Calculus 3
Lia Vas

Substitution for Double and Triple Intrgrals.
Cylindrical and Spherical Coordinates

General substitution for double integrals.

We have seen many examples in which a region in xy-plane has more convenient representation
in polar coordinates than in zy-parametrization. In general, say that two new parameters, u and v,
represent the region better than the parameters x and y. In cases like that, one can transform the
region in xy-plane to a region in uv-plane by the substitution

x=g(u,v) y=h(u,v).
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Thus, a substitution is just a convenient reparametrization of a surface when the parameters
x and y are changed to u and v. When evaluating the integral [ [, f(z,y)dxdy using substitution,
the area element dA = dxdy becomes |.J|dudv where the Jacobian determinant .J is given by
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Thus,
//Df(x,y) dx dy = //[)f(l’(u,v),y(u’y)) |.J|du dv

Note that in one-dimensional case, the Jacobian determinant is simply the derivative of the
substitution u = u(z) solved for x so that x = z(u) = dr = 2/(u)du.

Jacobian for polar coordinates. The polar coordinates * = rcosf and y = rsinf can
be considered as a substitution in which v = r and v = 0. Thus, x, = cosf,xy = —rsinf and
Yy, = sinf, yy = rcosf. The Jacobian is

cos@ —rsinf
sinf rcosf
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' = rcos’f +rsin®6 =r.

This explains the presence of r in the integrals of the section on Polar Coordinates.

//D f(z,y)drdy = //f(?“ cosf,rsinf) r dr db.
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General substitution for triple integrals.

Just as for double integrals, a region over which a triple integral is being taken may have easier
representation in another coordinate system, say in uvw-space, than in xyz-space. In cases like that,
one can transform the region in xyz-space to a region in uvw-space by the substitution

r=z(u,v,w), y=uy(u,v,w), and z = z(u,v,w).
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When evaluating the integral [ [ [z f(x,y, z)dzdydz using substitution, the volume element dV =
dxdydz becomes |J|dudvdw where the Jacobian determinant J is given by
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Thus, ///Ef(:c,y,z) dx dy dz:///Ef(x(u,v,w),y(u,v,w),z(u,v,w))|J|du dv dw

Two main examples of such substitution are cylindrical and spherical coordinates.

o)

Cylindrical coordinates.

Recall that the cylinder 2? + y?> = a? can

be parametrized by x = acosf, y = asinf and Xir C.OS g
z = z. Assuming now that the radius a is not con- y=rsin
stant and using the variable r to denote it just as 2=z
in polar coordinates, we obtain the cylindrical co- )
ordinates
T =rcosf y
y =rsinf
2=z
Thus, z, y and r are related by 2 +y? =12 X
The Jacobian of cylindrical coordinates is
T, To T, cos) —rsinf 0
J=|y Yo y.|=]|sinf rcosf 0|=rcos’d+rsin®f=r.
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Thus, when using cylindrical coordinates to evaluate a triple integral of a function f(x,y, z) defined
over a solid region F above the surface z = g(r,y) and below the surface z = h(z,y) with the
projection D in the xy-plane. If the projection D has a representation in the polar coordinates
D={(r0)|a<0<p, r(0) <r<ryf)}, then the triple integral

B8 r2(0) h(r,0)
///f(x,y,z) dxdydz:/ (/ (/ f(rcosf,rsind, z) dz> r dr) do
E o r1(0) g(r,0)

Spherical coordinates.

Besides cylindrical coordinates, another frequently used coordinates for triple integrals are spher-
ical coordinates. Spherical coordinates are mostly used for the integrals over a solid whose defini-
tion involves spheres.

If P=(z,y,z)is a point in space and O denotes the origin, let

e 7 denote the length of the vector @ =
(x,y,2), i.e. the distance of the point P =

(x,y, z) from the origin O. Thus,
R S S}

e O be the angle between the projection of vec-
tor W; (x,y, z) on the zy-plane and the
vector ¢ (positive z axis); and

e ¢ be the angle between the vector @ and
the vector k (positive z-axis).

The conversion equations are r=rcosfsing y=rsinfsing z=rcosg.

The Jacobian determinant can be computed to be | J = r?sin ¢. | Thus,

dr dy dz = r* sin¢ dr de df.

Note that the angle 6 is the same in cylindrical and spherical coordinates.
Note that the distance r is different in cylindrical and in spherical coordinates.

Meaning of r Relation to x,y, z
Cylindrical | distance from (z,y, 2) to z-axis 22 + y? =7?
Spherical | distance from (z,y, 2) to the origin | 22 + y* + 2* = r?

Spherical coordinates parametrization
of a sphere. If a is a positive constant and a
point (z,y, z) is on the sphere centered at the ori-
gin of radius a, then the coordinates satisfy the
equation

2 +yt 42 =




So, the distance from the origin r is exactly a for every such point. In other words, r is constant and
equal to a. Thus, the equation of the sphere in spherical coordinates become simple and short

r=a

and the equations x = acosfsin ¢, Yy = asin 0 sin ¢, Z = acos o
parametrize the sphere. When these equations are substituted in the expression z? + 3% + 22, it
simplifies to a? (you should convince yourself of this fact).

Practice problems.

1. Evaluate the triple integral
(a) [ [ JgV*2+ y? dx dy dz where E is the region that lies between the cylinders z? +y* = 1
and 22 + % = 4 and between the xy-plane and the plane z = x + 3.
(b) [ [ [p(x®*+y*+ 2?) dz dy dz where E is the unit ball 2% + y? 4+ 2% < 1.

(¢) [ [ gz dx dy dz where E is the region between the spheres z? + y> + 22 = 1 and
2% + y? + 22 = 4 in the first octant.

2. Find the volume of the solid enclosed by the paraboloids z = 22 4+ y? and z = 36 — 322 — 3y

3. Find the volume of the ellipsoid % + % + % = 1 by using the transformation x = 2u, y = 3v
z = dw.

4. Determine the bounds (in spherical coordinates) for the following regions between the spheres
2+’ +22=1and 2® +y? + 22 = 4.
(a) The region between the two spheres and above the zy-plane.
(b) The region between the two spheres and to the right of the xz-plane.

(c) The region between the two spheres and in front of the yz-plane.
5. Use the given substitution to evaluate the integral.

(a) [ [p(3x+4y) dx dy where D is the region bounded by the lines y =z, y = v —2, y = —2x,
and y = 3 — 2z. The substitution 2 = 3(u+v), y = 3(v — 2u) transforms the region to a
rectangle 0 <u <2 and 0 <ov < 3.

(b) [ Jpzy dx dy where D is the region in the first quadrant bounded by the curves y = z,
y=3x,y= %, and y = % The substitution z = ¥, y = v transforms the region into a

region with bounds 1 < u < 3 and /u < v < V/3u.
Solutions.

1. (a) Use cylindrical coordinates. The plane z = x 4 3 is the z-upper bound and the zy-plane
z = 0 is the z-lower bound. The bounds for r and 6 are determined as when working
with polar coordinates: the region between the circles 22 +y*? = 1 and 22 +y* = 4 can be
described by 0 < # < 27 and 1 < r < 2. Since z = rcos#, the plane z = x + 3 becomes
2z = rcosf + 3. Thus, the integral is

27 2 rrcosf+3 21 2 rcos 643
///\/xQ—l—dea:dydz:/ / / \/ﬁrdrdﬁdz:/ d@/ err/ dz
E 0 1 JO 0 1 0
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2 2 2 2 27
/ de / 72 dr (rcosf +3) = / d@/ (r® cos 0 + 3r*) dr = / de
0 1 0 1 0

g7 do (X cosd +7) = 14r.
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(% cos B + 371—) =

3
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(b) Use spherical coordinates. The function 22+y?+22 is r? and dV = dxdydz is r? sin ¢pdrdfde.
The bounds for the unit sphere are 0 < 0 < 27, 0 < ¢ < 7, and 0 < r < 1. Thus, we have
[ [ fa@®+ 9?4+ 22 dedydz = [T [ [Lr2r2singdrdfdo = [7dO [Tsingdd [y r*dr =

2m(—cos @)y %

(c) Use spherical coordinates. The function z is
rcos¢ and dV = dxdydz is 72 sin ¢pdrdfde.
Since the region is in the first octant, 0 <
¢ < 3. The bounds for r and 8 can be deter- O0=9
mined from the intersection with zy-plane
on the figure on the right. Hence, 0 <6 < 7
and the bounds for r are determined by the 0=06=mn/2
radii of the spheres, so 1 < r < 2. Thus,

///Ezdxdydz: X 6=0

w/2 pw/2 (2
/ / /rcos¢ 2 sin ¢pdr df do = (0,2)4
0 0 1
w/2 w/2 2
/0 d@/o cos¢sin¢d¢/1 r3dr = 0,1)1
 Lrtf" 15w i
22 4| 16

_ 1 _ 4w

(1,0)

(2,0)

2. Use cylindrical coordinates. The paraboloids have the equations z = 22 +y?> = r? and z =
36 — 3z% — 3y? = 36 — 3r%. The first is the lower 2-bound and the second is the upper (see the

figure below). The bounds for 6 are 0 < 6 < 27.
z

The paraboloids intersect in a circle. The pro- 2=36-3x*-3y’
jection of the circle in zy-plane determines the Upper
r-bounds. The intersection is when 36 — 3r% =
r? = 36 = 4r? = 9 = 2 = r = 3 (the negative
solution is not relevant). Thus, the r-bounds =
are 0 < r < 3. The volume is (=3
20 3 36312 z=x"+y’
vz/// da:dydz:/ / / rdrdf dz — lower
0 0 Jr2 Yy
>
2 3 2 2 2 a3
/O de/o rdr(36-3r° %) = 2n(18% — )| = 162r. ol s
% =0=<2n
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3. The substitution x = 2u, y = 3v and 2z = bw
converts the ellipsoid into a sphere of radius 1.
Tlge OJaSObian of this substitution is J =

0 3 0| = 30. Thus, the volume is V = i

0 05 »
[[[ dedydz = [ [ [30 dudvdw. Since the -b b "y
integral is taken over a inside of the sphere, a
use the spherical coordinates. The Jacobian is
2 sin ¢ so dudvdw = r?sin ¢pdrdfde. Since the X
radius is 1 and we are integrating over entire
sphere, the bounds are 0 < 0 < 27, 0 < ¢ <,
and 0 < r < 1. Thus, the volume is V =
[[[30dudvdw = [ [ [30r*sing¢ drdedf =

-C

27 T 1 31 ]_
30/ de/ sin¢d¢/ r2dr = 30 21 (— cos @[T —| = 120> = 40r.
0 0 0 3 0 3

4. Since the radius of the first sphere is 1 and the radius of the second sphere is 2, the r-bounds
are 1 < r < 2 for all three parts.

(a) Note that the values of 6 are 0 to 27 be-
cause the projection in the xy plane is
entire region between two circles. The
bounds for ¢ are 0 to 7 (see the figure

on the right).

(b) The right side of the xz-plane y = 0 corresponds to y > 0. Hence, the projection in zy-
plane is above the z-axis. So, the values of # are 0 to w. The bounds for ¢ are 0 to 7 as
the figure below illustrates.
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(¢) The front of the yz-plane z = 0 corresponds to x > 0. Hence, the projection in zy-plane
is to the right of the y-axis. So, the values of 0 are = to 7. The bounds for ¢ are 0 to 7
as the figure below illustrates.
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o= 6=-1/2
. Ty Ty % % 1 2 1
5. (a) Calculate the Jacobian J = v oy | |2 1|75 +5 =3 J/p(Bz +4y) dv dy =
u v 3 3

2 2 3
f02f03(u+v+§(v—2u)) %du dvz%fg(uv—i-%—l—%—g%v)o du:%f02(3u+%+6—
8u) du=3(6+9+12—16) = 4
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J7 udu lnv‘\/a = [7 udu Inv3 = ln\/§7 L= 4Inv/3 =2In3 =2.197

(b) The Jacobian is J = =1 [[pay dv dy = Ik f\ﬁz%v%dudv =




