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Abstract—
An active approach to sensing can provide the focused measurement ca-

pability over a wide field of view which allows correctly formulated Simul-
taneous Localisation and Map-Building (SLAM) to be implemented with
vision, permitting repeatable long-term localisation using only naturally oc-
curring, automatically-detected features. In this paper we present the first
example of a general system for autonomous localisation using active vision,
enabled here by a high-performance stereo head, addressing such issues
as uncertainty-based measurement selection, automatic map-maintenance
and goal-directed steering. We present varied real-time experiments in a
complex environment.
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I. INTRODUCTION

Incremental building and maintaining of maps for immediate
use by a navigating robot has been shown to rely on detailed
knowledge of the cross-coupling between running estimates of
the locations of robot and mapped features [1]. Without this
information, features which are re-detected after a period of ne-
glect are treated as new, and the entire structure suffers progres-
sive error accumulation which depends on the distance travelled,
not on distance from the starting position in the fiducial coordi-
nate frame. It becomes impossible to build persistent maps for
long-term use, as apparent in earlier navigation research [2] [3]
[4] [5] [6] [7]. For example, Figure 5(a) of ref [7], shows that the
start and end of an actually closed path are recovered as different
locations.

Storing and maintaining coupling information proves to be
computationally expensive, in turn imposing the need to use

MPEG video illustrating aspects of this work is available at
http://www.robots.ox.ac.uk/ActiveVision/Research/gti.html The Scene Li-
brary, open-source C++ software for simultaneous localisation and map-
building which evolved from the work described in this paper, is available at
http://www.robots.ox.ac.uk/˜ajd/Scene/

only a sparse sets of features. This runs counter to the emphasis
of recent research into visual reconstruction, where large num-
bers of features over many images are used in batch mode to ob-
tain accurate, dense, visually realistic reconstructions for mul-
timedia applications rather than robotic tasks (eg. [8] [9]). Al-
though batch methods provide the most accurate and robust re-
constructions, the volume of calculation required for each cam-
era location grows depending on the total length of the trajec-
tory. Real-time applications on the other hand require updates
to be calculable in a time bounded by a constant step interval: it
is satisfying this crucial constraint which permits all-important
interaction with the map data as it is acquired.

So although visual sensing is the most information-rich
modality for navigation in everyday environments, recent ad-
vances in simultaneous localisation and map building (SLAM)
for mobile robots have been made using sonar and laser range
sensing to build maps in 2D, and have been largely overlooked in
the vision literature. Durrant-Whyte and colleagues (e.g. [10])
have implemented systems using a wide range of vehicles and
sensor types, and are currently working on ways to ease the com-
putational burden of SLAM. Chong and Kleeman [11] achieved
impressive results using advanced tracking sonar and accurate
odometry combined with a submapping strategy. Thrun et
al. [12] have produced some of the best known demonstrations
of robot navigation in real environments (in a museum for exam-
ple) using laser range-finders and some vision. Castellanos [13]
also used a laser range finder and a mapping strategy called the
SPmap. Leonard and colleagues [14], working primarily with
underwater robots and sonar sensors, have recently proposed
new submapping ideas, breaking a large area into smaller re-
gions for more efficient map-building.

In this paper, we describe the first application of active vision
to real-time, sequential map-building within a SLAM frame-
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work, building on our earlier work reported in [15]. We show
that active visual sensing is ideally suited to the exploitation of
sparse ‘landmark’ information required in robot map-building.
Using cameras with the ability both to fixate and to change fix-
ation over a wide angular range ensures that persistent features
re-detected after lengthy neglect can also be re-matched, even
if the area is passed through along a different trajectory or in a
different direction. This is key to reducing the effect of motion
drift from the fiducial coordinate frame: the drift now depends
on the distance from the origin, not the total distance travelled.

No doubt active sensing will be implemented electronically
by choosing to process only a subwindow from high-resolution
omni-directional data. At present however full resolution mul-
tiple sensor cameras (fly-eyes) are expensive to construct and
mosaicing still a research problem. On the other hand fish-eye
lenses and catadioptric mirrors [16] have the disadvantage of
variable and sometimes low angular resolution. In this work, we
use a agile electro-mechanical stereo head with known forward
kinematics, four degrees of movement freedom and full odom-
etry permitting the locations of the cameras with respect to the
robot to be known accurately at all times and their location to be
controlled in an closed-loop sense. While an active head com-
bines a wide field of view with high sensing resolution, it also
introduces the interesting penalty that a finite time is required to
re-fixate the camera, time in which further measurements might
have made of the previously fixated scene point.

Selective sensing is the essence of the active approach, and in
map-building there is much more to be gained by making ob-
servations of some parts of the robot’s surroundings than others:
the two appear well-matched. Here we consider only how active
vision can provide a robot with accurate localisation; but this
could be just one part of a robot’s overall task. In [17], one of us
described a system where attention is divided between localisa-
tion and inspection. Regardless of the simplicity or complexity
of the task, a rigorous statistical framework is necessary if pru-
dent serial selection of fixation point is to be made. Although the
computational complexity is high (in EKF-based SLAM, pro-
portional to

���
, where

�
is the number of mapped features),

real-time implementation is feasible on modest hardware, even
without the various SLAM short-cut methods which have re-
cently appeared [14] [18] [10].

The rest of the paper is organised as follows. In Section II we
introduce the SLAM problem and discuss some of the points
relevant to our implementation. We present the image pro-
cessing approach and active head control strategies involved in
identifying and locating natural scene features in Section III,
and Section IV describes an experiment using contrived scene

features to verify localisation and map-building performance
against ground-truth. We continue in Section V by discussing
the additional sensing and processing tools, in particular active
feature selection, which are necessary in fully autonomous nav-
igation, and in Section VI give results from a fully automatic ex-
periment. In Section VII we look at supplementing SLAM with
a small amount of prior knowledge, and in Section VIII bring
all these elements together in a final experiment in goal-directed
navigation.

II. SLAM USING ACTIVE VISION

Sequential localisation and map-build based on the extended
Kalman Filter (EKF) is now increasingly well understood
[1][13][11][19][10] and in this section we wish only to estab-
lish some background and notation. Detailed expressions for
the kinematics of our particular vehicle and active head can be
found in [15].

A. The State Vector and its Covariance

In order that information from motion models, vision and
other sensors can be combined to produce reliable estimates,
sequential localisation and map-building unavoidably [20] in-
volves the propagation through time of probability density func-
tions (PDF’s) representing not only uncertain estimates of the
position of the robot and mapped features individually, but cou-
pling information on how these estimates relate to each other.

The approach taken in this paper and in most other work
on SLAM is to propagate first-order approximations to these
probability distributions in the framework of the EKF, implic-
itly assuming that all PDF’s are Gaussian in shape. Geometri-
cal non-linearity in the motion and measurement processes in
most SLAM applications mean that this assumption is a poor
one, but the EKF has been widely demonstrated not to be badly
affected by these problems. More significant is the EKF’s in-
ability to represent the multi-modal PDF’s resulting from im-
perfect data association (mismatches). The particle filtering ap-
proaches which have recently come to the fore in visual tracking
research offer a solution to these problems, but in their current
form are inapplicable to the SLAM problem due to their huge
growth in computational complexity with state dimension [21]
— in SLAM, the state consists of coupled estimates of the posi-
tions of a robot and many features, and it is impossible to span a
space of this state-dimension with a number of particles which
would be manageable in real-time; however, some authors [22]
are investigating the use of particle filters in robot localisation.

In the first-order uncertainty propagation framework, the
overall “state” of the system � is a vector which can be parti-
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Fig. 1. (a) The robot’s location in the world coordinate frame is specified by the coordinates �����
	��
��
 . (b) The vehicle’s motion geometry. (c) Head geometry: the
head center is at a height � vertically above the ground plane.

tioned into the state ���� of the robot and the states ���� of entries
in the map of its surroundings. The state vector is accompa-
nied by a covariance matrix � which can also be partitioned as
follows:���� ���� �� ������� ��

� ��!#" �$� ���� ��%&% �'%&(*) �'%+(-, ./.� ( ) % � ( ) ( )0� ( ) ( ,1./.� ( , % � ( , ( )0� ( , ( ,1./.� � �
� ��!32

In this paper the robot state is just ground plane position and
orientation ����4�#5 �6 " �7 " �8:9<; and each feature state is a 3D
position �� � �=5 �> � " �? � " �@ � 9<; , but a state vector is not limited to
pure position estimates: other feature and robot attributes (such
as velocity or the positions of redundant joints) can be included
(eg [17]).

B. Coordinate Frames and Initialisation

When the robot moves in surroundings which are initially un-
known, the choice of world coordinate frame is arbitrary: only
relative locations are significant. Indeed, it is possible to do
away with a world coordinate frame altogether and estimate the
locations of features in a frame fixed to the robot: motions of the
robot simply appear as backwards motion of features. However,
in most applications there will be interaction with information
from other frames of reference — often in the form of known
way-points through which the robot is required to move (even
in a case so simple as that in which the robot must return to
its starting position). A world coordinate frame is essential to
interact with information of this kind and, as there is little com-
putational penalty in including an explicit robot state, we always
do so (Figure 1(a)).

In typical navigation scenarios (such as that of the experi-
ments of Sections IV and VI) where there is no prior knowledge
of the environment, the world coordinate frame can be defined
with its origin at the robot’s starting position, and the initial un-
certainty relating to the robot’s position in � %&% is zeroed.

If there is prior knowledge of some feature locations (as in
the experiment of Section VII, these can be inserted explicitly
into the map at initialisation and this information will effectively
define the world coordinate frame. The robot’s starting position
relative to these features must also be input, and both robot and
feature positions assigned suitable initial covariance values.

C. Process Model

Temporal updating using an EKF requires prediction of the
state and covariance after a robot movement during a possibly
variable period ACBED .�� �&F DHG � I DHJ � KL�'5+�� �&F D I DHJ "EM D " ACB D 9�� � F DHG � I DHJ � �� � F D I DHJ "ONQP� F DHG �*I DHJ � R KR � � F D I DHJ R KR � ;TSVU D 2
Here, KW� is a function of the current robot state estimate, the pe-
riod, and control inputs M , which for our robot are steering an-
gle and wheel velocity (Figure 1b): the robot’s motion in each
time step is modelled as a circular trajectory with radius X de-
termined by wheel geometry and steering angle (see [19] for
details). The full state transition Jacobian is denoted Y+ZY+[ and

U D
is the process noise, U D �\R KW�R MC] R KW�R M ; "
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where ] is the diagonal covariance matrix of M . Process noise
accounts essentially for unmodelled effects in the vehicle mo-
tion such as wheel slippage.

D. Measurement Model

Any sensor which is able to measure the location of fixed fea-
tures in the scene relative to the robot can contribute localisation
information, and it is wise in implementation to separate the de-
tails of the sensors (and indeed the robot) from the algorithms
used to build and process maps [20].

The key to our active approach is the ability we gain from
our probabilistic state representation to predict the value ^ � of
any measurement, and also calculate the uncertainty expected in
this measurement in the form of the innovation covariance _ � .
Explicitly, our measurement model is:^ � � ��a`:b �`dc �` � �

�! � ���fehgjilk �nmpo�q/rm o�q/sehgji k � mpo�qutm&o�q/vehgwi�k �yx� mpozq
� �! "

where^|{ � � ��a} { � %} { � (} { ��~
�! � ����*�z� 8 5 > ����7 9 � �<� i 8 5 @ �:��6 9? ������<� i 8 5 > � ��7 9 S �*��� 8 5 @ � ��6 9 �!

is the Cartesian vector from the head centre to feature P (ex-
pressed in the robot-centred coordinate frame). } { � is the length
of vector ^|{ � and } { �/� ��� } { � % � S } { ��~ � is its projection
onto the 7Q6 plane. � is the inter-ocular separation of the active
head, and � is the height above the ground plane of the head
centre.

The innovation covariance _ � is calculated as:_ � � R ^ �R ��� �'%&%�R ^ �R ��� ; S R ^ �R ��� �'%+( q R ^ �R ��� ; S R ^ �R ��� �'( q %�R ^ �R ��� ;S R ^ �R ��� ��( q ( q R ^ �R ��� ; S�� 2
Here

�
is the measurement noise covariance matrix, defined

shortly. Calculating _ � before making measurements allows us
to form a search region in measurement space for each feature,
at a chosen number of standard deviations (providing automatic
gating and minimising search computation). We will see later
that _ � also provides the basis for automatic measurement selec-
tion.

In our work, measurement of a feature in the map involves the
stereo head (sketched in Figure 1(c)) using this prediction to turn

to fixate the expected position of the feature, carry out a stereo
image search of size determined by the innovation covariance
(see Section III-B), and then use its matched image coordinates
in combination with the head’s known odometry and forward
kinematics to produce a measurement � � of the position of the
feature relative to the robot.

For filtering, measurements are parameterised in terms of the
pan, elevation and (symmetric) vergence angles `�b�� ch� � of an ide-
alised active head able to measure the positions of the features
at perfect fixation: by idealised, we mean an active head which
does not have the small offsets between axes possessed by our
head. In image measurements, we expect to detect features to
an accuracy of �C� pixel, which for at the centre of the image in
the cameras used is an angular uncertainty of about �����+� k �rad. Compared with this, angular errors introduced by the active
head, whose axes have repeatabilities two orders of magnitude
smaller, are negligible. The advantage of the idealised head pa-
rameterisation is that when we map the uncertainty coming from
image measurements into this space, the measurement noise co-
variance is very closely diagonal and constant and can be ap-
proximated by:� � �� A `�b � � �� A `dc � �� � A ` � �

�!
In fact in our system A `�b ��A `|c ��A ` � . This is preferable
to parameterising measurements in the Cartesian space of the
relative location of feature and robot, since in that case the mea-
surement noise covariance would depend on the measurement
in a non-linear fashion (in particular the uncertainty in depth
increases rapidly with feature distance) and this could lead to
biased estimates.

E. Updating and Maintaining the Map

Once a measurement � � of a feature has been returned, the
Kalman gain � can then be calculated and the filter update per-
formed in the usual way [20]:� � ��R ^ �R � ; _ k �� ����� � %+%�'(*)�%�'(-,<%

...

� ���! R ^ �R � � ; _ k � S ����� � %&( q��(*)O( q��(-,E( q
...

� ���! R ^ �R � � ; _ k ����� c�� � ����< /¡ S ��5
� �:� ^ � 9�'� cO� � �¢�< /¡ � �£_j� ; 2
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Since in our measurement model the measurement noise
�

is
diagonal, this update can be separated in implementation into
separate, sequential updates for each scalar component of the
measurement (that is to say that we perform the above update
three times, once for each angular component `�b�� ch� � of the mea-
surement; ^ � , � � and _ become scalar in these steps): this is
computationally advantageous.

Initialising a New Feature. When an unknown feature ¤ is
observed for the first time, a vector measurement ^�� is obtained
of its position relative to the head, and its state initialised accord-
ingly using the inverse � � 5¥� � " ^ � 9 of the measurement model.
Jacobians Y ¦j§Y+[w¨ and Y ¦j§Y+© o are calculated and used to update the
total state vector and covariance:��� c�� � ���� �������� �

� ��!
� � c�� � ����� � %+% � %+( ) 2�2 � %&% Y ¦j§Y+[ ¨ ;�'(*)W% �'(*)�(*) 2�2 ��(*)O% Y ¦j§Y [ ¨ ;� � � �/�Y ¦ §Y [w¨ � %+% Y ¦ §Y+[w¨ � %+( ) Y ¦ §Y [w¨ � %+( , ª

� ���!
where ª«�¬R � �R ��� �'%+%�R � �R ��� ; S R � �R ^�� � R � �R ^�� ; 2

Deleting a Feature. A similar Jacobian calculation shows
that deleting a feature from the state vector and covariance ma-
trix is a simple case of excising the rows and columns which
contain it. For example, where the second of three known fea-
tures is deleted, the parts removed are delineated as follows:���� � �� �� �� �

� ��! " ���� �'%&% �'%&(H) �'%+(-, �'%&(-­�'(*)�%®�'(*)W(*) �'(*)W(-, �'(*)�(-­� ( , % � ( , ( ) � ( , ( , � ( , ( ­� ( ­ % � ( ­ ( ) � ( ­ ( , � ( ­ ( ­
� ��! 2

III. DETECTION AND MATCHING OF SCENE FEATURES

Repeatable localisation in a particular area requires that re-
liable, persistent features in the environment can be found and
re-found over long periods of time. This differs perhaps from the
more common use of visual features in structure from motion,
where they are often treated as transient entities to be matched
over a few frames and then discarded. When the goal of map-
ping is localisation, it is important to remember that motion drift
will occur unless reference can be made to features after periods
of neglect.

(a) (b)

(c) (d)

(e)

(f)

Fig. 2. (a), (b): Feature detection. Rogue features likely to deleted as non-
stationary arise from depth discontinuities and specularities. (c), (b): Ellip-
tical search regions generated for features; the size of the ellipse depends
on the uncertainty in the relative position of the robot and feature. (e), (f):
Two examples of successful feature matching close to the limits of visibility
constraints.
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The visual landmarks we will use should be features which
are easily distinguishable from their surroundings, robustly as-
sociated with the scene geometry, viewpoint invariant and sel-
dom occluded. In this work, we assume the features to be sta-
tionary points.

Since when navigating in unknown areas nothing is known
in advance about the scene, we do not attempt to search purpo-
sively for features in certain locations which would be good sites
for landmarks: there is no guarantee that anything will be visible
in these sites which will make a good landmark. Rather, feature
acquisition takes place as a data-driven process: the robot points
its cameras in rather arbitrary directions and acquires features
if regions of image interest are found. This rather rough collec-
tion of features is then refined naturally through the map mainte-
nance steps described in Section V-C into a landmark set which
spans the robot’s area of operation.

A. Acquiring 3D features

Features are detected using the Harris corner detector [23] as
applied by Shi and Tomasi [24] to relatively large pixel patches
( �&¯°���p¯ rather than the usual ¯±�²¯ for corner detection). Prod-
ucts of the spatial gradients � % and �*( of the smoothed image
irradiance are averaged over the patch and if both eigenvalues of
the matrix ³ � %j�*% � %j�*(�*%j�*( �*(��*(µ´
are large, the patch is corner-like.

To acquire a new feature at the current head position, the de-
tector is run over the left image, finding a predetermined number
of the most salient non-overlapping regions. For the strongest
feature, an epipolar line is constructed in the right image (via
the known head geometry), and a band around the line searched
for a stereo match. If a good match is found, the two pairs of
image coordinates 5¥¶:· "<¸ · 9 and 5¥¶l¹ "<¸ ¹ 9

allow the feature’s 3D
location in the robot-centered coordinate frame to be calculated.
The head is driven to fixate the feature, enforcing symmetric
left and right head vergence angles to remove redundancy, the
feature re-measured, and the process iterated to a given toler-
ance. Making measurements at fixation reduces dependency on
knowledge of the camera focal lengths. The image patch in-
tensity values of the new feature are saved, so that appearance
matching is possible later, and the feature is inserted into the
map with uncertainty derived as in Section II. Note that this
uncertainty depends only on the geometrical location of the fea-
ture, and not on its image characteristics: we assume that image
matching (see Section III-B) has a constant uncertainty in image
space; that is to say that how accurately a particular feature can

be located in the image does not depend on its appearance.
In our work, as in [24], no attempt is made to discern good

or bad features, such as those corresponding to reflections or
lying at depth discontinuities (such as those seen in the rather
pathological examples of Figure 2(a, b)), or those which are fre-
quently occluded, at the detection stage: the strategy used is
to accept or reject features depending on how well they can be
tracked once the robot has started moving. Patches which do
not actually correspond to stationary, point features will quickly
look very different from a new viewpoint, or will not appear in
the position expected from the vehicle motion model, and thus
matching will fail (this is also the case with frequently occluded
features which are soon hidden behind other objects. These fea-
tures can then be deleted from the map, as will become clearer
in our discussion of experiments later: while the initial choice
of features is unplanned and random, the best features survive
for long periods and become persistent landmarks.

B. Searching For and Matching Features

Applying the feature detection algorithm to the entire image
is required only to find new features. Since we propagate full
information about the uncertainty present in the map, whenever
a measurement is required of a particular feature, regions can be
generated in the left and right images within which the feature
should lie with some desired probability (usually 3 standard de-
viations from the mean). Typical search ellipses are shown in
Figure 2(c,d).

Matching within these regions is then achieved by a brute-
force correlation search, using normalised sum-of-squared-
differences, for the best match to the saved feature patch within
the (usually relatively small) regions defined by the search el-
lipses in both left and right images. A consistency check is then
applied between the two image locations found (taking account
of the epipolar coupling between the two measurements): this
gives some robustness against mismatches. Normalised sum-of-
squared-differences gives the matching a fairly large degree of
robustness with respect to changing light conditions, and in ex-
periments has meant that the same features could be matched
well over the duration of experiments of many minutes or a few
hours, though we have not tested the durability of matching un-
der extreme changes (from natural to artificial lighting, for ex-
ample).

Figures 2(e,f) show matches obtained of some features, giv-
ing an impression of the surprising range of viewpoints which
can be matched successfully using the large patch representation
of features. However, clearly matching can only be expected to
succeed for moderate robot motions, since the patch representa-
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Fig. 3. The expected visibility of a feature is calculated based on the difference
in distance and angle between the viewpoint from which it was initially seen
and that from which the current measurement is to be made.

tion is intrinsically viewpoint-variant — features look different
when viewed from new distances or angles (to avoid drift, we
do not update feature templates after matching). Therefore, we
have defined a criterion for expected matchability based on the
difference between the viewpoint from which the feature was
initially seen and a new viewpoint. Figure 3 shows a simplified
cut-through of the situation: ^|ºh»¥¼ ½ is the vector from the head
centre to the feature when it was initialised, and ^ is that from
the head centre at a new vehicle position. The feature is ex-
pected to be visible if the length ratio

I © II ©j¾L¿/À Á I is close enough to 1
(in practice between something like ÂÃ and

ÃÂ ) and the angle dif-
ference Ä�� � �z� k � 5<5
^Å.p^�ºh»¥¼ ½ 9hÆ 5EÇ ^ÈÇ/Ç ^�ºh»¥¼ ½'Ç 9E9 is close enough to
0 (in practice less than É�¯�Ê in magnitude); the matches shown in
Figures 2(e,f) are close to these limits of viewpoint change. In
our localisation algorithm, we are in a position to estimate both
of these vectors before a measurement is made, and so attempts
are made only to measure features which are expected to be visi-
ble. The result is a region of the robot’s movement space defined
for each feature from which it should be able to be seen. A fea-
ture which fails to match regularly within this region should be
deleted from the map, since the failures must be due to it being
an essentially “bad” feature in one of the senses discussed above
rather than due to simple viewpoint change.

C. Failure Modes

Two failure modes were observed in our EKF-based SLAM
system. The first arises from failure of data association: mis-
matches are likely to happen when robot and feature uncertainty
grow and search regions (Figures 2(c,d)) become very large (for
instance, of a width in the region of 100 pixels rather than the
more normal 10–20 pixels). In this situation, there is a chance
that an image region of similar appearance to a mapped fea-
ture is incorrectly identified, and this failure cannot be identi-

fied by normal measurement gating. In this work, we did not
implement a multiple hypothesis framework, and therefore a
single mismatch could prove to be fatal to the localisation pro-
cess. However, mismatches were actually very rare: firstly, the
large size of image patch used to represent a feature meant that
matching gave very few false-positives within the uncertainty-
bounded search regions (which implicitly impose the explicit
consistency checks, based on multi-focal tensor for example,
included in most structure from motion systems). More im-
portantly though, the active measurement selection and map-
management approaches used meant that at all times attempts
were made to keep uncertainty in the consistency of the map to
a minimum. In normal operation, image search regions were
small, and the chance of mismatches low. For this reason, long
periods of error-free localisation were possible. Nevertheless, in
future systems there is a clear need for an explicit approach to
multiple hypotheses.

The second, much rarer, failure mode arose from non-
linearities. When uncertainty in the map is large, measurements
with a large innovation may lead to unpredictable EKF updates
due to the unmodelled non-linearity in the system.

IV. SYSTEM VERIFICATION AGAINST GROUND TRUTH

To evaluate the localisation and map-building accuracy of the
system in a controlled environment, the laboratory floor was
marked with a grid (to enable manual ground-truth robot po-
sition measurements), and artificial scene features were set up
in known positions equally spaced in a line along the bench top
(Fig. 4(a)). The robot’s motion was controlled interactively in
this experiment by a human operator, who also manually in-
dicated (by highlighting image interest regions via the mouse)
which features the robot should initialise into its map.

Starting from the grid origin with no prior knowledge of
the locations of scene features, the robot was driven nominally
straight forward. Every second feature in the line was fixated
and tracked for a short while on this outward journey, the robot
stopping at frequent intervals so that manual ground-truth mea-
surements could be made of its position and orientation using an
on-board laser pointer. The recovered values and uncertainties
in the positions of features 0–5 are shown in grey in Fig. 4(b),
superimposed on the measured ground truth in black. The ef-
fects of drift are apparent, and the uncertainties have increased
steadily.

The robot was then reversed back down the corridor, and
made to fixate upon the alternate features it had not used pre-
viously. The aim was that it should return to its origin while al-
ways tracking only recently acquired features, as would be case
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Fig. 4. Experiment with artificially introduced features. Experimental arrange-
ment. Estimated positions of the robot ( ËÌ�Í ) and features ( ËÎ�Ï ) in grey, along
with ÐHÑ ellipses for the point covariances ÒHÓ Ï Ó Ï , are shown superimposed on
the true positions (from manual measurement) in black as the robot moved
forward and back. The feature spacing was 40cm, and the robot moved
about 5m from its origin. Feature labels 0-10 show the order they were
tracked in. (As ever with stereo, the major axis of the uncertainty ellipse
lies along the Cyclopean direction — and so here the head was viewing on
average perpendicular to the direction of travel.)

in a looped movement around a rectangular layout of corridors
for example. As expected, the and uncertainty continued to in-
crease (Figure 4(c)), and by its return to the nominal origin the
filter estimated the robot’s position as 6 � � � 2 �j� m, 7 �Ô� 2 Õ � m,8 � � � 2 �zÖ rad, whereas the true position was 6 �×� 2 �£� m,7 �Ø� 2 � Õ m,

8 �Ô� 2 � Õ rad.
At this stage, following one more movement step, the robot

was allowed to re-fixate feature 0, which it had seen much ear-
lier at the start of the experiment. As can be seen in Fig. 4(d),
drift and uncertainty are immediately reduced, both in the robot
state and scene geometry, particularly near the re-fixated fea-
ture. The estimated position of 6 �Ù� 2 Ú � m, 7 �Ù� 2 �wÉ m,

8 �� � 2 �jÖ rad was now much closer to the true position 6 �Û� 2 ÚjÜ m,7 �Ý� 2 � Õ m,
8 �Ý� 2 �j� rad. The robot state covariance � %&% re-

duced sharply after refixation fromÞ0ß&à ßHß ÐHáãâ ß&à ßHß áHä ß&à ßHß ÐHåâ ß&à ßHß áHä ß&à ß-æ å&çnâ ß&à ß ç<Ð æß&à ßHß ÐHåãâ ß&à ß ç<Ð æèß&à ßHß ä&ç�éëê Þèß&à ßHß ç<åìâ ß&à ßHßHß-æèß&à ßHß ç<åâ ß&à ßHßHß-æíß&à ßHßHßHî â ß&à ßHßHß-æß&à ßHß ç<åìâ ß&à ßHßHß-æèß&à ßHß ç<ïðé 2
It can be seen that a reasonable degree of uncertainty still re-
mains: this is due to the fact that a single measurement, even
of a feature with very small position uncertainty, does not fully
constrain the robot’s position estimate — further re-fixations of
other features providing complementary information will allow
the robot’s position to be really locked-down (as will be ex-
plained in more detail in Section V-A).

By maintaining full covariance information, uncertainty
grows as a function of actual distance from a known position
— here the origin, where the coordinate frame was defined at
the robot’s starting position — not as a function of the total dis-
tance travelled by the robot from the known point. The drift
still seen in the uncertainty in distant features is a fundamen-
tal limitation of any map-building situation involving the use of
sensors with limited range: the locations of these features rela-
tive to the world coordinate frame must be estimated by implicit
compounding of many noisy measurements and uncertain robot
motions.

V. TOOLS FOR AUTONOMOUS NAVIGATION

The previous experiment was contrived in that the robot was
instructed which features to fixate, and how to navigate. In this
section we describe tools which combine to permit autonomous
active SLAM, as will be demonstrated in the experiments pre-
sented later. First, in Sections V-A and V-B, is a method for
performing the critical role of actively choosing which feature
to fixate upon at each stage of navigation, both without and with
consideration of the time penalty involved with re-fixation us-
ing a mechanical device. Next, in Section V-C we consider the
maintenance of a feature set, and finally in Section V-D dis-
cuss how to inject an element of goal-direction into the robot’s
progress.

A. Active Feature Selection

In our SLAM work, the goal is to build a map of features
which aids localisation rather than an end result in itself. Never-
theless, in the combined and coupled estimation of robot and
feature locations which this involves, estimation of the robot
position is not intrinsically more “important” than that of the
feature positions: aiming to optimise robot position uncertainty
through active choices is misleading, since it is the overall in-
tegrity and consistency of the map and the robot’s position
within it which is the critical factor. We have already seen in
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the preceding experiment that robot position uncertainty rela-
tive to a world frame will increase with distance travelled from
the origin of that frame. It is the mutual, relative uncertainty
between features and robot which is key.

Our feature selection strategy achieves this by making a mea-
surement at the currently visible feature in the map whose posi-
tion is hardest to predict, an idea used in the area of active ex-
ploration of surface shape by Whaite and Ferrie [25]. The valid-
ity of this principle seems clear: there is little utility in making
a measurement whose result is easy to forecast, whereas much
is to be gained by making a measurement whose result is un-
certain and reveals something new. The principle can also be
understood in terms of information theory, since a measurement
which reduces a widely spread prior probability distribution to a
more peaked posterior distribution has a high information con-
tent.

Our approach to mapping is active not in the sense of Whaite
and Ferrie, who actually control the movement of a camera in
order to optimise its utility in sensing surface shape, in that we
do not choose to alter the robot’s path to improve map estimates.
Rather, assuming that the robot trajectory is given, or provided
by some other goal-driven process, we aim to control the ac-
tive head’s movement and sensing on a short-term tactical basis,
making a choice between a selection of currently visible fea-
tures: which immediate feature measurement is the best use of
the resources available?

To evaluate candidate measurements, we calculate predicted
measurements ^ and innovation covariances _ for all visible fea-
tures (where feature “visibility” is calculated as in Section III-
B). In measurement space, the size of the ellipsoid represented
by each _ is a normalised measure of the uncertainty in the es-
timated relative position of the feature and the robot, and we
wish to choose feature with the largest uncertainty. To produce
a scalar decision criterion, the volume ñ:ò in `�bp� c-� � space of the
ellipsoid at the ¤�ó²� Úzô level is calculated for each visible fea-
ture (an important point here is that in our implementation the
measurement noise in the three measurement components `|bp� c-� �is a multiple of the identity matrix). Computing the eigenvaluesõ � � � � � of _ yields the volumeñðòö�=5÷Éjø Æ Ú 9 ¤ �ó � õ � õ � õ � 2

We use this measure ñlò as our score function for compar-
ing candidate measurements: a measurement with high ñ�ò is
hard to predict and therefore advantageous to make. We do not
propose here that ñ ò is the optimal choice of criterion from an
information-theoretic point of view — nevertheless, we believe
that it will give results for measurement comparison which are
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(a) (b) Fixate 0 (c) Fixate 1 (d) Fixate 2

Fig. 5. Selecting between features after a long period tracking one (ground-truth
quantities in black, estimates in grey): in (a) the robot stops after tracking
feature 0. In (b), (c) and (d), the estimated state is updated after further mea-
surements of features 0, 1 and 2 respectively. The large improvement in the
estimated robot state in (c) and (d) shows the value of making measurements
of multiple features.

almost identical to an optimal criterion. The important point
is that since it is evaluated in a measurement space where the
measurement noise is constant, its value reflects how much new
information is to be obtained from a measurement and does not
a priori favour features which are for example close or far from
the robot.

An illustrative example is shown in Figure 5. With the robot
at the origin, five well-spaced features were initialised, and the
robot driven forward and backwards while fixating on feature
0 (chosen arbitrarily). The situation at the end of this motion
is shown in Figure 5(a), at which time the five ñ ò values were
evaluated as:ñðò|5÷� " � "hÕ'"hÚ¢" É 9 �ë5÷� 2 �jÉ " � 2 Éz� " � 2ùÕzú�" � 2 É Ü¢" � 2 Éz� 9 ���+� k � 2
According to our criterion, there is little merit in making an-
other measurement of feature 0, and feature 2 should be fixated
instead, rather than 1, 3, or 4. Note here that ñ:ò , being calcu-
lated in measurement space, does not necessarily favour those
features such as 1 which have large uncertainty in the world co-
ordinate frame. Figures 5(b, c and d) show the situations which
result if feature 0, 1 or 2 is fixated for the next measurement.
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Clearly making the extra measurement of feature 0 in (b) does
little to improve the robot position estimation which has drifted
along the direction ambiguous to measurements of that feature.
Using features 1 or 2 in (c) and (d), however, show significant
improvements in robot localisation: visually there is little to
choose between these two, but the robot state covariance after
fixating feature 2 is smaller:� %&% �û�&� � (if 1 fixated) � � %&% ���+� � (if 2 fixated) ��� � 2 Ú ¯ � 2 �jÖ � � 2 � Ú� 2 �jÖ � 2ùÕ É � � 2 � Ü� � 2 � Ú � � 2 � Ü � 2 �+� �! �� � 2 �+� � 2 ��¯ � � 2 � Ú� 2 �z¯ � 2 Õ � � � 2 �&�� � 2 � Ú � � 2 �+� � 2 � Ü �!

The qualities of the ñ ò above criterion become clear when
we consider the case of comparing features immediately after
they have been initialised into the map; this is a situation we
will often face as the robot moves into a new area and stops to
find new features. In this case if the just-initialised features are
compared for immediate re-measurement, we find that they all
have exactly the same value of ñlò :ñ ò¢F/ü ýWþ J �ë5¥Éjø Æ Ú 9 5Lÿ Õ ¤ ó 9 � A `:b A `|c A ` � 2
This is an initially surprising but desirable characteristic of ñ ò :
what has happened is that in initialisation, one unit of measure-
ment noise has been injected into the estimate of the position of
each feature relative to the robot. When the innovation covari-
ance for re-measurement is calculated, it has a value which is
simply this plus one more unit of measurement noise. We have
proven that the ñQò criterion has no a priori favouritism towards
features in certain positions.

To split these identical values, we need to use additional in-
formation: in this case, the future heading direction of the robot.
We predict the robot’s position in a small amount of time, and
then evaluate ñ ò for the new features based on this. The re-
sult is that we can choose the feature which we expect to give
the most information about the robot’s future movement. In re-
ality, what happens is that the criterion will choose a feature
which will be viewed from a significantly different aspect from
the future robot position: when we consider the elongated shape
of the measurement noise in our system in Cartesian space, it
will choose a feature where from the new position we are able
to make a measurement whose covariance ellipse overlaps mini-
mally with the feature’s world uncertainty (typically by crossing
it at a large angle). This feature provides the best information
for reducing future motion uncertainty.

B. Measurement Selection During Motion

The strategy developed so far considers measurement choice
when the robot is stationary; however, it is not suitable for mak-
ing active choices actually while the robot is moving, since it
all but demands a change in fixation at every opportunity given
to do so. This imperative to switch arises because measuring
one point feature does not fully constrain the robot’s motion —
uncertainty is always growing in one direction or another, but
predominantly orthogonal to the current fixation direction. This
means that switches in fixation are likely to be through aroundÜ ��Ê which may take several 100 ms. In fixation switching dur-
ing motion, we must consider this time delay as a penalty, since
it could otherwise be spent in making different measurements.

We first require a basis for deciding whether one estimated
state is better than another. Remembering that total map in-
tegrity is what is important, we suggest that the highest ñ:ò
found for all visible features, ñlò�5�� g � 9 , is a good indicator. Ifñ ò 5�� g � 9 is high, there is a measurement which needs to be
made urgently, indicating that the state estimate is poor. Con-
versely, if ñQò|5�� g � 9 is low the relative positions of all visible
features are known well.

The steps then followed are:
1. Calculate the number of measurements

� � which would be
lost during a saccade (a rapid re-direction of fixation direction)
to each of the visible features. This is done by estimating the
time which each head axis would need to move to the correct
position, taking the largest (usually the pan time since this axis
is the slowest), and dividing by the inter-measurement time in-
terval (200 ms).
2. Identify

�����	�
, the highest

� � : this is the number of mea-
surements lost in the largest saccade available.
3. For each feature P , make an estimate of the state after

� ���
� S� steps if an immediate saccade to it is initiated. This consists
of making

� � filter prediction steps followed by
�����
� � � � S �

simulated prediction/measurement updates. A measurement is
simulated by updating the state as if the feature had been found
in exactly the predicted position (it is the change in covariance
which is important here rather than the actual estimate). An
estimated state after the same number of steps is also calculated
for continued tracking of the currently selected feature.
4. For each of these estimated states, ñ ò 5�� g � 9 is evaluated.
The saccade providing the lowest ñ:ò�5�� g � 9 is chosen for ac-
tion; or tracking stays with the current feature if that ñ:ò|5�� g � 9 islowest.

Figure 6 shows an experiment into continuous fixation
switching: four features were initialised, and (a1) shows the
robot’s trajectory as it started to move forward, choosing which
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Fig. 6. The innovation covariance volume ��
 values and fixation switching (a2) as the robot moves forward in the region of 4 newly-initialised features shown in
(a1). Each line, representing one feature, drops sharply as that feature is measured and its uncertainty decreases. Later in the run (e.g. near step 90) extended
fixation on one feature becomes preferable to rapid switching. A general downward trend shows continuous improvement in estimates. Parts (b1) and (b2) show
the same for a longer second run, where the geometry is better known from the start. Now low ��
 values for all features are maintained predominantly by long
periods tracking one feature. Changes in behavior are seen when feature 1 goes out of view at step 120, feature 0 at step 147 and finally features 2 and 3 at step
270, after which all ��
 values grow without bound.

features to fixate on as described above. In (a2), the values ob-
tained from a straight ñlò comparison of the four features at each
time step are plotted. The four lines show how uncertainties in
the positions of the features relative to the robot vary with time.
As would be hoped, there is a general downward trend from the
initial state (where all the features have ñlò4� ñ ò£Fuü+ýWþ J as ex-
plained earlier), showing that the positions are becoming more
and more certain.

In the early stages of the motion, fixation switches as rapidly
as possible between the four features: only one measurement
at a time is made of each feature before attention is shifted to
another. In the graph of Figure 6(a2), a measurement of a par-
ticular feature appears as a sharp drop in its ñlò value. While a
feature is being neglected, its ñlò gradually creeps up again. This
is because the newly-initialised features have large and uncou-
pled uncertainties: their relative locations are not well known,
and measuring one does not do much to improve the estimate of
another’s position. After a while, the feature states become more
coupled: around step 40, clear zig-zags in the rising curves of
neglected features show that the uncertainties in their positions
relative to the robot are slightly reduced when a measurement is
made of another feature.

At around step 80, the first clear situation is seen where it be-
comes preferable to fixate one feature for an extended period:
feature 1 is tracked for about 10 steps. This feature is very close
to the robot, and the robot is moving towards it: measurements

of it provide the best information on the robot’s motion. Since
the locations of the other features are becoming better known,
their positions relative to the robot are constrained quite well by
these repeated measurements (only a gentle rise in the lines for
features 0, 2 and 3 is seen during this time). Feature 1 actually
goes out of the robot’s view at step 101 (the robot having moved
too close to it, violating one of the visibility criteria), and behav-
ior returns to quite rapid switching between the other features.

The robot was stopped at the end of this run with state es-
timates intact. It was then driven back to near the origin in a
step-by-step fashion, making further dense measurements of all
of the features along the way. The result was that once it was
back at its starting point, feature estimates had been very well
established. It was from this point that a second continuous
switching run was initiated: the trajectory and the now accu-
rately estimated feature positions are shown in Figure 6(b1), and
a graph of the feature comparison in (b2).

This second graph is dramatically different from the first: in
the early stages, low ñlò values for all the features are now main-
tained by extended periods of tracking one feature (feature 1
again). The strong coupling now established between feature
estimates means that if the robot position relative to one can be
well estimated, as is the case when the nicely placed feature 1 is
tracked, its position relative to the others will be as well. There
is the occasional jump to another feature, appearing as spikes in
the traces at around steps 70 and 90. Just after step 120, fea-
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ture 1 goes out of view, and period of rapid switching occurs.
None of the remaining features on its own provides especially
good overall robot position information, and it is necessary to
measure them in turn.

Feature 0 goes out of view (due to too large a change in view-
ing angle) at step 147. After this, only the distant features 2
and 3 remain for measurements. It is noticeable that through-
out the graph these two have been locked together in their ñ:ò
values: measurements of them provide very similar information
due to their proximity, and there is little need to switch attention
between them. These features finally go out of view at about
step 270, leaving the robot to navigate with odometry only.

A further experiment was performed to investigate the effect
of using a head with a lower performance. Software velocity
limits were introduced, increasing the head’s time to complete
saccades by some 30%. Runs were made with both fast and
slow performances. Two distant features (features 2 and 3 in the
previous experiment) were initialised from the origin and the
robot drove straight forward, switching attention between them.
The results were as one would anticipate. The fast head was able
to keep the errors on both points of similar size, and continued
to switch fixation at a constant rate throughout the run. The slow
head was less able to keep the error ratio constant and, later in
the run when the feature estimates were well coupled, the rate
of switching fell. The larger penalty of slower saccades meant
that it was worthwhile tracking one feature for longer.

C. Automatic Map Growing and Pruning

Our map-maintenance criterion aims to keep the number of
reliable features visible from any robot location close to a value
determined by the specifics of robot and sensor, the required
localisation accuracy and the computing power available: in
this work, the value two was chosen, because measurements
of two widely-spaced features are enough to produce a fully-
constrained robot position estimated.

Features are added to the map if the number visible in the area
the robot is passing through is less than this threshold: the robot
stops to detect and initialise new features in arbitrarily chosen,
widely-spaced viewing directions. This criterion was imposed
with efficiency in mind — it is not desirable to increase the
number of features and add to the computational complexity of
filtering without good reason — and the gain in localisation ac-
curacy from adding more features than this minimum would not
be great. However, in future work it may be useful to ensure that
one or two features more than the minimum are always visible
to ensure that adding new features does not happen too late and
the robot is not ever left in a position with less than the minimum

available.
A feature is deleted from the map if, after a predetermined

number of detection and matching attempts when the feature
should be visible, more than a fixed proportion (in our work
50%) are failures. This is the criterion which prunes the “bad”
features discussed in Section III-A. In our current implemen-
tation, there is no rule in place to ensure that the scene objects
corresponding previously deleted features (which are of interest
to the feature detection algorithm despite their unsuitability as
long-term landmarks) are not acquired again in the future, but in
practice this was rare due to the fact that the robot rarely passes
along exactly the same route twice.

It should be noted that a degree of clutter in the scene can
be dealt with even if it sometimes occludes landmarks. As long
as clutter does not too closely resemble a particular landmark,
and does not occlude it too often from viewing positions within
the landmark’s region of expected visibility, attempted measure-
ments while the landmark is occluded will simply fail and not
lead to a filter update. The same can be said for moving clut-
ter, such as people moving around the robot, who sometimes
occlude landmarks — a few missed measurements are not a big
issue. Problems only arise if mismatches occur due to a simi-
larity in appearance between clutter and landmarks, and this can
potentially lead to catastrophic failure. The correct operation
of the system relies on the fact that in most scenes very similar
objects do not commonly appear in a close enough vicinity to
lie within a single image search region (and special steps would
need to be taken to enable the system to work in scenes with a
lot of repeated texture).

D. Goal-directed navigation

The purpose of this paper is to build a map which aids locali-
sation rather than one dense enough to be useful for identifying
free space. Nevertheless, this localisation method could form
part of a complete system, where an additional module (visual
or otherwise) could perform this role and communicate with the
localisation system to label some of its features with contextual
information, such as “this is a feature at the left-hand side of an
obstacle”.

In an earlier paper [26] we showed how fixation could be used
to steer a vehicle towards and then around a fixated waypoint
and then on to the next waypoint. The method produces steering
outputs similar to those of human drivers [27]. In Figure 7 we
show an image sequence obtained from one of the robot’s cam-
eras in a period of fixation tracking of a certain map feature, and
the path followed by the robot during such a maneuvre. Sec-
tion VIII shows how this type of behaviour can be incorporated
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Fig. 8. Frames from a video of the robot navigating autonomously up and down the corridor where the active head can be seen fixating on various features, and
fixated views from one of its cameras of some of the first 15 features initialised. The gridded floor was an aid to manual ground-truth measurements and was
not used by the vision system.
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Fig. 7. Image sequence obtained from continuous fixation tracking of a fea-
ture while following an avoidance path generated by a biologically-inspired
control law.

into the mapping system.

VI. AUTOMATIC POSITION-BASED NAVIGATION

With automatic feature-selection, map maintenance and goal-
directed steering, the robot is in a position to perform au-
tonomous position-based navigation. A trajectory is specified as
a sequence of waypoints in the world coordinate frame through
which the robot is desired to pass. The robot moves in steps of
approximately two seconds duration. Before each step, the fea-
ture selection algorithm of the previous section chooses the best
feature to track during the movement, and this feature is tracked
continuously during movement (at a rate of 5Hz, making 10
measurements and the same number of filter prediction/update
steps per movement step). The robot stops for a short period
between movement steps to make a gross fixation change to an-
other feature. The breaks in movement are also used to automat-
ically add features to or delete them from the map as necessary.
As the robot drives, making measurements of the chosen feature
and updating the localisation filter, the steering angle is contin-
uously set to the appropriate value to reach the next waypoint.

In the follow experiment, the instructions given to the robot
were to head in sequence from its starting point at 5 6 " 7 9 = 5÷� " � 9
to the waypoints 5
� " � 2 É 9 , 5÷� " � 9 , and finally back to 5÷� " � 9 again
(in metre units). This experiment was designed to prove again
the system’s ability to return to a previously visited area and
recognise it as such, but now using a map which was generated
and maintained completely automatically. (The extra waypoint

5÷� " � 2 É 9 was specified merely to ensure that the robot turned in a
way which did not snag its umbilical cable.)

The robot’s progress is shown in Figure 8, along with views
from the left camera of some of the first 15 features inserted into
the map, which itself is shown at various stages in Figure 9.

On the outward journey the sequence of features fixated in
the early stages of the run (up to step (21)) was 0, 2, 1, 0, 2,
1, 3, 5, 4, 7, 6, 8, 3, 6, 8, 7, 3, 7, 8, 3, 9 — we see frequent
switching between a certain set of features until some go out of
visibility and it is necessary to find new ones. Features 4 and
5 did not survive past very early measurement attempts and do
not appear in Figure 9. Others, such as 0, 12 and 14 proved to
be very durable, being easy to see and match from all positions
from which they are expected to be visible. It can be seen that
many of the best features found lie near the ends of the corridor,
particularly the large number found on the furthest wall (11–
15, etc.). The active approach really comes into its own during
sharp turns such as that made around step (44), where using the
full range of the pan axis features such as these could be fixated
while the robot made a turn of 180 Ê . The angle of turn can
be estimated accurately at a time when wheel odometry data is
particularly unreliable.

At step (77) the robot had reached the final waypoint and re-
turned to its starting point. The robot successfully re-matched
original features on its return journey, in particular feature 0.

The robot’s true position on the grid compared with the esti-
mated position was ( � � �Ý5 6 " 7 " 8l9E; being given in metre and
radian units):� � �ë5÷� 2 �j� " � � 2 � Õ'"�Ú¢2 �z¯ 9 ; " �� � � 5
� 2 �&¯ " � � 2 � Ú�"�Õ'2 ÜjÜ 9 ;

To verify the usefulness of the map generated, the experiment
was continued by commanding the robot to repeat the round trip.
In these further runs, the system needed to do little map mainte-
nance — of course all measurements add to the accuracy of the
map, but there was little need to add to or delete from the set
of features stored because the existing set covered the area to be
traversed well. At (6, 0), step (124) the veridical and estimated
positions were���°�ë5
¯ 2 �zÖ " � 2 � Õ�" � 2 � Õ 9 ; " ����±� 5L¯ 2 Ö Ú'" � 2 � Õ�" � 2 � Õ 9 ;
and on return to the origin, after a total trip of 24m,� � �ë5÷� 2 � ú�" � � 2 � ú�" � Ú£2 � Ú 9 ; " �� � �=5
� 2 �+Ö " � 2 �j� " � Ú¢2 �j� 9 ; 2

A pleasing aspect of the feature choice criterion described
earlier is its inbuilt pressure to create tightly known and glob-
ally consistent maps. Because uncertainty in the robot’s position
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Fig. 10. Automatic position-based navigation with 3 known features (0, 1 and
2). High localisation accuracy can now be achieved over a wider range of
robot movement.

relative to earlier-seen features expands during the period of ne-
glect, the criterion makes them prime candidates for fixation as
soon as they become visible again; re-registration with the origi-
nal world coordinate frame, in which the locations of these early
features is known well, happens as a matter of course.

VII. INCORPORATING SPARSE PRIOR KNOWLEDGE

The fundamental limitation of SLAM that as the robot moves
further from its fudicial starting point, position estimates relative
to the world frame become increasingly uncertain, can be miti-
gated in many real application domains if there are some visual
landmarks which are in positions known in advance. Ideally,
they would be distributed uniformly around the mapped area.
They must also be visually distinguishable from other features
which could, within the growing uncertainty bounds, be mis-
taken for them: however, this can more easily be achieved with
these hand-picked features then those detected autonomously by
the robot. There have many approaches to robot localisation us-
ing landmarks in known locations: when a map is given in ad-
vance, the localisation problem becomes relatively simple [4].
Here however we wish to show that a small number of natural
visual landmarks (small in the sense that there are not enough
to permit good localisation using only these landmarks) can be
easily integrated into the SLAM framework to improve locali-
sation.

The landmark’s known location is initialised into the esti-
mated state vector as the coordinates � � of a feature P at the
start of the run (i.e., as though it had already been observed) and
its covariance � ( q ( q is set with all elements equal to zero, along

with the cross-covariances between the feature state and that of
the robot and other features. In prediction and measurement up-
dates, the filter handles these perfectly known landmarks just
like any other feature. Note however that uncertainty in a land-
mark’s relative position will grow as the robot moves before ob-
serving it, and so the ñ ò criterion will, as ever, make the land-
mark desirable to look at.

When there are perfectly known features in the map, it is
these which define the world coordinate frame, rather than the
arbitrary definition of this frame at the robot’s starting position
used before. Therefore, in this experiment the robot’s position
was initialised with a starting uncertainty not equal to zero: an
assessment was made of the uncertainty in robot location and
orientation relative to the known landmarks (with standard de-
viation of the order of a few centimetres and degrees) and this
formed the initial � %+% . Note too that as well as perfectly known
landmarks, it would be straightforward to introduce landmarks
in partially known positions (i.e. with some uncertainty) into
this framework.

An experiment was conducted where the robot made a move-
ment similar to that in the autonomous navigation experiment
presented earlier, but now with 3 known features inserted the
map before it set out. These lay to one side of the corridor, and
are labelled as 0, 1 and 2 in the pictures of Figure 10 showing
the progress of the experiment. In just the same way that in the
previous experiment the automatic feature-choice criterion se-
lected features not measured for a long time whenever possible,
in this experiment the known features were selected as soon as
they became visible, showing the drift which was occurring in
the robot’s estimation relative to the world frame. The benefit
of the known features was to improve world-frame localisation
accuracy when the robot was a long way from its origin. At
step (37), when the robot was at it farthest distance from the
origin, its ground-truth location was measured. The true and
estimated locations were���°�=5L¯ 2 Ö Ú'" � 2 �¢� " � � 2 �¢� 9 ; " ����°�=5
¯ 2 Ö£� " � 2 �£� " � � 2 � Õ 9 ; "
and the covariance matrix an order of magnitude smaller than
that achieved earlier.

It can also be seen that the “natural” features initialised close
to the landmark are now more certain: the features at the far end
of the corridor (high 6 ) in Figure 10 have much smaller ellipses
than those in Figure 9.

A lateral slice through 3D map recovered in this experiment
(Figure 11(a)) reveals a curiosity — the use of a virtual reflected
feature. The experiment was carried out at night under artificial
lighting, and as the robot returned to its starting position it in-
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Fig. 11. A virtual reflected feature: 32 is a reflection in a window of an overhead light. Its position in the map lies outside of the laboratory, but it still acts as a
stable landmark.

serted the reflection of one of the ceiling lights into the map as
feature 32.

VIII. ADDING CONTEXT TO A MAP

Well-located visual landmarks spread through the scene al-
low the robot to remain true to the world coordinate frame over
a wider area, making navigation by specifying waypoints viable.
But it is also likely that features, whether those supplied to the
robot manually or detected automatically, also have contextual
meaning, and can have labels attached such as “feature 0 is a
point on the edge of an obstacle region” or “... is the door jamb”.
This information could be attached by a human operator or sup-
plied by another visual process.

To illustrate the use of all the techniques developed in this
paper for autonomous localisation and navigation while map-
building, the locations of just two landmarks at the corners of a
zig-zag path were given to the robot, along with instructions to
steer to the left of the first and to the right of the second on its
way to a final location using the following plan:

Landmark 0 is Obstacle A at 5 6 " 7 9 �=5L¯ 2 ¯w� " � � 2 ¯w� 9
Landmark 1 is Obstacle B at 5 6 " 7 9 � 5 ú�2 �j� " � Õ'2 �&¯ 9

1. Go forward to waypoint 5 6 " 7 9 �=5 Õ'2 � " � 2 � 9 .
2. Steer round Obstacle A, keeping to the left.
3. Steer round Obstacle B, keeping to the right.
4. Go forward to waypoint 5 6 " 7 9 �=5
Ö 2 ¯ " � Ú£2 ¯ 9 .
5. Stop.
In this experiment steering around the known obstacles took

place on a positional basis — the robot steered so as to avoid the
known obstacles based on its current position estimate, even be-
fore it had first measured them. The automatic feature-selection
criterion decided when it was necessary actually to measure the
known features, and in the experiments this proved to be as soon
as they became visible, in order to lock the robot position esti-
mate down to the world frame. The results are shown in Fig-
ure 12, where the estimated trajectory generated is pictured next

to stills from a video of the robot.
The point when a first measurement of known feature 0 is

made can be clearly seen in Figure 12 as a small kink in the robot
trajectory: actually measuring the feature corrected the robot’s
drifting position estimate and meant that the steering angle was
changed slightly to correct the approach. After this, the obstacle
feature was fixated on only when it again became the best mea-
surement to make. Otherwise, attention was paid to improving
the map of automatically-acquired features.

IX. CONCLUSIONS

We have shown that an active approach is the device which
permits vision to be used effectively in simultaneous localisa-
tion and map-building for mobile robots, and presented a fully
autonomous real-time implementation.

Our use here of active vision for navigation differs funda-
mentally from that explored by Sandini and coworkers [28] [29]
[30] whose emphasis was on an active approach to recovering
free space by computing time to contact from the evolution of
disparity and motion parallax. Their representation was dense
rather than sparse. The approach here also differs from our ear-
lier work where we utilised an active head for navigation tasks
such as steering around corners and along winding roads [?].
Our results indicate that active fixation has a part to play not
only in short-term or tactical navigation tasks, but also in strate-
gic tasks where informed visual search is required.

From this position, visual navigation research can join with
that progressing using other sensor types and move towards
solving the remaining problems in the burgeoning field of se-
quential map-building. It is also hoped that by introducing the
problems of robot map-building to researchers in visual recon-
struction, insights can be gained into the methodology which
will be needed to construct structure from motion systems which
can operate in real time, the first examples [31] of which have
just started to appear.
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Fig. 12. The estimated trajectory and frames cut from a video as the robot navigated autonomously around two known landmarks and out of the laboratory door.
The navigation knew the locations of features 0 and 1 as prior knowledge, along with information on their status as obstacles.
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