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This	paper	is	dedicated	to	the	memory	of	Mika	Seppälä	and	to	Cici	Safkan-Seppälä	

ABSTRACT.	 These	 pages	 aim	 to	 explain	 and	 interpret	why	 the	 late	Mika	 Seppälä,	 a	 conformal	
geometer,	proposed	to	model	student	study	behaviour	using	concepts	from	conformal	geometry,	
such	as	Riemann	surfaces	and	Strebel	differentials.	Over	many	years	Mika	Seppälä	taught	online	
calculus	courses	to	students	at	Florida	State	University	in	the	United	States,	as	well	as	students	at	
the	 University	 of	 Helsinki	 in	 Finland.	 Based	 on	 the	 click	 log	 data	 of	 his	 students	 in	 both	
populations,	 he	 monitored	 this	 course	 using	 edge-decorated	 graphs,	 which	 he	 gradually	
improved	over	the	years.	To	enhance	this	representation	even	further,	he	suggested	using	tools	
and	geometric	intuition	from	Riemann	surface	theory.	He	also	was	inspired	by	the	much-envied	
Finnish	school	system.	Bringing	these	two	sources	of	inspiration	together	resulted	in	a	promising	
new	 representation	 model	 for	 course	 monitoring.	 Even	 though	 the	 authors	 have	 not	 been	
directly	 involved	 in	 Mika	 Seppälä’s	 courses,	 being	 conformal	 geometers	 themselves,	 they	
attempt	to	shed	some	light	on	his	proposed	approach.	

Keywords:	Study	paths,	Riemann	surfaces,	conformal	geometry 

1 INTRODUCTION 

This	 paper	 illustrates	 a	 concept	 in	 learning	 analytics	 with	 a	 strong	 mathematical	 component.	 In	
particular,	 it	makes	 use	 of	 terms	 such	 as	 “Riemann	 surfaces”	 and	 “quadratic	 differentials,”	which	 are	
certainly	 new	 to	 most	 learning	 analytics	 practitioners.	 Aware	 of	 this,	 we	 have	 tried	 to	 avoid	
mathematical	 jargon,	definitions,	and	theorems,	while	“demystifying”	the	crucial	technical	terms	using	
illustrative	figures.	We	shall,	however,	start	out	as	though	this	was	a	math	paper	to	overview	where	the	
ideas	come	from.	The	necessary	explanations	will	be	provided	later	in	the	text.	

Strebel’s	(1984)	theorem	asserts	that	any	Riemann	surface	may	be	viewed	as	a	collection	of	Euclidean	
rectangles	that	have	been	pasted	together	according	to	some	bifurcation	data.	This	structure	appealed	
to	 Mika	 Seppälä	 because	 surfaces	 constructed	 in	 this	 way	 are	 not	 only	 able	 to	 capture	 all	 the	
information	stored	in	edge-decorated	graphs	as	used	for	course	monitoring	but	also	make	it	possible	to	
follow	up	study	paths	of	individual	students	or	student	groups.	His	aim	was	twofold:	
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• To	 collect	 experience	 data	 to	 improve	 the	 course,	 add	 helpful	 resources,	 and	 diagnose	
shortcomings	of	the	course	structure.	

• To	 help	 students	 during	 the	 course	 if,	 in	 comparison	with	 experience	 data,	 their	 study	 paths	
reveal	an	immanent	failure.	

In	his	own	words,	Seppälä	(2014a)	put	it	this	way:	“The	goal	[is	to	build]	recommendation	systems	that	
advise	 individual	 students	based	on	 the	 log	data	of	 a	 large	number	of	 past	 students	 and	on	personal	
characteristics	of	the	student	in	question.”	

To	explain	 concisely	 the	way	 this	 is	 envisaged,	we	use	 as	 an	example	 an	 aspect	of	 the	 Finnish	 school	
system	(Hancock,	2011).	In	primary	and	secondary	school	in	Finland,	frequent	short	diagnostic	tests	are	
applied	throughout	the	school	year	to	react	to	gaps	in	student	progress.	These	tests	bifurcate	students	
to	different	paths	of	activities	and	resources	with	the	aim	of	helping	them	reach	the	end	of	the	program	
successfully.	 The	 idea	 is	 that	 all	 students	 should	 get	 through	 the	 year	 successfully	 and	 the	 activities	
continue	smoothly	into	the	next	school	year.	

	

Figure	1:	Schematic	diagram	for	study	pathways	in	the	Finnish	school	system.	

The	diagram	in	Figure	1	shows	this	schematically	in	a	graph.	The	dots	are	the	vertices	of	the	graph	and	
the	 lines	 are	 its	 edges.	 Each	 vertex	 represents	 an	 event	 at	which	 students	 are	 diagnosed.	 The	 edges	
leaving	a	vertex	to	the	right	represent	the	different	variants	of	the	program	of	activities	that	follow	the	
test.	According	to	the	outcome	of	the	test,	a	student	is	assigned	to	one	of	these.	All	students	reach	the	
next	test	but	not	necessarily	along	the	same	path.	

This	 contrasts	with	 the	 diagram	 in	 Figure	 2,	 schematizing	 the	 approach	 of	 still	many	 a	 contemporary	
central	 European	 school	 system:	bifurcating	 the	 students	only	 at	 the	end	of	 the	 school	 year	 into	 two	
groups	 —	 “promoted”	 and	 the	 dreadful	 “held	 back,”	 which	 implies	 repeating	 the	 school	 year	 and	
following	the	same	program	once	more.	

	

	

	

Figure	2:	Bifurcation	at	the	end	of	the	year	into	“promoted”	and	“held	back.”	
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Diagrams	such	as	these	are	more	instructive	when	decorated	by	data.	One	may,	for	instance,	attach	to	
an	 edge	 the	 relative	 percentage	 of	 students	 currently	 following	 it	 or	 who	 have	 followed	 it	 over	 a	
particular	 period	 of	 time.	 For	 monitoring	 purposes,	 however,	 if	 advice	 is	 intended	 to	 be	 given	 to	
individual	students,	decoration	is	not	always	useful.	One	seeks,	therefore,	to	replace	graphs	as	a	form	of	
graphical	representation	by	higher	dimensional	objects	—	for	 instance	surfaces.	Figure	3	shows	such	a	
surface	obtained	by	“thickening”	part	of	the	graph	in	Figure	1.	In	this	thickening	process,	it	is	the	surface	
of	the	solid	object	that	will	be	retained	for	the	representation.	

Figure	3:	Thickening	of	a	graph	into	a	surface.	The	trajectory	on	the	right	represents	a	possible	study	
path	that	may	be	chosen	by	a	student.	

Mika	 Seppälä’s	 proposition	 for	 a	 new	 type	 of	model	was	 to	 define	 the	 thickened	 graphs	 explicitly	 as	
Riemann	 surfaces	 and	 the	 possible	 study	 paths	 on	 it	 as	 trajectories	 of	 Strebel	 differentials.	 In	 the	
following	 sections,	 we	 interpret	 this	 approach	 using	 the	 videos	 of	 Seppälä	 (2013,	 2014a,	 2014b)	 as	
underlying	references.	

Although	 the	 model	 is	 intended	 to	 be	 used	 for	 online	 courses	 with	 many	 diagnostic	 events	 and	
occasionally	high	degrees	of	bifurcation,	we	shall	use	school	systems	to	illustrate	the	concepts,	as	they	
are	familiar	and	simple.	

2 RECTANGLES AND CYLINDERS 

An	 edge	 of	 a	 graph	 is	 essentially	 the	 same	 as	 a	 straight-line	 segment,	 and	 the	 simplest	 way	 of	
“thickening”	it	is	to	replace	it	by	a	Euclidean	rectangle	that	has	both	length	and	width.	On	any	rectangle,	
we	 have	 two	 (perpendicular)	 standard	 foliations	 formed	 by	 the	 straight	 lines	 that	 are	 parallel	 to	 the	
sides	 of	 the	 rectangle.	We	 single	 out	 the	 one,	 called	 the	 horizontal	 foliation,	 whose	 lines	 are	 in	 the	
direction	of	the	edge	in	which	the	rectangle	is	thickening.	The	other	foliation	is	then	called	vertical.1	The	
horizontal	lines	—	we	may	use	any	number	of	them	in	a	rectangle	—	shall	be	used	to	represent	parts	of	
oriented	study	paths	of	either	 individual	students	or	student	groups	with	a	given	study	behaviour.	On	
the	 surface	 that	 will	 be	 obtained	 by	 pasting	 such	 rectangles	 together	 (see	 the	 next	 section)	 the	
horizontal	lines	merge	into	global	study	paths	that	may	be	followed	over	several	rectangles.	

The	second	simplest	thickening	of	an	edge	consists	of	replacing	it	by	a	cylinder.	This	type	of	surface	may	
be	constructed	by	pasting	together	two	parallel	sides	of	a	rectangle	as	shown	in	Figure	4.	Think	of	the	
rectangle	as	a	sheet	of	paper,	bend	or	roll	it	up	to	bring	the	two	horizontal	sides	into	matching	position	
and	 then	glue	 them	together.	 In	Riemann	surface	 theory,	 this	pasting	process	 is	defined	without	such	
																																																								
1	We	have	switched	the	roles	of	“horizontal”	and	“vertical”	as	used	in	Strebel	(1984)	and	Seppälä	(2014a,	2014b),	because	this	is	
more	intuitive	when	applied	to	learning	analytics.	The	choice	of	the	convention	is,	of	course,	of	no	importance.	
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pictorial	 description,	 it	 suffices	 to	 describe,	 for	 any	 point	𝑃	 on	 the	 lower	 side	 of	 the	 rectangle,	 the	
corresponding	point	𝑃′	on	the	upper	side	that	𝑃	would	be	 in	contact	with	after	the	bending,	and	then	
declare	 the	couple	{𝑃, 𝑃%}	as	being	 just	one	point.	 In	Riemann	surface	 jargon:	𝑃	and	𝑃′	are	 identified.	
(The	reader	who	uses	a	street	map	in	booklet	form	is	confronted	with	this	kind	of	identification	when	a	
street	annoyingly	leaves	on	top	of	the	currently	open	page	and	then	continues	on	the	bottom	of	some	
other	page.)	Figure	4	shows	a	pair	of	identified	points.	𝑃	and	𝑃′	have	the	same	distance	to	the	left	(or	
the	right)	vertical	side	of	the	rectangle	and	are	thus	endpoints	of	some	line	𝐿	of	the	vertical	foliation.	

	
Figure	4:	Conformal	rectangle	with	a	selection	of	horizontal	leaves	folded	into	a	cylinder.	The	dotted	

line	belongs	to	the	vertical	foliation.	On	the	cylinder,	it	becomes	a	closed	curve.	

On	 the	 cylinder,	 𝐿	 then	 becomes	 a	 closed	 curve.	 Hence,	 the	 cylinder	 too	 carries	 a	 horizontal	 and	 a	
vertical	 foliation.	 The	 vertical	 leaves	 are	 closed	 curves	 parallel	 to	 the	 two	 boundaries,	 the	 horizontal	
leaves	are	the	straight	 lines	that	go	 from	one	boundary	to	the	other.	The	 latter	may	again	be	used	to	
represent	individual	trajectories	on	a	study	path.	

3 BIFURCATION AND MERGING DATA 

A	bifurcation	arises	if	decision	events	direct	students	into	various	categories	or	studies.	The	bifurcating	
events	may	be	exams,	quizzes,	or	tests	provoking	a	decision	by	the	teacher,	or	a	decision	by	students	to	
skip	some	exercises	or	learning	modules.	Merging	also	takes	place	commonly	in	a	course	or	school.	

It	 is	 difficult	 to	 imagine	 rectangles	 or	 cylinders	 bifurcating,	 but	 in	 Riemann	 surface	 theory	 this	 is	 a	
standard	scenario	realized	via	pasting.	Figure	5	shows	what	is	called	a	pair	of	pants	bifurcating	from	the	
“waist”	cylinder	(grey	shaded)	 into	the	two	“leg”	cylinders,	where	the	 latter	are	not	necessarily	of	the	
same	widths.	On	the	right	hand	side,	the	result	of	the	pasting	is	again	shown	in	a	pictorial	way.	To	this	
end	the	cylinders	have	undergone	some	deformation	in	the	neighbourhood	of	the	boundary	so	that	they	
can	 be	 brought	 together	 into	 matching	 position.	 In	 Riemann	 surface	 theory,	 such	 deformations	 and	
bringing	 into	matching	 position	 are	 not	 necessary.	 It	 suffices	 to	 enumerate	 the	 cylinders	 and	 list	 the	
pasting	 rules;	 that	 is,	 to	 indicate	which	parts	 of	 the	 boundaries	 of	 the	 cylinders	 to	 paste	 together.	 In	
Figure	5,	for	instance,	the	pasting	rule	is	that	any	point	of	the	red	arc	on	the	boundary	of	cylinder	𝐶)	is	
identified	with	a	point	of	the	red	part	on	the	boundary	of	𝐶*,	any	point	of	the	brown	arc	on	𝐶)	with	a	
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point	of	the	brown	arc	on	𝐶+,	and	any	point	of	the	green	arc	on	𝐶*	with	a	point	of	the	green	arc	on	𝐶+.	A	
geometric	 condition	 for	 the	 pasting	 is	 that	 arcs	 of	 the	 same	 colour	 have	 the	 same	 lengths.	 On	 the	
resulting	pair	of	pants	these	arcs	form	a	triple	of	arcs	that	meet	in	two	points.	Later	on,	this	triple	will	be	
understood	as	an	example	of	a	critical	vertical	trajectory.	

	
Figure	5:	A	triple	of	cylinders	pasted	together	along	the	boundaries	into	a	surface	element	called	a	

pair	of	pants.	For	visual	representation,	the	cylinders	are	deformed	to	match.	

Strebel’s	 (1984)	 theorem2	 states,	 among	 other	 things,	 that	 any	 Riemann	 surface	may	 be	 obtained	 by	
such	pastings.	For	our	purposes,	we	may	thus	phrase	the	following	definition:	a	Riemann	surface	is	an	
object	obtained	by	pasting	together	cylinders	according	to	a	set	of	pasting	rules.	

Because	cylinders,	in	turn,	are	obtained	by	pasting	together	two	opposite	sides	of	a	Euclidean	rectangle,	
we	may,	equivalently,	 say	 that	a	Riemann	surface	 is	an	object	obtained	by	pasting	 together	Euclidean	
rectangles	according	to	a	set	of	pasting	rules.	

In	 the	applications	 to	 learning	analytics,	 the	pasting	 rules	 result	 from	bifurcation	and	merging	data.	A	
(much	simplified)	example	common	to	many	central	European	school	systems	is	the	bifurcation	at	the	
end	 of	 primary	 school	 that	 directs	 pupils	 into	 lower	 middle	 and	 high	 school.	 Figure	 6	 shows	 the	
correspondingly	pasted	cylinders	—	here	we	have	a	waist	cylinder	and	three	legs	—	together	with	many	
trajectories	indicating	the	percentage	of	students	in	the	three	study	paths.	(The	20–30–50	percentages	
have	been	chosen	for	graphical	simplicity	and	are	only	roughly	realistic).	The	bifurcation	data	are	based	
on	overall	past	performance.	Monitoring	is	not	provided	in	this	model	and	the	surface	representation	on	
the	left	in	Figure	6	has	no	real	advantage	over	the	decorated	graph	on	the	right.	This	shall	change	when	
monitored	 courses	 are	 looked	 at.	 For	 the	 learning	 analytics	 of	 the	 latter,	 Strebel	 differentials	 are	
interesting	as	 they	exhibit	 the	same	bifurcation	patterns.	 Let	us	now	outline,	at	 least	pictorially,	what	
they	are.	

																																																								
2	A	list	of	several	theorems	to	which	many	mathematicians	have	contributed.	
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Figure	6:	Bifurcation	at	the	end	of	primary	school	into	lower,	middle,	and	high-school.	Monitoring	and	

redirecting	is	not	provided	in	this	model.	

4 STREBEL DIFFERENTIALS 

In	complex	function	theory,	a	quadratic	differential	is	a	mathematical	expression	that	can	be	written	in	
the	following	form:	

𝜑 𝑧 𝑑𝑧*	

where	𝑧	is	a	variable	that	runs	through	complex	numbers,	𝜑	is	a	complex	differentiable	function,	and	𝑑𝑧	
is	 another	 complex	 variable,	 intended	 to	 play	 the	 role	 of	 a	 “variation	 of	 𝑧.”	Geometrically	𝑧,	𝑑𝑧,	 and	
𝜑 𝑧 𝑑𝑧*	 are	 interpreted	as	certain	points	 in	 the	Euclidean	plane,	where	 the	plane	 is	endowed	with	a	
cartesian	coordinate	system.	A	deeper	understanding	of	the	meaning	of	the	expression	“𝜑 𝑧 𝑑𝑧*”	will	
not	be	necessary	for	our	purposes,	it	suffices	to	remark	that	it	leads	to	patterns	such	as	those	in	Figures	
7–9.	

If	we	draw	a	straight	 line	 from	the	origin	of	 the	coordinate	system	to	𝑧,	 then	 this	 line	 forms	an	angle	
with	 the	 first	coordinate	axis,	 called	 the	argument	of	𝑧,	denoted	by	arg{𝑧}.	Similarly,	𝑑𝑧	 and	𝜑 𝑧 𝑑𝑧*	
have	the	arguments	arg{𝑑𝑧}	and	arg{	𝜑 𝑧 𝑑𝑧*}.	There	are	rules	about	how	to	compute	the	argument	of	
𝜑 𝑧 𝑑𝑧*	using	complex	number	calculus.	

We	may	visualize	a	quadratic	differential	by	a	field	of	straight	line	segments.	To	this	end,	we	sort	out	for	
any	𝑧	the	particular	value	of	𝑑𝑧	that	has	distance	1	to	the	origin	and	satisfies	

arg 𝜑 𝑧 𝑑𝑧* = 0	

Figure	 7	 shows	 these	 fields	 for	 the	 functions	 𝜑 𝑧 = 1,	 𝜑 𝑧 = 𝑧,	 𝜑 𝑧 = 𝑧*	 and	 𝜑 𝑧 = 𝑧6.	 Each	
rectangle	shows	 the	same	part	of	 the	Euclidean	plane	with	 the	origin	of	 the	coordinate	system	 in	 the	
centre.	To	obtain	the	graphical	representation,	we	have	selected	a	number	of	points	spread	out	in	the	
plane	 and	 then	 drawn	 for	 any	 selected	 point	 z	 a	 straight-line	 segment	 going	 from	𝑧	 to	 𝑧 + 𝑟𝑑𝑧.	 The	
additional	 factor	r	 in	 this	drawing	 instruction	has	been	chosen	to	give	the	 line	segments	a	 length	that	
makes	the	field	“look	good.”	
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Figure	7:	Line	fields	of	quadratic	differentials	in	the	plane.	

The	 segments	 in	 these	 figures	 seem	 to	align	along	 curves.	 Indeed,	one	of	 the	 results	 about	quadratic	
differentials	 is	 that	 the	 entire	 plane	 is	 filled	 out	 with	 a	 family	 of	 smooth	 curves	 to	 which	 the	 line	
segments	are	 tangent.	These	curves	are	called	 the	horizontal	 trajectories	of	 the	quadratic	differential.	
Figure	 8	 shows	 these	 trajectories	 for	 the	 preceding	 examples.	 In	 these	 examples,	 an	 exceptional	
situation	 is	 given	 at	 point	 𝑧 = 0	 (the	 centres	 of	 the	 squares).	 Here	 several	 trajectories	 merge.	 In	 a	
situation	 like	 this,	 the	merging	 point	 is	 called	 a	 critical	 point	 and	 the	merging	 trajectories	 are	 called	
critical	trajectories.	

	
Figure	8:	Horizontal	trajectories	of	quadratic	differentials	in	the	plane.	

If	we	replace	the	above	angle	condition	for	the	line	field	by	the	condition	

arg 𝜑 𝑧 𝑑𝑧* = 𝜋,	

all	segments	of	the	field	become	rotated	by	𝜋/2	that	is,	by	90	degrees,	and	we	get	the	foliation	of	the	
plane	 by	 the	 so-called	 vertical	 trajectories.	 Horizontal	 and	 vertical	 trajectories	 intersect	 each	 other	
orthogonally	 (except	 at	 the	 critical	 point).	 Figure	 9	 shows	 both	 foliations	 together,	 again	 for	 the	
preceding	examples.	

In	a	 similar	way,	quadratic	differentials	with	horizontal	and	vertical	 trajectories	exist	also	on	Riemann	
surfaces.	Figures	5	and	10	show	two	cases	of	a	general	construction	that	produces	many	—	albeit	not	all	
—	such	differentials:	cylinders	with	 the	standard	horizontal	and	vertical	 foliations	are	pasted	together	
along	 their	 boundaries	 according	 to	 some	 given	 pasting	 rules.	 The	 pairs	 of	 horizontal	 and	 vertical	
foliations	of	the	cylinders	together	yield	two	foliations	of	the	resulting	surface,	which	then	again	shall	be	
called	horizontal	and	vertical	 foliations.	Part	of	 the	aforementioned	Strebel	 theorem	states	 that	 these	
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foliations	are	the	trajectories	of	a	uniquely	determined	quadratic	differential.	The	differentials	obtained	
through	these	constructions	are	called	Strebel	differentials.3	

Figure	9:	Horizontal	trajectories	(blue)	and	vertical	trajectories	(brown)	of	quadratic	differentials	in	
the	plane.	The	straight	lines	emerging	from	the	centre	are	the	critical	trajectories.	

The	boundaries	of	the	cylinders	pasted	together	become	the	critical	vertical	trajectories	on	the	surface.	
They	 consist	 of	 arcs	 that	 come	 together	 at	 certain	 points,	 called	 the	 critical	 points.	 Part	 of	 Strebel’s	
theorem	also	 states	 that	 in	 the	neighbourhood	of	a	 critical	point	on	 the	 surface,	 the	 trajectories	 look	
exactly	as	the	trajectories	in	the	neighbourhood	of	a	critical	point	of	a	differential	in	the	plane.	

	

Figure	10:	Trajectories	of	a	Strebel	differential	on	a	pair	of	pants.	The	thin	lines	(blue)	are	the	
horizontal	trajectories,	the	thick	self	intersecting	curve	is	a	critical	vertical	trajectory	and	the	

intersection	point	is	a	critical	point.	

Figures	5	and	10	illustrate	this	on	a	pair	of	pants,	drawn	as	a	surface	in	space.	The	marked	arcs	on	the	
boundaries	of	 the	cylinders	pasted	 together	 turn	 into	 the	arcs	of	 the	critical	vertical	 trajectory	on	 the	
surface;	the	endpoints	of	the	arcs	become	the	critical	points.	In	the	first	example,	we	have	two	critical	
points,	 each	with	 three	 “arms”;	 in	 the	 second	 example,	 there	 is	 one	 critical	 point	with	 four	 outgoing	
arms.	 The	 two	 critical	 points	 of	 the	 first	 example	 correspond	 to	 the	 differential	 𝑧𝑑𝑧*;	 the	 second	
example	corresponds	to	𝑧*𝑑𝑧*.	

																																																								
3	There	exists	also	a	variant	of	Strebel	differentials	on	so-called	punctured	Riemann	surfaces,	but	we	do	not	consider	them	here.	
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Observe	 how	 the	 horizontal	 trajectories	 on	 the	 surfaces	 bifurcate	 at	 the	 critical	 vertical	 trajectories.	
Such	patterns	may	be	quite	involved.	Figure	11	shows	cases	that	will	be	used	in	the	next	section.	

It	 is	 through	 this	 bifurcation	 aspect	 that	Mika	 Seppälä	 aimed	 to	 investigate	 Strebel	 differentials	 as	 a	
possible	model	for	the	representation	of	student	study	paths	through	monitored	online	courses.	

	
Figure	11:	Surface	elements	with	a	critical	vertical	trajectory	(brown)	and	a	selection	of	horizontal	
trajectories	(blue).	The	critical	points	with	6	arms	in	the	first	two	examples	corresponds	to	the	last	

case	in	Figure	9.	

5 EXAMPLES 

Here	we	illustrate	some	examples	of	how	certain	structural	elements	of	a	course	or	a	school	system	may	
be	illustrated	with	these	methods.	We	first	extract	from	Seppälä	(2013,	2014a,	2014b)	the	way	in	which	
the	model	based	on	these	methods	 is	 intended	to	be	used.	The	following	examples	are	from	our	own	
interpretation.	

In	 the	 extraction,	 “resources”	 means	 textbooks,	 lecture	 notes,	 videos,	 solved	 problems,	 and	 so	 on;	
“learning	 characteristics”	 means	 a	 way	 of	 using	 the	 resources	 and	 approaching	 the	 exercises	 of	 the	
course;	“examination	events”	means	brief	or	extended	diagnostic	tests,	quizzes,	peer	graded	workshops,	
instructor	graded	exams,	 final	examinations,	and	so	on.	The	following	 list	outlines	what	the	geometric	
objects	described	in	the	preceding	sections	are	intended	to	represent:	

• Cylinder:	a	proposed	package	of	activities	between	two	examination	events	
• Critical	vertical	trajectory:	an	examination	event	
• Horizontal	 trajectory:	 study	 path	 of	 a	 hypothetical	 student	 with	 given	 learning	

characteristics	
• Width	 of	 a	 cylinder:	 overall	 percentage	 of	 students	 whose	 study	 paths	 go	 through	 that	

cylinder	
• Length	 of	 a	 cylinder:	 this	 definition	 is	 left	 to	 the	 intended	 use	 by	 the	 instructor;	

for example,	the	duration	of	the	activity	
• Monitoring:	the	 instructor’s	advice	given	to	the	student	to	 improve	the	predicted	 learning	

outcome	by	switching	trajectories	(=	to	modify	the	learning	characteristics)	
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The	first	example	(Figure	12)	shows	schematically	the	procedure	in	Finnish	schools	corresponding	to	the	
graph	in	Figure	1.	The	edges	of	activities	are	now	replaced	by	gray	shaded	cylinders	and	the	examination	
events	are	represented	by	non-shaded	surface	elements.	The	critical	vertical	trajectories	are	not	drawn.	
Trajectories	1,	2,	 and	3	 correspond	 to	profiles	of	 students	who	 remain	at	a	 certain	 level.	 Trajectory	4	
bifurcates	 from	 level	 two	to	 level	 three	at	 the	test	event	 in	 the	middle	and	then	remains	at	 the	same	
level.	Students	in	trajectory	2	may	be	encouraged	by	the	instructor	to	modify	their	study	characteristics	
so	 as	 to	 switch	 from	 trajectory	 2	 to	 trajectory	 4	 that	 later	 will	 be	 on	 level	 three.	 Other	 trajectories	
oscillate	between	two	levels,	and	so	on.	

	
Figure	12:	Hypothetical	study	paths	in	Finnish	schools	represented	as	trajectories	of	a	Strebel	

differential	on	a	Riemann	surface.	

The	same	structure	may	show	up	in	an	online	course,	a	student	may	be	directed	to	a	program	that	offers	
additional	exercises	depending	on	what	part	of	the	weekly	quiz	has	been	missed.	A	student	may	also	be	
encouraged	by	the	instructor	to	make	different	use	of	the	resources	and	thus	switch	to	a	trajectory	with	
a	better	predicted	outcome.	

The	next	figure	illustrates	an	improvement	over	the	school	system	schematized	earlier	in	Figure	6.	Many	
schools	offer	one	year	bridge	programs	(so	called	passerelles)	allowing	late	bloomers	to	reach	middle	or	
high	school.	A	more	complex	surface	with	additional	diagnostic	tests	at	the	end	of	the	classical	program	
represents	this	scheme.	Representing	various	categories	of	 learning	behaviour	by	different	trajectories	
and	following	trajectories	backwards,	 for	 instance	along	the	red	dotted	one,	may	 lead	to	a	revision	of	
the	decision	procedure	at	the	end	of	primary	school.	
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Figure	13:	One	year	bridge	programs	allowing	students	who	are	about	to	finish	lower	or	middle	school	
to	reach	middle	school	or	high	school	graduation.	

The	final	two	examples	are	taken	from	the	École	polytechnique	fédérale	de	Lausanne	in	Switzerland	
(EPFL,	2016).	Figure	14	depicts	the	promotion	system	for	engineering	students	in	their	first	two	years	of	
study	at	EPFL	as	it	has	been	in	practise	until	the	academic	year	2015–2016.	The	scheme	is	represented	
schematically	as	a	Strebel	differential	on	a	Riemann	surface.	Each	grey	shaded	cylinder	represents	a	one	
year	program	consisting	of	two	terms.	In	the	cylinders	on	the	lower	level,	no	educational	program	such	
as	a	possible	summer	school	is	foreseen.	(For	graphical	simplicity,	the	thicknesses	of	the	cylinders	do	not	
represent	the	percentages	of	students	correctly.)	A	final	exam	for	promotion	and	relegation	takes	place	
at	the	end	of	every	year.	Students	in	trajectories	1,	2,	and	3	reach	the	third	year	successfully;	students	

with	two	successively	failed	finals	must	drop	out.	

	

Figure	14:	Strebel	differential	representing	relegation	and	promotion	of	first	and	second	year	
engineering	studies	at	EPFL.	
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EPFL	 has	 recently	 restructured	 its	 first-year	 study	 plan	 by	 inserting	 a	 new	 bifurcation	 after	 the	 first	
semester,	taking	out	students	not	likely	to	make	it	at	the	end	of	the	year	and	putting	them	into	a	special	
program	with	its	own	exam	during	the	second	semester.	It	is	assumed	that	this	will	allow	them	to	restart	
the	 first-year	program	with	better	preparation.	Figure	15	shows	the	reform	effort.	To	separately	 track	
the	future	progress	of	students	who	have	followed	the	special	program,	we	have	replaced	the	surface	of	
Figure	14	with	a	more	complex	one.	

	
Figure	15:	Reform	of	first-year	engineering	studies	at	the	EPFL.	

Students	failing	the	exam	after	the	first	term	are	required	to	follow	the	newly	offered	full-time	review	
course	 (cours	de	mise	à	niveau)	during	the	second	term,	at	the	end	of	which	they	must	pass	a	special	
exam.	Students	having	passed	this	exam	are	admitted	to	a	second	round	of	the	first-year	program.	It	is	
expected	 that	 students	who	have	 followed	 the	 review	course,	 such	as	 those	 in	 trajectory	1,	will	 have	
better	future	performance	than	those	repeating	the	first	year	“classically,”	such	as	those	in	trajectory	2.	
Replacing	 the	 1st	 term	 final	 exam	with	 a	 differentiating	 diagnostic	 test	 bifurcating	 the	 students	 into	
different	variants	of	the	review	course	may	further	improve	this.	

6 FINAL REMARKS	

As	mentioned	 in	 the	beginning,	Mika	Seppälä’s	motivation	 for	graphical	 course	 representation	was	 to	
improve	 his	 online	 courses	 and	 advise	 students	 to	 use	 well	 chosen	 additional	 resources	 to	 ensure	
success	and	avoid	dropouts. Here	are	the	obvious	advantages	of	a	more	surface-like	representation	of	
student	learning	characteristics	and	course	data	in	view	of	these	goals:	

The	surface	representation	provides	a	visual	tool	to	analyze	and	improve	the	course	structure.	In	looking	
at	 student	 data	 recorded	 by	 trajectories	 on	 a	 surface,	 one	may	 locate	 shortcomings;	 for	 instance,	 by	



	
(2017).	Study	paths,	Riemann	surfaces,	and	Strebel	Differentials.	Journal	of	Learning	Analytics,	4(2),	62–75.	
http://dx.doi.org/10.18608/jla.2017.42.7	

ISSN	1929-7750	(online).	The	Journal	of	Learning	Analytics	works	under	a	Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 74	

following	 backwards	 the	 trajectory	 of	 a	 student	 who	 eventually	 dropped	 out.	 Too	 difficult	 exercise	
sheets,	too	heavy	workloads,	and	so	on	at	the	beginning	of	the	course	may	have	caused	an	unsuccessful	
learning	 experience	 that	 led	 the	 student	 from	 a	 promising	 initial	 trajectory	 to	 a	 less	 favourable	 one.	
Analysis	of	the	neighbourhoods	of	such	points	on	the	surface	may	suggest	improvements	in	the	course.	

• Visual	representation	showing	on	which	trajectory	an	individual	student	currently	sits	may	help	
the	instructor	give	useful	advice.	By	looking	at	a	student’s	current	trajectory,	the	instructor	sees	
the	predicted	learning	outcome	in	a	flash	and	may	suggest	a	change	in	trajectory,	not	just	by	a	
warning	 (“work	 harder”)	 but	 by	 giving	 constructive	 advice	 to	 consult	 specific	 additional	
resources	or	to	use	better	adapted	work	sheets.	

• Seeking	 out	 a	 new	 form	of	 representation	 originates	 in	 the	 problem	of	 how	 to	 deal	with	 the	
quite	 extensive	data	 collection	 scheme	of	 an	online	 course	 and	 to	provide	helpful	monitoring	
based	on	 it.	However,	while	working	out	the	examples	 in	section	5,	 it	appeared	to	us	that	the	
surface	 representation	 with	 Strebel	 differentials	 may	 also	 be	 useful	 for	 classical	 courses	 in	
higher	education	with	weekly	hand-out	exercises,	for	instance.	

Several	drawbacks	for	which	we	do	not	currently	have	a	remedy	also	present	themselves:	

• The	 presentation	 is	 quite	 complicated.	 No	 viewer	 software	 in	 the	 direction	 of	 the	 proposed	
model	 exists	 to	 our	 knowledge.	 Furthermore,	 the	 interaction	with	 the	 surface	 representing	 a	
course	is	not	obvious:	selecting	a	student,	adding	and	subtracting	bifurcations	while	integrating	
older	observations,	etc.	requires	special	skills	from	the	instructor.	

• The	almost	planar	aspect	of	the	surfaces	illustrated	in	Figures	12–15	is	not	typical	for	an	online	
course;	students	do	not	behave	in	a	planar	manner.	In	reality,	the	number	of	cylinders	is	quite	
large	and	the	surface	is	difficult	to	represent	in	space	such	that	it	can	be	comfortably	viewed.	

• Classifying	 the	 learning	 characteristics	 into	 trajectories	 seems	 difficult.	 Furthermore,	 a	 course	
may	 have	 to	 be	 run	 several	 times	 until	 the	 Strebel	 differential	 —	 i.e.,	 the	 surface	 plus	 the	
trajectory	scheme	—	represents	the	course	adequately.	

• Except	 at	 the	 critical	 points,	 the	 trajectories	 of	 a	 Strebel	 differential	 do	 not	 intersect.	
Accordingly,	 numerous	 handles	must	 be	 added	 to	 a	 surface	 to	 provide	 necessary	 overpasses.	
This	seems	to	be	a	serious	drawback.	However,	it	is	also	a	challenge:	designing	a	course	in	such	a	
way	that	it	is	representable	by	a	Strebel	differential	on	a	not	too	complicated	Riemann	surface	
may	result	in	a	product	that	is	particularly	successful.	
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