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A Question

In this talk we discuss this problem:

X1 ∼ U[−1, 1], X2 ∼ U[−1, 1]

what is a distribution (cdf) of X1 + X2?

A difficult problem with no applications (?)
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Generic Formulation

In an atomless probability space:

F1, . . . ,Fn are n distributions

Xi ∼ Fi , i = 1, . . . , n

Sn = X1 + · · ·+ Xn

Denote the set of possible aggregate distributions

Dn = Dn(F1, · · · ,Fn) = {cdf of Sn|Xi ∼ Fi , i = 1, · · · , n}.

Primary question: Characterization of Dn.

Dn is non-empty, convex, and closed w.r.t. weak convergence
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Generic Formulation

For example:

Xi : individual risks; Sn: risk aggregation

fixed marginal; unknown copula

Classic setup in Quantitative Risk Management

Secondary question: what is supF∈Dn
ρ(F ) for some functional

ρ (risk measure, utility, moments, ...)?

Risk aggregation with dependence uncertainty, an active field

over the past few years:

Embrechts et. al. (2014 Risks) and the references therein

Books: Rüschendorf (2013), McNeil-Frey-Embrechts (2015)

20+ papers in the past 3 years
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Some Observations

Assume that F1, . . . ,Fn have finite means µ1, . . . , µn, respectively.

Necessary conditions:

Sn ≺cx F−1
1 (U) + · · ·+ F−1

n (U)

In particular, E[Sn] = µ1 + · · ·+ µn

Range(Sn) ⊂
∑n

i=1 Range(Xi )

Suppose E[T ] = µ1 + · · ·+ µn. Then

FT ∈ Dn(F1, . . . ,Fn)⇔ (F−T ,F1, . . . ,Fn) is jointly mixable

For a theory of joint mixability

W.-Peng-Yang (2013 FS), Wang-W. (2016 MOR)

Surveys: Puccetti-W. (2015 STS), W. (2015 PS)

Numerical method: Puccetti-W. (2015 JCAM)
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Some Observations

Joint mixability is an open research area

A general analytical characterization of Dn or joint mixability

is far away from being clear

We tune down and look at standard uniform distributions and

n = 2
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Simple Examples

X1 ∼ U[−1, 1], X2 ∼ U[−1, 1], S2 = X1 + X2.

Obvious constraints

E[S2] = 0

range of S2 in [−2, 2]

Var(S2) ≤ 4/3

S2 ≺cx 2X1

(sufficient?)
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Simple Examples

Are the following distributions possible for S2?
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Simple Examples: More...

Examples and counter-examples: Mao-W. (2015 JMVA) and Wang-W. (2016 MOR)
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A Small Copula Game...

P(S2 = −4/5) = 1/2, P(S2 = 4/5) = 1/2

X

Y

-1 -0.6 -0.2 0.2 0.6 1

-1

-0.6

-0.2

0.2

0.6

1
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Existing Results

Let D2 = D2(U[−1, 1],U[−1, 1]). Below are implied by results in

Wang-W. (2016 MOR)

Let F be any distribution with a monotone density function.

then F ∈ D2 if and only if F is supported in [−2, 2] and has

zero mean.

Let F be any distribution with a unimodal and symmetric

density function. Then F ∈ D2 if and only if F is supported in

[−2, 2] and has zero mean.

U[−a, a] ∈ D2 if and only if a ∈ [0, 2] (a special case of both).

The case U[−1, 1] ∈ D2 is given in Rüschendorf (1982 JAP).
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Unimodal Densities

A natural candidate to investigate is the class of distributions with

a unimodal density.

Theorem 1

Let F be a distribution with a unimodal density on [−2, 2] and

zero mean. Then F ∈ D2.

Both the two previous results are special cases

For bimodal densities we do not have anything concrete
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Densities Dominating a Uniform

A second candidate is a distribution which dominates a portion of

a uniform distribution.

Theorem 2

Let F be a distribution supported in [a− b, a] with zero mean and

density function f . If there exists h > 0 such that f ≥ 3b
4h on

[−h/2, h/2], then F ∈ D2.

The density of F dominates 3b/4 times that of U[−h/2, h/2]
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Bi-atomic Distributions

Continuous distributions seem to be a dead end; what about

discrete distributions? Let us start with the simplest cases.
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Bi-atomic Distributions

Theorem 3

Let F be a bi-atomic distribution with zero mean supported on

{a− b, a}. Then F ∈ D2 if and only if 2/b ∈ N.

2/b = 1 2/b = 5/4

For given b > a > 0, there is only one distribution on

{a− b, a} with mean zero.
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Tri-atomic Distributions

For a tri-atomic distribution F , write F = (f1, f2, f3) where f1, f2, f3

are the probability masses of F

On given three points, the set of tri-atomic distributions with

mean zero has one degree of freedom.

We study the case of F having an “equidistant support”

{a− 2b, a− b, a}.

For x > 0, define a “measure of non-integrity”

dxc = min

{
dxe
x
− 1, 1− bxc

x

}
∈ [0, 1] .

Obviously dxc = 0⇔ x ∈ N.
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Tri-atomic Distributions

Theorem 4

Suppose that F = (f1, f2, f3) is a tri-atomic distribution with zero

mean supported in {a− 2b, a− b, a}, ε > 0 and a ≤ b. Then

F ∈ D2 if and only if it is the following three cases.

(i) a = b and f2 ≥ d 1bc.

(ii) a < b and 1
b ∈ N.

(iii) a < b, 1
b −

1
2 ∈ N and f2 ≥ a

2 .

cf. Theorem 3 (condition 2/b ∈ N)
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Tri-atomic Distributions

The corresponding distributions in Theorem 4:

(i) (f1, f2, f3) ∈ cx{(0, 1, 0), 12(1− d 1bc, 2d
1
bc, 1− d

1
bc)}.

(ii) (f1, f2, f3) ∈ cx{(0, ab , 1−
a
b ), 12( a

b , 0, 2−
a
b )}.

(iii) (f1, f2, f3) ∈ cx{(0, ab , 1−
a
b ), 12( a

b −
a
2 , a, 2−

a
b −

a
2)}.
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Some More to Expect

It is possible to further characterize n-atomic distributions

with an equidistant support (things get ugly though).

We guess: for any distribution F

with an equidistant support, or

with finite density and a bounded support,

there exists a number M > 0 such that

F ∈ D2(U[−m,m],U[−m,m]) for all m ∈ N and m > M.
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Some More to Think

Two uniforms with different lengths?

Three or more uniform distributions?

Other types of distributions?

Applications?

We yet know very little about the problem of D2
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Danke Schön

Thank you for your kind attention
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