

Static mixers for flue gas treatment applications

Sulzer Chemtech

S. Hirschberg | 2011

Sulzer Chemtech

Sulzer Chemtech: Leading in static mixing technology

1970 Invention of Static Mixing Technology (SMV-Mixer)

1980 Introduction of SMX

1985 First **SMR Reactor**

1990 First PSproduction plant

1995 CFDsimulation

2002 First CompaX

More then 50 applied patents

More then 40 years experience

More then 100'000 references worldwide

2009 Introduction of SMX plus

2008 First sold **PLA production** plant

2007 Introduction **Optifoam Extrusion**

2006 First EPSproduction plant

2004 First Contour

Sulzer Chemtech

With Sulzer static mixing technology, you can ...

- Increase NOx conversion of your SCR system
- Optimize the amount of catalyst necessary
- Reduce ammonia slip
- Achieve good DeNOx performance at all loads
- Homogenize temperature (hot bypass stream, filters, stack, ...)
- Reduce operation expenses
- Increase catalyst life time
- Enhance filter efficiency
- Reduce service work

Physical flow model with Sulzer Contour[™] mixers

Temperature homogenization with Sulzer static mixers

Sulzer products and services

Sulzer Chemtech

- Static mixers for different installation sizes
 - Round ducts: Sulzer CompaX[™], Sulzer SMI[™], Sulzer SMV[™]
 - Rectangular ducts: Sulzer Contour[™], Sulzer SMV[™]
- Ammonia Injection grids optimized for the static mixer to be used
- Wear protection coating for mixers and duct internals for operation with difficult dust
- CFD analysis and optimization of duct with AIG, mixers, turning vanes, flow rectifiers is part of the solution provided
- Physical flow modeling
- Development of static mixer configurations for equalization of dust distribution over the catalyst surface using CFD
 - For increase of catalyst life time
 - For prevention of fine dust clogging parts of the catalyst
- General analysis of large gas ducts for potential of pressure drop reductions as a service
- Performance guarantees

Applications of static mixing technology in thermal power stations

Sulzer Chemtech

Sketch of a flue gas cleaning system with high dust SCR

Sulzer CompaX[™] Mixer

- Ideal for dosing of small additiv streams into turbulent main streams for round ducts
- Optimized geometry
- Works well for all mixing ratios between 1:10 down to 1:100000 and below
- No separate ammonia injection grid (AIG) necessary
- Homogeneous distribution after 3-5 diameters of the tube
- Low pressure drop

Resultats of experiments performed by BHR

Gas mixing | 2011 | slide 6

Sulzer SMI[™] Mixer

Sulzer Chemtech

- Intense mixing of streams down to homogeneities below 1% RMS if needed
- Admixing of small additive streams
- Simple oprtimized ammonia injection lance
- Very good homogeneity 5 8 tube diameters downstream of the mixer inlet
- Low surface area, widely open flow cross sections

Low pressure drop

Sulzer SMV[™] gas mixer

Sulzer Chemtech

- Proven mixer technology
- Used in first large DeNOx applications realized in Germany in the 1980's. Many recent US references
- Compact design
- Very short mixing length possible with specially adapted ammonia injection grid (AIG)
- Mixing process already starts within the mixer
- Low pressure drop
- Standard design includes 2 mixers
- Well suited for dust distribution
- Erosion protection by coating critical parts of the mixer as an option

Sulzer Chemtech

Sulzer Contour[™] mixer

- New mixer with optimized streamlined design (no flow detachment)
- Extremely low pressure drop
- Very good homogeneity possible (below 1% RMS if required)
- Very short mixing length possible
- Cross flow mixing over large distances
- Customizable to the mixing problem at hand
- Ideal for applications both with liquid atomized NH4OH or vaporized dosing
- Erosion protection through coating as an option
- Low weight
- On site assembly from a number of compact parts for installation in existing flue gas ducts

Erosion protection coating

Sulzer Chemtech

- Thermal spray coating
- Arc wire based coating process
- General coating properties:
 - hard
 - ductile
 - good adhesion to substrate
- Properties of coating developed for this application
 - Hardness > 850 [HV 0,3]
 - Operating temperatures > 550 °C
- Coating can be applied in the workshop (mostly automated) or on site
- Significantly increased service life time for coated surfaces even in severely abrasive environments

References since the year 2000								
Large scale SCR's utilizing Sulzer Mixer/AIG system								
Plant	Engineer	Nr. of Reactors	Year		Plant	Engineer	Nr. of Reactors	Year
AES Cayuga Unit 1	Foster Wheeler	1	2000		TECO Big Bend 3	Sargent ⊐ Lundy	1	2005
W.A. Parish Unit 5	Sargent ¬ Lundy	2	2001		Progress Energy Asheville 1 & 2	Worley Parsons	1	2005
W.A. Parish Unit 6	Sargent ⊐ Lundy	2	2001		Dallman 4	Foster Wheeler	1	2006
W.A. Parish Unit 7	Sargent ⊐ Lundy	2	2001		Elm Road	Hitachi	4	2006
W.A. Parish Unit 8	Sargent ¬ Lundy	2	2001		TECO Big Bend 1 and 2	Sargent ¬ Lundy	2	2006
CP&L Roxboro 1	Foster Wheeler	1	2002		SCE & G Cope	Alstom	1	2006
CP&L Roxboro 3	Foster Wheeler	2	2002		Empire Asbury	Alstom	1	2006
CP&L Mayo Unit 1	Foster Wheeler	2	2002		Springerville 4	Foster Wheeler	1	2006
Owensboro Elmer Smith Unit 1	Sargent ¬ Lundy	1	2002		Trimble County	Hitachi	2	2006
Exelon Mt. Creek Unit 8	Foster Wheeler	1	2002		Seminole	Hitachi	4	2006
Marion Unit 4 - SIPCO	Sargent ¬ Lundy	1	2001		Boswell	Hitachi	1	2007
Consumers Karn 1	Babcock & Wilcox	2	2001		McIntosh 3	Haldor Topsoe	2	2007
Consumers Karn 2	Babcock & Wilcox	2	2001		Longview	Foster Wheeler	2	2007
Consumers Campbell Unit 2	Babcock & Wilcox	2	2001		Hudson	Hitachi	2	2007
AES Petersburg Unit 2	Foster Wheeler	2	2003		Duke Cliffside	Hitachi	2	2007
AES Petersburg Unit 3	Foster Wheeler	2	2003		Mannheim	GKM	1	2008
Muskingum Unit 5	Foster Wheeler	2	2003		Puente Nuevo	Idrecco	1	2008
Consumers Campbell Unit 3	Foster Wheeler	2	2003		Mannheim	GKM	1	2009
Southern Company Gaston Unit 5	Haldor Topsoe	1	2004		BL England	Cormetech	1	2009
Springerville 3	Foster Wheeler	1	2004		Martin Lake	Hitachi	4	2010
AES Deepwater	Foster Wheeler	1	2005		Mannheim	GKM	1	2010
					Sostanj	Alstom	1	2011