Suggested Stage 2 Chemistry 2013 SACE Board of SA Exam Solutions

Question 1	Possible Solution	Marks	Comments
(a) (i)	Electrolytic	1	
(ii)	From left to right in external circuit	1	
(iii)	Left electrode	1	
(b) (i)	d block	1	Note: Must be lower case letter
(ii) (1)	$\begin{aligned} & \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}=+6 \\ & \mathrm{Cr}=0 \end{aligned}$	2	
(2)	Reduction	1	
(iii)	$\mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{CrCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cr}_{2} \mathrm{O}_{3}+6 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$	2	Note: 1 mark for correct species 1 mark for balancing
(c) (i)	[Any three points] - Al^{3+} highly charged cation - Attracts negatively charged silicate(clay) particles - Flocculation occurs where clay particles come close together - Gravity pulls flocculated particles to bottom	3	Note: Must have three distinct points
(ii) (1)	[Any two points] - Zeolite has negative surface charge, will attract cations - Large surface area for exchange of ions - Porous allows large volumes of water through in quick time - Solid structure will not dissolve / break-up in water	2	Note: Must have two distinct points
(2)	$50 \mathrm{ppb} \equiv 50$ nanograms (ng) Therefore in 250 mL $=\frac{50 \times 250}{10^{9}} \mathrm{~g}=1.25^{-5} \mathrm{~g}=0.0125 \mathrm{mg}$ or $50 \mathrm{ppb} \equiv 50 \mu \mathrm{~g}$ per litre $=0.05 \mathrm{mg}$ per litre $=0.0125 \mathrm{mg}$ in 250 mLs	2	Note: Units not needed as given in the question
	Total	16	

Question 2	Possible Solution	Marks	Comments
(a) (i)	Crushing	1	
(ii)	Evidence for metallic nature of zinc: - Zn^{2+} ion in hemimorphite - Reaction of zinc oxide with sulfuric acid Evidence for non-metallic nature of zinc: - Formation of zincate ion.	2	Note: Must have two distinct points one from metallic / other from nonmetallic
(iii)	Reducing agent or reductant	1	
(b)	$\mathrm{Na}_{2} \mathrm{ZnO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{ZnO}+2 \mathrm{NaOH}$ or $\mathrm{ZnO}_{2}^{2-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{ZnO}+2 \mathrm{OH}^{-}$	2	Note: 1 mark for correct species 1 mark for balancing
(c) (i)	See graph below	2	Note: - regular and suitable scales on both axes - correct plotting of points - line of best fit
(ii)	Scatter of the points above and below the trend line.	1	
(iii)	See dashed line on graph $0.022 \mathrm{mg} \mathrm{L}^{-1}$	2	Note: - Working must be shown for full marks as per instructions - Must include units
	Total	14	

Question 3	Possible Solution	Marks	Comments
(a) (i)	disaccharide	1	
(ii)	hydrolysis	1	
(iii)	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$	1	
(b) (i)	[Any three points] - secondary interactions in the protein are affected - three-dimensional arrangement of protein is changed - shape change affects the enzyme property - shape change affects the active site of enzyme	3	Note: - Must have three distinct points - Must make link between shape and function for full marks
(ii)	[Any one points] - change does not affect the three dimensional arrangement - new amino acid has similar side chain so secondary interactions unaffected - change does not affect shape - change does not alter the active site	1	Note: Must have one distinct point
(c) (i)	peptide or amide	1	
(ii)		2	Note: Must be open ended (ie a section of the lactase chain)
(iii)	pentane-1,5-diamine or 1,5-pentanediamine	2	
(iv)		2	
	Total	14	

Question 4	Possible Solution	Marks	Comments
(a)		1	
(b)	[Any one point] - Formation of bubbles - Dissolves/forms one layer	1	Note: Must be an observation
(c) (i)	Higher proportion of particles have enough energy to exceed the activation energy required for the reaction (i.e. $\left.\mathrm{E}_{\mathrm{k}}>\mathrm{E}\right)_{\mathrm{a}}$ Therefore higher proportion of collisions successful	2	Note: Must have two distinct points
(ii)	Same quantities of oleic acid and DHMA Add Br_{2} solution in small amounts Observe when loss of colour does not occur One that decolourises more Br_{2} solution is DHMA or Bromine solution reacts with $\mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ bonds Decolourises / turns from brown to colourless DHMA has more unsaturated bonds DHMA is the liquid that requires larger molar amounts of bromine solution	4	Note: Must have four distinct sequential points
(iii)	- Chromatography separates substances according to polarity - DHMA has a smaller non polar hydrocarbon chain than oleic acid - DHMA is more polar than oleic acid - DHMA will be more dissolved in the polar mobile phase/less attracted to the non-polar stationary phase - DHMA will have a shorter retention time - Therefore DHMA is peak A or - Chromatography separates substances according to polarity - Oleic acid has a larger non polar hydrocarbon chain than DHMA - Oleic acid is less polar than DHMA - Oleic acid adsorb more strongly than DHMA to the non-polar stationary phase - Oleic will have a longer retention time - Therefore DHMA is peak A	8	Note: 1. Be careful to answer the question ie two parts need to be addressed: (1) how chromatography achieves separation (2) which peak is DHMA 2. Plan your answer on scrap paper before writing. 3. Six marks are allocated for chemical content. 4. Two marks are allocated for communication skills including grammar, spelling and writing in sentences.
	Total	16	

Question 5	Possible Solution	Marks	Comments
(a)	$K_{c}=\frac{\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}{\left[\mathrm{C}_{2} \mathrm{H}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$	1	Note: Must have square brackets.
(b) (i) (1)	$K_{c}=\frac{\frac{0.05}{2.00}}{\frac{1.0}{2.00} \times \frac{1.2}{2.00}}=\frac{0.025}{0.50 \times 0.60}=0.083$	2	Note: Should show full working in calculations
(2)	[Any one point] - K_{c} very small therefore not much ethanol produced at equilibrium - $\mathrm{K}_{\mathrm{c}} \ll 1$ therefore more reactants than products therefore not much ethanol	1	Note: Must refer to ethanol in the answer.
(ii)	Moles $\mathrm{C}_{2} \mathrm{H}_{4}$ $\mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ Equil ${ }^{\mathrm{m}}$ 1.0 1.2 0.05 Change -0.05 -0.05 +0.05 Initial 1.05 1.25 0	3	Note: Should show full working in calculations
(c)	[Decrease Temperature] - Decrease in temperature stresses the equilibrium - Le Châtelier's Principle states equilibrium will oppose the stress - forward exothermic reaction favoured - therefore equilibrium moves to right or [Increase Pressure] - Increase in pressure stresses the equilibrium - Le Châtelier's Principle states equilibrium will oppose the stress - less moles of gas (1) on RHS compared to LHS (2) - therefore equilibrium moves to right	4	Note: - Must have four distinct points for full marks. - Answer must refer to one change only.
(d)	[Any two points] - Increase Pressure - Lower Temperature - Removal of ethanol - Addition of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ / ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	2	Note: - Must have two distinct points for full marks - Must not use answer from (c)
(e)	Increases reaction rate	1	
(f)	[Any one point] - Maintain $350^{\circ} \mathrm{C}$ operating temperature - Preheat materials - Generate electricity - Generate steam	1	
	Total	15	

Question 6	Possible Solution	Marks	Comments
(a) (i)	Propane-1, 2, 3-triol or propan-1, 2, 3-triol	2	
(ii)		2	Note: - Take care when drawing or copying structures. - Be careful with the positioning of the bonds
(iii) (1)		2	
(2)	Anions give the oil droplets an overall negative charge Micelles have overall negative charge Micelles repel each other therefore stay suspended	2	Note: Must mention charge and repulsion for full marks
(b) (i)	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OCH}_{2} \mathrm{CH}_{2} \bigcirc \mathrm{OH}$	1	
(ii)	Carboxylate ion has greater attraction to H^{+} than OH group of the non-ionic surfactant therefore effectiveness of the carboxylate anion more affected than non-ionic surfactant	3	Note: Must have three distinct points for full marks
(c) (i)		1	
(ii)	 or	2	Note: - Take care when drawing or copying structures. - Be careful with the positioning of the bonds
	Total	15	

Question 7	Possible Solution	Marks	Comments
(a)	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$	2	
(b)	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{(\mathrm{l})}+14 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 10 \mathrm{CO}_{2(\mathrm{~g})}+9 \mathrm{H}_{2} \mathrm{O}_{(1)}$	$\Delta \mathrm{H}=-6$	$21 \mathrm{~kJ} \mathrm{~mol}^{-1}$ Note: 1 mark for correct species 1 mark for balancing 1 mark for states 1 mark for $\Delta \mathrm{H}$
Significant Figure mark		1	Note: Significant figures mark only applies to parts (i) and (ii)
(c) (i)	$\begin{aligned} & \mathrm{m}_{\mathrm{H} 2 \mathrm{O}}=100.0 \mathrm{~g} \\ & \Delta \mathrm{~T}=42.5^{\circ} \mathrm{C} \end{aligned}$ $\begin{aligned} \text { Energy chang }_{\mathrm{e}}(\mathrm{or} \mathrm{q}) & =\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} \times \mathrm{C} \times \Delta \mathrm{T} \\ & =100.0 \times 4.18 \times 42.5 \\ & =17765 \mathrm{~J} \\ & =17.8 \mathrm{~kJ} \end{aligned}$	3	Note: - Must have three significant figures - Must have units for full marks - Should show full working in calculations
(ii)	$\begin{aligned} & \text { Mass of cineole }=124.8-123.6 \\ & =1.2 \mathrm{~g} \\ & \begin{aligned} \mathrm{n}_{\text {cineole }} & =\frac{m_{\text {cineole }}}{M_{\text {cineoole }}} \end{aligned}=\frac{1.2}{154.244} \\ & =0.007779881 \\ & \\ & =7.8 \times 10^{-3} \end{aligned}$	2	Note: - Must have two significant figures - No units required - Should show full working in calculations
(iii)	$\begin{aligned} \Delta \mathrm{H}_{\mathrm{c}} & =\frac{\mathrm{q}}{\mathrm{n}_{\text {cineole }}} \\ & =\frac{18800}{7.77957 \times 10^{-3}} \\ & =2416607.8 \mathrm{~J} \mathrm{~mol}^{-1} \\ & =2400 \mathrm{~kJ} \mathrm{~mol}^{-1} \end{aligned}$	3	Note: - Should show full working in calculations - Must have units for full marks
	Total	15	

Question 8	Possible Solution	Marks	Comments
(a) (i)	Primary	1	
(ii)	CO is due to incomplete combustion (i.e. lack of O_{2}) As more O_{2} is available combustion is more complete	2	Note: Must have two distinct points for full marks
(iii)	[Any one point] - soot (carbon) - methane $\left(\mathrm{CH}_{4}\right)$	1	
(b) (i)	[Any two points] - High temperature needed - High temperature breaks $\mathrm{N} \equiv \mathrm{N}$ bond - nitrogen reacts with oxygen $\rightarrow \mathrm{NO}$ - NO reacts with more $\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}$	3	Note: - Must have three distinct points for full marks - Equations may be included
(ii)		1	
(iii)	[Any two points] - bright / intense sunlight - no wind / still air - thermal inversion (to trap pollutants)	2	Note: Must have two distinct points for full marks
(c)	[Any two points Activity / Effect] Activities: Effect on Atmosphere - burning fossil fuels $\rightarrow \mathrm{CO}_{2}$ increases in atmosphere - deforestation \rightarrow decreases removal of CO_{2} by P/S - increased number of cattle $\rightarrow \mathrm{CH}_{4}$ increases in in atmosphere Conclusion: - global warming increases - climate change increases - enhanced greenhouse effect increases	5	Note: Must have two activities and two points on the effect on greenhouse gase(s) for full marks
	Total	15	

Question 9	Possible Solution	Marks	Comments
(a)	hexanal	2	
(b) (i)	1:1	1	
(ii)	$\begin{aligned} \mathrm{n}_{\text {KOH }} & =\mathrm{C} \times \mathrm{V} \\ & =0.1 \times 0.25 \\ & =0.025 \mathrm{~mol} \\ & \mathrm{~m}_{\text {KOH }} \end{aligned}=\mathrm{n} \times \mathrm{M} .$	3	Note: - Should show full working in calculations. - Units must be shown as not specified in question.
(iii)	Propan-2-ol has a nonpolar carbon chain which will mix with the essentially nonpolar oleic acid Water is highly polar and will not mix with essentially non-polar oleic acid	2	Note: Must have two distinct points for full marks
(iv) (1)		3	Note: - Should show full working in calculations. - Units must be shown in final answer as not specified in question.
(2)	$\begin{aligned} \% \text { oleic acid }(\mathrm{w} / \mathrm{w}) & =\frac{\text { Mass of oleic acid }}{\text { Mass of Olive oil }} \times 100 \\ & =\frac{0.1967616}{9.543} \times 100 \\ & =2.062 \% \end{aligned}$	2	Note: Should show full working in calculations
(3)	ordinary virgin (olive oil)	1	
(4)	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{2-}$	1	
	Total	15	

Question 10	Possible Solution	Marks	Comments
(a) (i)	$1 s^{2}, 2 s^{2}, 2 p^{6}, 3 s^{2}, 3 p^{6}, 3 d^{9}$	2	Note: correct convention: (s, p, d etc and superscripts)
(ii)	$\begin{aligned} & 2 \mathrm{Cu}^{2+}+2 \mathrm{e}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{H}^{+} \\ & \text {or } \\ & 2 \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \end{aligned}$	2	Note: 1 mark for correct species 1 mark for balancing
(b) (i)	[Any one point] mercury or Hg silver or Ag	1	Note: Use metal activity series given.
(ii)	Heat of the flame raises electrons to higher energy level When excited electrons drop back to original energy level light is emitted Wavelengths for copper appears blue-green Other metals emit different wavelengths unique for each element	4	Note: Must have four distinct points for full marks
(iii) (1)	$\begin{aligned} \mathrm{m}_{\mathrm{Cu}} & =4.921-4.625=0.296 \mathrm{~g} \\ \mathrm{n}_{\mathrm{Cu}} & =\mathrm{m} / \mathrm{M}=0.296 / 63.55=4.65774 \times 10^{-3} \\ & =4.66 \times 10^{-3} \end{aligned}$	2	Note: Should show full working in calculations.
(2)	$\begin{aligned} & \mathrm{m}_{\text {oxygen }}=4.996-4.921=0.075 \\ & \mathrm{n}_{\text {oxygen }}=\frac{\mathrm{m}}{\mathrm{M}}=\frac{0.075}{16.00}=4.6875 \times 10^{-3} \\ & \text { Mole ratio Cu:O } \end{aligned} \begin{aligned} & =4.66 \times 10^{-3}: 4.6875 \times 10^{-3} \\ & =1: 1 \end{aligned}$	3	Note: Should show full working in calculations.
(iv)	[Any one error + corresponding explanation] Systematic Error - Loss of Cu in flame Explanation of Effect Final mass too low Proportion of O too high - Not all oxide reduced by H_{2} Final mass too low Proportion of O too high - Copper oxide impure, will not Final mass too low react reportion of O too high \quadCopper oxide impure, impurity lost\quadFinal mass too high Proportion of O too low	3	Note: Must have linked systematic error to calculated formula for full marks
	Total	17	

Question 11	Possible Solution		Marks	Comments
(a)	[Any one hazard + corresponding precaution] Hazard Hazard minimisation Flammable Keep away from open flames Flammable Keep in enclosed container		2	Note: Must have linked hazard to hazard minimisation for full marks
(b)	Sulfur the central atom has: - 2 single covalent bonds, a double covalent bond and an unbonded pair of electrons - Arranged on the surface of a sphere - Maximum repulsion gives tetrahedral shape but only three bonding regions therefore shape trigonal pyramid		3	Note: Must have three distinct points for full marks
(c) (i)			2	Note: - Take care when drawing structures. - Be careful with the positioning of the bonds.
(ii)	- DMSO is a more polar molecule - therefore has stronger secondary interactions - need more heat energy to separate molecules		3	Note: Must have three distinct points for full marks
(d) (i)	positive or +ve		1	
(ii) (1)	[Any two points] - Coats the cathode - Prevents flow of electrons - Prevents ion flow or - Breaks the circuit - Ions cannot contact the anode		2	Note: Must have two distinct points for full marks
(2)	-1		1	
	Total		14	

Question 12	Possible Solution	Marks	Comments
(a) (i)	$4-$ or $\mathrm{SiO}_{4}{ }^{4-}$	1	
(ii)	$\mathrm{MgFeSiO}_{4}$	2	
(b)	Rain is slightly acidic either H^{+}ions in water can exchange with Mg^{2+} adsorbed on the silicate surface or $\mathrm{Mg}^{2+}{ }_{(\text {silicate })}+2 \mathrm{H}_{(\mathrm{aq})}^{+} \leftrightharpoons \mathrm{Mg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{H}_{(\text {silicate })}^{+}$ plants can absorb $\mathrm{Mg}^{2+}{ }_{(\text {aq })}$ through their roots	3	Note: Must have three distinct points for full marks.
(c)	Equation [Any five points] 1. How olivine decreases acidity Crushing olivine increases surface area silicate anion can absorb H^{+} $\mathrm{Mg}^{2+}, \mathrm{Fe}^{2+}$ ions on silicate surface can exchange with H^{+} Mg^{2+} essential mineral for green (algae) plants 2. How atmospheric CO_{2} levels reduced CO_{2} reacts with water to form $\mathrm{H}_{2} \mathrm{CO}_{3}$ $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{2} \mathrm{CO}_{3}$ $\mathrm{H}_{2} \mathrm{CO}_{3}$ is weak acid ($<10 \%$ ionization) $\mathrm{H}_{2} \mathrm{CO}_{3} \leftrightharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$ less $\mathrm{H}^{+}{ }_{(\text {aq) }}$ raises pH (if adsorbed on surface of silicate) less $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ more $\mathrm{H}_{2} \mathrm{CO}_{3}$ can ionise lower $\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]$ lowers $\left[\mathrm{CO}_{2}\right]$ in water more CO_{2} in atmosphere can dissolve in ocean lowers CO_{2} concentration in atmosphere	8	Note: 1. Be careful to answer the question ie two parts need to be addressed: (1) how olivine decreases acidity (2) how atmospheric CO_{2} levels reduced and (3) one equation (at least) must be included in your answer (Does not have to be balanced and is worth one mark) 2. Plan your answer on scrap paper before writing. 3. 6 marks are allocated for chemical content (including one mark for the equation). 4. Two marks are allocated for communication skills including grammar, spelling and writing in sentences.
	Total	14	

