SUBDRILL THE UNDERUTILISED BLASTING PARAMETER

46TH ANNUAL CONFERENCE ON EXPLOSIVES AND BLASTING TECHNIQUE

STEPHEN MANSFIELD GROUP SPECIALIST – BLASTING

WHAT IS SUBDRILL?

• The portion of a blast hole that is drilled below the target grade elevation, and in most cases loaded with explosives.

WHY IS IT USED?

• To enable efficient excavation to the lower bench level.

SUBDRILL DESIGN STANDARDS

SUBDRILL DESIGN RECOMMENDATIONS

- Use minimal subdrill and if the rock mass properties are favourable, use no subdrill at all.
- Negative effects of using long or excessive subdrill include:
 - Wasting drilling and blasting time, resources and expenditure.
 - Increasing ground vibration due to over confinement of explosives in the subdrill.
 - Accentuated rock movement and displacement.
 - Damage to the rock mass at and below the target floor elevation.
 - Difficult drilling conditions in the underlying bench, including collaring, leading to problematic drilling conditions.

SENTINEL MINE

- Located approximately 150 km (93 mi) west of the town of Solwezi in the North Western Province of Zambia.
- Structurally modified, sediment hosted copper deposit.
- Mineralisation is primarily sulphide, with sheet like horizons of ore that dip from south to north at between 20 and 30 degrees.

SENTINEL MINE

- Annual material movement of 150 Mtonne (165 Mton) and copper production of 230 ktonne (253 kton).
- Ultimate open pit of 5.4 km (3.4 mi), 1.5 km (0.9 mi) and 375 m (1,230 ft) deep, mined in stages.
- Electric trolley assist used to optimise waste haulage.
- In pit crushing and conveying strategy to minimise ore rehandling and lower operating costs.

CHALLENGING GEOLOGY VS. STANDARD SUBDRILL PARAMETERS

CHALLENGING GEOLOGY VS. STANDARD SUBDRILL PARAMETERS

STANDARD DESIGN STRATEGIES

STAB HOLE TECHNIQUE

ADVANTAGES

• Better fragmentation of the top of the bench.

DISADVANTAGES

- An extra drilling stage is required for the stab holes.
- Stab holes need to be manually loaded due to small diameter.
- Three times the number of holes and twice the amount of drilling required.
- The pattern is very hard to navigate with machinery.
- Increased risk of flyrock and larger exclusion zones for equipment.

STEM DECK TECHNIQUE

ADVANTAGES

- Better fragmentation of the top of the bench.
- No extra drilling required.
- Technique can be applied as required.

- Electronic initiating systems required.
- Accurate loading of explosive and stemming decks required.
- Loading a hole requires multiple visits or passes.
- Increased risk of flyrock and larger exclusion zones for equipment.

PRECONDITIONING TECHNIQUE

ADVANTAGES

- Complete fragmentation of the top of the bench.
- Holes can be loaded in one pass.
- Non-electric or electronic initiation can be used.
- Decreased risk of flyrock, smaller exclusion zones.

DISADVANTAGES

- Drilling through wet, broken ground is challenging.
- Rotary drilling is more successful than percussive.
- The preconditioned rock can become unstable and collapse.
- Preservation of hole depths is critical.
- · Over mining the bench is easier for the excavators.

PRECONDITIONING RESULTS

PROTECTING HOLE DEPTH

- To **preserve** hole depths a reusable device, called a Collar Keeper[™], was invented to **prevent** collar rock and drill cuttings entering the hole during:
 - Drilling the pattern;
 - Adjacent blasting;
 - Priming; and
 - Loading explosives.

PROTECTING HOLE DEPTH

- To preserve hole depths a reusable device, called a Collar Keeper[™], was invented to prevent collar rock and drill cuttings entering the hole during:
 - Drilling the pattern;
 - Adjacent Blasting;
 - Priming; and
 - Loading explosives.

QUANTIFYING ENERGY IN BLASTING

- Powder Factor
 - Ignores energy contributed by the subdrill of the previously fired bench.
 - If the upper and lower patterns are different the technique cannot be used.
- Vertical Distribution
 - Explosive distribution calculated as a percentage of the bench height.
 - If the upper and lower patterns are different the technique cannot be used.

LINEAR POWDER/ENERGY FACTOR

STANDARD DESIGN

SINGLE STAB HOLE DESIGN DOUBLE STAB HOLE DESIGN

LINEAR POWDER/ENERGY FACTOR

STANDARD DESIGN

PRECONDITIONING DESIGN

KANSANSHI MINE

- Located 10 km (6 mi) north of the town of Solwezi in the North Western Province of Zambia.
- Mineralisation in sub-vertical veins, select lithologies and occasional fault breccia zones in the "Domes Region of NW Zambia.
- Two large open pits producing approximately 230 ktonne of copper and 130,000 ounces of gold annually.
- Mining occurs in 5 m (16.4 ft) and 10 m (32.8 ft) benches.

KANSANSHI MINE

5m BENCH TO 10m BENCH

10m BENCH TO 10m BENCH

1.16 kg/m³	1.96 lb/yd³		1.43 kg/m³	2.40 lb/yd ³
0 kg/m³	0 lb/yd³		0.29 kg/m³	0.48 lb/yd ³
0 kg/m³	0 lb/yd³		0 kg/m³	0 lb/yd³
0.71 kg/m³	1.20 lb/yd ³		0.71 kg/m ³	1.20 lb/yd ³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd ^a
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd³
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³	2.40 lb/yd ^a
0.29 kg/m³	의 10.48 lb/yd³		0.29 kg/m³	0.48 lb/yd ³
		0.0 0.5 0.8 1.0 1.7 1.5 2.5 2.0 3.4 Powder Factor (kg/m³ lb/yd³)		0.0 0.5 0.8 1.0 1.7 1.5 2.5 2.0 3.4 Powder Factor (kg/m³ lb/yd³)

KANSANSHI MINE – NEW DESIGN

5m BENCH TO 10m BENCH

10m BENCH TO 10m BENCH

1.42 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
0.28 kg/m³	23 23 23 0.48 lb/yd³		0.29 kg/m³		0.48 lb/yd³		0%
0 kg/m³	0 lb/yd³		0 kg/m³		0 lb/yd³		
0.71 kg/m ³	3.20 lb/yd ^a		0.71 kg/m ³	8	1.20 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
1.43 kg/m³	2.40 lb/yd³		1.43 kg/m³		2.40 lb/yd³		
0.29 kg/m³	0.48 lb/yd³		0.29 kg/m³	83	0.48 lb/yd³		
		0.0 0.5 0.8 1.0 1.7 1.5 2.5 2.0 3.4 Powder Factor (kg/m³ lb/yd³)				0.0 0.5 0.8 1.0 1.7 1.5 2.5 2.0 Powder Factor (kg/m³ lb/yd³)) 3.4

KANSANSHI MINE – NEW DESIGN

SUMMARY

- Subdrill is not only a parameter for achieving the target bench level.
- Subdrill is essential in **preconditioning** the top of the underlying bench.
- Remember to consider the **impact** of subdrill on the **underlying** bench
- **Preserving** hole depths through the full life of a hole is **critical** for success.
- Linear powder factor can be used to better compare and communicate energy in a bench blast.

REFERENCES

- Ash, R. L. (1963a). The Mechanics of Rock Breakage. Pit and Quarry, 56(2), 98-100.
- Ash, R. L. (1963b). The Mechanics of Rock Breakage. Pit and Quarry, 56(3), 118-122.
- Ash, R. L. (1968). The Design of Blasting Rounds. In E. P. Pfleider (Ed.), Surface Mining (pp. 373-397). New York: The American Institute of Mining, Metallurgical, and Petroleum Engineers.
- Dick, R. A., Fletcher, L. R., & D'Andrea, D. V. (1983). Explosives and Blasting Procedures Manual, IC8925. Minneapolis: Bureau of Mines . Retrieved from https://www.osmre.gov/
- Gray, D., Lawlor, M., & Stone, R. (2015). NI 43-101 Technical Report for its Trident Project. Perth: First Quantum Minerals Limited.
- Hawke, S. J., & Dominguez, L. A. (2015). A Simple Technique for Using High Energy in Blasting. 11th International Symposium on Rock Fragmentation by Blasting, (pp. 321-326). Sydney, NSW.
- Hustrulid, W. (1999). Blasting Principles for Open Pit Mining, Volume 1 General Design Concepts. Boca Raton: Taylor and Francis Group.
- Hustrulid, W. (1999). Blasting Principles for Open Pit Mining, Volume 2 Theoretical Foundations. Boca Raton: Taylor and Francis Group.
- International Society of Explosives Engineers. (2011). ISEE Blasters' Handbook (18th ed.). Cleveland: International Society of Explosives Engineers.
- Jimeno, C. L., Jimeno, E. L., & Carcedo, F. J. (1995). Drilling and Blasting of Rocks. London: Taylor and Francis.
- Konya, C. J., & Walter, E. J. (1990). Surface Blast Design. Englewood Cliffs: Prentice Hall.
- Langefors, U., & Kihlström, B. (1963). The modern technique of rock blasting. Stockholm: Almqvist and Wiksell.
- McAdam, R., & Westwater, R. (1958). Mining Explosives. Edinburgh: Oliver and Boyd.
- Mirabelli, L., & Lislerud, A. (2005). Drill and Blast Workshop, Quarry Academy. Retrieved April 2017, from 911metallurgist: www.911metallurgist.com/blog/wp-content/uploads/2016/01/Drill-Blast-Workshop.pdf
- Roy, P. P. (2005). Rock Blasting: Effects and Operations. Leiden: A.A. Balkema.
- Sandvik Tamrock. (1999). Rock Excavation Handbook for Civil Engineering. (M. Heiniö, Ed.) Sandvik Tamrock.

QUESTIONS?

THANK YOU

