

Subsurface Geology Maps and Cross-Sections

Visualization - Evaluation

Sedimentary Rocks 3-D Exposure

Oil seep in Stanley Fm. (U.Miss) 20 miles south of McAlester. Photo by Jock Campbell.

The Nellie Johnstone #1, drilled in 1897 just south of Bartlesville, established the first economic production in the State. Photograph taken from Franks, 1980.

Surface Anticline

Anticlinal Theory

Petroleum Accumulates in Structural Closure

Signal Hill Oil Field

Discovered 1921

A view of Signal Hill, just north of Long Beach, California, in 1930. The "forest" of oil derricks were drilled in the 1920's. photo courtesy of the Los Angeles Public Library

A platform on which there are several cable tool bits

6

Example Strip Log

Graham & Bird #7 Rubey Sec 6 24N-10E

Pershing Field Osage County, Oklahoma

Bartlesville Producer (2,100')

Glenn Pool Oil Field: #1 Ida E. Glenn Discovery – November 1905 Sec 10-17N-12E Tulsa County, Oklahoma

Glenn Pool Oil Field Educational Center http://www.glennpooloilfield.org/history/index.html

Rotary Drilling Rig Schematic

Annotated 1950s Vintage Electric Log

Fig. 103. Electric log response of channel sandstone

Reservoir Interpretation:

- •Environment of Deposition
- •Fluid Contacts (and saturations)

Direct Fault Identification

Figure 4-10 Detailed correlation of the two vertical wells shown in Fig. 4-9 using all recognizable correlation markers to determine the depth and missing section for a fault in Well No. 3. Notice that the top of the 9000-ft Sand and SRM 6 are faulted out of Well No. 3.

Fig. 219. Structure section, Painter Reservoir, Wyoming. Permission to publish by Chevron.

Structural Traps in a Complex Compressional Terrain

Regional Unconformity

Figure 8-42 Example of an angular unconformity recognized by electric log correlation. (From Lock and Voorhies 1988. Published by permission of the Gulf Coast Association of Geological Societies.)

Stratigraphic Cross-Section

Regional Interpretation

Schematic Structural Cross-section of the Anadarko Basin

Modified from Witt and others (1971).

Regional Structural Interpretation

Basin – Scale Interpretation

Booch Gross Interval Isopach

Regional Stratigraphic Cross-Section (Hung from Top of Booch) Oklahoma Arkoma Basin (Booch)

(Present burial depth not maximum burial depth)

Well Log of Incised Valley-Fill Sandstone Oklahoma's Brooken Field (Booch)

Interpreting Environment Of Deposition

Outcrop of Incised Valley Fill Hartshorne Sandstone

Modern Analog Mahakam Delta Plain East Kalimantan, Indonesia

Integrating Subsurface with Modern Analog Idealized Tidal Delta Oklahoma (Booch)

Regional Middle Booch Sandstone Isopach

Arkoma Basin in Oklahoma

Inferred Middle Booch Depositional Environments Arkoma Basin in Oklahoma

NORTHERN DELTA REGION 3D SEISMIC PROPOSAL

BDK0050 SYNTHETIC TIE WITH SEISMIC LINE K75

Correlating Logs With Seismic Response

East-west seismic depth section, south Ghawar.

Regional east-west cross section.

Regional Structural Cross-Section

Mechanics

- Cross-Sections
 - Structural
 - Stratigraphic
- Maps
 - Structure
 - Isopach (Iso-X)
 - Other

Cross-Sections

Regional Stratigraphic Cross-Section (Hung from Top of Booch)

Oklahoma Arkoma Basin (Booch)

(Present burial depth not necessarily maximum burial depth)

Regional Structural Cross-Section Oklahoma Arkoma Basin (Booch)

Reams Southeast Field Study Stratigraphic Cross-Section B-B'

Brooken Field Study Volumetrics – Net Sand Isopach

Incised Valley Block Diagram Modeled After Brooken Field

Brooken Field Stratigraphic Cross-Section A-A'

Brooken Field Stratigraphic Cross-Section B-B'

Brooken Field Structural Cross-Section B – B'

Brooken Field Study Trapping Fault Plane Section

Fence Diagram (Pseudo-3D)

SCHEMATIC CROSS - SECTION BADIN BLOCK EXPULSION/MIGRATION STYLE EOCENE TO RECENT SEDIMENTS RANIKOT UPPER GORU UPPER GORU STRUCTURAL SPILLPOINT (UPPER SANDS) LOWER GORU (BASAL SANDS) CHILTAN CHILTAN ATTACHMENT # 17 Author: D. BOYD Drafted by: TAJAMUL Date: NOV. 94 Drg.No.: GE/2853

Schematic Structural Cross-Section

Schematic Structural Cross-Section

(66 x Vertical Exaggeration)

Simple Fault Trap (Narrow Horst) Extensional

Deepwater Seismic Line (Showing Affects of Diapirs)

Maps

A Structural 'Football'

(As Simple as it Gets)

Fig. 214. Missourian sandstone structure map, Mobeetie field. From Dutton, 1982. Permission to publish by AAPG.

Siberian Gas Field

Figure 8-10 Integrated fault and structure map for the 6000-ft Horizon. The darkened circles delineate the intersection of each structure contour with the fault contour of the same elevation.

A Major Fault Complication

Figure 8-22 An integrated structure map of a very complexly faulted anticlinal structure. Each fault was integrated with the structural interpretation as shown in Fig. 8-21.

Simple Fault Trap (Upthrown Normal Fault)

Extensional

Reams Southeast Field Middle Booch Structure Map

Reams Southeast Field Middle Booch Net Sandstone Isopach

(Showing Combination Trap)

NORTHERN DELTA REGION 3D SEISMIC PROPOSAL Completion in this reservoir Abandoned completion D0060.01 POINT BAR FACIES D0060, 02 **BADAK FIELD** D6 SAND D0060, 03 NET SAND ISOPACH MAP CONTOUR INTERVAL 10 FEET **FIGURE 3.3.5** VICO Indonesia

Badak Field Structural – Stratigraphic Trap

(East Kalimantan, Indonesia)

Figure 5. Structure map: top of the Smackover porous facies. Slightly over 120 ft (37 m) of closure is present. Contour interval is 20 ft (6 m).

Alabama Oil Field

Figure 22.—Method of computing oil-reservoir volume (Case II).

Volumetric Assessment Net Reservoir Isopach Superimposed on Structure

OKC Field Structural Cross-Section showing Pre-Penn Unconformity STRUCTURAL CROSS SECTION C.S.O. C.S.O. BR. AMER. JOHNSON & GILL I.T.I.O. EGERMEIER FUSON EAST COMPOSITE LOG -4000 -4500 5000 -5000 V - OSWEGO 5500--5500 -6000 -6000 **--6500**6 **--7000** PRECAMBRIAN Z

Oklahoma City Field (Largest in Oklahoma)

PRE-PENNSYLVANIAN

CROSS SECTION

-7500

Fig. 7.—Pre-Pennsylvanian subcrop map illustrating large areal extent of erosion and truncated shape Ordovician Simpson and Arbuckle preserved at unconformity surface. A-A' is line of sections in Figures 6 and

Arkoma Basin Estimated Overburden Removal

