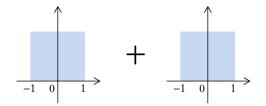
Question	Some Examples	Some Answers	Some More	References

Sum of Two Standard Uniform Random Variables

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo, Canada


Dependence Modeling in Finance, Insurance and Environmental Science Munich, Germany May 17, 2016

Based on joint work with Bin Wang (Beijing)

Question	Some Examples	Some Answers	Some More	References
•0000	00000		000	00
A Questio	n			

In this talk we discuss this problem:

$$X_1 \sim \mathrm{U}[-1,1], \ X_2 \sim \mathrm{U}[-1,1]$$
 what is a distribution (cdf) of $X_1 + X_2?$

A difficult problem with no applications (?)

Question 0●000	Some Examples	Some Answers	Some More 000	References 00
Generic	Formulation			

In an atomless probability space:

- F_1, \ldots, F_n are *n* distributions
- $X_i \sim F_i, i = 1, ..., n$
- $S_n = X_1 + \cdots + X_n$

Denote the set of possible aggregate distributions

$$\mathcal{D}_n = \mathcal{D}_n(F_1, \cdots, F_n) = \{ \text{cdf of } S_n | X_i \sim F_i, i = 1, \cdots, n \}.$$

Primary question: Characterization of \mathcal{D}_n .

• \mathcal{D}_n is non-empty, convex, and closed w.r.t. weak convergence

Question 00●00	Some Examples 00000	Some Answers	Some More	References 00
Generic	Formulation			

For example:

- X_i : individual risks; S_n : risk aggregation
- fixed marginal; unknown copula

Classic setup in Quantitative Risk Management

- Secondary question: what is $\sup_{F \in D_n} \rho(F)$ for some functional ρ (risk measure, utility, moments, ...)?
- Risk aggregation with dependence uncertainty, an active field over the past few years:
 - Embrechts et. al. (2014 Risks) and the references therein
 - Books: Rüschendorf (2013), McNeil-Frey-Embrechts (2015)
 - 20+ papers in the past 3 years

Question 000●0	Some Examples	Some Answers	Some More 000	References 00
Some O	bservations			

Assume that F_1, \ldots, F_n have finite means μ_1, \ldots, μ_n , respectively.

• Necessary conditions:

•
$$S_n \prec_{\mathrm{cx}} F_1^{-1}(U) + \cdots + F_n^{-1}(U)$$

• In particular, $\mathbb{E}[S_n] = \mu_1 + \dots + \mu_n$

• Range
$$(S_n) \subset \sum_{i=1}^n \text{Range}(X_i)$$

• Suppose
$$\mathbb{E}[T] = \mu_1 + \cdots + \mu_n$$
. Then

 $F_T \in \mathcal{D}_n(F_1, \ldots, F_n) \Leftrightarrow (F_{-T}, F_1, \ldots, F_n)$ is jointly mixable

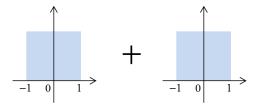
For a theory of joint mixability

- W.-Peng-Yang (2013 FS), Wang-W. (2016 MOR)
- Surveys: Puccetti-W. (2015 STS), W. (2015 PS)
- Numerical method: Puccetti-W. (2015 JCAM)

00000	00000	00000000	000	00
Some O	bservations			

- Joint mixability is an open research area
- A general analytical characterization of \mathcal{D}_n or joint mixability is far away from being clear
- We tune down and look at standard uniform distributions and n = 2

Question	Some Examples	Some Answers	Some More	References
00000	●0000		000	00
Progress	s of the Talk			

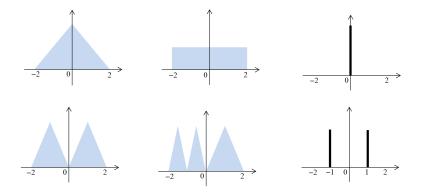

3 Some Answers

Question	Some Examples	Some Answers	Some More	References
00000	00000		000	00
Simple I	Examples			

$$X_1 \sim U[-1,1], X_2 \sim U[-1,1], S_2 = X_1 + X_2.$$

Obvious constraints

- $\mathbb{E}[S_2] = 0$
- range of S_2 in [-2,2]
- $Var(S_2) \le 4/3$


• $S_2 \prec_{cx} 2X_1$ (sufficient?)

э

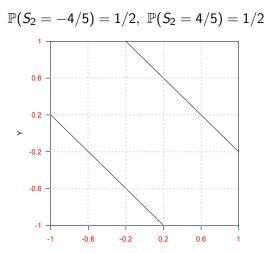
8/25

Question	Some Examples	Some Answers	Some More	References
00000	00●00		000	00
Simple I	Examples			

Are the following distributions possible for S_2 ?

э

Question 00000	Some Examples	Some Answers	Some More	References 00
Cimple	Evennlee, Mer			



Examples and counter-examples: Mao-W. (2015 JMVA) and Wang-W. (2016 MOR)

æ

Question	Some Examples	Some Answers	Some More	References
00000	0000●	00000000		00
A Small	Copula Game.			

х

3 x 3

Question	Some Examples	Some Answers	Some More	References
00000		•00000000	000	00
Progress	s of the Talk			

5 References

э

Question	Some Examples	Some Answers	Some More	References
00000	00000	0●0000000	000	00
Existing	Results			

Let $\mathcal{D}_2 = \mathcal{D}_2(U[-1,1], U[-1,1])$. Below are implied by results in Wang-W. (2016 MOR)

- Let F be any distribution with a monotone density function.
 then F ∈ D₂ if and only if F is supported in [-2, 2] and has zero mean.
- Let F be any distribution with a unimodal and symmetric density function. Then F ∈ D₂ if and only if F is supported in [-2, 2] and has zero mean.
- U[-a, a] ∈ D₂ if and only if a ∈ [0, 2] (a special case of both).
 The case U[-1, 1] ∈ D₂ is given in Rüschendorf (1982 JAP).

Question 00000	Some Examples	Some Answers	Some More 000	References 00
Unimod	al Densities			

A natural candidate to investigate is the class of distributions with a unimodal density.

Theorem 1

Let F be a distribution with a unimodal density on [-2,2] and zero mean. Then $F \in \mathcal{D}_2$.

- Both the two previous results are special cases
- For bimodal densities we do not have anything concrete

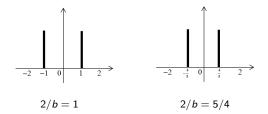
Question	Some Examples	Some Answers	Some More	References
00000	00000		000	00
Densitie	s Dominating a	Uniform		

A second candidate is a distribution which dominates a portion of a uniform distribution.

Theorem 2

Let F be a distribution supported in [a - b, a] with zero mean and density function f. If there exists h > 0 such that $f \ge \frac{3b}{4h}$ on [-h/2, h/2], then $F \in D_2$.

• The density of F dominates 3b/4 times that of U[-h/2, h/2]


Question 00000	Some Examples	Some Answers	Some More 000	References 00
Ri-atom	ic Distributions			

Continuous distributions seem to be a dead end; what about discrete distributions? Let us start with the simplest cases.

00000	00000	000000000	000	00
Riator	nic Distributions			

Theorem 3

Let F be a bi-atomic distribution with zero mean supported on $\{a - b, a\}$. Then $F \in D_2$ if and only if $2/b \in \mathbb{N}$.

For given b > a > 0, there is only one distribution on {a - b, a} with mean zero.

Question	Some Examples	Some Answers	Some More	References
00000	00000		000	00
Tri-aton	nic Distribution	ς		

For a tri-atomic distribution F, write $F = (f_1, f_2, f_3)$ where f_1, f_2, f_3 are the probability masses of F

- On given three points, the set of tri-atomic distributions with mean zero has one degree of freedom.
- We study the case of F having an "equidistant support" {a - 2b, a - b, a}.

For x > 0, define a "measure of non-integrity"

$$\lceil x
floor = \min\left\{rac{\lceil x
ceil}{x} - 1, 1 - rac{\lfloor x
floor}{x}
ight\} \in [0, 1].$$

Obviously $[x] = 0 \Leftrightarrow x \in \mathbb{N}$.

Question	Some Examples	Some Answers	Some More	References
00000	00000	0000000●0	000	00
Tri aton	nic Distribution	c		

Theorem 4

Suppose that $F = (f_1, f_2, f_3)$ is a tri-atomic distribution with zero mean supported in $\{a - 2b, a - b, a\}, \epsilon > 0$ and $a \le b$. Then $F \in \mathcal{D}_2$ if and only if it is the following three cases. (i) a = b and $f_2 \ge \lfloor \frac{1}{b} \rfloor$. (ii) a < b and $\frac{1}{b} \in \mathbb{N}$. (iii) $a < b, \frac{1}{b} - \frac{1}{2} \in \mathbb{N}$ and $f_2 \ge \frac{a}{2}$.

• cf. Theorem 3 (condition $2/b \in \mathbb{N}$)

Question 00000	Some Examples	Some Answers	Some More 000	References 00
Tri-aton	nic Distribution	ς		

The corresponding distributions in Theorem 4:

(i)
$$(f_1, f_2, f_3) \in \operatorname{cx}\{(0, 1, 0), \frac{1}{2}(1 - \lceil \frac{1}{b} \rfloor, 2\lceil \frac{1}{b} \rfloor, 1 - \lceil \frac{1}{b} \rfloor)\}.$$

(ii) $(f_1, f_2, f_3) \in \operatorname{cx}\{(0, \frac{a}{b}, 1 - \frac{a}{b}), \frac{1}{2}(\frac{a}{b}, 0, 2 - \frac{a}{b})\}.$
(iii) $(f_1, f_2, f_3) \in \operatorname{cx}\{(0, \frac{a}{b}, 1 - \frac{a}{b}), \frac{1}{2}(\frac{a}{b} - \frac{a}{2}, a, 2 - \frac{a}{b} - \frac{a}{2})\}.$

э

Question	Some Examples	Some Answers	Some More	References
00000	00000		●00	00
Progress	s of the Talk			

Question

- 2 Some Examples
- **3** Some Answers

5 References

э

э

Question	Some Examples	Some Answers	Some More	References
00000	00000		⊙●○	00
Some M	ore to Expect			

- It is possible to further characterize *n*-atomic distributions with an equidistant support (things get ugly though).
- We guess: for any distribution F
 - with an equidistant support, or
 - with finite density and a bounded support,

there exists a number M > 0 such that

 $F \in \mathcal{D}_2(\mathrm{U}[-m,m],\mathrm{U}[-m,m])$ for all $m \in \mathbb{N}$ and m > M.

Question	Some Examples	Some Answers	Some More	References
00000	00000		○○●	00
Some Mo	ore to Think			

- Two uniforms with different lengths?
- Three or more uniform distributions?
- Other types of distributions?
- Applications?

We yet know very little about the problem of \mathcal{D}_2

Question	Some Examples	Some Answers	Some More	References
00000	00000		000	●○
Referenc				

- Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. *Risks*, **2**(1), 25–48.
- Mao, T. and Wang, R. (2015). On aggregation sets and lower-convex sets. *Journal of Multivariate Analysis*, **136**, 12–25.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). *Quantitative Risk Management: Concepts, Techniques and Tools.* Revised Edition. Princeton, NJ: Princeton University Press.

- Puccetti, G. and Wang, R. (2015). Detecting complete and joint mixability. *Journal of Computational and Applied Mathematics*, **280**, 174–187.
- Puccetti, G. and Wang, R. (2015). Extremal dependence concepts. Statistical Science, 30(4), 485-517.

- Rüschendorf, L. (1982). Random variables with maximum sums. Advances in Applied Probability, 14(3), 623–632.
- Rüschendorf, L. (2013). Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer, Heidelberg.
 - Wang, B. and Wang, R. (2016). Joint mixability. Mathematics of Operations Research, forthcoming.

Wang, R. (2015). Current open questions in complete mixability. Probability Surveys, 12, 13-32.

Wang, R., Peng, L. and Yang, J. (2013). Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. *Finance and Stochastics* 17(2), 395–417.

э

イロト イポト イヨト イヨト

Question 00000	Some Examples	Some Answers	Some More	References ○●
Danka S	chön			

Thank you for your kind attention