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1 Notation

In these notes ′ and T are both used to denote vector or matrix transpose. At a few other places too
MATLAB notation is used.

2 Supervised Learning

Given observed data (or features of the observed data) or other “input” x, the goal is to predict some
function of x that is denoted by y (often called “output”). In what we have talked so far x is an n × 1
vector and y is a scalar. For example, x can be the feature vector of key attributes of a house, while y can
be its price. In this case both are real valued. Or y can be a binary decision about whether a buyer buys
the house or not.

In learning, we first decide a modeling strategy to model the input-output relationship; then come up
with an algorithm to “learn” parameters given the training data (which is a set of m input-output pairs in
case of supervised learning). All of this is done so that the “learnt model” can be used to predict y (get ŷ)
for a new query x.

“Predict” is often also called “estimate” (if y is real-valued) and it is also called “detect” or “classify”
(if y is binary/discrete-valued).

Learning algorithms can be supervised or unsupervised. In supervised learning, we are provided with
“training data” that allows us to “learn” the parameters used by the model that our algorithm relies on.
Goal is to predict y using observed data or features x.

x is n × 1, y is a scalar. We use θ to denote the set of parameters used by our assumed model. The
number of parameters (length of θ) can be n or more or less.

In many settings, the assumed model that predicts y is denoted hθ(x). Since the model is never perfect,
we assume that the “true” output y satisfies

y = hθ(x) + e

where e is the modeling error or noise. This is typically modeled as a random variable with a probability
density function (PDF), typically zero mean Gaussian and independent and identically distributed (i.i.d.)
in each new sample.

Training data consists of m input/output pairs {x(i), y(i)}, i = 1, 2, . . . ,m. The modeling error / noise e
We use these to “learn” θ. Once that is done, we can predict y from x using the above equation.
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3 Supervised Learning: Linear Regression

In the setting we have talked about in class, x is a real-valued n× 1 vector and y is a real-valued scalar 1.
The parameter vector θ is also an n× 1 vector

3.1 Model

In linear regression, hθ(x) is a linear function of x.

hθ(x) = θTx.

(I sometimes may use ′ for transpose – MATLAB notation)

3.2 Learning θ: minimize squared loss

The most common approach to learn θ is to assume a squared error loss and try to minimize it, i.e., find

arg min
θ
J(θ) :=

1

m

m∑
i=1

(y(i) − θ′x(i))2.

Define an m× n input data matrix X with (x(i))T as its rows, i.e., let

X =


−(x(1))T−
−(x(2))T−

...

−(x(m))T−

 (1)

and define an m× 1 vector y with y(i) as its columns.
Then, J(θ) can be expressed more compactly as

J(θ) :=
1

m

m∑
i=1

(y(i) − θTx(i))2 =
1

m
‖y −Xθ‖22

3.2.1 Understanding squared loss: Maximum Likelihood Estimation under i.i.d. Gaussian
model

The above can be motivated as Maximum Likelihood Estimation: maximize p(y;X, θ) under the model
y(i) = hθ(x

(i))+e(i), i = 1, 2, . . . ,m with w(i) independent identically distributed (i.i.d.) standard Gaussian.
Here the randomness is only in the noise e.

3.3 Solutions for minimizing squared loss: also called Least Squares (LS) Estimation

1. We can get a closed form solution by taking the derivative of J(θ) w.r.t. θ and setting it to zero. When
X is full rank n (a necessary condition for this is m ≥ n), this simplifies to

θ̂ = (X ′X)−1X ′y

2. For an m×n matrix with m ≥ n, (X ′X)−1X ′ is the pseudo-inverse of X, denoted X†. Thus, we can
also write the above solution as

θ̂ = X†y

1In more general settings y can also be a real-valued vector (this will not be discussed in our class).
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Extra details: The pseudo-inverse is computed by first computing the singular value decomposition
(SVD) of the matrix X. Suppose the SVD of X = UΣV ′ where U is an m ×m unitary matrix. V
is an n × n unitary matrix and Σ is diagonal with non-negative entries. Then X† = V Σ†UT . For
a rectangular diagonal matrix such as Σ, we get the pseudo-inverse by taking the reciprocal of each
non-zero element on the diagonal, leaving the zeros in place, and then transposing the matrix.

If algorithms for computing matrix inverse or matrix pseudo-inverse were ”exact” (and not iterative)
then the above two approaches would return the exact same solution. But they are not. Thus, when
X is “well-conditioned”, both approaches above return same solution, but not otherwise.

3. For large sized problems (where n is large), using Gradient Descent (GD) is a better idea. Since
problem is convex, GD should, in principle, converge to above solution starting from any initialization,
and should converge pretty quickly. We explain this in Sec. 5.

4. Approximate but even faster solution: Stochastic GD (S-GD) can be used. Advantages: faster per
iteration; needs lesser memory; and is useful to get a fully streaming algorithm. But no easy guarantees
on whether it will converge and to what.

3.4 Including a nonzero mean in the model

To include a non-zero mean in the model, one can replace both x and θ by n+ 1 length vectors as follows.
Let

θ̃ =

[
θ0

θ

]
and

x̃ =

[
1
x

]
and we let

hθ̃(x̃) = θ̃T x̃.

With this model, we do everything explained above using x̃ and θ̃ to replace θ and x respectively.
In Homework 1, the above is NEEDED for the part where we generate data using a nonzero mean µx.

4 Simulating data: a good code-writing practice

Consider the house price prediction based on house features example. In the previous section, we said we
use linear regression to model the data and predict the price. If I write code to learn theta and apply it to a
real dataset directly and suppose it does not ”work too well” (my code does not give very good predictions
on test data). How do I know if (i) the linear regression model is wrong or (ii) my learning approach (normal
equations or GD) is wrong, or (iii) there is a code bug (I have an extra factor of 2 at some place by mistake)?

A partial fix to the above problem to above it is to first simulate data using the linear regression model.
So when I test my learning code on this data I know what is true θ I am looking for. Then I can try to fix
(ii) and (iii) issues. Once these are fixed, then we try the same code on real data and then maybe compare
with another model to check which one is better.

4.1 Understanding a multivariate Gaussian distribution

http://cs229.stanford.edu/section/gaussians.pdf

http://cs229.stanford.edu/notes2020fall/notes2020fall/cs229-prob.pdf
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4.2 How to simulate

Task: Generate your own data to simulate the linear regression model y = θTx + e. Generate m such
independent training data vectors. Also generate mtest independent data vectors for the testing step.

Let N (µ,Σ) denote the Gaussian distribution with mean µ and covariance Σ.
Do this as follows:

(1) Fix θ once as specified below.
(2) Training data generate: For i = 1 to m, generate x(i) ∼ N (0, I), e(i) ∼ N (0, σ2

e) and y(i) = θTx(i) + e(i).
(3) Test data generate: In a different Loop, repeat (b) for i = 1 to mtest. Use this data in the testing step
and not for training.

Generate the data for the following settings:
(a) Use m = 30, 100, 1000, n = 5, and set e = 0. Let θ = [1, 4, 2, 10, 23]T .
(b) Pick m = 30, 100, 1000, n = 5, and set σ2

e = 10−6. Let θ = [1, 4, 2, 10, 23]T .
(c) Pick m = 100, 100, 1000, n = 5, and set σ2

e = 10−4. Let θ = [1, 4, 2, 10, 23]T .

4.2.1 Notes

For generating the data, I have suggested using the Gaussian distribution just as an example. But you do
not have to use the Gaussian. You could also use any other distribution, e.g., the uniform distribution.

On the other hand, for the error e(i), we have assumed that it is Gaussian in our model (that is why the
squared loss is justified). So for generating error, you do have to use the Gaussian distribution.

5 Gradient Descent (GD) and Stochastic GD

The GD approach is an iterative algorithm to find a local minimizer of a cost function. Which minimizer is
found depends on how one initializes. It does not always converge and of course local minimizer may not be
a global minimizer either. But if cost function is convex, it will converge to a global minimizer. Moreover if
minimizer is also unique (cost is strictly convex), then the only correct solution can be found. An example
of this is the squared loss for linear regression. It is convex always. It is strictly convex if m ≥ n and X has
full rank n.

The GD Algorithm to minimize any cost J(θ) is as follows. Recall

J(θ) :=
1

m

m∑
i=1

cost(θ,x(i), y(i))

where cost is squared error (as in previous section) or can be something else (as in later sections on Logistic
Regression).

1. Initialize θ̂0 as the zero vector (or anything else).

2. Repeat the following for iterations t > 0 until “stopping criterion” is reached:

θ̂t = θ̂t−1 − µ∇θJ(θ̂t−1)

increment t by one and repeat until stopping criterion reached:

A typical stopping criterion: stop when ‖θ̂t − θ̂t−1‖2/‖θ̂t−1‖2 ≤ ε with ε a very small tolerance, e.g.,
set ε = 10−8.

Setting µ : when using J(θ) as above (it is average of the cost functions), then its gradient also contains
a (1/m) term, then µ can be a small constant between zero and one, e.g. try µ = 0.1 and then reduce or
increase depending on what happens.

Reduce it if the cost seems to not decrease at all or starts increasing. Increase it if the cost decreases
but very slowly with iteration.
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5.1 Stochastic and Mini-Batch GD

J(θ) is typically an average of m terms; in fact it always is under our assumption of different training data
points being i.i.d. As a result, its gradient is also a sum of m terms divided by m.

If m is large, computing the full gradient at each iteration can be expensive. Also, sometimes not all
data is available immediately.

Stochastic GD idea: sum over a subset of the m gradients at each iteration. Pick this subset randomly
or use other strategies. See videos on Stochastic GD and Mini-Batch GD.

6 Supervised Learning: Logistic Regression

In this case, x is still a real-valued n× 1 vector but now y is a binary scalar.

6.1 Model

This assumes that Pr(y = 1;x, θ) = hθ(x) with

hθ(x) = g(θTx), g(z) :=
1

1 + e−z

g(.) is called the sigmoid function, it takes values between zero and one for all values of z. Thus, it can be
used to model a probability. Said another way,

p(y;x, θ) = hθ(x)y(1− hθ(x))1−y

The prediction is
ŷ = arg max

y=0,1
p(y;x, θ)

Thus
ŷ = 1 if hθ(x) > 1− hθ(x),

and ŷ = 0 otherwise.

6.2 Use of bias term in Logistic regression

Introduce the bias term exactly as we did in case of linear regression Make both θ and x (n+ 1)-th length
vectors; set the first entry of x equal to 1. The first entry of θ is then the bias term.

6.3 Learning θ: Maximum Likelihood Estimation

Again define y and X as before from training data
Use Maximum Likelihood Estimation again: assume i.i.d. training data points y(i) (recall that this was

assumed also in linear regression – it was imposed by letting the w(i)’s be i.i.d.).
Thus, we minimize the negative log likelihood,

J(θ) := − log p(y|X; θ) = − log

(
m∏
i=1

p(yi;x
(i), θ)

)
= − log

(
m∏
i=1

hθ(x
(i))y

(i)
(1− hθ(x(i)))1−y(i)

)
We can simplify this a lot as follows.

J(θ) = −
m∑
i=1

log

( 1

1 + exp(θ′x(i))

)y(i) ( exp(θ′x(i))

1 + exp(θ′x(i))

)1−y(i)


= −
m∑
i=1

log

((
1

1 + exp(θ′x(i))

)y(i) ( 1

1 + exp(−θ′x(i))

)1−y(i)
)
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The only difference between the first and second terms inside log(.) is the sign of θ′x(i) in the denominator
and the power it is raised to. One is raised to the power y(i), the other is raised to the power (1−y(i)). Here
y(i) is either 0 or 1. So, 2y(i) − 1 is either −1 (when y(i) = 0) or +1 (when y(i) = 1). Thus, when y(i) takes
only values 0 or 1,(

1

1 + exp(θ′x(i))

)y(i) ( 1

1 + exp(−θ′x(i))

)1−y(i)

=
1

1 + exp
(
(θ′x(i))(2y(i) − 1)

)
The reason the last equality is true is because when y(i) = 1, 2y(i) − 1 = 1, but when when y(i) = 0,
2y(i) − 1 = −1.

We now simply get

J(θ) = −
m∑
i=1

log

(
1

1 + exp
(
(θ′x(i))(2y(i) − 1)

)) =

m∑
i=1

log
(

1 + exp
(

(θ′x(i))(2y(i) − 1)
))

We can find θ by minimizing J(θ) by GD.
It is possible to show that J(θ) is convex. Argument: weighted sum convex functions is convex when

the weights are positive, here the weights are just 1; (θ′x)(2y − 1) is an affine function of θ (and hence is
both convex and concave; the logistic function log(1 + exp(−z)) can be shown be convex (see next line);
composition of a convex function and an affine function is convex. To show log(1+exp(−z)) is convex, since
it is twice differentiable, we can compute the second derivative and show that it is −1/(1 + exp(−z))2 < 0
for any z, thus it is convex everywhere.

7 Supervised Learning: Generative Learning (a.k.a. Bayesian mod-
els/learning)

For logistic or linear regression we just assumed a probabilistic model on how y is generated from x, with x
being deterministic.

In Generative Learning, we assume a “generative model”: we first put a prior probabilistic model on y,
and then assume a probabilistic model on how x was generated from y. We then compute the probability
(or probability density function in case y is real-valued) of y taking a certain value given x using Bayes rule.
Mathematically, we assume that we are given

p(x|y; θ), p(y)

and we use these to obtain the prediction as follows

ŷ = arg max
y
p(y|x; θ) := arg max

y

p(x|y; θ)p(y; θ)

p(x; θ)
= arg max

y
p(x|y; θ)p(y; θ)

This use of Bayes rule is called Maximum A Posteriori (MAP) detection or estimation in other literature.
The overall approach is often called Bayesian modeling or physics-based modeling.

7.1 Learning θ: Maximum Likelihood Estimation

Estimate θ: define y, X as before from training data. Also assume training data points are independent:
{x(i), y(i)} are mutually independent for different i. Define the cost function

J(θ) := Pr(y,X; θ) =
m∏
i=1

p(y(i),x(i); θ)

or, usually its logarithm, and maximize it over θ.
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7.2 Generative Learning: Gaussian Discriminant Analysis (GDA)

This is one type of generative model and learning algorithm for the setting x real-valued n× 1 vector and y
binary scalar. Thus y can take two values 0 or 1. It assumes x is Gaussian given y and y itself is Bernoulli,
i.e.,

p(x|y; θ) = N (x;µy,Σy), p(y) = φy(1− φ)1−y

Notice in this case θ = {µ0, µ1,Σ0,Σ1, φ}. Parameters are still learnt by MLE

max
θ
J(θ) := Pr(y,X; θ) =

m∏
i=1

p(y(i),x(i); θ) s.t. 0 ≤ φ ≤ 1

Notice that, without extra assumptions, we have 2n + 2n2 + 1 parameters. Training data are each n
length vectors x(i), thus we can say we have mn training data scalars. We need mn significantly larger than
2n + 2n2 + 1 for training/learning to be accurate. We will need m growing at least linearly with n to be
able to learn anything useful.

But the point of Bayesian (generative) modeling is that we should be able to use a smaller m and still
train well.

When enough training data is not available, we need to simplify our model so that there are fewer
parameters. As explained later, this will increase model bias, but will reduce the variance in parameter
estimation.

A common model simplification is to assume that the different entries of each x(i) are independent
conditioned on the class label y(i). This is called the Naive Bayes assumption.

7.2.1 Gaussian Discriminant Analysis (GDA) with Naive Bayes assumption and equal co-
variances

A common model simplification is to assume that the different entries of each x(i) are independent conditioned
on the class label y(i). This is called the Naive Bayes assumption.

In the Gaussian case, this translates to assuming that Σ0, Σ1 are diagonal. With the diagonal assumption,
we now have only 2n + 2n + 1 parameters which is much more manageable. A second commonly used
simplification is to assume the same covariance under both classes, i.e., that Σ0 = Σ1 = Σ and Σ is diagonal.
With this assumption too, we have the following simpler model

m∏
i=1

 n∏
j=1

N (xj ; (µyi)j , σ
2
j )

 · φyi(1− φ)1−yi


Under the above assumption, the Max Likelihood Estimates (MLE) of the model parameters, θ :=

{φ, µ0, µ1,Σ} i.e., the value of the model parameters that solve

arg max
θ
J(θ), J(θ) := Pr(y,X; θ) =

m∏
i=1

p(y(i),x(i); θ) s.t. 0 ≤ φ ≤ 1

are computed as follows:

φ̂ =
1

m

m∑
i=1

1(y(i) = 1)

µ̂0 =

∑m
i=1 1(y(i) = 0)x(i)∑m
i=1 1(y(i) = 0)

µ̂1 =

∑m
i=1 1(y(i) = 1)x(i)∑m
i=1 1(y(i) = 1)

σ̂2
j =

1

m

m∑
i=1

(x(i) − µy(i))
2
j , j = 1, 2, . . . , n
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while setting all non-diagonal entries of Σ̂ to be zero. Here 1 denotes the indicator function of the statement
in paranthesis. Thus, 1(y(i) = 0) equals one if y(i) = 0 and it equals zero otherwise.

Notice that the above is equivalent to learning the parameters for each feature independently, it can also
be rewritten as follows: for each j = 1, 2, . . . , n, compute

(µ̂0)j =

∑m
i=1 1(y(i) = 0)(x(i))j∑m

i=1 1(y(i) = 0)

(µ̂1)j =

∑m
i=1 1(y(i) = 1)(x(i))j∑m

i=1 1(y(i) = 1)

σ̂2
j =

1

m

m∑
i=1

(x(i) − µy(i))
2
j , j = 1, 2, . . . , n

In this Naive Bayes’ setting, the selecting of ŷ to solve

ŷ = arg max
y
p(x|y; θ̂)p(y; θ̂)

simplifies to the following test (just simplify the expressions):

ŷ = 1 if
n∑
j=1

(x− µ̂1)2
j

σ̂2
j

<
∑
j

(x− µ̂0)2
j

σ̂2
j

7.2.2 Notes

1. In the Gaussian case, we get a simple closed form as above. In many cases of Bayesian modeling also,
this is possible. In general when this is not possible, do not ever work directly with probabilities. Always
work with logarithms of the probabilities. Otherwise you will run into numerical problems while coding.
Remember under the naive Bayes assumption, p(x|y; θ̂) =

∏n
j=1 p(xj |y; θ̂) if p(.) is a PMF, it is a product

of n real numbers all less than one. Even if p(.) is a PDF (which could be more than one), very often it is
actually less than one only. Product n numbers less than one can become very small very soon.

2. When working with real data, e.g., images, there may be a certain region that is black in all the
images. For these pixels the estimate of the variance will be zero meaning σ−1

j =∞ resulting in code bugs.
Fix 1: do not use these directions.
Fix 2: Better fix to deal with similar issues where in some directions variance is very small (may not

be zero): use PCA to reduce the dimensionality of the data. For classification there is no need to use all n
features.

Fix 3: add a small value to replace the zeros: the added value should be much smaller than any of the
important directions’ variances. This is easy in the zero/nonzero case but in practice ill-conditioning of Σ
may make this hard to do. Use of PCA and a smaller dimension is thus a much better fix.

7.3 Generative Learning: Spam Filter – an example of Discrete-valued or Categorical
Features

In applications such as spam email detector (or filter) design, one typically models x as a discrete-valued
vector given y.

y = 0 means the email is not-spam, y = 1 means it is spam.

7.3.1 Simple Spam Filter: entries of x are binary

In the simplest version, x is an n× 1 binary vector with n being equal to the size of the English dictionary.
We say xj = 1 if the j-th dictionary word is in the email and xj = 0 otherwise. This means n is really large.
Also it is not counting how many times a word occurred.
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Consider first the simplest model where x is a binary vector. As before, we specify

p(x|y; θ), p(y)

and we predict
ŷ = arg max

y
p(x|y; θ)p(y; θ).

Notice now that x can take a total of 2n possible values. We also need to specify the prior p(y). Thus, in
this most general case, the number of parameters equals 2n + 1.

Training data are each n length vectors x(i), thus we can say we have mn training data scalars. We
need mn significantly larger than 2n + 1 for training/learning to be accurate. Here we will need m to grow
linearly with 2n−1: this can be very large and is not practical.

7.3.2 Naive Bayes assumption

In both the above examples and especially the second one, the required m can be very large for accurate
training/learning. Thus we add a further modeling assumption called “Naive Bayes” in ML literature.
Others would call it “conditional independence” of different entries of a feature vector (the different xj’s,
j = 1, 2, . . . , n) given y. Mathematically, we are assuming

p(x|y; θ) =

n∏
j=1

p(xj |y; θ)

This may not be a very realistic assumption, but it significantly reduces the number of parameters required
by the model.

In the Gaussian case, this implies that Σ0, Σ1 are diagonal matrices. Thus, the number of parameters
becomes 2n + 2n + 1 which is much more tractable. In the spam filter case, this means we have n + 1
parameters.

So now the number of training samples m does not even need to grow with n.

7.3.3 Simple Spam filter with Naive Bayes

x is a binary vector, y is a scalar. With using Naive Bayes, in the Simple Spam Filter case, we can now
define

ψj,y := p(xj = 1|y), j = 1, 2, . . . , n; and φ := p(y = 1)

With this we have just n+ 1 parameters to learn instead of 2n + 1.
We can again learn the parameters by MLE:

max
θ
J(θ) :=

m∏
i=1

p(y(i),x(i); θ) =
m∏
i=1

n∏
j=1

p(x
(i)
j |y

(i); θ)p(y(i); θ) =
m∏
i=1

φy
(i)

(1−φ)(1−y(i))(
n∏
j=1

ψ
x
(i)
j

j,y (1−ψj,y)(1−x(i)
j )

s.t. constraints that
0 ≤ ψj,y ≤ 1, 0 ≤ φ ≤ 1

Can again get closed form simple expressions for the MLE:

ψ̂j,0 =

count the number of training data points for which y(i) = 0 and x
(i)
j = 1 and divide by the total number of

training data points for which y(i) = 0.
Similarly

ψ̂j,1 =
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count the number of training data points for which y(i) = 1 and x(i) = 1 and divide by the total number of
training data points for which y(i) = 1. and

φ̂ =

count the number of training data points for which y(i) = 1 and divide by m
Use of n to be dictionary size makes it extremely large causing the algorithm to be very slow. Also,

instead of letting n be the size of the English dictionary, we can let n be the size of the vocabulary (set
of all words in all training data). But this has the disadvantage that it does not tell you how to deal with
an unseen word. Options include (i) ignore unseen words (can be problematic in case the unseen words are
the only reason an email is obviously spam); or (ii) in the model, assume a small nonzero probability for an
unseen word (this means: increase the vocabulary size by 1, this probability cannot be learned easily, you
just have to make up a “reasonable” value for it).

7.3.4 Spam Filter: entries of z count the number of times a word occurs

The simplest spam filter explained above is not using word-counts (the number of times a word occurs), but
just checking whether a word is present or not. A better model is to consider a different feature vector z
with zj being the number of times word j occurs in the vocabulary (or dictionary).

Treating each word occurrence as independent (this is an assumption (naive Bayes), it is actually not
true since certain pairs of words are much more likely occur together, but simplifies our modeling), and
assuming as before that ψj,y = Pr(word j is present in the email|y), the feature vector z would be modeled
by what is called a “multinomial distribution” as follows. This assumes that there are a total of d words in
the sample, i.e., that

∑
j zj = d

p(z|y) =

(
d

z1, z2, . . . ,zn

) n∏
j=1

ψ
zj
j,y

This is called the multinomial distribution with parameters ψj,y.
MLE The joint likelihood of m independent training samples can be expressed as follows: let d(i) be the

number of words in training sample i. Then,

J(θ) =
n∏
i=1

p(y(i))p(z(i)|y(i)) =
n∏
i=1

φy
(i)

(1− φ)(1−y(i))
(

d(i)

z
(i)
1 , z

(i)
2 , . . . ,z

(i)
n

) n∏
j=1

ψ
z
(i)
j

j,y(i)

If we want all d(i)s to be equal to d, we then use the blank-space as one feature.
Learning parameters: we need to maximize the above over φ, ψj,y subject to the constraints that

0 ≤ ψj,y ≤ 1, 0 ≤ φ ≤ 1

It can be shown that we get

ψ̂j,0 =

∑m
i=1 z

(i)
j 1(y(i) = 0)∑n

j=1

∑m
i=1 z

(i)
j 1(y(i) = 0)

In words this is the total number of times word j occurs in all emails that are not spam (for which y(i) = 0)
divided by the total number of words in all emails that are not spam. We can similarly compute

ψ̂j,1

7.3.5 Spam filter: model 3

A third possible model is as follows. Let j referred to the j-th word in the email and let xj be the location
of the j-th word in the dictionary. So then this becomes “categorical data”. We explain below how to deal
with categorical data. In this case the length of the feature vector can be different for different emails. It
will be n(i) if the email has n(i) distinct words.

10



7.3.6 More ideas and related problems

A more advanced document model models co-occurrences of words.
Similar ideas are also used to classify blogs or webpages into various categories as well.

7.4 Modeling Categorical data

In some problems, the different features may be “categorical” instead of binary, which means feature j takes
one of Kj possible values. For example xj could be color of the front door of a house in case of the house
price example and we assume Kj = 5 possible colors for example. There is no ordering to which color is
preferred, thus the integer labels are arbitrary; they do not have a numerical meaning.

The model would then require us to learn ψj,y,k := Pr(xj = k|y) for k = 1, 2, . . .Kj , y = 0, 1, j =
1, 2, . . . , n.

Our data model then is as follows

p(x|y) =
n∏
j=1

Kj∏
k=1

ψ
[xj==k]
j,y,k

where [x == k] takes the value 1 if x = k and zero otherwise (MATLAB notation). Thus for MLE we need
to maximize ∏

i

 n∏
j=1

Kj∏
k=1

(ψj,y(i),k)
[x

(i)
j ==k]φy

(i)
(1− φ)1−y(i)


s.t. sum to one constraints on all the probabilities.

Then MLE estimates are given by
ψ̂j,0,k =

counts the number of times y(i) = 0 and x
(i)
j = k in the training data and divides this by the number of times

y(i) = 0 (number of points from class zero in the training data). Do this for every value of k = 1, 2, . . . ,Kj

and for every feature xj , j = 1, 2, . . . , n.
Do the same for class label 1.

7.5 Dealing with discrete-valued and real-valued data together in the Generative Learn-
ing (a.ka. Bayesian) framework

Often some of the features can be categorical and some of them can be real-valued. Once we impose the
Naive Bayes assumption (conditioned on the class label, different features are independent), this is easy to
deal with. For simplicity suppose that the first r features are real-valued and the rest n− r are categorical
with kj categories. Also assume the real-valued feature follow a Gaussian distribution with mean µ0 or µ1

(depending on the class label) and covariance matrix Σ. By Naive Bayes, Σ is diagonal.
Then, joint likelihood becomes

m∏
i=1

 r∏
j=1

N (x
(i)
j ; (µy(i))j , σ

2
j ) ·

n∏
j=r+1

Kj∏
k=1

ψ
[x

(i)
j ==k]

j,y(i),k

 · φy(i)(1− φ)1−y(i)


s.t. sum to one constraints on φ and on all the ψj,y,k’s.

The MLE estimates are computed as follows.

φ̂ =
1

m

m∑
i=1

1(y(i) = 1)

11



For j = 1, 2, . . . , r,

(µ̂0)j =

∑m
i=1 1(y(i) = 0)(x(i))j∑m

i=1 1(y(i) = 0)

(µ̂1)j =

∑m
i=1 1(y(i) = 1)(x(i))j∑m

i=1 1(y(i) = 1)

σ̂2
j =

1

m

m∑
i=1

(x(i) − µy(i))
2
j , j = 1, 2, . . . , n

For j = r + 1, r + 2, . . . , n,
ψ̂j,0,k =

counts the number of times y(i) = 0 and x
(i)
j = k in the training data and divides this by the number of times

y(i) = 0 (number of points from class zero in the training data). Do this for every value of k = 1, 2, . . . ,Kj

and for every feature xj , j = 1, 2, . . . , n.

8 Reliability of an output

Linear regression predicts a real-valued scalar where as everything we learnt after that predicts a class label
(solves a classification problem). Given a query, we can always obtain a prediction. But the other important
question to answer is : how reliable is the prediction we obtained. The answer to this question depends on

• the problem itself, e.g., in case of classification by GDA, if the two class means are very close, it is
not easy to distinguish the classes. More precisely what matters is how close the class means along a
given direction compared to the standard deviation along that direction. Practically this means the
following: it easier to distinguish dog pictures from human pictures than from cat pictures

Similarly for a regression problem, the amount of modeling error e or its variance decides how good
the prediction is.

• the number of training data points, and how well the training and test data match (this decides quality
of learnt model). In most of what we learn, it is assumed that training and test data are genareted
from the same distribution, but in real life this may not be true.

• the specific query: if the query image is of a fluffy cat that may look dog-like, then it is hard to reliably
provide a correct classification.

• the last problem can be partly addressed by changing the learning algorithm (the assumed model on
the data).

9 Supervised Learning: Linear Classifiers and Support Vector Machines
(SVMs)

9.1 Linear Classifiers

Both logistic regression and GDA with Naive Bayes and equal covariances result in a linear classifier, i.e.,
one can simplify the classification rule in both cases to get the following:

ŷ = 1 if wTx+ b > 0

and equals 0 otherwise.
Proof for GDA:

12



GDA decision rule is: ŷ = 1 if

(x− µ1)TΣ−1
1 (x− µ1) < (x− µ0)TΣ−1

0 (x− µ0)

With Σ1 = Σ0 = Σ and naive Bayes (Σ is diagonal), this simplifies to checking if

∑
j

(x− µ1)2
j

σ2
j

<
∑
j

(x− µ0)2
j

σ2
j

Simplifying the above, we equivalently need

wTx+ b > 0, with wj =
(µ1 − µ0)2

j

σ2
j

, b = 0.5
∑
j

((µ1 − µ0)j)(µ1 + µ0)j
σ2
j

In fact we can also get an expression for w and b even if we just have Σ1 = Σ0. We will get w = Σ−1(µ1−µ0)
and b = µT1 Σ−1µ1 − µT0 Σ−1µ0. ?? check.

9.2 Support Vector Machines (SVMs): Motivation and main idea

Both the classifiers we talked about so far are linear classifiers as explained above. Consider logistic regres-
sion. The classification decision would be much more reliable if θTx were either much larger or much smaller
than zero.

The idea of SVM is this: we do not assume any data model here. Instead we try to look for the “separating
hyperplane”, equivalently, a vector θ so that the “margin” from the decision boundary is maximized for all
training data points. Visual explanation in class or see cs229-notes-3.

9.2.1 Notation change

Instead of a single vector θ with the first entry used for the bias term, in case of SVMs, we use a weight
vector w which is the same length as the data and a scalar b. Also, instead of labeling the two classes as 0
and 1, we label them is −1 and +1 because this simplifies some of the writing.

Margin: the distance of a data point from the separating hyperplane. Margin for the i-th training data
point is computed as

y(i)(wTx(i) + b)

9.2.2 Using SVM for classification

Suppose first that the optimal choice of w, b is available. Then we classify as follows

ŷ = sign(wTx+ b)

If the term ¿ 0, then the class is +1 else the class is −1.

9.2.3 Goal

The goal in case of SVMs is to find w, b that maximize the worst-case margin defined by

min
i=1,2,...,m

y(i)(wTx(i) + b)

By multiplying w, b by a scalar we could keep increasing the margin, but that will not improve classification.
Thus, we need to impose the constraint that ||w||2 = 1.

13



9.3 Simplifications to obtain a convex optimization problem

Writing a slightly different way, we need to solve

max
w,b

γ s.t. y(i)(wTx(i) + b) ≥ γ, i = 1, 2, . . . ,m and ||w||2 = 1

This is not a convex optimization problem yet. So we try to simplify further. The above is equivalent to
dividing everything by ||w||2. Doing this gives

max
w,b

γ

||w||2
subject to y(i)(wTx(i) + b) ≥ γ, i = 1, 2, . . . ,m

This is still not convex. Another point to notice is this: we could pick ||w||2 to be anything, so equivalently,
we could fix the value of the margin γ to 1, and nothing will change. This gives

max
w,b

1

||w||2
subject to y(i)(wTx(i) + b) ≥ 1, i = 1, 2, . . . ,m

This is not convex either but now a simple reformulation gives us a convex problem. Maximizing 1/||w||2 is
equivalent to minimizing ||w||2 which is the same as minimizing ||w||22. This gives

min
w,b
||w||22 subject to y(i)(wTx(i) + b) ≥ 1, i = 1, 2, . . . ,m

This is now a convex optimization problem since the cost is a convex function and the inequality constraints
are linear. In particular it is what is called a Quadratic Program or QP.

9.4 Final primal problem

min
w,b
||w||22 subject to y(i)(wTx(i) + b) ≥ 1, i = 1, 2, . . . ,m

This is now a convex optimization problem since the cost is a convex function and the inequality constraints
are linear. In particular it is what is called a Quadratic Program or QP.

9.5 Simplification using duality: needed to develop Kernel SVMs

By using Lagrange duality, it is possible to show that we can also compute the optimal w, b as follows.

1. Solve the following “dual problem”: optimize over the Langrange multipliers αi

max
α

 m∑
i=1

αi − 0.5

m∑
i=1

m∑
j=1

αiαjy
(i)y(j)〈x(i),x(j)〉

 s.t.

m∑
i=1

αiy
(i) = 0, αi ≥ 0, i = 1, 2, . . . ,m

(here 〈x1,x2〉 = xT1 x2 )

2. Obtain
ŵ =

∑
i

α̂iy
(i)x(i)

b̂ = −0.5

(
max

i:y(i)=−1
ŵTx(i) + min

i:y(i)=1
ŵTx(i)

)
Notice the dependence on feature vectors is only through inner products

Classification:
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1. Classification also only uses inner products

ŵTx+ b̂ =
∑
i

αiy
(i)〈x(i),x〉+ b̂

The above is useful in two settings: (i) if n� m, i.e. the original data lies in a much higher dimensional
space compared to the available number of data points (this often hapens in classification problems), then
the above dual is much less expensive to solve.

(ii) Notice that in the above problem, all dependence on the feature vectors x(i) is through the inner
product 〈x(i),x(j)〉. This means we could consider higher dimensional feature vectors, i.e., convert x to φ(x)
by considering features of the form x2

j , xjxk.

For many such high dimensional feature mappings, φ(x(i)) is very expensive to compute for all training
data i = 1, 2, . . . ,m. But just computing the inner product, defined as the “kernel product”

K(x1,x2) := 〈φ(x1), φ(x2)〉

is much less expensive. An example is φ(x) obtainedas all pairwise products of entries of x. For this,
computing φ(x(i)) takes order n2 time, thus computing the new feature vector for all i takes order n2m
time. But computing one kernel product can be done as

K(x1,x2) = (xT1 x2)2

This only takes order n time. There are m(m + 1)/2 total products to compute. Thus, the time needed is
of order nm2. Since typically, m� n, this is much quicker.

(iii) It is also possible to define kernel products for cases where the actual feature mapping is infinite
dimensional. Gaussian kernel is an example.

9.6 Kernel SVM

A very large number of kernels can be defined. The purpose is for datasets which are not linearly separable
in the original feature space, it is possible they are in a higher dimensional space.

Kernel product: is basically some measure of similarity between two data points. Any useful measure of
similarity can be used to define a “kernel” (kernel product), one may not even need to specify the underlying
feature mapping.

This “kernel trick” can be used for many other learning algorithms as well. Anytme all computation
depends on inner products between the features, this can be used.

9.7 Soft margin SVMs

See page 19 of ML-cs229-noted-3

10 Deviation: Introduction to Langrange duality to undertand how to
derive the dual program

To be updated later (to make this course 425/525).
See ML-cs229-notes3

11 Supervised Learning: Decision Trees

See handout
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12 Cross Validation: leave-one-out-cross-validation

When limited training data is available, one cannot use distinct subsets of the data for training and testing.
Use of distinct subsets is easiest to code in but wastes a lot of data. One approach to address this is called
Cross-Validation.

The simplest type of cross-validation is leave-one-out-cross-validation. I explain it next
alternative goal could be to dimension reduce and find

12.1 Leave-one-out cross validation: any general task

• for i = 1 to m

– at iteration i, define the training data matrix X and vector y as follows: use all data except the
i-th

X =



−(x(1))T−
−(x(2))T−

...

−(x(i−1))T−
−(x(i+1))T−

...

−(x(m))T−



y =



y(1)

y(2)

...

y(i−1)

y(i+1)

...

y(m)


– Learn the model parameters use X,y as the training data

– Use the i-th data points for computing the error err(i).

end for

Compute

TestMSE =

m∑
i=1

err(i), NormalizedTestMSE = as needed for the problem

12.2 Leave-one-out cross validation for Linear regression

Given m training data points x(i),yii, i = 1, 2, . . . ,m. Suppose the goal is to evaluate the validity of a linear
regression model on this data. We will compute Normalized-Test-MSE as follows.

• for i = 1 to m

– at iteration i, define the training data matrix X and vector y as follows: use all data except the
i-th. This is defined above.

– Compute θ̂ = (XTX)−1XTy

– Compute err(i) = (y(i) − θ̂Tx(i))2

end for
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Compute

TestMSE =
m∑
i=1

err(i), NormalizedTestMSE = TestMSE/(
m∑
i=1

(y(i))2)

13 Unsupervised Learning: PCA

In unsupervised learning, there is no labeled training data to learn parameters from. So no “output” y(i) is
available for “input” x(i). PCA is an unsupervised learning technique that is used for dimension reduction.
Given data vectors in <n, if they approximately lie in a lower dimensional subspace, how do we find that
subspace?

13.1 Why PCA

As before we assume that we are given m data vectors (usually called feature vectors) x(1),x(2), · · · ,x(m)

each in <n, and these are stacked as the rows of a matrix

X =


−(x(1))T−
−(x(2))T−

...

−(x(m))T−

 (2)

PCA assumes that X is an approximately low rank matrix, i.e., that X = L+E with ||E|| � ||X|| and
r := rank(L)� min(n,m).

Notice each data vector is n-length. n may be very large can, e.g., can be equal to the image size if one
uses all the pixels as “features”. The question is can we reduce the dimension of the data without loosing
too much ”information”? This would help in the followin ways:

• Less storage needed to save the data.

• Analysis of the reduced-dimension dataset, e.g., regression or classification, will be faster;

• If the original data is noisy, the data analysis task, e.g., regression or classification, can also be more
accurate in the reduced dimensional space. This point is discussed more in the Bias-Variance tradeoff
and Learnin Theory section. When you reduce the dimension from n to an r < n, you increase the
bias in your model. But you decrease the parameter estimation error variance. The error variance is
proportional to the “noise-level” in the data, so σ2

e in case of linear regression.

– You may notice this for certain real datasets with PCA implemented carefully. For simulated
data, to observe this, you will have to deliberately generate noisy simulated data.

– In some other cases, there may be zero variance along some directions and when the data co-
variance matrix is computed, it ends up being rank deficient. Hence it cannot be inverted, but
inversion is needed for example, for GDA based classification. This is actually the perfect appli-
cation where PCA resolve the problem and may in fact help improve classification accuracy.

• Finally: PCA helps to get subspace coefficients which are uncorrelated. This is needed in some
applications.

– For this, we need not reduce the dimension though, we can obtain uncorrelated variables in n
dimensions too by using the full SVD.
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13.2 Practical information: How to implement PCA

13.2.1 Reduced dimension, r, is specified

INPUT: m× n feature vectors’ matrix X, chosen rank r.

1. Compute µ̂ = 1
m

∑
i x

(i)

2. For i = 1, 2, . . . ,m, let z(i) = x(i) − µ̂ and let

Z =


−(z(1))T−
−(z(2))T−

...

−(z(m))T−

 (3)

OR: compute directly
Z = X −X1n1

T
m

where 1n = [1 1 . . . 1]T is an n-length vector of ones.

3. Compute the singular value decomposition (SVD) of Z and set V equal to the r right singular vectors
with the largest singular values (called “top r” right singular vectors), i.e., compute

Z
SV D
= UfullSfullV

T
full

where Ufull,Vfull are unitary matrices and Sfull is an m×n diagonal matrix with non-negative entries
(singular values) arranged in decreasing order of magnitude.

Set V = Vfull(:, 1 : r) in MATLAB notation (set V equal to first r columns of Vfull).

Thus V is the n× r matrix whose columns span the computed principal subspace.

• We can also obtain V as the eigenvectors with the r largest eigenvalues (called top r eigenvectors)
of ZTZ.

4. Project the origianl data X to range(V ): compute b(i) = V Tx(i) for each i or equivalently, compute

B = XV

Thus B is m× r. These are the new feature vectors in the reduced dimensional space.

OUTPUT: m× r matrix B: reduced dim feature vectors; n× r matrix V : principal subspace.

• If the rank r approximation of X is needed, this is obtained as the m× n matrix

L = BV T

13.2.2 Deciding r

So far we have assumed that the desired lower-dimension r is given. However, there is no one correct way
of deciding r in practice. Two common approaches:

1. A common heuristic is the 90% or some other high-enough percent heuristic: retain all eigenvectors so
the that variance in the reduced dimensional space is at least 99% of the total variance of the data. In
other words, find the smallest value r so that

r∑
i=1

σ2
i ≥ 0.99

min(m,n)∑
i=1

σ2
i .

There is nothing “special” about 99%, we could also use another percentage.
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2. An alternative approach is to pick the r that best for the final application for which PCA is being used
as a pre-processing step. For example, if PCA is applied to reduce the dimension of the input training
data used for linear regression, then we use cross-validation to compute the value of r that minimizes
the test-MSE. See Homework 4.

Details for the second approach. Consider Linear Regression. Given X, y and Xtest,ytest (split all
available data into 10% testing and 90% training). OR BETTER: use cross validation (most efficient but
more difficult to explain here).

1. Loop over r from 1 to n

(a) Compute V and B using the PCA algorithm given above with inputs X and r

(b) Compute θ̂ using B (instead of X) and make sure to learn the bias term as well as explained
earlier.

(c) For each test data query vector, x
(i)
test,

i. compute b
(i)
test = V Tx

(i)
test

ii. predict ŷ
(i)
test = θ̂Tb

(i)
test

Alternative approach:

i. Compute θ̂x = V θ̂,

ii. then predict ŷ
(i)
test = θ̂Txx

(i)
test

Third alternate option: matrix-wise computation (fastest way to implement)

i. compute Btest = XtestV
T

ii. obtain the vector of predictions for test data, ŷtest = Btestθ̂

I think the algebra in the above is correct – so that all three options should yield the exact same
answer, but please verify to be sure.

(d) Compute NormalizedTestMSE(r) = ||ytest − ŷtest||22/||ytest||22 on the test data as explained
before

2. Pick r for which Test-MSE(r) is the smallest.

13.3 Why above procedure for PCA

Claim: All of the below optimization problems are solved by the PCA procedure above

13.3.1 Statistical Optimality

First assume everything is zero mean.

1. PCA finds the subspace V (V is a matrix with orthonormal columsn that define the subspace) and
the projected random vector b so that the expected value of the squared 2-norm of the reconstruction
error x− V b is minimized. Thus, it solves

min
b∈<r,V ∈<n×r:V TV =I

E[||x− V b||22]

If we minimize over b first as a function of V , then this is a standard Least Squares problem whose
solution is

b = (V TV )−1V Tx = V Tx since V TV = I in this case

Thus, we need to solve
min

V :V TV =I
E[||x− V V Tx||22]
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Since V TV = I, thus ||V V Tx||22 = ||V Tx||22 and so ||x − V V Tx||22 = ||x||2 − ||V Tx||2. With this,
the above is also equivalent to

max
V :V TV =I

E[||V Tx||2]

Using property of trace, this is further equivalent to

max
V :V TV =I

trace(V TE[xxT ]V )

This is another commonly use definition for PCA: PCA finds the r directions of largest variance of the
data. Here E[xxT ] is the covariance matrix.

2. PCA can also be understood as minimizing the worst-case (largest) expected reconstruction error in
any direction: for direction w , this is |wT (x− V b)|

min
b,V :V TV =I

max
w:||w||2=1

E[(wT (x− V b))2]

Using the properties of trace, this is equivalent to

min
b,V :V TV =I

max
w:||w||2=1

wTE[(x− V b)(x− V b)T ]w = min
b,V :V TV =I

λmax(E[(x− V b)(x− V b)T ])

The last equality follows using the variational definition of the maximum eigenvalue.

In the nonzero mean case, we do either of the above for (x− µ).

13.3.2 Optimality from a computational viewpoint

This assumes that we are given a data matrix X (or Z after subtracting the empirically computed mean).
The goal is to find a rank r approximation to X, denoted by L, that minimizes either the Frobenius norm
of the error or the induced 2-norm of the error. Thus PCA on X solves

1.
min

L rank r
||X −L||2F

Any rank r matrix L can be expressed as L = BV T where V is an n × r matrix with orthonormal
columns (V TV = I) and B is m× r. Thus, above is equivalent to

min
B,V :V TV =I

||X −BV T ||2F = min
B,V :V TV =I

m∑
i=1

||x(i) − V b(i)||22

The last equality follows by expressing X and B in terms of their rows.

With the above, the minimizations over the different b(i)s (as a function of V ) are decoupled and each
is a simple LS problem that is solved by b(i) = (V TV )−1V Tx(i) = V Tx(i). Substituting this for b(i),
we need to solve

min
V :V TV =I

m∑
i=1

||x(i) − V V Tx(i)||22

2. It also solves
min

L rank r
||X −L||22 = min

L rank r
λmax((X −L)T (X −L))

Once again writing L = BV T , the above is equivalent to

min
B,V :V TV =I

λmax((X −BV T )T (X −BV T ))

Here again, expressing X and B in terms of their rows, (X − BV T )T (X − BV T ) =
∑m

i=1(x(i) −
V b(i))(x(i) − V b(i))T and so, the above is further equivalent to

min
B,V :V TV =I

λmax(
m∑
i=1

(x(i) − V b(i))(x(i) − V b(i))T )
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13.4 Proofs of the above claims

First we prove that the statistical optimality claims are equivalent to the computational claims given above
if we use an empirical approximation to the expected values. Next we prove that the r-SVD solution solves
each of the two computational claims above.

13.4.1 Equivalence between statistical and computational claims 1

Using the empirical approximation

E[||x− V V Tx||2] ≈ 1

m

m∑
i=1

||x(i) − V V Tx(i)||22

and thus the first claims from the statistical and computational viewpoints are equivalent, i.e.

min
b,V :V TV =I

E[||x− V b||22] = min
V :V TV =I

E[||x− V V Tx||22]

is equivalent to

min
L rank r

||X −L||2F = min
V :V TV =I

m∑
i=1

||x(i) − V V Tx(i)||22

13.4.2 Proof of computational claim 1: Frobenius norm optimality

Goal is to find a rank r matrix L that solves

min
L:rank r

‖X −L‖2F

As explained above, this is equivalent to minV :V TV =I

∑m
i=1 ||x(i) − V V Tx(i)||22. This is further equivalent

to

max
V :V TV =I

m∑
i=1

||V Tx(i)||22

Using
∑m

i=1 ||V Tx(i)||22 = ||XV ||2F =
∑r

j=1 ||Xvj ||22 =
∑r

j=1 v
T
j (XTX)vj , the above is equivalent to

max
V :V TV =I

r∑
j=1

vTj (XTX)vj

If we did not have the constraint V TV = I we now have r decoupled problems to solve. The constraint
itself can be rewritten as

{V : V TV = I} = {v1,v2, . . .vr unit 2-norm and v2 ⊥ v1, v3 ⊥ span(v1,v2), and so on}

To write things simply, suppose r = 3 so that V = [v1,v2,v3]. Then,

max
V :V TV =I

r∑
j=1

m∑
i=1

vTj (XTX)vj

= max
v3⊥span(v1,v2):||v3||2=1

(
max

v2⊥v1:||v2||2=1

((
max

v1:||v1||2=1

m∑
i=1

vT1 (XTX)v1

)
+ vT2 (XTX)v2

)
+ vT3 (XTX)v3

)

Consider the max over v1. By definition of the first eigenvector (eigenvector with largest eigenvalue), the
maximizer of maxv1:||v1||2=1 v

T
1 (XTX)v1 is given by the first eigenvector of XTX. This is also the first

right singular vector of X.
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Now consider the max over v2 ⊥ v1. This can be simplified by writing v2 = (I−v1v
T
1 )z and maximizing

over z. With this, and with expressing XTX in terms of its EVD, it can be shown that the maximizer
will be the second eigenvector (eigenvector with second largest eigenvalue). This is the second right singular
vector of X.

The proof of the second eigenvector claim is not provided; need to fill this in
For max over v3, we can express v3 == (I − v1v

T
1 − v2v

T
2 )z and repeat the same argument as above.

13.4.3 Equivalence between statistical and computational claims 2

Similarly, using the empirical approximation

E[wT (x− V b)(x− V b)Tw] ≈
m∑
i=1

wT (x(i) − V b(i))(x(i) − V b(i))Tw

the second claims from the statistical and computational viewpoints are also equivalent, i.e.

min
b,V :V TV =I

λmax(E[(x− V b)(x− V b)T ]) = min
b,V :V TV =I

max
w:||w||2=1

E[(wT (x− V b))2]

This is further equivalent to

min
L rank r

||X −L||22 = min
B,V :V TV =I

λmax(
m∑
i=1

(x(i) − V b(i))(x(i) − V b(i))T )

13.4.4 Proof of computational claim 2: induced 2 norm optimality

Goal is to find a rank r matrix L that solves

min
L:rank r

‖X −L‖2

By Weyl-type inequality for singular values, σi(M) ≤ σi(M2) + ‖M −M2‖ for any singular value i and any
two matrices M,M2.

Thus, ‖X −L‖2 ≥ σi(X)− σi(L).
Since L is rank r, it has only r nonzero singular values. Thus σr+1(L) = 0. And so ‖X−L‖2 ≥ σr+1(X).

Since this is true for any rank r matrix L, it is also true for the minimizer, i.e.

min
L:rank r

‖X −L‖2 ≥ σr+1(X)

Now if we can find a specific matrix L for which ‖X −L‖2 = σr+1(X) that will be the minimizer (since the
minimum value cannot be any smaller than this).

If we let L̂ =
∑r

i=1 σiuiv
T
i (r-SVD of X), then X − L̂ =

∑min(m,n)
i=r+1 σiuiv

T
i and so ‖X − L̂‖2 = σr+1 ;

here σi = σi(X).

13.5 PCA de-correlates the data: what does it mean

This claim depends on how the principal subspace is defined. In (statistical) theory, we are finding V
and b that solves minb,V :V TV =I E[||(x − µ) − V b + V V Tµ)||22], i.e., it minimizes the expected value of

the reconstruction error. Since the minimizer over b is b = V Tx, we are actually finding V that solves
minV :V TV =I E[||(x − µ) − V V T (x − µ)||22] and then setting b = V Tx. If we can find this V , then the
computed lower dimensional r.v. b satisfies

E[(b− E[b])(b− E[b])T ] is diagonal

i.e.
E[(b− E[b])j(b− E[b])k] = 0
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for j 6= k.
Proof: assume everything is zero mean for ease of writing. We have b = V ′x so bj = v′jx, thus,

E[bjbk] = v′jE[xx′]vk. As explained in previous section, V is the matrix of top r eigenvectors of E[xx′],
i.e., that E[xx′] = V ΣV ′ + V⊥Σ⊥V

′
⊥. Hence, E[bjbk] = v′j(V ΣV ′ + V⊥Σ⊥V

′
⊥)vk = v′j(V ΣV ′)vk = 0.

In practice, we cannot find above but only its data-based (empirical) approximation. Hence in practice,
we are always finding V as the top r right singular vectors ofZ = X−X1n1

T
m (recall: where 1n = [1 1 . . . 1]T

is an n-length vector of ones). With this choice of V , “uncorrelated” means the following:

m∑
i=1

(b(i))j(b
(i))k = 0

for j 6= k. In other words, the columns of the matrix B are mutually orthogonal.
Proof: same basic idea as above.

14 Unsupervised Learning: Clustering

Use ML-cs229- notes on Clustering to see the figures.

14.1 Problem

Given unlabeled data/features x(i), i = 1, 2, . . . ,m, the goal is to partition the dataset into “cohesive”
clusters (all points in same cluster are “close” while those in different clusters are “far”). Suppose we want
to partition into k clusters. Then the goal can also be stated as: for each i, find the class label y(i) (this can
take values from {1, 2, . . . , k}).

14.2 k-means clustering

The goal is to find the class labels y(i) for each data point and the cluster centers so that the following cost
is minimized

J(µj , j = 1, 2, . . . , k,y) =
m∑
i=1

||x(i) − µy(i) ||
2
2

The original k-means clustering algorithm provides an Alternating-Minimization (AltMin) algorithm to
minimize the above cost.

1. Initialize cluster centers µ̂1, µ̂2, . . . , µ̂k. Can do random init.

2. Repeat

(a) For each i = 1, 2, . . . ,m, find the class labels

ŷ(i) = arg min
j=1,2,...,k

||x(i) − µ̂j ||22.

(b) Update cluster centers: for each j = 1, 2, . . . , k, compute

µ̂j =

∑m
i=1 1(ŷ(i) == j)x(i)∑m
i=1 1(ŷ(i) == j)

(the above is a solution to arg minµj ,j=1,2,...,k
∑m

i=1 ||x(i) − µyhat(i) ||22)

until cluster center estimates do not change much, i.e., until maxj(||µ̂(t+1)
j − µ̂(t)

j ||/||µ̂
(t)
j ||) < threshold

where threshold = 0.001 or some small fraction.
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3. IMPROVED VERSION: repeat above algorithm N times with different random init’s each time. For
each repeat, compute the cost function value J(µ̂j , j = 1, 2, . . . , k, ŷ). Keep the output of the repeat
with the smallest cost.

IMPROVEMENT 2: one can replace the regular Euclidean distance to the cluster center by any other
distance that is more relevant to the application. As an example, if it is known that different features are
likely to have significantly different variances, one could init with Σ̂j = I, replace arg minj=1,2,...,k ||x(i)−µ̂j ||2
in step 2a by

arg min
j=1,2,...,k

(x(i) − µ̂j)Σ̂−1
j (x(i) − µ̂j)

and in step 2b, update

Σ̂j =

∑m
i=1 1(ŷ(i) == j)(x(i) − µ̂j)(x(i) − µ̂j)T∑m

i=1 1(ŷ(i) == j)

14.3 Alternating Minimization (AltMin) algorithm

AltMin is another approach to solve an optimization problem. It is a better one to use that Gradient Descent
when the variable to be minimized over, x, can be split into two subsets of variables x = [x1,x2] such that
minimizing over x1 keeping x2 fixed and vice versa is either closed form or otherwise easy to do.

AltMin proceeds as follows

1. Randomly initialize x1 to x̂1.

2. Repeat

(a) Minimize over x2 keeping x1 fixed at x̂1, i.e., compute

x̂2 = arg min
x2

J(x̂1,x2)

(b) Minimize over x1 keeping x2 fixed at x̂2, i.e., compute

x̂1 = arg min
x1

J(x1, x̂2)

until “convergence” i.e. estimates of x̂1 do not change much from previous to current iteration.

Like Grad Desc, AltMin also only converges to the local minimum of the cost function. Thus to make
it work better one can run it N times with different random init’s and pick the solutions that result in the
smallest cost function value.

14.4 Probabilistic Model (Generative Model) for Clustering: Gaussian Mixture Model
(GMM)

The Gaussian Mixture Model or GMM is a common way to specify a clustering problem. x follows the
GMM with k components means that

p(x; θ) =
k∑
j=1

N (x;µj ,Σj)φj

where φj ’s are the mixture weights (probability of x coming from the j-th class in the mixture) and thus∑k
j=1 φj = 1. We often refer to j as the class labels.
GMM: means that x is generated from class j with probability φj , and given that it is generated from

class j, it follows a Gaussian distribution with mean µj and covariance Σj .
The model assumed by Gaussian discriminant analysis (GDA) covered earlier and in HW 2 is also GMM.

See Sec 5.2. Except there we had labeled data (for each training data point, the class label was available),
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so it was easy to “learn” the model parameters. As a result, the learning of φj ’s was decoupled from the
learning of the mean and covariances. As a result we in fact got closed form expressions for the MLE.

Here we do not have class labels and thus the learning problem is more difficult. We need to use Gradient
Descent or some other iterative approach.

14.5 EM algorithm for MLE for Gaussian Mixture Model

A popular approach for MLE for the GMM is the EM algorithm.
EM algorithm is another approach (besides AltMin and Grad Descent) to solve a Maximum Likelihood

estimation (MLE) problem. Like AltMin it is useful for certain types of problems in which, by using some
tricks, part of the problem can be made non-iterative (closed form) or can otherwise be simplified.

Consider Maximum Likelihood Estimation over i.i.d. data samples x(i) coming from a distribution p(x; θ).
The goal is to maximum the likelihood or equivalently its log, i.e.,

max
θ
`(θ) :=

m∑
i=1

log p(x(i); θ)

For simple cases like Gaussian, this is easy to do (can get a closed form expression). But in other problems
it is not easy, the cost function is not convex for example. In certain such settings, the EM algorithm helps
simplify. Consider the Gaussian mixture model with k components. Then

p(x; θ) =

k∑
j=1

N (x;µj ,Σj)φj

where φj ’s are the mixture weights (probability of x coming from the j-th class in the mixture) and thus∑k
j=1 φj = 1. We often refer to j as the class labels. Thus,

`(θ) =
m∑
i=1

log
k∑
j=1

φjN (x;µj ,Σj) s.t.
∑
j

φj = 1

and the parameters θ are
θ = {µj ,Σj , φj}, j = 1, 2, . . . k

with µj being n × 1, φj is a scalar and Σj is n × n. Recall N (x;µ,Σ) := C exp(−(x − µ)TΣ−1(x − µ) +
log(det(Sigma)) where C is a constant (contains the 1/

√
2π etc terms).

`(θ) is a pretty messy expression to even compute the gradient of: notice it involves log
∑

j φj exp(....).

And Grad Descent will not work well. Compare this with the expression we had for GDA: since yi’s were
known, there was no log of sums of weighted exponentials. We instead just had sum of log of exponentials
which simplified easily.

For the above problem, the following is an easier approach – somehow try to approximate the “complete
data likelihood”. Since class labels are not available, we call this “incomplete data”. The idea proceeds as
follows.

We will try to lower bound `(θ) and then maximize the lower bound by Alternating-Minimization.
To do this we will first multiply divide the above expression by qi(j) which are such that qi(j) ≥ 0 and
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∑k
j=1 qi(j) = 1. So one can think of them as some probability distribution over the class labels.

`(θ) =

m∑
i=1

log

k∑
j=1

φjN (x(i);µj ,Σj)

=

m∑
i=1

log

k∑
j=1

φjN (x(i);µj ,Σj)
qi(j)

qi(j)

=

m∑
i=1

log

k∑
j=1

qi(j)
φjN (x(i);µj ,Σj)

qi(j)

≥
m∑
i=1

k∑
j=1

qi(j) log
φjN (x(i);µj ,Σj)

qi(j)

with equality holding if and only if qi(j) = cφjN (x(i);µj ,Σj). The last step used log-sum (Jensen)’s inequal-
ity. Since the qi(j)’s sum to 1, we get that

c =
1∑k

j=1 φjN (x(i);µj ,Σj)
.

In all of above we also needed to keep the constraint
∑

j φj = 1 but we skipped it for ease of writing.
Now we will use AltMin to MAXIMIZE the above LOWER BOUND ON `(θ).
By the above approach, we have increased the number of unknowns - now the unknowns include qi(j)’s

and θ. BUT, the maximization over θ given qi(j)’s is easy (closed form, as we will see below); and the
maximization over qi(j)’s given θ fixed is also easy (the lower bound is maximized when the inequality holds
with equality, i.e., for qi(j) = cφjN (x(i);µj ,Σj) with c specified above).

14.6 Final EM algorithm for Gaussian Mixture Models

Thus, AltMin over qi(j)’s and θ is our FINAL ALGORITHM. It is called “EM algorithm for Gaussian
Mixture Models”. This is summarized next.

• Initialize the values of θ. Recall θ = {φj , µj ,Σj}, j = 1, 2, ..k. Can be random or something else.

• Iterate the following two steps until “convergence” (some reasonable stopping criterion holds):

– E-step (maximize lower bound on `(θ) over qi(j)’s, holding θ fixed): this is obtained by

qi(j) =
φjN (x(i);µj ,Σj)∑k
j=1 φjN (x(i);µj ,Σj)

, j = 1, 2, . . . , k, i = 1, 2, . . . ,m.

– M-step (maximize lower bound on `(θ) over θ holding qi(j) fixed at the above value:

max
θ

m∑
i=1

k∑
j=1

qi(j) log
φjN (x(i);µj ,Σj)

qi(j)

Since qi(j)’s are held fixed, this is equivalent to

max
θ
`2(θ) :=

k∑
j=1

m∑
i=1

qi(j)[log φj + logN (x(i);µj ,Σj)] s.t.
∑
j

φj = 1

Notice we have converted log of weighted sums of exponentials to “weighted sum of log of expo-
nentials”, so the form of above expression is similar to that for GDA.

This is easy, it is almost like GDA because it can be separated out over subsets of variables:
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∗ Solve for φj ’s

max
φ1,φ2,...,φk

k∑
j=1

qi(j) log φj s.t.
∑
j

φj = 1

This is solved by φ̂j = 1
m

∑m
i=1 qi(j). This 2

∗ For each j = 1, 2, . . . , k,

max
µj ,Σj

k∑
j=1

m∑
i=1

qi(j) logN (x(i);µj ,Σj)

This is solved by

µ̂j = c
m∑
i=1

qi(j)x
(i)

and

Σ̂j = c
m∑
i=1

qi(j)(x
(i) − µ̂j)(x(i) − µ̂j)T

with c = 1∑m
i=1 qi(j)

.

• Repeat with N different initializations. Pick the one for which we get the largest value of `(θ)

The “E step” is the “Expectation step”. Reason it is called this is the following. We have data that is
incomplete. We do not know the values of the misisng entries, and so we do not know the complete data
likelihood (in this case this corresponds to the likelihood func for GDA). But given estimates of the paramters
from the previous iteration, we can compute what is called the posterior expectation of the complete data
likelihood.

• The qi(j)’s are called the posterior probabilities of y(i) = j given observed data, and

• `2(θ) is called the posterior Expectation of the complete data likelihood.

Thus “E step” computes this posterior expectation given previous estimate of parameters, while “M step”
maximizes this posterior expectation to find a new value of the parameters. Hence the same EM algorithm.

14.7 General EM

In the above writing, I have written the above out for the Gaussian Mixture Model first to make it easier to
understand. More generally, you could introduce any ”missing data” variables y(i) and use a process similar
to the above. If the labels are discrete-valued, then we can write things as

`(θ) =

m∑
i=1

log

k∑
j=1

p(x(i), y(i) = j; θ) s.t.

k∑
j=1

qi(y
(i) = j) = 1

=
m∑
i=1

log
k∑
j=1

p(x(i), y(i) = j; θ)
qi(y

(i) = j)

qi(y(i) = j)
s.t.

k∑
j=1

qi(y
(i) = j) = 1

=
m∑
i=1

log
k∑
j=1

qi(y
(i) = j)

p(x(i), y(i) = j; θ)

qi(y(i) = j)
s.t.

k∑
j=1

qi(y
(i) = j) = 1

≥
m∑
i=1

k∑
j=1

qi(y
(i) = j) log

p(x(i), y(i) = j; θ)

qi(y(i) = j)
s.t.

k∑
j=1

qi(y
(i) = j) = 1

2we actually need c = 1∑k
j=1

∑m
i=1 qi(j)

; not hard to see that this simplifies to 1/m.
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We now use Alternating-Maximization to maximize the above lower bound over qi(y
(i) = j)’s keeping θ

fixed and vice-versa.
We know that the RHS cannot larger than its upper bound, thus if we can find a value that helps

achieve the upper bound we are done. The following is easy to see, if
∑

j gj = 1, then,
∑

j gj log c = log c =
log
∑

j gjc. Thus the lower bound is maximized when

qi(y
(i) = j) = cp(x(i), y(i) = j; θ)

Since the above sums to one over j, we need c = 1/p(xi; θ) and so

qi(y
(i) = j) = p(y(i) = j|x(i); θ)

Thus the general EM algorithm proceeds as follows.

• E step: keeping θ fixed at its previous value, compute

qi(y
(i) = j) = p(y(i) = j|x(i); θ), j = 1, 2, . . . , k, i = 1, 2, . . . ,m

• M step: keeping qi(y
(i) = j) fixed at above value, compute

arg max
θ

m∑
i=1

k∑
j=1

qi(y
(i) = j) log

p(x(i), y(i) = j; θ)

qi(y(i) = j)

= arg max
θ

m∑
i=1

k∑
j=1

qi(y
(i) = j) log p(x(i), y(i) = j; θ)

= arg max
θ

k∑
j=1

m∑
i=1

qi(y
(i) = j) log p(x(i), y(i) = j; θ)

This is often easier if the parameters θ have a mixture-model type form and the maximization can be
separated out

In more general settings y(i) may be real-valued (continuous r.v.’s). In these cases, the summation over j
gets replaced by integration, but a lot of the essential approach remains the same. A log-sum inequality
exists for integrals also.

15 Deep Learning / Neural Networks: basic idea and training

This is another Supervised Learning approach.
The simplest neural net is the Feed-forward Network also called the Multilayer Perceptron or MLP. Each

neuron receives a weighted sum of the outputs of the neurons of the previous layer, and applies a nonlinear
“activation function” on this. Thus neuron j in layer k receives

zkj =

rk∑
i=1

wkijo
k−1
i

as input and outputs
okj = g(zkj )

Here g(z) is an element-wise nonlinearity. It could be the sigmoid function 1/(1 + e−z) or the Rectified
Linear Unit (ReLU) function max(z, 0) or the tanh function.

Vectorizing the above, the NN can be expressed as

ok = gvec(z
k), zk = W kok−1
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or equivalently,
zk = W kgvec(z

k−1)

Here gvec(z) applies g(.) to each entry of the vector z.
The first layer takes the input x as input thus

z1 = x

Suppose the NN has 10 layers. The final (output) layer has only one neuron which outputs

ŷ = g(z10
1 )

Thus, the NN is
ŷ = g(W 10gvec(W

9gvec(W
8 . . . gvec(x))))

where W 10 is a row vector (instead of a matrix).

15.1 Training: Back-propagation

Given training data (x(i), y(i)), i = 1, 2, . . . ,m, we use gradient descent or stochastic / mini-batch GD to
train. For all of these, the first task is to define the cost function E(ŷ(x), y) and to compute its gradient
w.r.t. to each weight in each layer, i.e., compute

∂E

∂wkij

This computation requires careful application of chain rule of differentiation. This leads to the following
algorithm: consider a 10 layer NN and let rk denote the number of neurons in layer k

• For a given input x, compute the outputs of all the layers and ŷ.

• Compute the following intermediate quantity:

δki :=
∂E

∂zki

using the following backward recursion (back-propagation)

– compute

δ10
1 =

∂E

∂ŷ
(ŷ, y) · g′(z10

1 )

here g′(z) = ∂g(z)
∂z

– for each k = 9, 8, . . . 1, compute the following for each i = 1, 2, . . . , rk:

δki = g′(zki )

rk+1∑
j=1

wk+1
ij δk+1

j

vectorized computation in MATLAB (or do similar in Python): δk = g′(zk). ∗ (W k+1δk+1)

• Compute
∂E

∂wkij
= δkj · ok−1

i

this can be vectorized too.

The above gives us ∂E
∂wk

ij

(ŷ(x), y) for one input-output pair x, y. The gradient w.r.t. the cost function

that uses all the training data is thus

1

m

m∑
i=1

∂E

∂wkij
(ŷ(x(i)), y(i))
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15.2 Convolutional Neural Network (CNN or ConvNet): basic idea

To Do

15.3 Recurrent Neural Network (RNN): basic idea

To Do

15.4 Different NN architectures and when to use each

see the other handout NeuralNets-intro.pdf

16 Bias-Variance Tradeoff

16.1 What is it?

Consider a generative model: suppose that y,x satisfy

y = f(x) + e, E[e] = 0,E[e2] = σ2

with e being zero mean “modeling error”/“noise” that is independent of x, it is also independent for each
data point yi.

We do not know f(.).
We try to “model” it as ŷ = f̂(x) = hθ̂(x), e.g., in linear regression, f̂(x) = hθ̂(x) = θ̂Tx with θ̂ estimated

by Maximum Likelihood estimation (MLE) as described earlier using training data

(yi,xi), i = 1, 2, . . . ,m

In logistic regression, f̂(x) = hθ̂(x) = g(θ̂Tx) with g(.) being the sigmoid function. MLE uses “training
data”

The question is how good is my learnt model (in terms of mean squared error on test data), i.e., for a
test query x, what is E[(y − f̂(x))2] and what can we do to improve it?

We define Test-MSE as

Test-MSE := E[(y − ŷ)2] = E[(y − f̂(x))2] = E[(f(x) + e− f̂(x))2]

over test data, i.e., E[.] ≡ Etest data[.]. Usually x is treated as a constant, so then the expected value is over
the distribution of the noise e.

Since e is test-data noise, it is independent of f̂(x) = hθ̂(x) since θ̂ was estimated using training data.
Also, by assumption, e it is independent of f(x). Thus, we have

Test-MSE = E[e2] + E[(f(x)− f̂(x))2]

= E[e2] + (E[f(x)− f̂(x)])2 + V ariance[f(x)− f̂(x)]

= σ2 +Bias2 + V ariance

where V ariance(Z) := E[(Z − E[Z])2]. The first term, σ2, depends on how noisy the data is. The second
two terms depend on the “assumed model” and how well its parameters are estimated.

16.2 Bias-Variance Tradeoff for Linear Regression

THERE IS A MISTAKE HERE: NEED TO FIX THESE NOTES to all for a constant ”mean” term in
linear regression.

Suppose that y truly satisfies the following model

y = f(x) + e, f(x) := θfull
Txfull, E[e] = 0, V ar[e] = σ2
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where xfull is the full nfull length ”feature” or data. Also, the noise e is i.i.d. across various samples.
For the sake of tractability (reducing variance), when “modeling” y, we throw away some of the features

to get an n-length “feature” vector x; and refer to the dropped part of xfull as xdrop. This is a ndrop length
vector. Thus nfull = n+ ndrop.

xTfull = [xT ,xdrop]

Thus, y can be rewritten as
y = θTx+ θTdropxdrop︸ ︷︷ ︸

µ

+e.

Thus, the ”linear regression” model for y is θTx. Assume as before we are given training data {y(i),x(i)}, i =
1, 2, . . . ,m, and define the matrix X and the vector y as before.

We use MLE under this model to get the MLE estimate

θ̂ := (XTX)−1XTy, with y := Xθ +Xdropθdrop + e

where Xdrop := [x
(1)
drop;x

(2)
drop; . . . ,x

(m)
drop]T is an m × ndrop matrix with the dropped parts of each training

data vector as its rows. Recall that e (training data noise vector) is independent of X (training data).
Thus, for a query xtst

full, with extracted features xtst, we predict

ŷtst = xtstT θ̂

The true output, ytst, for the query satisfies

ytst = θTxtst + θTdropx
tst
drop + etst

Observe that θ̂ satisfies

θ̂ := (XTX)−1XT (Xθ +Xdropθdrop + e) = θ + (XTX)−1XTXdropθdrop + (XTX)−1XTe

So,

ŷtst − ytst = xtstT θ̂ − xtstT θ − xtst
drop

T θdrop − etst

= xtstT
(
(XTX)−1XTXdropθdrop + (XTX)−1XTe

)
− xtst

drop
T θdrop︸ ︷︷ ︸

Z

−etst

= Z − etst

Recall that E[.] is expected value over test-data noise etst. As before (since etst independent of everything
in Z),

TestMSE := E[(ŷtst − ytst)2] = E[(etst)2] + E[Z2]

= E[(etst)2] +Bias(Z)2 + V ariance(Z)

with

Bias(Z) := E[xtstT
(
(XTX)−1XTXdropθdrop + (XTX)−1XTe

)
− xtst

drop
T θdrop]

= xtstT (XTX)−1XTXdropθdrop − xtst
drop

T θdrop

= [xtstT (XTX)−1XTXdrop − xtst
drop

T ]θdrop

The second row follows because e is independent of X,Xdrop (training data noise is independent of training
data features) and e is independent of xtst and e is zero mean.
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Since the training data noise vector e is zero mean and i.i.d., we have E[eeT ] = σ2I. Using this,

V ariance(Z) := E[(Z −Bias(Z))2]

= E[(xtstT (XTX)−1XTe)2]

= E[(xtstT (XTX)−1XTe)(eTX(XTX)−1xtst)]

= xtstT (XTX)−1XTE[eeT ]X(XTX)−1xtst

= xtstT (XTX)−1xtstσ2

This is upper bounded by

V ariance(Z) ≤ ‖xtst‖2

λmin(XTX)
σ2

1. Variance: Thus the variance is smaller if the minimum eigenvalue of (XTX) is larger.

• Notice that X is an m × n matrix. Consider XTX which is n × n. If m < n, its minimum
eigenvalue is zero. For m > n, its minimum eigenvalue is proportional to m/n. The reason is, for
a fixed m, by the interlacing theorem for eigenvalues, as you increase n, the smallest eigenvalue
can only decrease 3.

Thus for a fixed available amount of training data, m, the Variance will either be reduced, or stay the
same, if we use a smaller n.

2. Bias: Consider the Bias. This is some complicated function of θdrop. We can simplify it by making
more assumptions, but that is not needed. What is clear is that Bias will become larger as ndrop is
made larger (or equivalently, as n = nfull − ndrop is made smaller). Thus, as we reduce n, we increase
ndrop, and so we increase Bias.

Thus with reducing n, Variance decreases but Bias increases.

17 Bias-Variance Tradeoff Practical Issues

As noted in previous section,

Test-MSE := E[(y − ŷ)2] = E[(y − f̂(x))2] = E[(f(x) + e− f̂(x))2]

over test data, i.e., E[.] ≡ Etest data[.]. Usually x is treated as a constant, so then the expected value is over
the distribution of the noise e.

Since e is test-data noise, it is independent of f̂(x) = hθ̂(x) since θ̂ was estimated using training data.
Also, by assumption, e it is independent of f(x). Thus, we have

Test-MSE = E[e2] + E[(f(x)− f̂(x))2]

= E[e2] + (E[f(x)− f̂(x)])2 + V ariance[f(x)− f̂(x)]

= σ2 +Bias2 + V ariance

where V ariance(Z) := E[(Z − E[Z])2]. The first term, σ2, depends on how noisy the data is. The second
two terms depend on the “assumed model” and how well its parameters are estimated.

3 To understand this with a concrete example, if the training data vectors were i.i.d. standard Gaussian, then with high
probability, the minimum eigenvalue is lower bounded by (

√
m− C

√
n)2. Reference: Vershynin tutorial.
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17.1 Approximating Test-MSE in practice

While we can write things as above, it is not actually possible to compute the above decomposition for test
data.

Simple approach: All one can do is the following: for a given model, one can approximate Test-MSE
using the following approach

• Split available training data into training and test data: in other words do not use all m data points
to train, split them so that m = mtrain +mtest.

• Use the mtrain data points to train, i.e. to estimate θ for the assumed model

• Approximate Test-MSE by 1
mtest

∑mtest
j=1 (yj − hθ̂(xj))

2

The above is one way to do what is called “Cross-Validation”. Typically, one uses mtest = 0.25m and
mtrain = 0.75m or similar.

Leave-one-out Cross-Validation: Do above with mtest = 1, and mtrain = m − 1, but repeat the
procedure m times to compute the average error (Test-MSE). See Cross Validation section earlier.

17.2 How to reduce test data MSE

Try to reduce variance, while hopefully not increasing the bias too much:

• Regularization on θ: use domain knowledge such as assuming entries of θ are in decreasing order of
magnitude. This was done in HW1b.

• Regularization on input features’ matrix X: suppose we know that X is exactly or approximately low
rank. Use PCA on the feature data-set available for training followed by using the reduced dimensional
”features” for the regression (or other task). Pick the reduced dimension r carefully – see PCA section.
Also see HW 4, HW 5.

– In case of Clustering (say assuming Gaussian Mixture Model) reducing k (number of classes) will
reduce the variance, increasing it will reduce the bias.

• Regularization on θ – assume something weaker, e.g., model θ as being sparse, this is a generalization
of the assumption used in item 1. Add ‖θ‖1 into the cost function for learning θ.

• Regularization on θ – suppose prior knowledge is available that θ is close to a given vector θ0, then
add the ‖θ − θ0‖22 into the cost function for finding θ.

• Naive Bayes assumption described earlier is another way to reduce the number of parameters d (this
is used in settings where d is different from the feature vector length n), and hence the variance in the
parameter estimates.

With each new intervention, compute the Test-MSE as explained above, see if it gets reduced or not. What
is expected is this: if we increase n starting at n = 0, the bias will reduce significantly up to a certain value
of n (and variance will not increase too much), so that Test-MSE will reduce. After a certain point, variance
will start increasing significantly compared to the further reduction in bias. This is the point to stop.

So the solution can be: keep increasing n until Test-MSE begins to decrease.
When using PCA for dimension reduction, n gets replaced by r and X by B which is m× r.

33



18 Learning Theory

based on Andrew Ng’s cs229-notes-4
Hypothesis refers to a hypothesized model on the input output data. So suppose we assume that

y = sign(θTx)) then sign(θTx)) is the hypothesis.
Hypothesis class H is the set of all hypothesis from a certain class, e.g., set of all linear classifiers is

H = {h : h = sign(θTx), ∀ θ ∈ <n}

Empirical Risk (Training Error) is denoted by ε̂(h). For a loss function loss(y, ŷ), it is computed as

ε̂(h) =
1

m

m∑
i=1

loss(yi, h(xi))

Generalization Error (Test data Error) is denoted by ε(h). It is the expected loss for a query sample

ε(h) = E[loss(y, h(x))]

Assumptions

• Training and Test data are generated from the same probability distribution

• All training samples as well as test sample are mutually independent. The two assumptions combined
mean that all training and test data are i.i.d. (independent identically distributed).

Under the above assumptions, by using a law of large numbers’ result, it can usually be argued that ε̂(h)
converges to ε(h) in probability as m goes to infinity. We will look at a simple zero-one loss function and
actually work this out.

Empirical Risk Minimization (ERM) means minimize the empirical risk over all hypotheses from a certain
class, i.e., try to find

ĥ = arg min
h∈H

ε̂(h)

Ideally what we would like to find is the hypothesis that minimizes the generalization error

h∗ = arg min
h∈H

ε(h)

Thus the minimum generalization error is ε(h∗), i.e.,

ε(h∗) = min
h∈H

ε(h)

We would like to use h∗ but we cannot compute it. We instead use ĥ on the test data too. The question
is how much worse is this? I.e., how much worse is ε(ĥ) compared to ε(h∗) = minh∈H ε(h)? We work this
out for the zero-one loss.

18.1 Two probability results we use

Lemma 18.1 (Hoeffding inequality for Bernoulli r.v.’s). Let Z1, Z2, . . . Zm be iid Bernoulli random variables
with parameter φ. Let φ̂ := 1

m

∑m
i=1 Zi be the empirical mean of these random variables. Then

Pr(|φ̂− φ| > γ) ≤ 2e−2γ2m

Lemma 18.2 (Union Bound). For any K events A1, A2, . . . , AK

Pr(A1 ∪A2 · · · ∪AK) ≤
K∑
k=1

Pr(Ak)

and thus

Pr(Ac1 ∩Ac2 · · · ∩AcK) ≥ 1−
K∑
k=1

Pr(Ak)
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18.2 Misclassification (zero-one) loss

Let us specialize to the misclassification (zero-one) loss:

loss(y, ŷ) = 1(y 6= ŷ) = 1(y 6= h(x))

For this, the empirical risk for a given h is

ε̂(h) =
1

m

m∑
i=1

1(yi 6= h(xi))

while
ε(h) = E[1(y 6= h(x))] = Pr(y 6= h(x))

Define the r.v. Zi = 1(yi 6= h(xi)). Clearly the Zi are Bernoulli with probability of one equal to ε(h). We
will use the Hoeffding inequality

Using Hoeffding inequality, this means that, for a given hypothesis h,

Pr(|ε̂(h)− ε(h)| > γ) ≤ 2e−2γ2m

Suppose for a moment that the size of the hypothesis class is k, i.e.,

|H| = k.

Then, by Union Bound,
Pr(|ε̂(h)− ε(h)| > γ, for some h ∈ H) ≤ 2ke−2γ2m

or equivalently
Pr(|ε̂(h)− ε(h)| < γ, for ALL h ∈ H) ≥ 1− 2ke−2γ2m

For this probability to be at least 1 − δ, we need to set γ = 2
√

1
2m log 2k

δ . With this we can rewrite things

as follows
With probability at least 1− δ, for all h ∈ H, with k = |H|,

|ε̂(h)− ε(h)| ≤ γ :=

√
1

2m
log

2k

δ

Since above is true for all h, it is true for ĥ and h∗ too. So with the above probability,

ε(ĥ) ≤ ε̂(ĥ) + γ ≤ ε̂(h∗) + γ ≤ ε(h∗) + γ + γ = min
h∈H

ε(h) + 2γ

The first and third inequalities used the Hoeffding bound from above; the second used the fact that ε̂(ĥ) is
the minimum over all h.

Thus, substituting for γ, we can write the following theorem

Theorem 18.3. Consider a hypothesis class H with |H| = k. And consider zero-one loss. Suppose that ĥ
minimizes the empirical risk.

With probability ≥ 1− δ,

ε(ĥ) ≤
(

min
h∈H

ε(h)

)
+ 2

√
1

2m
log(

2k

δ
)

?? add corollary for lower bound on m.
This theorem works for a finite hypothesis class, but not for an infinite one, for example it does not work

for the class of all linear classifiers. However since everything is done on a computer (say one on which each
real number is represented by 64 bits), we can assume that there are really only a finite number of degrees
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of freedom. Consider a hypothesis class with d parameters all of which are real numbers. Then the total
number of possible options for hypotheses is

k = 264 ∗ 264 · · · ∗ 264︸ ︷︷ ︸
d times

= 264d

We have the following corollary

Corollary 18.4. Consider a hypothesis class Hd with d real-valued parameters. Assume implementation on
a 64-bit computer so that k = |H| = 264d. Consider zero-one loss. Suppose that ĥ minimizes the empirical
risk. Also set δ = 2−d. Then, we can claim the following

With probability ≥ 1− 2−d,

ε(ĥ) ≤
(

min
h∈Hd

ε(h)

)
+ C

√
65d+ 1

2m

Remark 18.5. In most of this class, we have assumed d = n + 1 parameters. This is true for linear
regression and logistic regression. For GDA, d > n.

18.3 Tradeoffs

First note: we are discussing these tradeoffs using an ”upper bound” on ε(ĥ). This upper bound may or may
not be tight. The discussion is valid only when it is tight.

If we increase d (for a fixed m),

• the size of the hypotheses class on a 64-bit computer is |Hd| = 264d as argued above. Thus, increasing
d, increases its size. This means, in the first term from the above corollary, minh∈Hd

ε(h), we are taking
a minimum over a larger set. Minimizing over a larger set implies the minimum value is the same or
smaller (cannot be larger). Thus the first term can only decrease or stay the same if we increase d.
This term does not depend on m at all.

• but the second term,
√

65d+1
2m clearly increases linearly with d

Increasing d and hence the size of the hypotheses class is analogous to reducing the bias. Typically, up
to a certain increase in d, the first term will decrease (bias will decrease). But when m is fixed, this also
increases the variance.

In fact at the very least, we need m > d to even just get the RHS to be smaller than one. Notice ε(h) is
a probability so has to be less than one,

18.4 Connections to what we have learnt

In case of the 0-1 loss, the empirical risk is computationally not possible to minimize because one will literally
have to check all 264d possible hypotheses values and compute the empirical risk for each of them to find the
minimize. It is what is called a “combinatorial optimization” problem and cannot be done in any reasonable
time.

Also, as noted above, we are discussing these tradeoffs using an ”upper bound” on ε(ĥ). This upper
bound may or may not be tight. The discussion is valid only when it is tight.

For the above two reasons, the Tradeoffs’ discussion does not apply to Generative Learning Models like
Gaussian Discriminant Analysis where are placing many more assumptions on our data. For instance, in
GDA, once we impose Σ0 = Σ1 = Σ and Σ diagonal, we have basically decoupled the learning of each scalar
parameter for each feature. In this case, as seen in your Home it is possible to get good parameter estimates
and thus good classification even with m < d, in this case d = 2n+ n+ 1.

It “somewhat” applies to SVMs, though not directly since there we aren’t trying to find a w, b to mini-
mize empirical risk (training error), instead we are trying to find w, b to maximize the worst-case margin.

36



18.5 VC dimension

We will not talk about VC dimension (last two pages of Andew Ng’s cs229 notes-4) in this course.
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Thoughts on future teaching

General introduction, Introduce Python
Python recitations’ - videos and files from 2021 (by Praneeth).
Linear Regression, PCA, Bias-Variance Tradeoff
Allow Homework in Python or MATLAB .
Logistic Regression, GDA, Learning Theory.

Project for Spring 2021

Project: combine ideas of 2-4 homeworks, and work on them in more detail. First report due April 22 for
comments from me or Praneeth. Final project due: last day of finals’ week.

Groups: groups of at most 3. Groups of 2 required.
– Develop your own approach to write/combine code. In the report: write pseudo-code to explain exactly

what you coded. What you say in the report should match up with what you coded in.
– Derive your own conclusions - first based on simulated data (figure out the correct way to generate

it and also to explain it in your report) - then based on real data. Report: Explain how to generate the
simulated data and why this way.

– Implement on one more dataset other than the ones we have provided in the HWs. Explain the pre-
processing steps to use the dataset first, explain what you observe on real data and why. Set up your own
reasonable error metrics or use existing ones. In Report: Explain the dataset, explain what you observe and
why.

– Basically the report should tell me what all you did, how you coded it in (pseudo-code, not code
attached), and what you observed, first for simulated, then for real data.

Examples:
- Various pre-processing steps for Linear Regression : use of PCA versus use of sparsity on theta versus

use of both (first do PCA –pick r as done in HW 4 – then, on this reduced dimensional data, try to fit a
sparse θ). So compare: (i) just PCA, (ii) just sparse prior on θ, (iii) combination of both.

- PCA as pre-processing step for linear regression, logistic regression and GDA (HW 4, 5)
- Various classification approaches: compare and contrast (HW 2, 3)
- PCA for classification and clustering (HW 5, 6)
- Welcome to also take any one HW and extend it beyond the existing HWs.
Deadlines:
- April 10: submit an ”abstract” (¡ 1 page summary of what you will do)
- April 29: draft version of the project (if you want comments from me): strongly encouraged.
- May 5: Project due. Submit: (1) a PDF report, (2) code
Strongly encourage you to use LateX – free, best quality reports, easy to use once you figure out the

basics. https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes

Lesson Plans

The following was the lesson plan for Spring 2020 (first pandemic year).

18.6 Part 1: before March 25 (roughly)

1. Introduction to Linear Regression, Python, and the idea of Simulating Data to Test your algorithm
ideas.

2. Background Mathematics material:

• Linear Algebra (Ng’s notes and a few topics from my linearalgebranotes.pdf notes): need to know
SVD, eigenvalue decomposition, and Weyl’s ineqiality to understand PCA carefully.
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• Probability (my EE 322 notes are sufficient): needed to understand Maximum Likelihood esti-
mation, and Generative Learning algorithms

• Basic Optimization: gradient descent (GD) and why it works, stochastic GD. Need more details
to understand SVM dual program derivations (but those were skipped this year). See Summa-
ryNotes, Section 3.

3. Supervised Learning, no generative model: Linear Regression

4. Supervised Learning, no generative model, classification: Logistic Regression

5. Supervised Learning, generative learning algorithms, classification: Gaussian Discriminant Analysis
(GDA) a.k.a. MAP rule with Guassian likelihoods.

6. Supervised Learning, generative learning algorithms, classification: Spam Filter design (discrete-valued
features)

7. Supervised Learning, generative learning algorithms, classification: Naive Bayes’ assumption (assume
independence of different features conditioned on class label): helps reduce number of parameters.

• For GDA, this means the covariance matrix of the data is diagonal. If first apply PCA on the
feature vectors before using GDA, then this assumption is automatically correct approximately
(it is correct exactly in the limit of large m).

8. Supervised Learning, classification: Support Vector Machines (SVM)

• Linear Classifier define: any classifier whose decision rule is of the form wTx+ b > 0 implies class
1 and ≤ 0 implies class −1.

• Both of Logistic Regression and GDA (with equal covariance under all classes) are Linear Clas-
sifiers

• SVM idea: find a w, b so that the margin is maximized for the data vectors that are the most
likely to be mis-classified, i.e., idea is to maximize mini y

(i)(wTx(i) + b)

• SVM primal form optimization problem: it is a Quadratic Program (QP)

• SVM dual form and why it is a good idea : can directly be used with Kernel SVMs

• Kernel-ization idea and Kernel SVM.

9. PCA

• r-SVD solution and its implications

• Goal and what all it optimizes and why (proofs): proofs skipped this year.

• Use for optimizing bias-variance tradeoff in Regression or in Classification problems: learn via
homeworks

• Picking the reduced dimension r: either use a percentage energy rule, or pick r to optimize Test-
MSE (computed via cross-validation) for the final Regression or Classification problem being
solved. Understand by doing HW 4: Linear Regression with PCA

10. Bias-Variance Tradeoff in the context of Linear Regression

• Use prior on θ: entries of θ are arranged in decreasing order of magnitude or that θ is sparse or
that θ is close to a θ0 that is known

• Use prior on training data features: model training data matrix X as being approximately low
rank. This may not exactly hold but all n singular values will also not be equal almost all the
time. Whenever this is the case – singular values are not all equal – one can use cross-validation
to pick the best value of r.
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11. Reading material used so far:

• My notes below on these topics,

• Homeworks 1a, 1b, 2a, 2b, 3, 4,

• Andrew Ng’s notes (labeled ML-cs229-) on Regression - linear and logistic, and on Generative
Learning - contain more details and examples than mine

• Andrew Ng’s notes (labeled ML-cs229-) on SVMs

• We have not used Ng’s notes on PCA

18.7 Part 2: after March 25

Topics still to be covered

1. Unsupervised Learning: Clustering

• Problem definition: given a dataset (set of features), partition it into k clusters (or classes) so
that some “distance” within each class is as small as possible while “distance” between classes is
as large as possible. k can be specified or may be unknown, one may have to pick k to optimize
bias-variance tradeoff again.

• k-means clustering

• Gaussian Mixture Model (GMM): a commonly used generative model for clustering

• EM algorithm for “learning” the GMM parameters: once GMM is learnt, clustering is done.

• The General EM algorithm: extra learning. Will be skipped but notes are available in these
Summary-Notes.

2. Deep Learning

• Use Summary-Notes , will add Neural-nets file also into this file itself

3. Learning Theory and Bias-Variance Tradeoff

• Use these SummaryNotes notes and use ML-cs229- notes

4. Extra topics from EE 527 (covered without proofs)

• More on Least Squares estimation: particularly Recursive LS and Regularized LS

• Bayesian (Generative) Learning more topics: Min Mean Squared Error (MMSE) estimation,
Kalman Filtering, Hidden Markov Models (HMMs).

5. Homeworks 5, 6

19 Next few lectures

HW 5 (extra credit): 1. Re-do the ”learning” part of HW 1 (linear regression) – for learning we are trying
to estimate an nx1 vector θ using m training data samples, xi, yi. Suppose that the training data comes in
sequentially; and/or suppose we want to keep updating our model as more training data comes in.

Consider the following setting: we initially have m0 training samples, from which we can get an estimate
θ̂m0 by regular LS.

Now suppose after this, we get one xi, yi pair at a time. This means the matrix X is growing in terms
of number of rows and so is the vector y. Use Recursive LS to get θi. Start with θ̂m0 and Π = (XT

0 X0)−1

where X0 is the m0xn matrix formed by the initial training samples.
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2. In this homework itself or HW 2, re-visit the case where you do not have enough training samples –
m is small. In this case use a prior with θ̂0 = 0 and Π = (1/ε)I, with ε = 0.00001 or some small number.

Distill out some topics from my Estimation/Detection notes: MMSE estimation; Least Squares, Reg-
ularized LS, and Recursive LS; Kalman Filter; HMM. Teach the problem setting and algorithm; skip the
proofs.

One/two lecture version of Sparse Recovery, Matrix Completion (Low-Rank Matrix Recovery), Robust
PCA, Phase Retrieval
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Homework 1

EE425X - Machine Learning: A signal processing persepective

In this homework you will be learning a Linear Regression model on two types of data sets. The problem
here is as follows. You are given a set of m independent training data points, y,x that satisfy

y = θTx+ e

and your goal is to estimate θ using training data that is either simulated or real. Denote the estimate as θ̂.
Here y is a scalar and x is an n length vector.

1 Simulated (Synthetic) Data

1.1 How to generate the data

Generate your own data to simulate the linear regression model y = θTx + e. Generate m such independent
training data vectors. Also generate mtest independent data vectors for the testing step.

Let N (µ,Σ) denote the Gaussian distribution with mean µ and covariance Σ.
Do this as follows:

(a) Fix θ once as specified below.
(b) Training data generate: For i = 1 to m, generate x(i) ∼ N (0, I), e(i) ∼ N (0, σ2e) and y(i) = θTx(i) + e(i).
(c) Test data generate: In a different Loop, repeat (b) for i = 1 to mtest. Use this data in the testing step and
not for training.

Generate the data for the following settings:
(a) Use m = 30, 100, 1000, n = 5, and set e = 0. Let θ = [1, 4, 2, 10, 23]T .
(b) Pick m = 30, 100, 1000, n = 5, and set σ2e = 10−6. Let θ = [1, 4, 2, 10, 23]T .
(c) Pick m = 100, 100, 1000, n = 5, and set σ2e = 10−4. Let θ = [1, 4, 2, 10, 23]T .

(d) Repeat (b) with generating x(i) ∼ N (µx, I) with µx = [1, 1, 1, 1, 1]T . For this part, you will need to use a
”mean value” in your model too, so see Sec 3.4 of Summary-Notes-2.pdf
(e) Repeat (b) generating x(i) ∼ N (0,Σ) with Σ being diagonal. Specify in your report what diagonal entries
you chose for Σ and what effect that had. Pick anything other than all equal entries.

Extra Credit: (f) Repeat (b) with generating x(i) ∼ N (0,Σ) with Σ being a general covariance matrix. Specify
in your report how you picked Σ and why.

Reporting: You are not reporting anything for this part.

1.2 Learning theta (Training)

Use the training data set here.
Use all three types of approaches for training, sample code for which is given in the Python-intro handout:

Pseudo-Inverse, Solution of Normal Equations, and Gradient-Descent. Report the normalized error ‖θ −
θ̂‖2/‖θ‖2 and the time taken in each case.
Reporting: Plot 1: Plot error versus m for all the 3 approaches in part (a) above in a A SINGLE FIGURE.
Do the same for part (b) At least for part (a), all three should return an error value that is nearly zero.
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Plot 2: Fix one approach for learning θ, let us say Pseudo-Inverse. Plot error versus m for parts (a), (b),
(c) on A SINGLE FIGURE. This figure should help you understand how the error increases as we increase σ2e .
Also, for a given σ2e , the error should decrease as m is increased.

Also comment on what you observe.
Other parts: Find the best way to report information from the other parts. It need not be a plot, it could

be just a table or a bar plot. A good comparison for part (d) would be: how does the error change if you did
not use the “mean” parameter θ0 in your modeling versus if you did.

For part (e): you could take the figure from part (b), and add this plot to that figure to generate a new
figure. See how the error from this part compares with that from the other parts.

Also, for this part: instead of the error norm, you can look at the error in the different components of the
vector θ and see whether some components have larger error than others. Comment on how this is related to
the “signal-to-noise ratio (SNR)”, Σii/σ

2
e , in the different components.

1.3 How to structure your code

Write your code so it is “general”: read the entire homework to decide how general the code needs to be. For
instance, do not hard-code in the value of m or n.

Your simulated data code should consist of the following parts
- Data Generation code: generate data as above.
- 3 pieces of code for learning θ using the 3 training approaches specified in Summary-Notes. So this provides
3 different estimates of the n = 5 length vector theta. Call these θ̂. This piece of code DOES NOT USE
KNOWLEDGE OF the true θ or the true e. It only uses x(i),y(i), i = 1, 2, . . . ,m.
- Error computation: This code uses the true theta from the data generation code and estimates from the
learning code and computes the normalized error.
- A Wrapper code that calls all the above three parts for different choices of m,n, σ2e , µx,Σ.
Reporting: No reporting needed for this part. This part just explains how to structure your code.

2 Real Data

In this problem you will be applying linear regression to real world data. Download the data from https:

//archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise#.
This contains m = 1503 training data points and there are n = 5 features. The last column of this data-set

(6-th) column represents the output, y.
Here, you do not have access to the true θ so instead report the following error metric:

∑m
i=1(y

(i) −
θ̂Tx(i))2/m.

This is a large data set, so only implement Gradient Descent. Comment on the choice of max-iter and the
learning-rate µ.

Extra Credit: Now, standardize the features (1-5 column) to ensure they have zero mean and unit variance,
and repeat the experiment. One thing need to mention here is you are asked to standardize within each feature.
One way to do that is calculate the mean and variance of each column and modify your data correspondingly.
Also to have better result, you may want to use the intercept term in your algorithm. Report the same results.

Extra Credit: Implement (batch) Stochastic Gradient Descent and comment on how the batch-size affects
convergence.

3 What to turn in?

Submit a short report that discusses all of the above questions, including results and analysis. Also submit your
codes with clear documentation. Grading will be based on the quality of report and accuracy of implemented
codes. I understand there are tons of good machine learning package you could find, like scikit-learn etc.. But
forget them for today please, you could finish your homework only with help of numpy and necessary data
importing package (like pandas).
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Homework 1b: Linear Regression part 2.

EE425X - Machine Learning: A Signal Processing Perspective

Homework 1 focused on learning the parameter θ for linear regression. In this homework we will first under-
stand how to use the learnt parameter to predict the output for a given query input. We will also understand
bias-variance tradeoff and how to decide the model dimension when limited training data is available. This
HW will rely heavily on the code from the previous homework.

Generate Data Code: Generate m+mtest data points satisfying

y = θTx + e

with θ being ONE fixed n length vector for all of them. Use n = 100, θ = [100,−99, 98,−97...1]′, σ2e = 0.01||θ||22,
e ∼ N (0, σ2e), x ∼ N (0, I), and assume mutual independence of the different inputs and noise values (e).

1. Use code from Homework 1 (using any one approach is okay) to learn θ. Vary m and show a plot of both
estimation error in θ,

||θ − θ̂||22/||θ||2

and a second plot of the “Monte Carlo estimate” of the prediction error on the test data (test data MSE).

Normalized-Test-MSE := E[(ytest − ŷ)2]/E[y2test], with ŷ := θ̂Txtest

Monte Carlo estimate means: compute (ytest− ŷ)2 for mtest different input-output pairs and then average
the result.

(a) Vary m: use m = 80, m = 100, m = 120, m = 400. If your code is unable to return an estimate of θ,
you can report the errors to be ∞ (and for the plot just use a large value say 100000 to replace ∞.

(b) Repeat this experiment with σ2e = 0.1||θ||22.
Thus this part will produce four plots.

2. In this second part, suppose you have only m = 80 training data points satisfying y = θTx + e, with
n = 100. Notice n is the same as in the first part. I had a typo earlier which has now been fixed.

What you will have concluded from part 1 is that you cannot learn θ correctly in this case because m is
even smaller than n.

Let us assume you do not have the option to increase m. What can you do? All you can do is reduce n
to a value nsmall ≤ m. Experiment with different values of nsmall to come up with the best one. Do this
experiment for two values of σ2e : σ2e = 0.01||θ||22 and σ2e = 0.1||θ||22.
How to decide which entries of x to throw away? For now, just throw away the last n−nsmall + 1 entries.
So for nsmall = 1, let xsmall be just the first entry, and so on. So for nsmall = 30 for example, xsmall

will be the first 30 entries of x. There are many other better ways which we will learn about later in the
course.

Start with nsmall = 1 and keep increasing its value and each time compute Normalized-Test-MSE by
learning a value of θ first (using m = 80 of course). Obtain a plot. Use the plot and what you learn in
class to decide what value of nsmall is best.

3. Interpret your results based on the Bias-Variance tradeoff discussion. See Section 11 of Summary-Notes
and what will be taught in the next few classes.
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Homework 2

EE425X - Machine Learning: A signal processing persepective

Logistic Regression and Gaussian Discriminant Analysis

In this homework we are going to apply Logistic Regression (LR) and Gaussian Discriminant Analysis
(GDA) for solving a two-class classification problem. The goal will be to implement both correctly and
figure out which one is better.

To do this, you will first “learn” the parameters for each case using the training data (as discussed in
class and available in the handouts). Then, you will apply it to test data and evaluate the performance as
explained below. The only change from the handout is that, for GDA, you need to assume that the
covariance matrix Σ is diagonal.

1 Synthetic Data Generation

Generate your own training data first. To do this, we use the GDA model because that is the only one which
provides a generative model.

� Generating Training data: Since we want to implement a two-class classification problem, let the class
labels, y(i) take two possible values 0 or 1 (for i = 1, · · · ,m, i.e., we have m training samples). These
are generated independently according to a Bernoulli model with probability φ. Next, conditioned on
y(i), the features x(i) ∈ Rn×1 are generated independently from a Gaussian distribution with mean
µy(i) and covariance matrix Σ. In other words, while generating x(i), use the same covariance matrix
Σ for both classes, but pick two different µ’s: µ0 as the n-dimensional mean vector for data from class
0 and µ1 as the n-dimensional mean vector for data from class 1. Do this for all i = 1, 2, · · · ,m.

� Generating Test data: Do the same as above, but now instead generate mtest = m/5 samples.

� For the synthetic data part of this homework, use n = 100 and m = 20.

2 Learning parameters using training data; and then testing the method
on test data

2.1 Training

� Write code to estimate the parameters for Logistic Regression and for GDA. For how to do it, please
refer to the class handouts. GDA was covered recently in the Generative Learning Algorithms handout.
LR is covered in the first handout (Supervised Learning).

� For LR, you need to write Gradient Descent code to estimate θ. Refer to the handouts, and the
optimization intro notebook on Canvas for more details.

1



� For GDA, proceed as follows. The ONLY CHANGE from the handout is that we assume that Σ is
DIAGONAL and thus use the following formulas:

φ =
1

m

m∑
i=1

1(y(i) = 1)

µ0 =

∑m
i=1 1(y(i) = 0)x(i)∑m
i=1 1(y(i) = 0)

µ1 =

∑m
i=1 1(y(i) = 1)x(i)∑m
i=1 1(y(i) = 1)

(Σ)k,k =
1

m

m∑
i=1

(x(i) − µy(i))
2
k, k = 1, 2, . . . , n

while setting all non-diagonal entries of Σ to be zero. Here, 1(w = c) is the indicator function that
evaluates to 1 when w = c and 0 otherwise.

2.2 Testing

Now, for both LR and GDA, you have estimated the parameters, namely, θ for Logistic Regression, and,
φ, µ0, µ1,Σ for Gaussian Discriminant Analysis. Once you have these parameters, evaluate how “good” each
method is by computing the testing accuracy.

� For LR, for each (test) input query x, compute the output ŷLR(x) as

ŷLR(x) = 1 if hθ̂(x) > 1− hθ̂(x),

and ŷ = 0 otherwise. In the above equation, hθ̂(x) = σ(θ̂Tx). And again, recall that θ̂ is what you
estimated using the training data and implementing Gradient Descent.

� For GDA, we use Bayes rule for classification. For each input query x, compute the output ŷGDA(x)
as

ŷGDA(x) = arg max
l∈{0,1}

N (x;µl,Σ)φl(1− φ)1−l

� Evaluate error: let us denote the test data as Dtest. Report error of each method as

error =
1

|Dtest|
∑

(x,y)∈Dtest

|y − ŷ(x)|

where ŷ(x) is the output of the classifier for input x. Also, |Dtest| = mtest is number of testing samples.
YOU NEED TO DO THIS FOR BOTH METHODS.

3 Real Data

Next use the MNIST dataset to evaluate both approaches on real data. MNIST is a good database for people
who want to try learning techniques and pattern recognition methods on real-world data while spending
minimal efforts on preprocessing and formatting. The MNIST database of handwritten digits has a training
set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from
NIST. The digits have been size-normalized and centered in a fixed-size image. The entire dataset can be
downloaded from here but in this problem we only use samples corresponding to two digits 0 and 9.

Use the code written in the previous part to classify two digits 0 and 9 in MNIST by using Logistic
Regression and Gaussian Discriminant methods. You should have written code for part 2 so you need not
have to rewrite anything, except change what you provide as training and test data. This is what we want

2
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to learn in this course: use simulated (synthetic) data to write and test code; make sure everything works
as expected, then use the same code on real data.

Please report the final classification accuracy and discuss how the obtained accuracy for the real data
differences from the synthetic data.

4 What to turn in?

Submit a short report that discusses all of the above questions. Also submit your codes with clear docu-
mentation. Grading will be based on the quality of report and accuracy of implemented codes.
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Homework 3

EE425X - Machine Learning: A signal processing perspective

In this homework we will use Support-Vector Machine (SVM) to classify MNIST dataset. Same as the
previous homework, we only consider two classes of data in MNIST, classes associated with digits 0 and 9.

1 SVM for MNIST

Basically in SVM we need to learn function,

g(x) = wTx + b,

so that g(x) > 0 means image x belongs to class 9 and vice versa. Remember that in MNIST image x is a
28× 28 matrix and w is the same size of x.

• Use training data to estimate w and b in SVM method. More details about updating w and b can be
found in your class notes.

• Use w and b obtained from the previous step to classify test data.

• Use the test accuracy metric from the previous homework to evaluate performance

2 Want to learn more!

You don’t have to do this problem and this problem doesn’t have extra points. One can get more accurate
classifier by using Kernels.

• Repeat the previous problem for polynomial kernel of size 5, that is g(x) = (wTx)5 + b.

• Repeat the previous problem for Gaussian kernel, that is g(x) = exp
(
−‖x−w‖2/2σ2

)
+ b.

3 What to turn in?

Submit a short report that discusses all of the above questions. Also submit your codes with clear docu-
mentation. Grading will be based on the quality of report and accuracy of implemented codes.
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Homework 4: Using PCA for Model Selection in Linear Regression

EE425X - Machine Learning: A Signal Processing Perspective

Homework 1 focused on learning the parameter θ for linear regression. In this homework how to use PCA
for model selection; this is especially relevant when limited training data is available.

1 Generate Data

Use n = 100, mtot = 80.
Generate m data points satisfying

y = θTx + e

with θ being a fixed n length vector for all of them.

• Can generate θ any way you want. Let us fix it at θ = [100 : −0.5 : 50.5]′;

• Generate n-length vectors x(i) ∼ N (µx,Σx) with µx = [5 : 0.1 : 14.9]′ and Σx = tmp ∗ evals ∗ tmp′ with
tmp = randn(n, n) and evals = diag([100 ∗ randn(round(n/8), 1).2; randn(n − round(n/8), 1).2]) is a
diagonal matrix. Here .2 means each entry of the vector is squared (MATLAB notation). Arrange these
as rows of an mtot × n matrix Xtot.

Repeat the experiment with also trying evals = diag([100 ∗ randn(n, 1).2]).

Note: to generate x ∼ N (µx,Σx), you do x = µx + (tmp ∗ sqrt(evals) ∗ tmp′) ∗ randn(n, 1).

• For any experiment, we can either use leave-one-out-cross-validation (most efficient use of the data, but
it is time-consuming) or since this is just a HW to demonstrate a few ideas, we can keep things simpler.
Split mtot = 80 into two parts, m = 50 and mtest = mtot −m = 30. Use the first m for training and the
next mtest for computing the test-MSE.

So we have X = Xtot(1 : m, 1 : n) and Xtest = Xtot(m+ 1 : mtot, 1 : n). Similarly y = ytot(1 : m, 1) and
ytest = ytot(m+ 1 : mtot, 1).

2 Write the algorithm to pick the best model

Let us assume you do not have the option to increase m. What can you do? All you can do is reduce n to a
value r ≤ m. This can be done in various ways depending on what “prior knowledge” is available about either
θ or the training data points xi’s.

1. Methods that use priors on θ: suppose you knew that entries of θ were in decreasing order of magnitude
from 1 to n. Then you would try to use the approach used in HW1b. Retain the first r entries of
each data points x(i); then learn an r-length estimate θ̂r; for each of the test data points: use this
on the first r entries of test data vector to get a prediction ŷ = θ̂Tr xtest(1 : r), compute the squared
error (y − ŷ)2 and compute an average of this quantity over all test data. This is an approximation to
Test−MSE = E[(y − θ̂Tr xtest(1 : r))2].

Repeat above process for different values of r and store the Test-MSE value for each r. Pick the best r.
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2. Methods that use priors on θ: suppose you knew that θ is exactly or approximately sparse. The example
given in the first item above is a simpler special case of this assumption. We will not explore this in the
current HW.

3. Methods that use a prior on the m× n training data matrix X: suppose that we know that X is approx
low rank, meaning that its rank is smaller than min(m,n). We will proceed as follows.

• Repeat the following for each value of r = 1, 2, . . . , n (or can just go till m because we know error
will blow up for r > m).

(a) Compute µ̂ = 1
m

∑m
i=1 x

(i)

(b) Compute Z = X − 1µ̂T

(c) Compute SVD of Z, Z = UfullSfullV
T
full.

(d) Set V = Vfull(:, 1 : r) : this is the principal subspace often also called “PCA space”.

(e) Compute B = XV : these are the projections into the principal subspace.

(f) Include a ”mean” term in the regression model, c. To do this, let B̃ := [1,B]. Here 1 is a vector
of ones.

(g) Compute
ˆ̃
θV = B̃†y where M † = (MTM)−1MT .

(h) ĉ =
ˆ̃
θV (1, 1) and θ̂V =

ˆ̃
θV (2 : r + 1, 1)

(i) Compute ŷtest = Xtest(V θ̂V ) + ĉ

(j) Compute Normalized-Test-MSE(r) = ||ytest − ŷtest||22/||ytest||22
• Plot the Normalized-Test-MSE and select the best value of r.

Note: because everything is linear and because we are using a “mean” term c, in this experiment, it does
not matter whether or not we first subtract the mean before doing PCA. It is possible that mean subtraction
is important when using PCA as a pre-processing step for classification though

3 Real Data

In this problem you will be applying linear regression to real world data.

1. Download the data from https://archive.ics.uci.edu/ml/datasets/BlogFeedback.

2. This contains various files, but for this homework, only use the first two files for training, i.e., use both
blogData test-2012.02.01.00 00.csv and blogData test-2012.02.02.00 00.csv.

3. The total number of rows will be m = 248. The number of features, n = 280. You may need to transpose
this matrix to get the matrix Xtrain in the standard form that we assume – remember we are writing each
feature (or input) vector as a row.

4. The last column of each of these files is the output, y.

5. Now consider the blogData test-2012.02.03.00 00.csv as the test data (only the first 280 columns),
and report the Normalized-Test-MSE as explained above.

4 What to turn in?

Submit a short report that discusses all of the above questions. Also submit your codes with clear documenta-
tion. Grading will be based on the quality of report and accuracy of implemented codes.
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Homework 5: Using PCA before Classification

EE425X - Machine Learning: A Signal Processing Perspective

Homework 2 focused on classification using logistic regression and GDA. In this homework I would like you
to do the same two tasks, but first use PCA to reduce the dimension of the data. This is a common practice
in ML known as pre-processing the data.

As in HW 4, use cross-validation to pick the best value of r. You can use a simple cross validation as done
in HW 4: split the available mtot data points into mtot = m + mtest. Use m points for training and the rest
mtest for testing. Compute Test-Error as explained in HW 2. Do this for each value of r. Pick the best r.

Simulated data: generate data as suggested in HW 2 BUT with the following difference: use the fol-
lowing covariance matrix Σ: Σ = tmp ∗ evals ∗ tmp′ with tmp = randn(n, n) and evals = diag([100 ∗
randn(round(n/8), 1).2; randn(n − round(n/8), 1).2]) is a diagonal matrix of the eigenvalues of the covari-
ance. Here .2 means each entry of the vector is squared (MATLAB notation). Repeat the experiment with
evals = diag([100 ∗ randn(n, 1).2]).

When you are doing the above, you need to be careful that the class mean for class zero, µ0, is sufficient
“far” from the class mean for class one, µ1. To be precise, (µ0 − µ1)TΣ−1(µ0 − µ1) should be “large”. This
is not easy to simulate. Instead if you just make sure ||µ0 − µ1||22 is large compared to trace(Sigma) (this is
also equal to sum(eigenvalues(Sigma)) = sum(evals)), this should suffice for you to get a good classification
accuracy. In particular, roughly ||µ0− µ1||22 > 9trace(Σ) should work (3-Sigma rule).

Comment on which model (logistic regression vs GDA) works better. Also compare with the results obtained
in HW2 (do not perform PCA).

Real dataset: (a) use the MNIST dataset (only class 0 and 9) as is; (b) use the MNIST dataset but use a
small value of m.
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Homework 6: Clustering, and Clustering wtih PCA as pre-processing step

EE425X - Machine Learning: A Signal Processing Perspective

This homework focuses on clustering which means we are given a set of m feature vectors (each vector is n
length). We would like to cluster these features into k clusters. For this HW (except for the extra credit part)
let us assume k is known. Suppose k = 3.

To generate the data, we will generate it exactly as in HW 5 (or HW 2) using the GDA model, but now we
have k = 3 classes (instead of 2 classes earlier). So instead of a single φ, we now have φj , j = 1, 2, 3 such that∑

j φj = 1. We can set them as φ1 = 0.3, φ2 = 0.4, φ3 = 0.3 for example.

Generate class label y(i) as follows: p(y(i) = j) = φj , j = 1, 2, 3. Given y(i) = j, generate x(i) from N (µj ,Σ),
with
Σ = tmp ∗ evals ∗ tmp′ with tmp = randn(n, n) and evals = diag([100 ∗ randn(round(n/8), 1).2; randn(n −
round(n/8), 1).2]) is a diagonal matrix. Here .2 means each entry of the vector is squared (MATLAB notation).
Repeat the experiment with also trying evals = diag([100 ∗ randn(n, 1).2]).

When using the data in the clustering algorithm, you ONLY use {x(i), i = 1, 2, . . . ,m} and DO NOT USE
the class labels y(i).

Clustering: suppose n = 50 and m = 200. Reduce the value of m in the PCA part if you do not see anything
interesting with this value of m. Output of a clustering algorithm is

• the estimated class labels ŷ(i), i = 1, 2, . . . ,m

• estimated µ̂j , j = 1, 2, . . . , k.

• when using EM algo, it also outputs the covariance matrix estimates; when using k-means, it does not.

The clustering cost function is

J(x(i)) :=
1

m

m∑
i=1

||x(i) − µ̂ŷ(i) ||
2
2.

Do the following

1. implement k-means clustering (with multiple random initializations - pick best one as the one with smallest
cost).

2. implement k-means clustering with PCA as a pre-processing step. As in the previous two homeworks,
loop over r to decide the best value of r.

3. Real dataset: use the MNIST dataset with any k = 3 digits. Decide a reasonable value of m, need not
use all the data points.

Extra Credit:

1. Extra Credit 1: implement EM algorithm as well

2. Extra Credit 2: assume k is not known; automatically decide k by computing the clustering cost function.
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Project: combine ideas of 2-4 homeworks, and work on them in more detail. First 
report due April 22 for comments from me or Praneeth. Final project due: last day 
of finals' week.  

Groups: groups of at most 3. Groups of 2 required.  

-- Develop your own approach to write/combine code. In the report: write pseudo-code 
to explain exactly what you coded. What you say in the report should match up with 
what you coded in.  

-- Derive your own conclusions  - first based on simulated data (figure out the correct 
way to generate it and also to explain it in your report) - then based on real data. 
Report: Explain how to generate the simulated data and why this way.  

-- Implement on one more dataset other than the ones we have provided in the HWs. 
Explain the pre-processing steps to use the dataset first, explain what you observe on 
real data and why. Set up your own reasonable error metrics or use existing ones. In 
Report: Explain the dataset, explain what you observe and why.  

-- Basically the report should tell me what all you did, how you coded it in 
(pseudo-code, not code attached), and what you observed, first for simulated, 
then for real data.  

Examples: 

- Various pre-processing steps for Linear Regression : use of PCA versus use of 
sparsity on theta versus use of both (first do PCA --pick r as done in HW 4 -- then, on 
this reduced dimensional data,  try to fit a sparse $\theta$). So compare: (i) just PCA, (ii) 
just sparse prior on $\theta$, (iii) combination of both. 

- PCA as pre-processing step for linear regression, logistic regression and GDA  (HW 4, 
5) 

- Various classification approaches: compare and contrast (HW 2, 3) 

- PCA for classification and clustering (HW 5, 6) 

- Welcome to also take any one HW and extend it beyond the existing HWs.  

Deadlines:  

- April 10: submit an "abstract" (< 1 page summary of what you will do)  

- April 29: draft version of the project (if you want comments from me): strongly 
encouraged.  

- May 5: Project due. Submit: (1) a PDF report, (2) code 

Strongly encourage you to use LateX -- free, best quality reports, easy to use once you 
figure out the basics.  



https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes (Links to an external 
site.)  
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