Calculus 3 Lia Vas

Substitution for Double and Triple Intrgrals. Cylindrical and Spherical Coordinates

General substitution for double integrals.

We have seen many examples in which a region in xy-plane has more convenient representation in polar coordinates than in xy-parametrization. In general, say that two new parameters, u and v, represent the region better than the parameters x and y. In cases like that, one can transform the region in xy-plane to a region in uv-plane by the **substitution**

$$x = g(u, v)$$
 $y = h(u, v)$

Thus, a substitution is just a convenient **reparametrization** of a surface when the parameters x and y are changed to u and v. When evaluating the integral $\int \int_D f(x, y) dx dy$ using substitution, the area element dA = dx dy becomes |J| du dv where **the Jacobian determinant** J is given by

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$$

Thus,

$$\int \int_D f(x,y) \, dx \, dy = \int \int_D f(x(u,v), y(u,v)) \, |J| du \, dv$$

Note that in one-dimensional case, the Jacobian determinant is simply the derivative of the substitution u = u(x) solved for x so that $x = x(u) \Rightarrow dx = x'(u)du$.

Jacobian for polar coordinates. The polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ can be considered as a substitution in which u = r and $v = \theta$. Thus, $x_r = \cos \theta, x_{\theta} = -r \sin \theta$ and $y_r = \sin \theta, y_{\theta} = r \cos \theta$. The Jacobian is

$$J = \begin{vmatrix} x_r & x_\theta \\ y_r & y_\theta \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r.$$

This explains the presence of r in the integrals of the section on Polar Coordinates.

$$\int \int_D f(x,y) dx dy = \int \int f(r\cos\theta, r\sin\theta) r dr d\theta.$$

General substitution for triple integrals.

Just as for double integrals, a region over which a triple integral is being taken may have easier representation in another coordinate system, say in uvw-space, than in xyz-space. In cases like that, one can transform the region in xyz-space to a region in uvw-space by the **substitution**

$$x = x(u, v, w), \quad y = y(u, v, w), \text{ and } z = z(u, v, w).$$

When evaluating the integral $\int \int_E f(x, y, z) dx dy dz$ using substitution, the volume element dV = dx dy dz becomes |J| du dv dw where **the Jacobian determinant** J is given by

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}$$

Thus,
$$\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int \int \int_E f(x(u, v, w), y(u, v, w), z(u, v, w)) \, |J| du \, dv \, dw$$

Two main examples of such substitution are cylindrical and spherical coordinates.

Cylindrical coordinates.

Recall that the cylinder $x^2 + y^2 = a^2$ can be parametrized by $x = a \cos \theta$, $y = a \sin \theta$ and z = z. Assuming now that the radius *a* is not constant and using the variable *r* to denote it just as in polar coordinates, we obtain the cylindrical coordinates

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$z = z$$

Thus, x, y and r are related by $x^2 + y^2 = r^2$.

The Jacobian of cylindrical coordinates is

$$J = \begin{vmatrix} x_r & x_\theta & x_z \\ y_r & y_\theta & y_z \\ z_r & z_\theta & z_z \end{vmatrix} = \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = r\cos^2\theta + r\sin^2\theta = r.$$

Thus, when using cylindrical coordinates to evaluate a triple integral of a function f(x, y, z) defined over a solid region E above the surface z = g(x, y) and below the surface z = h(x, y) with the projection D in the xy-plane. If the projection D has a representation in the polar coordinates $D = \{ (r, \theta) \mid \alpha \leq \theta \leq \beta, r_1(\theta) \leq r \leq r_2(\theta) \}$, then the triple integral

$$\int \int \int_E f(x, y, z) \, dx \, dy \, dz = \int_\alpha^\beta \left(\int_{r_1(\theta)}^{r_2(\theta)} \left(\int_{g(r,\theta)}^{h(r,\theta)} f(r\cos\theta, r\sin\theta, z) \, dz \right) r \, dr \right) \, d\theta$$

Spherical coordinates.

Besides cylindrical coordinates, another frequently used coordinates for triple integrals are **spherical coordinates.** Spherical coordinates are mostly used for the integrals over a solid whose definition involves spheres.

If P = (x, y, z) is a point in space and O denotes the origin, let

• r denote the length of the vector $\overrightarrow{OP} = \langle x, y, z \rangle$, i.e. the distance of the point P = (x, y, z) from the origin O. Thus,

$$x^2 + y^2 + z^2 = r^2;$$

- θ be the angle between the projection of vector tor \$\vec{OP}\$ = \$\langle x, y, z\$\rangle\$ on the xy-plane and the vector \$\vec{i}\$ (positive x axis); and
- ϕ be the angle between the vector \overrightarrow{OP} and the vector \overrightarrow{k} (positive z-axis).

The conversion equations are

 $x = r \cos \theta \sin \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \phi$.

The Jacobian determinant can be computed to be $J = r^2 \sin \phi$. Thus,

$$dx \, dy \, dz = r^2 \, \sin \phi \, dr \, d\phi \, d\theta.$$

Note that the angle θ is the same in cylindrical and spherical coordinates. Note that the distance r is different in cylindrical and in spherical coordinates.

	Meaning of r	Relation to x, y, z
Cylindrical	distance from (x, y, z) to z-axis	$x^2 + y^2 = r^2$
Spherical	distance from (x, y, z) to the origin	$x^2 + y^2 + z^2 = r^2$

Spherical coordinates parametrization of a sphere. If a is a positive constant and a point (x, y, z) is on the sphere centered at the origin of radius a, then the coordinates satisfy the equation

$$x^2 + y^2 + z^2 = a^2.$$

So, the distance from the origin r is exactly a for every such point. In other words, r is constant and equal to a. Thus, the equation of the sphere in spherical coordinates become simple and short

r = a

and the equations $x = a \cos \theta \sin \phi$, $y = a \sin \theta \sin \phi$, $z = a \cos \phi$ parametrize the sphere. When these equations are substituted in the expression $x^2 + y^2 + z^2$, it simplifies to a^2 (you should convince yourself of this fact).

Practice problems.

1. Evaluate the triple integral

- (a) $\int \int \int_E \sqrt{x^2 + y^2} \, dx \, dy \, dz$ where *E* is the region that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and between the *xy*-plane and the plane z = x + 3.
- (b) $\int \int \int_E (x^2 + y^2 + z^2) dx dy dz$ where E is the unit ball $x^2 + y^2 + z^2 \le 1$.
- (c) $\int \int \int_E z \, dx \, dy \, dz$ where E is the region between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$ in the first octant.
- 2. Find the volume of the solid enclosed by the paraboloids $z = x^2 + y^2$ and $z = 36 3x^2 3y^2$.
- 3. Find the volume of the ellipsoid $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{25} = 1$ by using the transformation x = 2u, y = 3vz = 5w.
- 4. Determine the bounds (in spherical coordinates) for the following regions between the spheres $x^2 + y^2 + z^2 = 1$ and $x^2 + y^2 + z^2 = 4$.
 - (a) The region between the two spheres and above the xy-plane.
 - (b) The region between the two spheres and to the right of the xz-plane.
 - (c) The region between the two spheres and in front of the yz-plane.

5. Use the given substitution to evaluate the integral.

- (a) $\int \int_D (3x+4y) \, dx \, dy$ where *D* is the region bounded by the lines y = x, y = x-2, y = -2x, and y = 3 2x. The substitution $x = \frac{1}{3}(u+v), y = \frac{1}{3}(v-2u)$ transforms the region to a rectangle $0 \le u \le 2$ and $0 \le v \le 3$.
- (b) $\int \int_D xy \, dx \, dy$ where *D* is the region in the first quadrant bounded by the curves y = x, y = 3x, $y = \frac{1}{x}$, and $y = \frac{3}{x}$. The substitution $x = \frac{u}{v}$, y = v transforms the region into a region with bounds $1 \le u \le 3$ and $\sqrt{u} \le v \le \sqrt{3u}$.

Solutions.

1. (a) Use cylindrical coordinates. The plane z = x + 3 is the z-upper bound and the xy-plane z = 0 is the z-lower bound. The bounds for r and θ are determined as when working with polar coordinates: the region between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ can be described by $0 \le \theta \le 2\pi$ and $1 \le r \le 2$. Since $x = r \cos \theta$, the plane z = x + 3 becomes $z = r \cos \theta + 3$. Thus, the integral is

$$\int \int \int_E \sqrt{x^2 + y^2} \, dx \, dy \, dz = \int_0^{2\pi} \int_1^2 \int_0^{r \cos \theta + 3} \sqrt{r^2} \, r \, dr \, d\theta \, dz = \int_0^{2\pi} d\theta \, \int_1^2 r^2 \, dr \int_0^{r \cos \theta + 3} dz = \int_0^{2\pi} \left(\int_0^{2\pi} r^2 \, dr \, \int_0^{2\pi} r^2 \, dr \, \int_0^{2\pi} r^2 \, dr \, dz \right) dz = \int_0^{2\pi} \left(\int_0^{2\pi} r^2 \, dr \, \int_0^{2\pi} r^2 \, dr \, \int_0^{2\pi} r^2 \, dr \, dz \right) dz = \int_0^{2\pi} r^2 \, dr \, dr \, dz$$

$$\int_{0}^{2\pi} d\theta \int_{1}^{2} r^{2} dr \left(r \cos \theta + 3 \right) = \int_{0}^{2\pi} d\theta \int_{1}^{2} (r^{3} \cos \theta + 3r^{2}) dr = \int_{0}^{2\pi} d\theta \left(\frac{r^{4}}{4} \cos \theta + 3\frac{r^{3}}{3} \right) \Big|_{1}^{2} = \int_{0}^{2\pi} d\theta \left(\frac{15}{4} \cos \theta + 7 \right) = 14\pi.$$

- (b) Use spherical coordinates. The function $x^2 + y^2 + z^2$ is r^2 and dV = dxdydz is $r^2 \sin \phi dr d\theta d\phi$. The bounds for the unit sphere are $0 \le \theta \le 2\pi$, $0 \le \phi \le \pi$, and $0 \le r \le 1$. Thus, we have $\int \int \int_E (x^2 + y^2 + z^2) dx dy dz = \int_0^{2\pi} \int_0^{\pi} \int_0^1 r^2 r^2 \sin \phi dr d\theta d\phi = \int_0^{2\pi} d\theta \int_0^{\pi} \sin \phi d\phi \int_0^1 r^4 dr = 2\pi (-\cos \phi) \Big|_0^{\pi} \frac{r^5}{5} \Big|_0^1 = 2\pi (2) \frac{1}{5} = \frac{4\pi}{5}.$
- (c) Use spherical coordinates. The function z is $r \cos \phi$ and dV = dxdydz is $r^2 \sin \phi dr d\theta d\phi$. Since the region is in the first octant, $0 \leq \phi \leq \frac{\pi}{2}$. The bounds for r and θ can be determined from the intersection with xy-plane on the figure on the right. Hence, $0 \leq \theta \leq \frac{\pi}{2}$ and the bounds for r are determined by the radii of the spheres, so $1 \leq r \leq 2$. Thus,

$$\int \int \int_E z \, dx \, dy \, dz =$$

$$\int_{0}^{\pi/2} \int_{0}^{\pi/2} \int_{1}^{2} r \cos \phi \ r^{2} \sin \phi dr \ d\theta \ d\phi =$$

$$\int_{0}^{\pi/2} d\theta \int_{0}^{\pi/2} \cos\phi \sin\phi d\phi \int_{1}^{2} r^{3} dr = \frac{\pi}{2} \left. \frac{1}{2} \left. \frac{r^{4}}{4} \right|_{1}^{2} = \frac{15\pi}{16}$$

$$0 \le \varphi \le \pi/2$$

$$0 \le \theta \le \pi/2$$

 $\omega = 0$

2. Use cylindrical coordinates. The paraboloids have the equations $z = x^2 + y^2 = r^2$ and $z = 36 - 3x^2 - 3y^2 = 36 - 3r^2$. The first is the lower z-bound and the second is the upper (see the figure below). The bounds for θ are $0 \le \theta \le 2\pi$.

The paraboloids intersect in a circle. The projection of the circle in *xy*-plane determines the *r*-bounds. The intersection is when $36 - 3r^2 =$ $r^2 \Rightarrow 36 = 4r^2 \Rightarrow 9 = r^2 \Rightarrow r = 3$ (the negative solution is not relevant). Thus, the *r*-bounds are $0 \le r \le 3$. The volume is

$$V = \int \int \int dx dy dz = \int_0^{2\pi} \int_0^3 \int_{r^2}^{36-3r^2} r \, dr \, d\theta \, dz =$$
$$\int_0^{2\pi} d\theta \, \int_0^3 r \, dr (36-3r^2-r^2) = 2\pi (18r^2-r^4) \Big|_0^3 = 162\pi$$

- 3. The substitution x = 2u, y = 3v and z = 5w converts the ellipsoid into a sphere of radius 1.
 - The Jacobian of this substitution is $J = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
 - $\begin{vmatrix} 0 & 3 & 0 \\ 0 & 0 & 5 \end{vmatrix} = 30$. Thus, the volume is V = 0

 $\int \int dx \, dy \, dz = \int \int \int 30 \, du \, dv \, dw.$ Since the integral is taken over a inside of the sphere, use the spherical coordinates. The Jacobian is $r^2 \sin \phi$ so $du dv dw = r^2 \sin \phi dr d\theta d\phi$. Since the radius is 1 and we are integrating over entire sphere, the bounds are $0 \leq \theta \leq 2\pi$, $0 \leq \phi \leq \pi$, and $0 \leq r \leq 1$. Thus, the volume is $V = \int \int \int 30 \, du \, dv \, dw = \int \int \int 30 \, r^2 \sin \phi \, dr \, d\phi \, d\theta =$

$$30 \int_0^{2\pi} d\theta \int_0^{\pi} \sin\phi \, d\phi \int_0^1 r^2 dr = 30 \ 2\pi \left(-\cos\phi \right) \Big|_0^{\pi} \left. \frac{r^3}{3} \right|_0^1 = 120\pi \frac{1}{3} = 40\pi$$

- 4. Since the radius of the first sphere is 1 and the radius of the second sphere is 2, the *r*-bounds are $1 \le r \le 2$ for all three parts.
 - (a) Note that the values of θ are 0 to 2π because the projection in the xy plane is entire region between two circles. The bounds for ϕ are 0 to $\frac{\pi}{2}$ (see the figure on the right).

(b) The right side of the xz-plane y = 0 corresponds to y > 0. Hence, the projection in xyplane is *above* the x-axis. So, the values of θ are 0 to π . The bounds for ϕ are 0 to π as the figure below illustrates.

(c) The front of the *yz*-plane x = 0 corresponds to x > 0. Hence, the projection in *xy*-plane is to the right of the *y*-axis. So, the values of θ are $\frac{-\pi}{2}$ to $\frac{\pi}{2}$. The bounds for ϕ are 0 to π as the figure below illustrates.

5. (a) Calculate the Jacobian $J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{-2}{3} & \frac{1}{3} \end{vmatrix} = \frac{1}{9} + \frac{2}{9} = \frac{1}{3}$. $\int \int_D (3x + 4y) \, dx \, dy = \int_0^2 \int_0^3 (u + v + \frac{4}{3}(v - 2u)) \frac{1}{3} du \, dv = \frac{1}{3} \int_0^2 (uv + \frac{v^2}{2} + \frac{4v^2}{6} - \frac{8uv}{3}) \Big|_0^3 \, du = \frac{1}{3} \int_0^2 (3u + \frac{9}{2} + 6 - 8u) \, du = \frac{1}{3} (6 + 9 + 12 - 16) = \frac{11}{3}$

(b) The Jacobian is $J = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \begin{vmatrix} \frac{1}{v} & \frac{-u}{v^2} \\ 0 & 1 \end{vmatrix} = \frac{1}{v} \int_D xy \ dx \ dy = \int_1^3 \int_{\sqrt{u}}^{\sqrt{3u}} \frac{u}{v} v \ \frac{1}{v} du \ dv = \int_1^3 u du \ \ln v \Big|_{\sqrt{u}}^{\sqrt{3u}} = \int_1^3 u du \ \ln \sqrt{3} = \ln \sqrt{3} \frac{u^2}{2} \Big|_1^3 = 4 \ln \sqrt{3} = 2 \ln 3 = 2.197$