
1

Based on slides © McGraw-Hill

Additional material © 2010 Taylor
Additional material © 2013 Farmer

Additional material © 2020 Narahari

Subroutines and TRAP
Routines in LC3

1

Subroutines in LC3
• we covered TRAP routines

• System calls to process I/O (or other system tasks)
• Written by system, called by user

ØResides as part of system code
• Steps: Call, Process, Return

• Subroutines – i.e., functions
• Written by user
• Called by user program
• Steps: Call, Process, Return

2

2

User Subroutine
(function)

User Program

Call
subroutine

Call
subroutine

Call
subroutine

Part of
User code

3

In Assembly: Subroutines
•A subroutine is a program fragment that:

• lives in user space
• performs a well-defined task
• is invoked (called) by user program
• returns control to the calling program when finished

•Like a service routine, but not part of the OS
• not concerned with protecting hardware resources
• no special privilege required
• Written by user

4

3

LC3 Call/Return Mechanism

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

1100RET 000 111 000000

They differ in how the address of the subroutine is obtained

5

JSR Instruction

•Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”
• target address is PC-relative (PC + Sext(IR[10:0]))
• bit 11 specifies addressing mode

Ø if =1, PC-relative: target address = PC + Sext(IR[10:0])
Ø if =0, register: target address = contents of register IR[8:6]

• JSR can be used to call a subroutine that is at an address within the 11
bit offset

• - 210 to 210 -1

6

4

JSR

NOTE: PC has already been incremented
during instruction fetch stage.

7

JSRR Instruction

•Just like JSR, except Register addressing mode.
• target address is in Base Register
• bit 11 specifies addressing mode

•JSRR R4 ; calls subroutine whose address is in R4
• R4 should have been loaded with address of subroutine

before the JSRR instruction
Ø LD R4, example
Ø example .FILL x1234

•What important feature does JSRR provide
that JSR does not?

8

5

JSRR

NOTE: PC has already been incremented
during instruction fetch stage.

9

Returning from a Subroutine

•RET (JMP R7) gets us back to the calling routine.
• just like TRAP

10

6

Example: Subtraction
• LC3 does not have SUB instruction…
•To do subtraction we write set of instructions:

.ORIG x3000 ; subtract R1 from R0
SUB NOT R1, R1 ; complement R1 and add 1 to get

ADD R2, R1, #1 ; 2’s complement, R2 = -R1
ADD R3, R0, R2 ; R3= R0-R2 = R0 – R1
HALT
.END

11

Changing Subtraction code to a Subroutine
• need to be able to call and return from SUB subroutine
• inputs are in R0,R1
• Output is in R3= R1-R0
give label to first line in the code…this is the address for
the subroutine SUB…To call, the user program needs to set PC to
this address
SUB NOT R1, R1 ; complement R1 and add 1 to get

ADD R2, R1, #1 ; 2’s complement R2 = -R1
ADD R3, R0, R2 ; R3= R0+R2 = R0 – R1
RET ; replace HALT by RET to return to caller

12

7

Passing Information to/from Subroutines
•Arguments

• A value passed in to a subroutine is called an argument.
• This is a value needed by the subroutine to do its job.

•Return Values
• A value passed out of a subroutine is called a return value.

Ø This is the value that you called the subroutine to compute.

•In assembly – how to pass arguments and return values ?
•Registers:

Ø In GETC service routine, character read from the keyboard
is returned in R0.

Ø In OUT service routine, R0 is the character to be printed.
Ø In PUTS routine, R0 is address of string to be printed.
Ø In SUB: inputs in R0,R1 and output in R2

13

Concept of Scope in High level languages
int sub(x,y){

int z
….}

int main{
int x,y;
int z;
…
z= sub(x,y);

…}

These two are
Different variables in C

BUT
Same (registers) in assembly!

14

8

Saving and Restoring Registers
•What if the same registers are used in the “main” and in the
subroutine ?

•Need to save the registers so their value is not overwritten
•Called routine -- “callee-save”

• Before start, save any registers that will be altered
(unless altered value is desired by calling program!)

• Before return, restore those same registers
•Calling routine -- “caller-save”

• Save registers destroyed by own instructions or
by called routines (if known), if values needed later

Ø ex: save R0 before TRAP x23 (input character)
Ø ex: save R7 before calling routine

• Or avoid using those registers altogether

•Values are saved by storing them in memory.

15

Using Subroutines
•In order to use a subroutine, a programmer must know:

• its address (or at least a label that will be bound to its address)
• its function (what does it do?)

ØNOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run.

• its arguments (where to pass data in, if any)
• its return values (where to get computed data, if any)

•User code must save registers used to pass arguments
• If subroutine uses other registers, then save them before use and

restore before returning
• Example: SUB

• Inputs are in registers R0, R1
• Output is in R3

16

9

Using SUB from ‘main’
• main code:

• subtract two numbers in memory and write back difference.
• Read two numbers from memory locations number1, number2 and

store into registers R0, R1.
• Call SUB and store result in memory location result

.ORIG x3000
LD R0, number1
LD R1, number2
; now call SUB – use JSRR if SUB is within 11 bit offset
ST R3, result ; store result returned in R3 into memory
HALT

Number1 .FILL x000A
Number2 .FILL #8
Result .BLKW #1 ;reserve space for result
If R2 is used in main then need to save them into memory

17

; what if address of SUB is not within 11 bit offset?
.ORIG x3000
LoopLD R0, number1 ; load number1 into R0

LDR R1, number2 ; load number2 into R1
ST R2, SaveR2 ; save register R2
LD R5, goSUB ; load address of SUB into R4
JSRR R5 ; go to subroutine whose address in R5
STR R3, result ; store result
LD R2, SaveR2 ; restore old value R2
HALT

number1 .FILL #10
number2 .FILL # -8
goSUB .FILL SUB ; initialize goSUB to address of SUB
SaveR2 .BLKW 1; reserve space SaveR2 and SaveR3
result .BLKW #1
SUB NOT R1, R1

ADD R2, R1, #1
ADD R3, R0, R2
RET
.END

18

10

Protecting System space
•System calls go to specific locations in memory

• We don’t want users overwriting these
• Write protect these locations
• Halt a program that tries to enter unauthorized space/memory

•Role of the O/S
• Enforce Isolation
• Privilege level

19

Operating Systems (OSes)

First job of an OS:
• Handle I/O …2nd job of OS …
• OSes virtualize the hardware for user applications

In real systems, only the operating system (OS) does I/O
• “User” programs ask OS to perform I/O on their behalf
• Three reasons for this setup:

1) Abstraction/Standardization
• I/O device interfaces are nasty, and there are many of them
• Think of disk interfaces: S-ATA, iSCSI, IDE
• User programs shouldn’t have to deal with these interfaces

Ø In fact, even OS doesn’t have to deal with most of them
Ø Most are buried in “device drivers”

20

11

Operating Systems (OSes)

•2) Raise the level of abstraction
• Wrap nasty physical interfaces with nice logical ones

ØWrap disk layout in file system interface

•3) Enforce isolation (usually with help from hardware)
• Each user program thinks it has the hardware to itself

ØUser programs unaware of other programs or (mostly) OS
• Makes programs much easier to write
• Makes the whole system more stable and secure

ØA can’t mess with B if it doesn’t even know B exists

21

Implementing an OS: Privilege
OS isolates user programs from each other and itself

• Requires restricted access to certain parts of hardware to do this
• Restricted access should be enforced by hardware
• Acquisition of restricted access should be possible, but restricted

Restricted access mechanism is called privilege
• Hardware supports two privilege levels

“Supervisor” or “privileged” mode
• Processor can execute any code, read/write any data

“User” or “unprivileged” mode
• Processor may not execute some code, read/write some memory

Ø E.g., cannot read/write video memory or device registers

22

12

Privilege in LC3
PSR (Processor Status Register)?

• PSR[15] is the privilege bit
• If PSR[15] == 1, current code is “privileged”, i.e., the OS

instruction and data memories split into two- example:
• x0000-x7FFF: user segment
• x8000-xFFFF: OS segment

Ø Video memory (xC000-xFDFF) is in OS segment
Ø I/O device registers (xFE00-xFFFF) are too

If PSR[15]==0 and current program tries to …
• … execute an instruction with PC[15] == 1
• … or read/write data with address[15] == 1
• … “hardware” kills it!

23

Next…..

•Stack in assembly
• Used in ASCII to Binary etc.
• Interrupt processing
• And………need it to support high level languages

Øex: C to Assembly

24

