Calculus 3

Lia Vas

Substitution for Double and Triple Intrgrals. Cylindrical and Spherical Coordinates

General substitution for double integrals.

We have seen many examples in which a region in $x y$-plane has more convenient representation in polar coordinates than in $x y$-parametrization. In general, say that two new parameters, u and v, represent the region better than the parameters x and y. In cases like that, one can transform the region in $x y$-plane to a region in $u v$-plane by the substitution

$$
x=g(u, v) \quad y=h(u, v)
$$

Thus, a substitution is just a convenient reparametrization of a surface when the parameters x and y are changed to u and v. When evaluating the integral $\iint_{D} f(x, y) d x d y$ using substitution, the area element $d A=d x d y$ becomes $|J| d u d v$ where the Jacobian determinant J is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right| .
$$

Thus,

$$
\iint_{D} f(x, y) d x d y=\iint_{D} f(x(u, v), y(u, v))|J| d u d v
$$

Note that in one-dimensional case, the Jacobian determinant is simply the derivative of the substitution $u=u(x)$ solved for x so that $x=x(u) \Rightarrow d x=x^{\prime}(u) d u$.

Jacobian for polar coordinates. The polar coordinates $x=r \cos \theta$ and $y=r \sin \theta$ can be considered as a substitution in which $u=r$ and $v=\theta$. Thus, $x_{r}=\cos \theta, x_{\theta}=-r \sin \theta$ and $y_{r}=\sin \theta, y_{\theta}=r \cos \theta$. The Jacobian is

$$
J=\left|\begin{array}{cc}
x_{r} & x_{\theta} \\
y_{r} & y_{\theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

This explains the presence of r in the integrals of the section on Polar Coordinates.

$$
\iint_{D} f(x, y) d x d y=\iint f(r \cos \theta, r \sin \theta) r d r d \theta
$$

General substitution for triple integrals.

Just as for double integrals, a region over which a triple integral is being taken may have easier representation in another coordinate system, say in $u v w$-space, than in $x y z$-space. In cases like that, one can transform the region in $x y z$-space to a region in $u v w$-space by the substitution

$$
x=x(u, v, w), \quad y=y(u, v, w), \text { and } z=z(u, v, w) .
$$

substitution

When evaluating the integral $\iiint_{E} f(x, y, z) d x d y d z$ using substitution, the volume element $d V=$ $d x d y d z$ becomes $|J| d u d v d w$ where the Jacobian determinant J is given by

$$
J=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right|
$$

Thus, $\quad \iiint_{E} f(x, y, z) d x d y d z=\iiint_{E} f(x(u, v, w), y(u, v, w), z(u, v, w))|J| d u d v d w$
Two main examples of such substitution are cylindrical and spherical coordinates.

Cylindrical coordinates.

Recall that the cylinder $x^{2}+y^{2}=a^{2}$ can be parametrized by $x=a \cos \theta, y=a \sin \theta$ and $z=z$. Assuming now that the radius a is not constant and using the variable r to denote it just as in polar coordinates, we obtain the cylindrical coordinates

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& z=z
\end{aligned}
$$

Thus, x, y and r are related by

$$
x^{2}+y^{2}=r^{2} .
$$

The Jacobian of cylindrical coordinates is

$$
J=\left|\begin{array}{lll}
x_{r} & x_{\theta} & x_{z} \\
y_{r} & y_{\theta} & y_{z} \\
z_{r} & z_{\theta} & z_{z}
\end{array}\right|=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

Thus, when using cylindrical coordinates to evaluate a triple integral of a function $f(x, y, z)$ defined over a solid region E above the surface $z=g(x, y)$ and below the surface $z=h(x, y)$ with the projection D in the $x y$-plane. If the projection D has a representation in the polar coordinates $D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, r_{1}(\theta) \leq r \leq r_{2}(\theta)\right\}$, then the triple integral

$$
\iiint_{E} f(x, y, z) d x d y d z=\int_{\alpha}^{\beta}\left(\int_{r_{1}(\theta)}^{r_{2}(\theta)}\left(\int_{g(r, \theta)}^{h(r, \theta)} f(r \cos \theta, r \sin \theta, z) d z\right) r d r\right) d \theta
$$

Spherical coordinates.

Besides cylindrical coordinates, another frequently used coordinates for triple integrals are spherical coordinates. Spherical coordinates are mostly used for the integrals over a solid whose definition involves spheres.

If $P=(x, y, z)$ is a point in space and O denotes the origin, let

- r denote the length of the vector $\overrightarrow{O P}=$ $\langle x, y, z\rangle$, i.e. the distance of the point $P=$ (x, y, z) from the origin O. Thus,

$$
x^{2}+y^{2}+z^{2}=r^{2} ;
$$

- θ be the angle between the projection of vector $\overrightarrow{O P}=\langle x, y, z\rangle$ on the $x y$-plane and the vector \vec{i} (positive x axis); and
- ϕ be the angle between the vector $\overrightarrow{O P}$ and
 the vector \vec{k} (positive z-axis).

The conversion equations are

$$
x=r \cos \theta \sin \phi \quad y=r \sin \theta \sin \phi \quad z=r \cos \phi
$$

The Jacobian determinant can be computed to be $J=r^{2} \sin \phi$. Thus,

$$
d x d y d z=r^{2} \sin \phi d r d \phi d \theta
$$

Note that the angle θ is the same in cylindrical and spherical coordinates.
Note that the distance r is different in cylindrical and in spherical coordinates.

	Meaning of r	Relation to x, y, z
Cylindrical	distance from (x, y, z) to z-axis	$x^{2}+y^{2}=r^{2}$
Spherical	distance from (x, y, z) to the origin	$x^{2}+y^{2}+z^{2}=r^{2}$

Spherical coordinates parametrization of a sphere. If a is a positive constant and a point (x, y, z) is on the sphere centered at the origin of radius a, then the coordinates satisfy the equation

$$
x^{2}+y^{2}+z^{2}=a^{2} .
$$

So, the distance from the origin r is exactly a for every such point. In other words, r is constant and equal to a. Thus, the equation of the sphere in spherical coordinates become simple and short

$$
r=a
$$

and the equations $\quad x=a \cos \theta \sin \phi, \quad y=a \sin \theta \sin \phi, \quad z=a \cos \phi$ parametrize the sphere. When these equations are substituted in the expression $x^{2}+y^{2}+z^{2}$, it simplifies to a^{2} (you should convince yourself of this fact).

Practice problems.

1. Evaluate the triple integral
(a) $\iiint_{E} \sqrt{x^{2}+y^{2}} d x d y d z$ where E is the region that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ and between the $x y$-plane and the plane $z=x+3$.
(b) $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z$ where E is the unit ball $x^{2}+y^{2}+z^{2} \leq 1$.
(c) $\iiint_{E} z d x d y d z$ where E is the region between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$ in the first octant.
2. Find the volume of the solid enclosed by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$.
3. Find the volume of the ellipsoid $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$ by using the transformation $x=2 u, y=3 v$ $z=5 w$.
4. Determine the bounds (in spherical coordinates) for the following regions between the spheres $x^{2}+y^{2}+z^{2}=1$ and $x^{2}+y^{2}+z^{2}=4$.
(a) The region between the two spheres and above the $x y$-plane.
(b) The region between the two spheres and to the right of the $x z$-plane.
(c) The region between the two spheres and in front of the $y z$-plane.
5. Use the given substitution to evaluate the integral.
(a) $\iint_{D}(3 x+4 y) d x d y$ where D is the region bounded by the lines $y=x, y=x-2, y=-2 x$, and $y=3-2 x$. The substitution $x=\frac{1}{3}(u+v), y=\frac{1}{3}(v-2 u)$ transforms the region to a rectangle $0 \leq u \leq 2$ and $0 \leq v \leq 3$.
(b) $\iint_{D} x y d x d y$ where D is the region in the first quadrant bounded by the curves $y=x$, $y=3 x, y=\frac{1}{x}$, and $y=\frac{3}{x}$. The substitution $x=\frac{u}{v}, y=v$ transforms the region into a region with bounds $1 \leq u \leq 3$ and $\sqrt{u} \leq v \leq \sqrt{3 u}$.

Solutions.

1. (a) Use cylindrical coordinates. The plane $z=x+3$ is the z-upper bound and the $x y$-plane $z=0$ is the z-lower bound. The bounds for r and θ are determined as when working with polar coordinates: the region between the circles $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$ can be described by $0 \leq \theta \leq 2 \pi$ and $1 \leq r \leq 2$. Since $x=r \cos \theta$, the plane $z=x+3$ becomes $z=r \cos \theta+3$. Thus, the integral is

$$
\iiint_{E} \sqrt{x^{2}+y^{2}} d x d y d z=\int_{0}^{2 \pi} \int_{1}^{2} \int_{0}^{r \cos \theta+3} \sqrt{r^{2}} r d r d \theta d z=\int_{0}^{2 \pi} d \theta \int_{1}^{2} r^{2} d r \int_{0}^{r \cos \theta+3} d z=
$$

$\int_{0}^{2 \pi} d \theta \int_{1}^{2} r^{2} d r(r \cos \theta+3)=\int_{0}^{2 \pi} d \theta \int_{1}^{2}\left(r^{3} \cos \theta+3 r^{2}\right) d r=\left.\int_{0}^{2 \pi} d \theta\left(\frac{r^{4}}{4} \cos \theta+3 \frac{r^{3}}{3}\right)\right|_{1} ^{2}=$ $\int_{0}^{2 \pi} d \theta\left(\frac{15}{4} \cos \theta+7\right)=14 \pi$.
(b) Use spherical coordinates. The function $x^{2}+y^{2}+z^{2}$ is r^{2} and $d V=d x d y d z$ is $r^{2} \sin \phi d r d \theta d \phi$. The bounds for the unit sphere are $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$, and $0 \leq r \leq 1$. Thus, we have $\iiint_{E}\left(x^{2}+y^{2}+z^{2}\right) d x d y d z=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} r^{2} r^{2} \sin \phi d r d \theta d \phi=\int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{1} r^{4} d r=$ $\left.\left.2 \pi(-\cos \phi)\right|_{0} ^{\pi} \frac{r^{5}}{5}\right|_{0} ^{1}=2 \pi(2) \frac{1}{5}=\frac{4 \pi}{5}$.
(c) Use spherical coordinates. The function z is $r \cos \phi$ and $d V=d x d y d z$ is $r^{2} \sin \phi d r d \theta d \phi$. Since the region is in the first octant, $0 \leq$ $\phi \leq \frac{\pi}{2}$. The bounds for r and θ can be determined from the intersection with $x y$-plane on the figure on the right. Hence, $0 \leq \theta \leq \frac{\pi}{2}$ and the bounds for r are determined by the radii of the spheres, so $1 \leq r \leq 2$. Thus,

$$
\begin{gathered}
\iiint_{E} z d x d y d z= \\
\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{1}^{2} r \cos \phi r^{2} \sin \phi d r d \theta d \phi= \\
\int_{0}^{\pi / 2} d \theta \int_{0}^{\pi / 2} \cos \phi \sin \phi d \phi \int_{1}^{2} r^{3} d r= \\
\left.\frac{\pi}{2} \frac{1}{2} \frac{r^{4}}{4}\right|_{1} ^{2}=\frac{15 \pi}{16}
\end{gathered}
$$

2. Use cylindrical coordinates. The paraboloids have the equations $z=x^{2}+y^{2}=r^{2}$ and $z=$ $36-3 x^{2}-3 y^{2}=36-3 r^{2}$. The first is the lower z-bound and the second is the upper (see the figure below). The bounds for θ are $0 \leq \theta \leq 2 \pi$.

The paraboloids intersect in a circle. The projection of the circle in $x y$-plane determines the r-bounds. The intersection is when $36-3 r^{2}=$ $r^{2} \Rightarrow 36=4 r^{2} \Rightarrow 9=r^{2} \Rightarrow r=3$ (the negative solution is not relevant). Thus, the r-bounds are $0 \leq r \leq 3$. The volume is

$$
\begin{aligned}
& V=\iiint d x d y d z=\int_{0}^{2 \pi} \int_{0}^{3} \int_{r^{2}}^{36-3 r^{2}} r d r d \theta d z= \\
& \int_{0}^{2 \pi} d \theta \int_{0}^{3} r d r\left(36-3 r^{2}-r^{2}\right)=\left.2 \pi\left(18 r^{2}-r^{4}\right)\right|_{0} ^{3}=162 \pi
\end{aligned}
$$

3. The substitution $x=2 u, y=3 v$ and $z=5 w$ converts the ellipsoid into a sphere of radius 1 .
The Jacobian of this substitution is $J=$ $\left|\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right|=30$. Thus, the volume is $V=$ $\iiint d x d y d z=\iiint 30 d u d v d w$. Since the integral is taken over a inside of the sphere, use the spherical coordinates. The Jacobian is $r^{2} \sin \phi$ so $d u d v d w=r^{2} \sin \phi d r d \theta d \phi$. Since the radius is 1 and we are integrating over entire sphere, the bounds are $0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi$,
 and $0 \leq r \leq 1$. Thus, the volume is $V=$ $\iiint 30 d u d v d w=\iiint 30 r^{2} \sin \phi d r d \phi d \theta=$

$$
30 \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \int_{0}^{1} r^{2} d r=\left.\left.302 \pi(-\cos \phi)\right|_{0} ^{\pi} \frac{r^{3}}{3}\right|_{0} ^{1}=120 \pi \frac{1}{3}=40 \pi
$$

4. Since the radius of the first sphere is 1 and the radius of the second sphere is 2 , the r-bounds are $1 \leq r \leq 2$ for all three parts.
(a) Note that the values of θ are 0 to 2π because the projection in the $x y$ plane is entire region between two circles. The bounds for ϕ are 0 to $\frac{\pi}{2}$ (see the figure on the right).

(b) The right side of the $x z$-plane $y=0$ corresponds to $y>0$. Hence, the projection in $x y$ plane is above the x-axis. So, the values of θ are 0 to π. The bounds for ϕ are 0 to π as the figure below illustrates.

(c) The front of the $y z$-plane $x=0$ corresponds to $x>0$. Hence, the projection in $x y$-plane is to the right of the y-axis. So, the values of θ are $\frac{-\pi}{2}$ to $\frac{\pi}{2}$. The bounds for ϕ are 0 to π as the figure below illustrates.

5. (a) Calculate the Jacobian $J=\left|\begin{array}{ll}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{cc}\frac{1}{3} & \frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3}\end{array}\right|=\frac{1}{9}+\frac{2}{9}=\frac{1}{3} \cdot \iint_{D}(3 x+4 y) d x d y=$ $\int_{0}^{2} \int_{0}^{3}\left(u+v+\frac{4}{3}(v-2 u)\right) \frac{1}{3} d u d v=\left.\frac{1}{3} \int_{0}^{2}\left(u v+\frac{v^{2}}{2}+\frac{4 v^{2}}{6}-\frac{8 u v}{3}\right)\right|_{0} ^{3} d u=\frac{1}{3} \int_{0}^{2}\left(3 u+\frac{9}{2}+6-\right.$ $8 u) d u=\frac{1}{3}(6+9+12-16)=\frac{11}{3}$
(b) The Jacobian is $J=\left|\begin{array}{cc}x_{u} & x_{v} \\ y_{u} & y_{v}\end{array}\right|=\left|\begin{array}{cc}\frac{1}{v} & \frac{-u}{v^{2}} \\ 0 & 1\end{array}\right|=\frac{1}{v} \cdot \iint_{D} x y d x d y=\int_{1}^{3} \int_{\sqrt{u}}^{\sqrt{3 u}} \frac{u}{v} v \frac{1}{v} d u d v=$ $\left.\int_{1}^{3} u d u \ln v\right|_{\sqrt{u}} ^{\sqrt{3 u}}=\int_{1}^{3} u d u \ln \sqrt{3}=\left.\ln \sqrt{3} \frac{u^{2}}{2}\right|_{1} ^{3}=4 \ln \sqrt{3}=2 \ln 3=2.197$
