
su3_bench, a Micro-benchmark for
Exploring Exascale Era Programming

Models, Compilers and Runtimes
Douglas Doerfler, Lawrence Berkeley National Laboratory
Christopher Daley, Lawrence Berkeley National Laboratory

Thomas Applencourt, Argonne National Laboratory

P3HPC Forum
September 1st, 2020

The su3_bench benchmark

• su3_bench was developed to provide a means to explore different

programming methodologies using a simple, but nontrivial, mathematical

kernel

• Derived from the MILC Lattice QCD (LQCD) code

• Matrix-matrix and matrix-vector SU(3) (special unitary group of degree 3) operations

are a fundamental building block of LQCD applications

• Most LQCD applications use domain specific implementations (libraries) written in

machine specific languages and/or intrinsics …

• Hence performance portable methodologies are of interest

• Kernel calculates an SU(3) matrix-matrix multiply of complex numbers

• Benchmark operates over a lattice of dimension = L^4

• https://gitlab.com/NERSC/nersc-proxies/su3_bench

• Released as open-source software under LBNL’s modified BSD license

2

https://gitlab.com/NERSC/nersc-proxies/su3_bench

su3_bench data structures
• SU(3) matrix definition (72 bytes single, 144 bytes double)

typedef struct { std::complex<float> e[3][3]; } fsu3_matrix;
typedef struct { std::complex<double> e[3][3]; } dsu3_matrix;
#if (PRECISION==1)
#define su3_matrix fsu3_matrix

#else
#define su3_matrix dsu3_matrix

#endif

• Site definition
• Based on MILC’s lattice.h, but reduced to bare minimum of fields
typedef struct {
su3_matrix link[4]; // the fundamental gauge field
int x,y,z,t; // coordinates of this site
int index; // my index in the array
char parity; // is it even or odd?

#if (PRECISION==1)
int pad[2]; // pad out to 64 byte alignment

#else
int pad[10];

#endif
} site __attribute__ ((aligned));

3

C = A * B
su3_bench performs a 3x3
complex matrix-matrix
multiply for each gauge field
in the 4 lattice dimensions

The kernel: C = A * B

for (i=0;i<total_sites;++i) // L^4 lattice sites
for (j=0;j<4;++j) // 4 links, SU(3) matrices, per site
for(k=0;k<3;k++) // 3x3 matrix elements per link

for(l=0;l<3;l++) {
cc = {0.0,0.0};
for(m=0;m<3;m++) // 3x1 dot product per matrix element
cc += A[i].link[j].e[k][m] * B[j].e[m][l];

C[i].link[j].e[k][l] = cc;
}

4

Nominal GPU parallelization strategy:
• For each site, create 4*3*3=36 threads
• Each thread does a single 3x1 vector dot product
• Reduces the number of Sites/group and alleviates cache pressure

Analytical roofline model

• A & C are lattices of size L^4 sites
• su3_matrix[4] à 288 bytes/site

• A is read once per iteration

• C is written once per iteration

• B is a single su3_matrix[4] array
• Relatively small, should stay in cache

• Total Bytes = 576 Bytes (single-precision)

• Total FLOPS = 864 FLOPS/site

• Arithmetic Intensity (FLOPs/Byte)
• AI = 864 / 576 = 1.5 single-precision

• AI = 0.75 double-precision

5

1

10

100

1,000

10,000

100,000

0.1 1 10 100

GF
LO

PS
/s

ec

Arithmetic Intensity (FLOPS/Byte)

Su3_bench: Cori GPU Analytical Roofline

Performance <= 1,269 GFLOPS/sec846 GB/sec (BabelStream)
14,274 GF/s (SGEMM)

Test beds used for this study

6

NERSC: Cori GPU OLCF: Lyra ALCF: Iris
GPU architecture Nvidia V100 AMD MI-60 Intel Gen9 NEO

units/device 80 SM 64 CU 72 EU

FP32 cores/simd lanes 5120 = SMs*64 4096 = CUs*64 576 = EUs*2*4

FP64 cores/simd lanes 2560 = SMs*32 same 144 = EUs*1*2

L2 cache 6144 KB 4096 KB 1536 KB

L1 cache 6400 KB/SM (shared) 16 KB/CU

TFLOP/s peak
(nominal/boost clock)

13.4/15.7 single
6.72/7.83 double

9.83/14.8 single
4.92/7.37 double

1.32 single
0.331 double

TFLOP/s sustained 14.3(1) single
7.05(1) double

11.2(1) single
5.63(1) double

1.21(3) single
0.302(3) double

Gbyte/s 897(2) peak
847(2) sustained (94%)

1024(2) peak
816(2) sustained (80%)

25.6(3)

1. Using mt-dgemm benchmark
2. Using BabelStream benchmark
3. Using Empirical Roofline Toolkit, single-precision is derived from double-precision

Cori-GPU Programming Environments

CUDA HIP OpenCL OpenMP OpenACC SYCL Intel DPCPP
CUDA
10.2.89

rocm-
3.3.0

Version 1.2
• GCC
• OpenCL in CUDA

driver
• POCL:

based on llvm 9
w/SPIRV-LLVM
translator;
CUDA 9.2.148

llvm/10.0.0
• CUDA

10.1.243
PGI/19.20-
alpha2
Cray PE

PGI/19.10
• Cori GPU

module
Cray PE

Codeplay
ComputeCpp 1.3.0
• With POCL

(see OpenCL)
• Experimental PTX

target
hipSYCL
• llvm/9.x
• CUDA 10.0.130

sycl branch
• With

Codeplay
developed
NVPTX
backend

• CUDA
10.1.243

7

• Environments in bold where used for this study
• Environments in grey are available, but not explored here

• I will note that POCL outperformed Nvidia’s OpenCL driver by 22% on average

Early Results (Fall 2019)
CUDA OpenMP OpenACC OpenCL SYCL

threads/SM 128 36 N/A 128 128
GFLOPS/sec 1112 104 810 1095 5.8

analytical roofline 1269 1269 1269 1269 1269

8

• Note: Log scale!
• CUDA and OpenCL perform near

roofline
• OpenACC is respectable
• OpenMP & SYCL have serious

issues

1

10

100

1000

10000

CUDA OpenMP OpenACC OpenCL SYCL

GL
OP

S/
s

su3_bench
performance roofline

OpenMP Workaround

#pragma omp target teams distribute \
thread_limit(threads_per_team)

for(int i=0; i<total_sites; ++i) {
#pragma omp parallel for collapse(3)
for (int j=0; j<4; ++j) {

for(int k=0;k<3;k++) {
for(int l=0;l<3;l++){

Complx cc = {0.0, 0.0};
for(int m=0;m<3;m++)

cc += d_a[i].link[j].e[k][m]
* d_b[j].e[m][l];

d_c[i].link[j].e[k][l] = cc;
}

}
}

}

9

size_t num_work_items = total_sites *
threads_per_team;
#pragma omp target teams distribute parallel for
for (int id =0; id < num_work_items; id++) {

int i = id/36;
int j = (id%36)/9;
int k = (id%9)/3;
int l = id%3;
Complx cc = {0.0, 0.0};
for(int m=0;m<3;m++)

cc += d_a[i].link[j].e[k][m]
* d_b[j].e[m][l];

d_c[i].link[j].e[k][l] = cc;
}

Nominal Implementation: one thread/dot product Workaround: OpenCL like implementation2, w/manual collapse

= 1028 GF/s !!!= 104 GF/s

à LLVM implementation: end of parallel
region forces a flush after each iteration,
resulting in excessive memory traffic1

1. Thanks to Chris Daley (LBL) for help with implementation and identifying the flush “feature”
2. Thanks to Xinmin Tian (Intel) for workaround and Intel compiler optimizations

SYCL Workaround

auto d_a = a_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto d_b = b_buf.get_access<cl::sycl::access::mode::read>(cgh);
auto d_c = c_buf.get_access<cl::sycl::access::mode::discard_write>(cgh);

cgh.parallel_for<class k_mat_nn>(cl::sycl::nd_range<1> {total_wi, wgsize},
[=](cl::sycl::nd_item<1> item) {

size_t myThread = item.get_global_id(0);
size_t mySite = myThread/36;
if (mySite < total_sites) {

int j = (myThread%36)/9;
int k = (myThread%9)/3;
int l = myThread%3;
Complx cc = {0.0, 0.0};
for (int m=0;m<3;m++) {

const auto aa = d_a[mySite].link[j].e[k][m];
const auto bb = d_b[j].e[m][l];
cc += aa * bb;

}
d_c[mySite].link[j].e[k][l] = cc;

}
}

10

Nominal Implementation: array indexing

Workaround: Pointer indexing1

for (int m=0;m<3;m++) {
const auto aa = (d_a.get_pointer() + mySite)->link[j].e[k][m];
const auto bb = (d_b.get_pointer() + j)->e[m][l];
cc += aa * bb;

}
d_c[mySite].link[j].e[k][l] = cc;

SYCL 1.2.1 spec bug2:
For dataT operator[] using read
only mode:
“Returns the value of the
element stored within the SYCL
buffer this SYCL accessor is
accessing at the index specified
by index.”

= 816 GF/s !!!
= 5.8 GF/s

1. Thanks to Thomas Applencourt (ANL) for figuring out pointer reference performs well
2. Thanks to John Pennycook (Intel) for figuring out SYCL spec issue

11

Results after workarounds

• CUDA, OpenCL and OpenMP are near
the roofline and are essentially BW
bound

• OpenACC, and SYCL implementations are
still seeing some form of compute bound
behavior

CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
threads/SM 128 144 N/A 128 144 144 144

GFLOPS/sec 1111 1028 810 1095 816 767 880
analytical roofline 1269 1269 1269 1269 1269 1269 1269

* result with workaround

100

1000

10000

CU
DA

Op
en
MP
*

Op
en
AC
C

Op
en
CL

SY
CL*

hip
SY
CL*

DP
CP
P*

GL
OP

S/
s

su3_bench
performance roofline

Performance vs. Threads/Workgroup

12

of threads/SM CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
36 521.9 757.1 810.0 599.4 498.6 466.7 520.3
64 1025.1 985.3 1056.7 780.6 741.4 878.1
72 1103.2 921.2 1083.7 774.1 758.2 879.3

128 1111.5 1005.5 1095.2 786.6 742.8 870.8
256 1108.0 1020.5 1092.4 806.1 756.8 872.0

• CUDA & OpenCL
• Require at least 64 threads/block
• Near roofline performance

• OpenMP, OpenACC, & SYCL
• Still seem to be have computational

inefficiencies

0

200

400

600

800

1000

1200

CU
D

A

O
p
enM

P*

O
p
enA

C
C

O
p
enCL

SYCL*

hip
SY

CL*

D
PCP

P*

G
F

L
O

P
S

/
s

su3_bench: Performance vs. Threads/SM

36

64

72

128

144

256

288

512

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

CUDA

Open
MP

Open
MP*

Open
ACC

Open
CL

SY
CL

SY
CL*

hipSYC
L*

DPC
PP*

Actual/Theoretical
FLOPs DRAM read DRAM write

Measured Roofline (using nvprof)
CUDA OpenMP OpenMP* OpenACC OpenCL SYCL SYCL* hipSYCL* DPCPP*

FLOPs 1.00 0.92 1.00 1.00 1.00 0.92 0.92 1.00 0.92
DRAM read 1.11 1.30 1.17 1.12 1.11 41.09 1.11 1.11 1.11

DRAM write 1.11 4.07 1.12 1.44 1.09 243.89 1.48 1.47 1.48
measured Roofline 1144 473 1108 992 1152 9 978 985 978

• Pre-workaround, OpenMP and SYCL
implementations were moving a lot of data!
• SYCL still has high write ratio

• DRAM read ratio of 1.11 is ideal
• Actual AI is 1.35 including other elements in

the site structure,
1.5 / 1.35 = 1.11

• FLOP counts depend on the compiler
• C += A * B; for 3x1 vectors
• 1.00 – All ops are FMA
• 0.92 – 1st accumulation of 3x1 vector-vector

multiply is an assignment

Performance vs. Measured Roofline

14

CUDA OpenMP* OpenACC OpenCL SYCL* hipSYCL* DPCPP*
threads/SM 128 144 128 144 144 144

GFLOPS/sec 1111 1028 810 1095 816 767 880
measured roofline 1144 1108 992 1152 978 985 978

• CUDA, OpenMP and OpenCL are near
the roofline and are essentially BW
bound

• OpenACC, and SYCL implementations are
moving more data and have a lower
roofline, in particular writes

100
300
500
700
900

1100
1300

CUDA

OpenMP*

OpenACC

OpenCL
SYCL*

hipSY
CL*

DPCPP*

GL
OP

S/
s

su3_bench
performance measured roofline

Results for AMD Vega 20: OLCF Lyra test bed
• HIP and OpenCL perform well, but not as good as

CUDA on Nvidia’s Volta
• Same 4 stacks of HBM as Volta

• hipSYCL limitation?

15

HIP OpenCL OpenMP hipSYCL
threads/SM 512 128 64 512

GFLOPS/sec 908.1 912.6 703.5 356.2
roofline 1215.8 1215.8 1215.8 1215.8

0

100

200

300

400

500

600

700

800

900

1000

HIP OpenCL OpenMP hipSYCL

GF
/s

Performance vs. Threads/block

36

64

72

128

144

256

288

512100

1000

10000

HIP OpenCL OpenMP hipSYCL

GF
/s

su3_bench
performance roofline

Results for Intel Gen9/NEO: ALCF Iris test bed

16

OpenCL DPCPP OpenMP
threads/SM 36 36 36

GFLOPS/sec 34.6 34.5 33.4
roofline 38.4 38.4 38.4

0

5

10

15

20

25

30

35

40

OpenCL DPCPP OpenMP*
GF

/s

Performance vs. Threads/Block

36

64

72

128

144

0

10

20

30

40

50

OpenCL DPCPP OpenMP*

GF
/s

su3_bench
performance roofline

Programming Model vs. Architecture

17

CUDA HIP OpenCL OpenMP OpenACC SYCL DPCPP
Nvidia X X X X X X(1) X(2)

AMD X X X X(3)

Intel X X X X

1. ComputeCPP with POCL, which is experimental/unsupported; ComputeCPP also supports a NVPTX
backend, but it’s deemed experimental and had performance issues with su3_bench

2. This study used DPCPP as a SYCL compiler, SYCL extensions are untested

3. hipSYCL only at this point in time; ComputeCpp doesn’t support GCN backend, perhaps POCL works?

Performance Portability1

18

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%
CUDA

HIP

OpenMP

OpenCLSYCL

DPCPP

OpenACC

Application Efficiency
Cori GPU/V100 Lyra/MI-60 Iris/Gen9 NEO

1) S. J. Pennycook, J. D. Sewall, V. W. Lee, “A Metric for Performance Portability”, Proceedings of the 7th
International Workshop in Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems, Nov. 2016

Programming Model
Efficiency

Cori GPU 86.2%

Lyra 66.9%

Iris 99.0%

Cross Platform
Efficiency

OpenMP 86.9%

OpenCL 99.4%

SYCL 59.9%

Getting good OpenMP performance
can be a challenge

19

• Su3_bench includes four (4) different
OpenMP implementations
• All 4 seem to be reasonable solutions
• Drastically varied performance
• Still necessary to tune with num_teams()

and thread_limit() directives
• We have explored Clang, Cray CCE,

NVIDIA/PGI and Intel compilers and
runtimes
• Using su3_bench to explore OpenMP

compilers and runtimes is a presentation
in itself!

0

200

400

600

800

1000

1200

1400

36 64 72 128 144 256 288 512

GF
LO

P/
s

num_teams(16000) thread_limit(X)

OpenMP: Clang release-10.x
Ver. 0 Ver. 1 Ver. 2 Ver. 3

Clang release-10.x results
Version 0: Nominal version (see OpenMP issue slide)
Version 1: Manually distribute sites across teams
Version 2: Work item version (see OpenMP issue slide)
Version 3: Uses collapse(4) over outer loop

Summary and conclusions

• Su3_bench is an open benchmark developed to explore exascale era languages,
compilers and runtimes
• https://gitlab.com/NERSC/nersc-proxies/su3_bench

• Roofline analysis shows that the benchmark is memory bound, however it is
more than just another STREAM benchmark
• A non-trivial complex matrix-matrix multiply kernel with multiple loop nests
• Initial analysis discovered serious compiler issues that significantly limited performance
• Even after workarounds and optimizations, performance varies up to 30% across the different

programming environments
• Analysis has been performed across NVIDIA, AMD and Intel GPUs

• Performance portability is good across architectures
• All languages can target the NVIDIA GPU, not a surprising conclusion given its longevity in the

market
• There has been extensive use of su3_bench in evaluating OpenMP compilers and

runtimes, results of which are beyond the time allowed by this venue
• However, if you’re interested we’d be happy to work with you

20

https://gitlab.com/NERSC/nersc-proxies/su3_bench

Future Work

• Need to incorporate more realistic memory access patterns
• Although the SU(3) multiplications represent LQCD codes, the lattice site

access patterns of su3_bench do not
• Higher level Dslash stencil operation proxy-application is desirable

• Need to incorporate Lattice QCD methods that allow effective use of
SIMD for CPU targets?
• Typically incorporates a data reordering technique to allow adjacent sites to

have better spatial locality and hence better utilization of long SIMD lengths

21

