
Calculus 3
Lia Vas

Substitution for Double and Triple Intrgrals.
Cylindrical and Spherical Coordinates

General substitution for double integrals.

We have seen many examples in which a region in xy-plane has more convenient representation
in polar coordinates than in xy-parametrization. In general, say that two new parameters, u and v,
represent the region better than the parameters x and y. In cases like that, one can transform the
region in xy-plane to a region in uv-plane by the substitution

x = g(u, v) y = h(u, v).

Thus, a substitution is just a convenient reparametrization of a surface when the parameters
x and y are changed to u and v. When evaluating the integral

∫ ∫
D f(x, y)dxdy using substitution,

the area element dA = dxdy becomes |J |dudv where the Jacobian determinant J is given by

J =

∣∣∣∣∣ ∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣ =

∣∣∣∣∣ xu xv
yu yv

∣∣∣∣∣ .
Thus, ∫ ∫

D
f(x, y) dx dy =

∫ ∫
D
f(x(u, v), y(u, v)) |J |du dv

Note that in one-dimensional case, the Jacobian determinant is simply the derivative of the
substitution u = u(x) solved for x so that x = x(u)⇒ dx = x′(u)du.

Jacobian for polar coordinates. The polar coordinates x = r cos θ and y = r sin θ can
be considered as a substitution in which u = r and v = θ. Thus, xr = cos θ, xθ = −r sin θ and
yr = sin θ, yθ = r cos θ. The Jacobian is

J =

∣∣∣∣∣ xr xθ
yr yθ

∣∣∣∣∣ =

∣∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

This explains the presence of r in the integrals of the section on Polar Coordinates.∫ ∫
D
f(x, y)dxdy =

∫ ∫
f(r cos θ, r sin θ) r dr dθ.
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General substitution for triple integrals.

Just as for double integrals, a region over which a triple integral is being taken may have easier
representation in another coordinate system, say in uvw-space, than in xyz-space. In cases like that,
one can transform the region in xyz-space to a region in uvw-space by the substitution

x = x(u, v, w), y = y(u, v, w), and z = z(u, v, w).

When evaluating the integral
∫ ∫ ∫

E f(x, y, z)dxdydz using substitution, the volume element dV =
dxdydz becomes |J |dudvdw where the Jacobian determinant J is given by

J =

∣∣∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
xu xv xw
yu yv yw
zu zv zw

∣∣∣∣∣∣∣∣∣
Thus,

∫ ∫ ∫
E
f(x, y, z) dx dy dz =

∫ ∫ ∫
E
f(x(u, v, w), y(u, v, w), z(u, v, w)) |J |du dv dw

Two main examples of such substitution are cylindrical and spherical coordinates.

Cylindrical coordinates.

Recall that the cylinder x2 + y2 = a2 can
be parametrized by x = a cos θ, y = a sin θ and
z = z. Assuming now that the radius a is not con-
stant and using the variable r to denote it just as
in polar coordinates, we obtain the cylindrical co-
ordinates

x = r cos θ
y = r sin θ
z = z

Thus, x, y and r are related by x2+y2 = r2.

The Jacobian of cylindrical coordinates is

J =

∣∣∣∣∣∣∣
xr xθ xz
yr yθ yz
zr zθ zz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r cos2 θ + r sin2 θ = r.

2



Thus, when using cylindrical coordinates to evaluate a triple integral of a function f(x, y, z) defined
over a solid region E above the surface z = g(x, y) and below the surface z = h(x, y) with the
projection D in the xy-plane. If the projection D has a representation in the polar coordinates
D = { (r, θ) | α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ) }, then the triple integral

∫ ∫ ∫
E
f(x, y, z) dx dy dz =

∫ β

α

(∫ r2(θ)

r1(θ)

(∫ h(r,θ)

g(r,θ)
f(r cos θ, r sin θ, z) dz

)
r dr

)
dθ

Spherical coordinates.

Besides cylindrical coordinates, another frequently used coordinates for triple integrals are spher-
ical coordinates. Spherical coordinates are mostly used for the integrals over a solid whose defini-
tion involves spheres.

If P = (x, y, z) is a point in space and O denotes the origin, let

• r denote the length of the vector
−→
OP =

〈x, y, z〉, i.e. the distance of the point P =
(x, y, z) from the origin O. Thus,

x2 + y2 + z2 = r2;

• θ be the angle between the projection of vec-
tor
−→
OP = 〈x, y, z〉 on the xy-plane and the

vector
−→
i (positive x axis); and

• φ be the angle between the vector
−→
OP and

the vector
−→
k (positive z-axis).

The conversion equations are x = r cos θ sinφ y = r sin θ sinφ z = r cosφ.

The Jacobian determinant can be computed to be J = r2 sinφ. Thus,

dx dy dz = r2 sinφ dr dφ dθ.

Note that the angle θ is the same in cylindrical and spherical coordinates.
Note that the distance r is different in cylindrical and in spherical coordinates.

Meaning of r Relation to x, y, z
Cylindrical distance from (x, y, z) to z-axis x2 + y2 = r2

Spherical distance from (x, y, z) to the origin x2 + y2 + z2 = r2

Spherical coordinates parametrization
of a sphere. If a is a positive constant and a
point (x, y, z) is on the sphere centered at the ori-
gin of radius a, then the coordinates satisfy the
equation

x2 + y2 + z2 = a2.
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So, the distance from the origin r is exactly a for every such point. In other words, r is constant and
equal to a. Thus, the equation of the sphere in spherical coordinates become simple and short

r = a

and the equations x = a cos θ sinφ, y = a sin θ sinφ, z = a cosφ
parametrize the sphere. When these equations are substituted in the expression x2 + y2 + z2, it
simplifies to a2 (you should convince yourself of this fact).

Practice problems.

1. Evaluate the triple integral

(a)
∫ ∫ ∫

E

√
x2 + y2 dx dy dz where E is the region that lies between the cylinders x2 + y2 = 1

and x2 + y2 = 4 and between the xy-plane and the plane z = x+ 3.

(b)
∫ ∫ ∫

E(x2 + y2 + z2) dx dy dz where E is the unit ball x2 + y2 + z2 ≤ 1.

(c)
∫ ∫ ∫

E z dx dy dz where E is the region between the spheres x2 + y2 + z2 = 1 and
x2 + y2 + z2 = 4 in the first octant.

2. Find the volume of the solid enclosed by the paraboloids z = x2 + y2 and z = 36− 3x2 − 3y2.

3. Find the volume of the ellipsoid x2

4
+ y2

9
+ z2

25
= 1 by using the transformation x = 2u, y = 3v

z = 5w.

4. Determine the bounds (in spherical coordinates) for the following regions between the spheres
x2 + y2 + z2 = 1 and x2 + y2 + z2 = 4.

(a) The region between the two spheres and above the xy-plane.

(b) The region between the two spheres and to the right of the xz-plane.

(c) The region between the two spheres and in front of the yz-plane.

5. Use the given substitution to evaluate the integral.

(a)
∫ ∫

D(3x+4y) dx dy where D is the region bounded by the lines y = x, y = x−2, y = −2x,
and y = 3− 2x. The substitution x = 1

3
(u+ v), y = 1

3
(v − 2u) transforms the region to a

rectangle 0 ≤ u ≤ 2 and 0 ≤ v ≤ 3.

(b)
∫ ∫

D xy dx dy where D is the region in the first quadrant bounded by the curves y = x,
y = 3x, y = 1

x
, and y = 3

x
. The substitution x = u

v
, y = v transforms the region into a

region with bounds 1 ≤ u ≤ 3 and
√
u ≤ v ≤

√
3u.

Solutions.

1. (a) Use cylindrical coordinates. The plane z = x + 3 is the z-upper bound and the xy-plane
z = 0 is the z-lower bound. The bounds for r and θ are determined as when working
with polar coordinates: the region between the circles x2 + y2 = 1 and x2 + y2 = 4 can be
described by 0 ≤ θ ≤ 2π and 1 ≤ r ≤ 2. Since x = r cos θ, the plane z = x + 3 becomes
z = r cos θ + 3. Thus, the integral is∫ ∫ ∫

E

√
x2 + y2 dx dy dz =

∫ 2π

0

∫ 2

1

∫ r cos θ+3

0

√
r2 r dr dθ dz =

∫ 2π

0
dθ

∫ 2

1
r2 dr

∫ r cos θ+3

0
dz =
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∫ 2π

0
dθ

∫ 2

1
r2 dr (r cos θ + 3) =

∫ 2π

0
dθ
∫ 2

1
(r3 cos θ + 3r2) dr =

∫ 2π

0
dθ (

r4

4
cos θ + 3

r3

3
)

∣∣∣∣∣
2

1

=

∫ 2π
0 dθ (15

4
cos θ + 7) = 14π.

(b) Use spherical coordinates. The function x2+y2+z2 is r2 and dV = dxdydz is r2 sinφdrdθdφ.
The bounds for the unit sphere are 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, and 0 ≤ r ≤ 1. Thus, we have∫ ∫ ∫

E(x2 + y2 + z2) dx dy dz =
∫ 2π
0

∫ π
0

∫ 1
0 r

2 r2 sinφ dr dθ dφ =
∫ 2π
0 dθ

∫ π
0 sinφdφ

∫ 1
0 r

4 dr =

2π(− cosφ)|π0
r5

5

∣∣∣1
0

= 2π(2)1
5

= 4π
5
.

(c) Use spherical coordinates. The function z is
r cosφ and dV = dxdydz is r2 sinφdrdθdφ.
Since the region is in the first octant, 0 ≤
φ ≤ π

2
. The bounds for r and θ can be deter-

mined from the intersection with xy-plane
on the figure on the right. Hence, 0 ≤ θ ≤ π

2

and the bounds for r are determined by the
radii of the spheres, so 1 ≤ r ≤ 2. Thus,∫ ∫ ∫

E
z dx dy dz =

∫ π/2

0

∫ π/2

0

∫ 2

1
r cosφ r2 sinφdr dθ dφ =

∫ π/2

0
dθ

∫ π/2

0
cosφ sinφdφ

∫ 2

1
r3dr =

π

2

1

2

r4

4

∣∣∣∣∣
2

1

=
15π

16

2. Use cylindrical coordinates. The paraboloids have the equations z = x2 + y2 = r2 and z =
36− 3x2 − 3y2 = 36− 3r2. The first is the lower z-bound and the second is the upper (see the
figure below). The bounds for θ are 0 ≤ θ ≤ 2π.

The paraboloids intersect in a circle. The pro-
jection of the circle in xy-plane determines the
r-bounds. The intersection is when 36− 3r2 =
r2 ⇒ 36 = 4r2 ⇒ 9 = r2 ⇒ r = 3 (the negative
solution is not relevant). Thus, the r-bounds
are 0 ≤ r ≤ 3. The volume is

V =
∫ ∫ ∫

dxdydz =
∫ 2π

0

∫ 3

0

∫ 36−3r2

r2
r dr dθ dz =

∫ 2π

0
dθ

∫ 3

0
r dr(36−3r2−r2) = 2π(18r2 − r4)

∣∣∣3
0

= 162π.
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3. The substitution x = 2u, y = 3v and z = 5w
converts the ellipsoid into a sphere of radius 1.

The Jacobian of this substitution is J =∣∣∣∣∣∣∣
2 0 0
0 3 0
0 0 5

∣∣∣∣∣∣∣ = 30. Thus, the volume is V =

∫ ∫ ∫
dx dy dz =

∫ ∫ ∫
30 du dv dw. Since the

integral is taken over a inside of the sphere,
use the spherical coordinates. The Jacobian is
r2 sinφ so dudvdw = r2 sinφdrdθdφ. Since the
radius is 1 and we are integrating over entire
sphere, the bounds are 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,
and 0 ≤ r ≤ 1. Thus, the volume is V =∫ ∫ ∫

30 du dv dw =
∫ ∫ ∫

30 r2 sinφ dr dφ dθ =

30
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ 1

0
r2dr = 30 2π (− cosφ)|π0

r3

3

∣∣∣∣∣
1

0

= 120π
1

3
= 40π.

4. Since the radius of the first sphere is 1 and the radius of the second sphere is 2, the r-bounds
are 1 ≤ r ≤ 2 for all three parts.

(a) Note that the values of θ are 0 to 2π be-
cause the projection in the xy plane is
entire region between two circles. The
bounds for φ are 0 to π

2
(see the figure

on the right).

(b) The right side of the xz-plane y = 0 corresponds to y > 0. Hence, the projection in xy-
plane is above the x-axis. So, the values of θ are 0 to π. The bounds for φ are 0 to π as
the figure below illustrates.
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(c) The front of the yz-plane x = 0 corresponds to x > 0. Hence, the projection in xy-plane
is to the right of the y-axis. So, the values of θ are −π

2
to π

2
. The bounds for φ are 0 to π

as the figure below illustrates.

5. (a) Calculate the Jacobian J =

∣∣∣∣∣ xu xv
yu yv

∣∣∣∣∣ =

∣∣∣∣∣ 1
3

1
3

−2
3

1
3

∣∣∣∣∣ = 1
9

+ 2
9

= 1
3
.
∫ ∫

D(3x + 4y) dx dy =∫ 2
0

∫ 3
0 (u + v + 4

3
(v − 2u)) 1

3
du dv = 1

3

∫ 2
0 (uv + v2

2
+ 4v2

6
− 8uv

3
)
∣∣∣3
0
du = 1

3

∫ 2
0 (3u + 9

2
+ 6 −

8u) du = 1
3
(6 + 9 + 12− 16) = 11

3

(b) The Jacobian is J =

∣∣∣∣∣ xu xv
yu yv

∣∣∣∣∣ =

∣∣∣∣∣ 1
v
−u
v2

0 1

∣∣∣∣∣ = 1
v
.
∫ ∫

D xy dx dy =
∫ 3
1

∫√3u√
u

u
v
v 1
v
du dv =

∫ 3
1 udu ln v

∣∣∣√3u√
u

=
∫ 3
1 udu ln

√
3 = ln

√
3u

2

2

∣∣∣3
1

= 4 ln
√

3 = 2 ln 3 = 2.197
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