Sum of Two Standard Uniform Random Variables

Dependence Modeling in Finance, Insurance and Environmental Science Munich, Germany May 17, 2016

Based on joint work with Bin Wang (Beijing)

A Question

In this talk we discuss this problem:

$$
\begin{aligned}
& \quad X_{1} \sim \mathrm{U}[-1,1], X_{2} \sim \mathrm{U}[-1,1] \\
& \text { what is a distribution }(\mathrm{cdf}) \text { of } X_{1}+X_{2} \text { ? }
\end{aligned}
$$

A difficult problem with no applications (?)

Generic Formulation

In an atomless probability space:

- F_{1}, \ldots, F_{n} are n distributions
- $X_{i} \sim F_{i}, i=1, \ldots, n$
- $S_{n}=X_{1}+\cdots+X_{n}$

Denote the set of possible aggregate distributions

$$
\mathcal{D}_{n}=\mathcal{D}_{n}\left(F_{1}, \cdots, F_{n}\right)=\left\{\text { cdf of } S_{n} \mid X_{i} \sim F_{i}, i=1, \cdots, n\right\} .
$$

Primary question: Characterization of \mathcal{D}_{n}.

- \mathcal{D}_{n} is non-empty, convex, and closed w.r.t. weak convergence

Generic Formulation

For example:

- X_{i} : individual risks; S_{n} : risk aggregation
- fixed marginal; unknown copula

Classic setup in Quantitative Risk Management

- Secondary question: what is $\sup _{F \in \mathcal{D}_{n}} \rho(F)$ for some functional ρ (risk measure, utility, moments, ...)?
- Risk aggregation with dependence uncertainty, an active field over the past few years:
- Embrechts et. al. (2014 Risks) and the references therein
- Books: Rüschendorf (2013), McNeil-Frey-Embrechts (2015)
- $20+$ papers in the past 3 years

Some Observations

Assume that F_{1}, \ldots, F_{n} have finite means μ_{1}, \ldots, μ_{n}, respectively.

- Necessary conditions:
- $S_{n} \prec_{\mathrm{cx}} F_{1}^{-1}(U)+\cdots+F_{n}^{-1}(U)$
- In particular, $\mathbb{E}\left[S_{n}\right]=\mu_{1}+\cdots+\mu_{n}$
- Range $\left(S_{n}\right) \subset \sum_{i=1}^{n} \operatorname{Range}\left(X_{i}\right)$
- Suppose $\mathbb{E}[T]=\mu_{1}+\cdots+\mu_{n}$. Then

$$
F_{T} \in \mathcal{D}_{n}\left(F_{1}, \ldots, F_{n}\right) \Leftrightarrow\left(F_{-T}, F_{1}, \ldots, F_{n}\right) \text { is jointly mixable }
$$

For a theory of joint mixability

- W.-Peng-Yang (2013 FS), Wang-W. (2016 MOR)
- Surveys: Puccetti-W. (2015 STS), W. (2015 PS)
- Numerical method: Puccetti-W. (2015 JCAM)

Some Observations

- Joint mixability is an open research area
- A general analytical characterization of \mathcal{D}_{n} or joint mixability is far away from being clear
- We tune down and look at standard uniform distributions and $n=2$

Progress of the Talk

(2) Some Examples
(3) Some Answers
(4) Some More
(5) References

Simple Examples

$$
X_{1} \sim \mathrm{U}[-1,1], X_{2} \sim \mathrm{U}[-1,1], S_{2}=X_{1}+X_{2} .
$$

Obvious constraints

- $\mathbb{E}\left[S_{2}\right]=0$
- range of S_{2} in $[-2,2]$
- $\operatorname{Var}\left(S_{2}\right) \leq 4 / 3$
- $S_{2} \prec_{\mathrm{cx}} 2 X_{1}$
(sufficient?)

Simple Examples

Are the following distributions possible for S_{2} ?

Simple Examples: More...

Examples and counter-examples: Mao-W. (2015 JMVA) and Wang-W. (2016 MOR)

A Small Copula Game...

$$
\mathbb{P}\left(S_{2}=-4 / 5\right)=1 / 2, \mathbb{P}\left(S_{2}=4 / 5\right)=1 / 2
$$

Progress of the Talk

(1) Question

(2) Some Examples
(3) Some Answers

4 Some More
(5) References

Existing Results

Let $\mathcal{D}_{2}=\mathcal{D}_{2}(\mathrm{U}[-1,1], \mathrm{U}[-1,1])$. Below are implied by results in
Wang-W. (2016 MOR)

- Let F be any distribution with a monotone density function. then $F \in \mathcal{D}_{2}$ if and only if F is supported in $[-2,2]$ and has zero mean.
- Let F be any distribution with a unimodal and symmetric density function. Then $F \in \mathcal{D}_{2}$ if and only if F is supported in $[-2,2]$ and has zero mean.
- $\mathrm{U}[-a, a] \in \mathcal{D}_{2}$ if and only if $a \in[0,2]$ (a special case of both).
- The case $\mathrm{U}[-1,1] \in \mathcal{D}_{2}$ is given in Rüschendorf (1982 JAP).

Unimodal Densities

A natural candidate to investigate is the class of distributions with a unimodal density.

Theorem 1

Let F be a distribution with a unimodal density on $[-2,2]$ and zero mean. Then $F \in \mathcal{D}_{2}$.

- Both the two previous results are special cases
- For bimodal densities we do not have anything concrete

Densities Dominating a Uniform

A second candidate is a distribution which dominates a portion of a uniform distribution.

Theorem 2

Let F be a distribution supported in $[a-b, a]$ with zero mean and density function f. If there exists $h>0$ such that $f \geq \frac{3 b}{4 h}$ on [$-h / 2, h / 2$], then $F \in \mathcal{D}_{2}$.

- The density of F dominates $3 b / 4$ times that of $\mathrm{U}[-h / 2, h / 2]$

Bi-atomic Distributions

Continuous distributions seem to be a dead end; what about discrete distributions? Let us start with the simplest cases.

Bi-atomic Distributions

Theorem 3

Let F be a bi-atomic distribution with zero mean supported on $\{a-b, a\}$. Then $F \in \mathcal{D}_{2}$ if and only if $2 / b \in \mathbb{N}$.

$2 / b=1$

$2 / b=5 / 4$

- For given $b>a>0$, there is only one distribution on $\{a-b, a\}$ with mean zero.

Tri-atomic Distributions

For a tri-atomic distribution F, write $F=\left(f_{1}, f_{2}, f_{3}\right)$ where f_{1}, f_{2}, f_{3} are the probability masses of F

- On given three points, the set of tri-atomic distributions with mean zero has one degree of freedom.
- We study the case of F having an "equidistant support"

$$
\{a-2 b, a-b, a\} .
$$

For $x>0$, define a "measure of non-integrity"

$$
\lceil x\rfloor=\min \left\{\frac{\lceil x\rceil}{x}-1,1-\frac{\lfloor x\rfloor}{x}\right\} \in[0,1] .
$$

Obviously $\lceil x\rfloor=0 \Leftrightarrow x \in \mathbb{N}$.

Tri-atomic Distributions

Theorem 4

Suppose that $F=\left(f_{1}, f_{2}, f_{3}\right)$ is a tri-atomic distribution with zero mean supported in $\{a-2 b, a-b, a\}, \epsilon>0$ and $a \leq b$. Then $F \in \mathcal{D}_{2}$ if and only if it is the following three cases.
(i) $a=b$ and $f_{2} \geq\left\lceil\frac{1}{b}\right\rfloor$.
(ii) $a<b$ and $\frac{1}{b} \in \mathbb{N}$.
(iii) $a<b, \frac{1}{b}-\frac{1}{2} \in \mathbb{N}$ and $f_{2} \geq \frac{a}{2}$.

- cf. Theorem 3 (condition $2 / b \in \mathbb{N}$)

Tri-atomic Distributions

The corresponding distributions in Theorem 4:
(i) $\left(f_{1}, f_{2}, f_{3}\right) \in \operatorname{cx}\left\{(0,1,0), \frac{1}{2}\left(1-\left\lceil\frac{1}{b}\right\rfloor, 2\left\lceil\frac{1}{b}\right\rfloor, 1-\left\lceil\frac{1}{b}\right\rfloor\right)\right\}$.
(ii) $\left(f_{1}, f_{2}, f_{3}\right) \in \operatorname{cx}\left\{\left(0, \frac{a}{b}, 1-\frac{a}{b}\right), \frac{1}{2}\left(\frac{a}{b}, 0,2-\frac{a}{b}\right)\right\}$.
(iii) $\left(f_{1}, f_{2}, f_{3}\right) \in \operatorname{cx}\left\{\left(0, \frac{a}{b}, 1-\frac{a}{b}\right), \frac{1}{2}\left(\frac{a}{b}-\frac{a}{2}, a, 2-\frac{a}{b}-\frac{a}{2}\right)\right\}$.

Progress of the Talk

(1) Question

(2) Some Examples
(3) Some Answers
(4) Some More
(5) References

Some More to Expect

- It is possible to further characterize n-atomic distributions with an equidistant support (things get ugly though).
- We guess: for any distribution F
- with an equidistant support, or
- with finite density and a bounded support, there exists a number $M>0$ such that $F \in \mathcal{D}_{2}(\mathrm{U}[-m, m], \mathrm{U}[-m, m])$ for all $m \in \mathbb{N}$ and $m>M$.

Some More to Think

- Two uniforms with different lengths?
- Three or more uniform distributions?
- Other types of distributions?
- Applications?

We yet know very little about the problem of \mathcal{D}_{2}

References I

Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. Risks, 2(1), 25-48.

Mao, T. and Wang, R. (2015). On aggregation sets and lower-convex sets. Journal of Multivariate Analysis, 136, 12-25.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised Edition. Princeton, NJ: Princeton University Press.

Puccetti, G. and Wang, R. (2015). Detecting complete and joint mixability. Journal of Computational and Applied Mathematics, 280, 174-187.

Puccetti, G. and Wang, R. (2015). Extremal dependence concepts. Statistical Science, 30(4), 485-517.

Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14(3), 623-632.

Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg.

Wang, B. and Wang, R. (2016). Joint mixability. Mathematics of Operations Research, forthcoming.

Wang, R. (2015). Current open questions in complete mixability. Probability Surveys, 12, 13-32.

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance and Stochastics 17(2), 395-417.

Danke Schön

Thank you for your kind attention

