab

2
⋅

1
n

Thaunch⋅ Bt1⋅ Tslab
Thaunch

2
+⎛⎜

⎝
⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

:=

yo
Num1 Num2+ Num3+

A
:= yo 15.52=
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COORDINATES OF CROSS-SECTION ELEMENTS:

Coordinates denoted with "a" are taken from center of CFT compression flange. Upward is positive

a1 Tslab Thaunch+ Tt1+
Bt2
2

+:= :  top face of slab

a2 Thaunch Tt1+
Bt2
2

+:= :  bottom face of slab

a3 Tt1
Bt2
2

+:= :  outer face of top plate of steel tube

a4
Bt2
2

:= :  inner face of top plate of steel tube

a5 a4−:= :  inner face of bottom plate of steel tube

a6 a3−:= :  outer face of bottom plate of steel tube

a7 c( ) a1 c−:= :  plastic neutral axis (PNA) relative to center of tube
   (positive indicates PNA is above center of tube)

a8 c( ) a1 β1 c⋅−:= :  bottom edge of concrete stress block

a9 c( ) a1 c−
εy

εuslab
c⋅−:= :  location where yield strain is reached in tension zone

   of steel ( used for tube )

a10 c( ) a1 c−
εy

εuslab
c⋅+:= :  location where yield strain is reached in compression

   zone of steel ( used for tube )

Coordinates denoted with "g" are taken  from elastic neutral axis (ENA) of section. Upward is positive.

g1 yo Tconc− 2 Tt1⋅ Bt2+( )−:= :  top edge of web

g2 yo Tconc− 2 Tt1⋅ Bt2+( )− Dweb−:= :  bottom edge of web

g3 yo Tconc− 2 Tt1⋅ Bt2+( )− Dweb− Tbf−:= :  bottom face of tension flange

g4 c( ) yo c−
εy

εuslab
c⋅−:= :  location where yield strain is reached in tension zone

   of steel ( used for web )

g5 c( ) yo c−
εy

εuslab
c⋅+:= :  location where yield strain is reached in compression

   zone of steel ( used for web )

g6 c( ) yo c−:= :  plastic neutral axis (PNA) relative to ENA
   (positive indicates PNA is above ENA)

Functions denoted with "z" give the variation of stress with position on cross section. 

z1 c y, ( )
y a7 c( )−

a10 c( ) a7 c( )−
Fy⋅:= :  stress variations about center of CFT flange

   (compression is positive, used for tube)

z2 c y, ( )
c yo− y+

c yo− g5 c( )+
Fy⋅:= :  stress variations about ENA

   (compression is positive, used for web)
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3. Assume PNA is in Slab or Haunch

3-1. Rectangular CFT Compression Flange and Deck

Deck

Pcon c( )
a8 c( )

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a8 c( ) a2≤if

:= Mcon c( )
a8 c( )

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a8 c( ) a2≤if

:=

Top plate of tube
Puptube c( )

a4

a3
yBt1− Fy⋅

⌠
⎮
⌡

d a9 c( ) a3>if

a9 c( )

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a4

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a4 a9 c( )< a3≤if

a4

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a4≤if

:=

Muptube c( )
a4

a3
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a3>if

a9 c( )

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a4

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a4 a9 c( )< a3≤if

a4

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a4≤if

:=

Side plates of tube
Pmidtube c( )

a5

a4
y2− Tt2⋅ Fy⋅

⌠
⎮
⌡

d a9 c( ) a4>if

a9 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅

⌠
⎮
⌡

d+ a5 a9 c( )< a4≤if

a4

a3
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a5≤if

:=
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Mmidtube c( )
a5

a4
y2− Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a4>if

a9 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d+ a5 a9 c( )< a4≤if

a4

a3
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5≤if

:=

Pdowntube c( )
a6

a5
yBt1− Fy⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a9 c( ) a5≤if

:= Bottom plate of tube

Mdowntube c( )
a6

a5
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a9 c( ) a5≤if

:=

Ptopflange c( ) Pcon c( ) Puptube c( )+ Pmidtube c( )+ Pdowntube c( )+:=

Mtopflange c( ) Mcon c( ) Muptube c( )+ Mmidtube c( )+ Mdowntube c( )+:=

3-2. Web and Bottom Flange (assume web and bottom flange are fully yielded in tension)

Web Bottom flange

Pw
g2

g1
yTweb− Fy⋅

⌠
⎮
⌡

d:= Pbf
g3

g2
yBbf− Fy⋅

⌠
⎮
⌡

d:=

Mw
g2

g1
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d:= Mbf
g3

g2
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d:=
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3-3. Combine

Pp c( ) Ptopflange c( ) Pw+ Pbf+:=

Mp c( ) Mtopflange c( ) Ptopflange c( ) yo Tconc− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅+ Mw+ Mbf+:=

Assume :  c Tconc:=

Note: this calculation does not converge because the PNA is in
the middle region of the tube for an exterior girder.  For an interior
girder the calculation converges and the PNA is in the haunch.

c root Pp c( ) c, ( ):= root Pp c( ) c, ( )

Pp c( ) =c

Mp c( ) =c kip-in

Check :  If  a9 c( ) =c > a6 4−= then,  O.K.  <==  web and bottom flange yield
        Note that this is a comparison
        of locations, and therefore the
        algebraic sign is relevant. 

If  0    < c =c < Tconc 11= then,  O.K.  <==  PNA is in the slab or 
        haunch.  Otherwise 
        ignore the above
        calculations. Dweb_comp c Tconc− 2 Tt1⋅ Bt2+( )−:= c

Dweb_cp Dweb_comp Dweb_comp 0>if

0 otherwise

:= Dweb_comp

Dweb_cp =Dweb_cp in Depth of web in compression 

---------------------------------------------------------------------------------------------------------------------------------------------------------------

4. Assume PNA is in Top Plate of Steel Tube

4-1. Rectangular CFT Compression Flange and Deck
Deck

Pcon c( )
a8 c( )

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a8 c( ) a2≤if

:= Mcon c( )
a8 c( )

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a8 c( ) a2≤if

:=

Puptubeten c( )
a9 c( )

a7 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a4

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a9 c( ) a4>if

a4

a7 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a4≤if

:= Top plate of tube
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Muptubeten c( )
a9 c( )

a7 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a4

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a9 c( ) a4>if

a4

a7 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a4≤if

:=

Puptubecom c( )
a7 c( )

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d:= Muptubecom c( )
a7 c( )

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Puptube c( ) Puptubeten c( ) Puptubecom c( )+:= Muptube c( ) Muptubeten c( ) Muptubecom c( )+:=

Pmidtube c( )
a5

a4
y2− Tt2⋅ Fy⋅

⌠
⎮
⌡

d a9 c( ) a4>if

a9 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅

⌠
⎮
⌡

d+ a5 a9 c( )< a4≤if

a5

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a5≤if

:= Side plates of tube

Mmidtube c( )
a5

a4
y2− Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a4>if

a9 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d+ a5 a9 c( )< a4≤if

a5

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5≤if

:=

Pdowntube c( )
a6

a5
yBt1− Fy⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a6 a9 c( )< a5≤if

a6

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:= Bottom plate of tube
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Mdowntube c( )
a6

a5
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a6 a9 c( )< a5≤if

a6

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:=

Ptopflange c( ) Pcon c( ) Puptube c( )+ Pmidtube c( )+ Pdowntube c( )+:=

Mtopflange c( ) Mcon c( ) Muptube c( )+ Mmidtube c( )+ Mdowntube c( )+:=

4-2. Web and Bottom Flange (assume web and bottom flange are fully yielded in tension)
Web Bottom flange

Pw
g2

g1
yTweb− Fy⋅

⌠
⎮
⌡

d:= Pbf
g3

g2
yBbf− Fy⋅

⌠
⎮
⌡

d:=

Mw
g2

g1
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d:= Mbf
g3

g2
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d:=

4-3. Combine

Pp c( ) Ptopflange c( ) Pw+ Pbf+:=

Mp c( ) Mtopflange c( ) Ptopflange c( ) yo Tconc− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅+ Mw+ Mbf+:=

Assume :  c Tconc:=

c root Pp c( ) c, ( ):= c 12.21= Note: this calculation does not control because the PNA is
in the middle tube region for an exterior girder.  For an
interior girder the PNA is in the haunch.Pp c( ) 2.27− 10 13−

×=

Mp c( ) 8.1 104
×= kip-in

Check :  If  a9 c( ) 4.22−= > a6 4−= then,  O.K.  <==  web and bottom flange yield 

If  Tconc 11=     < c 12.21= < Tconc Tt1+ 11.38= then,  O.K.  

<== PNA is in the top of the steel
       tube. Otherwise ignore the
       above calculations.   

Dweb_comp c Tconc− 2 Tt1⋅ Bt2+( )−:=

Dweb_cp Dweb_comp Dweb_comp 0>if

0 otherwise

:=

Dweb_cp 0= in Depth of web in compression 
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---------------------------------------------------------------------------------------------------------------------------------------------------------------

5. Assume PNA is in Middle Region of Steel Tube

5-1. Rectangular CFT Compression Flange and Deck

Deck and concrete in tube
Pcon c( )

a8 c( )

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d a4 a8 c( )< a2≤if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d+ a8 c( ) a4≤if

:=

Mcon c( )
a8 c( )

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a8 c( ) a2>if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d a4 a8 c( )< a2≤if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d+ a8 c( ) a4≤if

:=

Puptube c( )
a4

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:= Top plate of tube

Muptube c( )
a4

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:=
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Side plates of tube
Pmidtubeten c( )

a9 c( )

a7 c( )
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅

⌠
⎮
⌡

d+ a9 c( ) a5≥if

a5

a7 c( )
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a5<if

:=

Mmidtubeten c( )
a9 c( )

a7 c( )
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a5

a9 c( )
y2− Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d+ a9 c( ) a5≥if

a5

a7 c( )
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5<if

:=

Pmidtubecom c( )
a7 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅

⌠
⎮
⌡

d
a7 c( )

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d+ a10 c( ) a4≤if

:=

Mmidtubecom c( )
a7 c( )

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d
a7 c( )

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a10 c( ) a4≤if

:=

Pmidtube c( ) Pmidtubeten c( ) Pmidtubecom c( )+:= Mmidtube c( ) Mmidtubeten c( ) Mmidtubecom c( )+:=

Pdowntube c( )
a6

a5
yBt1− Fy⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a6 a9 c( )< a5≤if

a6

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:= Bottom plate of tube

Mdowntube c( )
a6

a5
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a5>if

a9 c( )

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a6 a9 c( )< a5≤if

a6

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:=
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Ptopflange c( ) Pcon c( ) Puptube c( )+ Pmidtube c( )+ Pdowntube c( )+:=

Mtopflange c( ) Mcon c( ) Muptube c( )+ Mmidtube c( )+ Mdowntube c( )+:=

5-2. Web and Bottom Flange (assume bottom flange is fully yielded in tension, but check web)
Web Bottom flange

Pw c( )
g2

g1
yTweb− Fy⋅

⌠
⎮
⌡

d g4 c( ) g1≥if

g4 c( )

g1
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅

⌠
⎮
⌡

d+ g4 c( ) g1<if

:=
Pbf

g3

g2
yBbf− Fy⋅

⌠
⎮
⌡

d:=

Mbf
g3

g2
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d:=Mw c( )
g2

g1
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d g4 c( ) g1≥if

g4 c( )

g1
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d+ g4 c( ) g1<if

:=

5-3. Combine

Pp c( ) Ptopflange c( ) Pw c( )+ Pbf+:=

Mp c( ) Mtopflange c( ) Ptopflange c( ) yo Tconc− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅+ Mw c( )+ Mbf+:=

Assume :  c Tconc Tt1+:=

c root Pp c( ) c, ( ):= c 12.21=
Note: this calculation contols for an exterior girder.
For an interior girder the PNA is in the haunch.Pp c( ) 2.27 10 13−

×=

Mp c( ) 8.0985 104
×= kip-in

Check :  If  g4 c( ) 3.7−= > g2 29.98−= then,  O.K.  <==  bottom flange is fully
        yielded 

If  Tconc Tt1+ 11.38=     < c 12.21= < Tconc Tt1+ Bt2+ 18.63= then,  O.K.  

<== PNA is in the middle
       region of the steel
       tube. Otherwise 
       ignore the above
       calculations.  

Dweb_comp c Tconc− 2 Tt1⋅ Bt2+( )−:=

Dweb_cp Dweb_comp Dweb_comp 0>if

0 otherwise

:=

Dweb_cp 0= in Depth of web in compression 
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---------------------------------------------------------------------------------------------------------------------------------------------------------------

6. Assume PNA is in Bottom of Steel Tube

6-1. Rectangular CFT Compression Flange Part Deck and concrete in tube
(assumes β*c>a2, check later)

Pcon c( )
a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d+ a8 c( ) a5≥if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d
a5

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d+ a8 c( ) a5<if

:=

Mcon c( )
a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d+ a8 c( ) a5≥if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d
a5

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d+ a8 c( ) a5<if

:=

Puptube c( )
a4

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:= Top plate of tube

Muptube c( )
a4

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:=
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Pmidtube c( )
a5

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅

⌠
⎮
⌡

d
a5

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d+ a5 a10 c( )< a4≤if

a5

a4
y2 Tt2⋅ Fy⋅

⌠
⎮
⌡

d a10 c( ) a5≤if

:= Side plates of tube

Mmidtube c( )
a5

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d
a5

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a5 a10 c( )< a4≤if

a5

a4
y2 Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a5≤if

:=

Bottom plate of tube
Pdowntubeten c( )

a9 c( )

a7 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅

⌠
⎮
⌡

d+ a9 c( ) a6≥if

a6

a7 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:=

Mdowntubeten c( )
a9 c( )

a7 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
a6

a9 c( )
yBt1− Fy⋅ y⋅

⌠
⎮
⌡

d+ a9 c( ) a6≥if

a6

a7 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a9 c( ) a6<if

:=

Pdowntubecom c( )
a7 c( )

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a5≥if

a10 c( )

a5
yBt1 Fy⋅

⌠
⎮
⌡

d
a7 c( )

a10 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d+ a10 c( ) a5<if

:=

Mdowntubecom c( )
a7 c( )

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a5≥if

a10 c( )

a5
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d
a7 c( )

a10 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a10 c( ) a5<if

:=
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Pdowntube c( ) Pdowntubeten c( ) Pdowntubecom c( )+:=

Mdowntube c( ) Mdowntubeten c( ) Mdowntubecom c( )+:=

Ptopflange c( ) Pcon c( ) Puptube c( )+ Pmidtube c( )+ Pdowntube c( )+:=

Mtopflange c( ) Mcon c( ) Muptube c( )+ Mmidtube c( )+ Mdowntube c( )+:=

6-2. Web and Bottom Flange (assume bottom flange is fully yielded, but check web) 
Web Bottom flange

Pw c( )
g2

g1
yTweb− Fy⋅

⌠
⎮
⌡

d g4 c( ) g1≥if

g4 c( )

g1
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅

⌠
⎮
⌡

d+ g4 c( ) g1<if

:=

Pbf
g3

g2
yBbf− Fy⋅

⌠
⎮
⌡

d:=

Mw c( )
g2

g1
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d g4 c( ) g1≥if

g4 c( )

g1
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d+ g4 c( ) g1<if

:=

Mbf
g3

g2
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d:=

6-3. Combine

Pp c( ) Ptopflange c( ) Pw c( )+ Pbf+:=

Mp c( ) Mtopflange c( ) Ptopflange c( ) yo Tconc− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅+ Mw c( )+ Mbf+:=

Assume :  c Tconc Tt1+ Bt2+:=

c root Pp c( ) c, ( ):= c 12.47= Note: this calculation does not control because the PNA is
in the middle tube region for an exterior girder.  For an
interior girder the PNA is in the haunch.Pp c( ) 4.55− 10 13−

×=

Mp c( ) 8.08 104
×= kip-in

Check :  If  g4 c( ) 4.12−= > g2 29.98−= then,  O.K.  <==  bottom flange is totally
        yielded 

If  a8 c( ) 4.4= > a2 7= then,  O.K.  <==  β*c>a2 (depth of deck)
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If  Tconc Tt1+ Bt2+ 18.63=     < c 12.47= < Tconc 2 Tt1⋅+ Bt2+ 19= then,  O.K.  

<==  PNA is in the bottom
        of the steel tube.
        Otherwise ignore
        the above
        calculations. 

Dweb_comp c Tconc− 2 Tt1⋅ Bt2+( )−:=

Dweb_cp Dweb_comp Dweb_comp 0>if

0 otherwise

:=

Dweb_cp 0= in Depth of web in compression 

---------------------------------------------------------------------------------------------------------------------------------------------------------------

7. Assume PNA is in Web
Deck and concrete in tube
(assumes β*c>a2, check later)7-1. Rectangular CFT Compression Flange and Deck

Pcon c( )
a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d+ a8 c( ) a5≥if

a2

a1
y0.85 fc⋅ Beff⋅

⌠
⎮
⌡

d
a5

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d+ a8 c( ) a5<if

:=

Mcon c( )
a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d
a8 c( )

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d+ a8 c( ) a5≥if

a2

a1
y0.85 fc⋅ Beff⋅ y⋅

⌠
⎮
⌡

d
a5

a4
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d+ a8 c( ) a5<if

:=

Top plate of tube
Puptube c( )

a4

a3
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:=

Muptube c( )
a4

a3
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a3>if

a10 c( )

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d
a4

a10 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a4 a10 c( )< a3≤if

a4

a3
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4≤if

:=
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Pmidtube c( )
a5

a4
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅

⌠
⎮
⌡

d
a5

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅

⌠
⎮
⌡

d+ a5 a10 c( )< a4≤if

a5

a4
y2 Tt2⋅ Fy⋅

⌠
⎮
⌡

d a10 c( ) a5≤if

:= Side plates of tube

Mmidtube c( )
a5

a4
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a4>if

a10 c( )

a4
y2 Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d
a5

a10 c( )
y2 Tt2⋅ z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a5 a10 c( )< a4≤if

a5

a4
y2 Tt2⋅ Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a5≤if

:=

Bottom plate of tube
Pdowntube c( )

a6

a5
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d a10 c( ) a5≥if

a10 c( )

a5
yBt1 Fy⋅

⌠
⎮
⌡

d
a6

a10 c( )
yBt1 z1 c y, ( )⋅

⌠
⎮
⌡

d+ a6 a10 c( )≤ a5<if

a6

a5
yBt1 Fy⋅

⌠
⎮
⌡

d a10 c( ) a6<if

:=

Mdowntube c( )
a6

a5
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a5≥if

a10 c( )

a5
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d
a6

a10 c( )
yBt1 z1 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ a6 a10 c( )≤ a5<if

a6

a5
yBt1 Fy⋅ y⋅

⌠
⎮
⌡

d a10 c( ) a6<if

:=

Ptopflange c( ) Pcon c( ) Puptube c( )+ Pmidtube c( )+ Pdowntube c( )+:=

Mtopflange c( ) Mcon c( ) Muptube c( )+ Mmidtube c( )+ Mdowntube c( )+:=
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7-2. Web and Bottom Flange Parts (assume bottom flange and web may be partially yielded) 

Web

Pwten c( )
g4 c( )

g6 c( )
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅

⌠
⎮
⌡

d+ g4 c( ) g2>if

g2

g6 c( )
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d g4 c( ) g2≤if

:=

Mwten c( )
g4 c( )

g6 c( )
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
g2

g4 c( )
yTweb− Fy⋅ y⋅

⌠
⎮
⌡

d+ g4 c( ) g2>if

g2

g6 c( )
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d g4 c( ) g2≤if

:=

Pwcom c( )
g6 c( )

g1
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d g5 c( ) g1>if

g5 c( )

g1
yTweb Fy⋅

⌠
⎮
⌡

d
g6 c( )

g5 c( )
yTweb z2 c y, ( )⋅

⌠
⎮
⌡

d+ g5 c( ) g1≤if

:=

Mwcom c( )
g6 c( )

g1
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d g5 c( ) g1>if

g5 c( )

g1
yTweb Fy⋅ y⋅

⌠
⎮
⌡

d
g6 c( )

g5 c( )
yTweb z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d+ g5 c( ) g1≤if

:=

Pw c( ) Pwten c( ) Pwcom c( )+:= Mw c( ) Mwten c( ) Mwcom c( )+:=

Bottom flange

Pbf c( )
g3

g2
yBbf− Fy⋅

⌠
⎮
⌡

d g4 c( ) g2>if

g4 c( )

g2
yBbf z2 c y, ( )⋅

⌠
⎮
⌡

d
g3

g4 c( )
yBbf− Fy⋅

⌠
⎮
⌡

d+ g3 g4 c( )< g2≤if

g3

g2
yBbf z2 c y, ( )⋅

⌠
⎮
⌡

d g4 c( ) g3≤if

:=

C-17



Mbf c( )
g3

g2
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d g4 c( ) g2>if

g4 c( )

g2
yBbf z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d
g3

g4 c( )
yBbf− Fy⋅ y⋅

⌠
⎮
⌡

d+ g3 g4 c( )< g2≤if

g3

g2
yBbf z2 c y, ( )⋅ y⋅

⌠
⎮
⌡

d g4 c( ) g3≤if

:=

7-3. Combine

Pp c( ) Ptopflange c( ) Pw c( )+ Pbf c( )+:=

Mp c( ) Mtopflange c( ) Ptopflange c( ) yo Tconc− Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

−⎡⎢
⎣

⎤⎥
⎦

⋅+ Mw c( )+ Mbf c( )+:=

Assume :  c Tconc 2 Tt1⋅+ Bt2+:=

c root Pp c( ) c, ( ):= c 12.47=

Note: this calculation does not control because the PNA is
in the middle tube region for an exterior girder.  For an
interior girder the PNA is in the haunch.

Pp c( ) 1.75 10 11−
×=

Mp c( ) 8.08 104
×= kip-in

Check :  

If  a8 c( ) 4.4= > a2 7= then,  O.K.  <==  β*c>a2 (depth of deck)

If  Tconc 2 Tt1⋅+ Bt2+ 19=     < c 12.47= <Tconc 2 Tt1⋅+ Bt2+ Dweb+ 45.5= then,  O.K.  

<== PNA is in the web.
       Otherwise ignore the
       above calculationsDweb_comp c Tconc− 2 Tt1⋅ Bt2+( )−:=

Dweb_cp Dweb_comp Dweb_comp 0>if

0 otherwise

:=

Dweb_cp 0= in Depth of web in compression 

---------------------------------------------------------------------------------------------------------------------------------------------------------------
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Appendix D. Yield Moment for Non-composite Section Using Stress Block

1. Conditions and Assumptions
- The steel is elastic and the concrete in the tube is represented by the appropriate concrete stress
block.

-  c is the location of the elastic neutral axis referenced from the top of the steel tube.

-  If c is less than Dgirder/2, then the bottom flange will yield first.

-  If c is greater than Dgirder/2, then the steel tube will yield first.

-  Compression is positive.

2. Properties and Dimensions (yellow highlight indicates input data)
MATERIAL PROPERTIES

Yield Strength (ksi) Young's Modulus (ksi) Concrete Strength (ksi) Modular ratio (input)

Fy 50:= E 29000:= fc 4:= n 8:=

Yield Strain (ksi) Concrete Modulus (ksi) Concrete Stress
Block Parameter

Max. Concrete Strain Modular ratio (actual)

εy
Fy
E

:= Ec
57000 fc 1000⋅⋅

1000
:= β1 0.85:= εucon 0.003:=

E
Ec

8.0444=

STEEL GIRDER DIMENSIONS

Tube horizontal plate
thickness

Tube vertical plate
thickness

Bottom flange
thickness

Web
thickness

Tt1
3
8

:= inches Tt2
3
8

:= inches Tbf 1.5:= inches Tweb
8
16

:= inches

Tube horizontal plate
width

Tube vertical plate
width

Bottom flange
width

Bt1 16:= inches Bt2 7.25:= inches Bbf 18:= inches

Web depth Dweb 36 2 Tt1⋅− Bt2− Tbf−:= Dweb 26.5= inches

Total girder depth Dgirder Tbf Dweb+ 2 Tt1⋅+ Bt2+:= Dgirder 36= inches

NON-COMPOSITE GIRDER PROPERTIES

Abf Bbf Tbf⋅:= Abf 27= in2 Area of bottom flange

Atube 2 Tt1⋅ Bt1⋅ 2 Tt2⋅ Bt2⋅+:= Atube 17.44= in2 Area of tube

Aw Dweb Tweb⋅:= Aw 13.25= in2 Area of web

Asteel Aw Atube+ Abf+:= Asteel 57.69= in2 Total steel area

Acon
Bt2 Bt1 2 Tt2⋅−( )⋅

n
:= Acon 13.8203= in2 Equivalent area of concrete in tube (short term)

A Acon Asteel+:= A 71.5= in2 Transformed area of non-composite girder including concrete in tube
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ELASTIC NEUTRAL AXIS (of non-composite section including concrete in tube from top of steel tube)

Num1
Bt1 2 Tt2⋅−( ) Bt2⋅

n
Tt1

Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅ 2 Bt1⋅ Tt1⋅ 2 Bt2⋅ Tt2⋅+( ) Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

:=

Num2 Dweb Tweb⋅ 2 Tt1⋅ Bt2+
Dweb

2
+⎛⎜

⎝
⎞⎟
⎠

⋅ Bbf Tbf⋅ 2 Tt1⋅ Bt2+ Dweb+
Tbf
2

+⎛⎜
⎝

⎞⎟
⎠

⋅+⎡⎢
⎣

⎤⎥
⎦

:=

yo
Num1 Num2+

A
:= yo 18.9957=

COORDINATES OF CROSS-SECTION ELEMENTS:

Coordinates denoted with "a" are taken from center of CFT compression flange. Upward is positive

a1 Tt1
Bt2
2

+:= :  outer face of top plate of steel tube

a2
Bt2
2

:= :  inner face of top plate of steel tube

a3 a2−:= :  inner face of bottom plate of steel tube

a4 a1−:= :  outer face of bottom plate of steel tube

a5 Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

− Dweb−:= :  bottom edge of web

a6 Tt1
Bt2
2

+⎛⎜
⎝

⎞⎟
⎠

− Dweb− Tbf−:= :  bottom face of tension flange

a7 c( ) a2 β1 c Tt1−( )⋅−:= :  bottom edge of concrete stress block

a8 c( ) a1 c−:= :  neutral axis (c) referenced from the center of 
   the concrete filled steel tube

Functions denoted with "z" give the variation of stress with position on cross section
(compression is positive). 

z1 c y, ( )
y a8 c( )−

Dgirder c−
Fy⋅:= ==>  Case 1 : yield of the bottom flange first.

z2 c y, ( )
y a8 c( )−

c
Fy⋅:= ==>  Case 2 : yield of the steel tube first.

z c y, ( ) z1 c y, ( ) c
Dgirder

2
≤if

z2 c y, ( ) otherwise

:=
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3. Calculation of Yield Moment
Stress block for concrete in tube

Pc c( )
a3

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d a7 c( ) a3<if

a7 c( )

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d otherwise

:= Mc c( )
a3

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d a7 c( ) a3<if

a7 c( )

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d otherwise

:=

Top plate of steel tube

Put c( )
a2

a1
yBt1 z c y, ( )⋅

⌠
⎮
⌡

d:= Mut c( )
a2

a1
yBt1 z c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Side plates of steel tube

Pmt c( )
a3

a2
y2 Tt2⋅ z c y, ( )⋅

⌠
⎮
⌡

d:= Mmt c( )
a3

a2
y2 Tt2⋅ z c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Bottom plate of steel tube

Pdt c( )
a4

a3
yBt1 z c y, ( )⋅

⌠
⎮
⌡

d:= Mdt c( )
a4

a3
yBt1 z c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Web

Pw c( )
a5

a4
yTweb z c y, ( )⋅

⌠
⎮
⌡

d:= Mw c( )
a5

a4
yTweb z c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Bottom flange

Pbf c( )
a6

a5
yBbf z c y, ( )⋅

⌠
⎮
⌡

d:= Mbf c( )
a6

a5
yBbf z c y, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Py c( ) Pc c( ) Put c( )+ Pmt c( )+ Pdt c( )+ Pw c( )+ Pbf c( )+:=

My c( ) Mc c( ) Mut c( )+ Mmt c( )+ Mdt c( )+ Mw c( )+ Mbf c( )+:=

Assume :  c yo:=

c root Py c( ) c, ( ):= c 19.9839= in
Py c( ) 0= (should be zero)

My c( ) 3.5401 104
×= kip-in My My c( ):=

My 35401= kip-in
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4. Check  Results and Calculate Stresses

If c 19.9839= < Dgirder
2

18= then, bottom flange yields first.

If
c 19.9839= > Dgirder

2
18= then, steel tube yields first.

fstopatyield z c a1, ( ):= fsbottomatyield z c a6, ( ):=

fstopatyield 50.00= ==> stress of top fiber of steel tube

fsbottomatyield 40.07−= ==> stress of bottom fiber of bottom flange

5. Calculate Stresses due to MDC (unfactored) for Non-Composite Section Using Stress Block

MDC 18720:= kip-in (from Appendix A) My 3.5401 104
×= kip-in

"z" gives the variation of stress with position on cross section as function of stress on bottom flange.  

z c y, fs, ( )
y a8 c( )−

Dgirder c−
fs⋅:= ==>  Based on absolute value of stress of bottom flange (fs) 

Express corresponding forces to determine neutral axis location and bottom flange stress. 

Stress block for concrete in tube

Pc c fs, ( )
a3

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d a7 c( ) a3<if

a7 c( )

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅

⌠
⎮
⌡

d otherwise

:= Mc c fs, ( )
a3

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d a7 c( ) a3<if

a7 c( )

a2
y0.85 fc⋅ Bt1 2 Tt2⋅−( )⋅ y⋅

⌠
⎮
⌡

d otherwise

:=

Top plate of steel tube

Put c fs, ( )
a2

a1
yBt1 z c y, fs, ( )⋅

⌠
⎮
⌡

d:= Mut c fs, ( )
a2

a1
yBt1 z c y, fs, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Side plates of steel tube

Pmt c fs, ( )
a3

a2
y2 Tt2⋅ z c y, fs, ( )⋅

⌠
⎮
⌡

d:= Mmt c fs, ( )
a3

a2
y2 Tt2⋅ z c y, fs, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Bottom plate of steel tube

Pdt c fs, ( )
a4

a3
yBt1 z c y, fs, ( )⋅

⌠
⎮
⌡

d:= Mdt c fs, ( )
a4

a3
yBt1 z c y, fs, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Web

Pw c fs, ( )
a5

a4
yTweb z c y, fs, ( )⋅

⌠
⎮
⌡

d:= Mw c fs, ( )
a5

a4
yTweb z c y, fs, ( )⋅ y⋅

⌠
⎮
⌡

d:=

Bottom flange

Pbf c fs, ( )
a6

a5
yBbf z c y, fs, ( )⋅

⌠
⎮
⌡

d:= Mbf c fs, ( )
a6

a5
yBbf z c y, fs, ( )⋅ y⋅

⌠
⎮
⌡

d:=
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Assume neutral axis location and bottom flange stress. 

c yo:= fs Fy:=

Solve for neutral axis location and bottom flange stress. 

Given

Pc c fs, ( ) Put c fs, ( )+ Pmt c fs, ( )+ Pdt c fs, ( )+ Pw c fs, ( )+ Pbf c fs, ( )+ 0= <== total axial force = 0  

Mc c fs, ( ) Mut c fs, ( )+ Mmt c fs, ( )+ Mdt c fs, ( )+ Mw c fs, ( )+ Mbf c fs, ( )+ MDC= <== given moment due to DC

vec Find c fs, ( ):= vec
16.2809

20.3723
⎛
⎜
⎝

⎞
⎟
⎠

=

c vec0:= c 16.2809= in : Neutral axis using stress block from top fiber of tube

fs vec1:= fs 20.3723= ksi : Stress of bottom flange (absolute value) 

fstopMDC z c a1, fs, ( ):= fstopMDC 16.8201= ksi : stress in top fiber of steel tube

fsbottomMDC z c a6, fs, ( ):= fsbottomMDC 20.3723−= ksi : stress in bottom fiber of bottom flange

If these values are greater than Fy, then the above procedure is incorrect and
the design must be modified because the section is yielding under MDC.
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