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Summary of dynamics of a Penrose kite: N = 4 

The following is the definition of a Kite from Wikipedia: 

 Kite: two pairs of adjacent sides are of equal length. This implies that one diagonal 

divides the kite into congruent triangles, and so the angles between the two pairs of equal 

sides are equal in measure. It also implies that the diagonals are perpendicular. (It is 

common, especially in the discussions on plane tessellations, to refer to the concave 

quadrilateral with these properties as a dart or arrowhead, with term kite being restricted 

to the convex shape.) 

 

The kites form an affine family which is distinct from the trapezoids.A canonical Penrose Kite has 

vertices {{0,1},{q,0},{0,-1},{-1,0}} with (0,1)q When q is irrational, it is called an irrational kite. 

Richard Schwartz has recently shown that every irrational kite has unbounded orbits, but initially 

he proved this result for the special case of q =  5 − 2  as shown below. This is called a Penrose 

kite because Roger Penrose combined it with a 'dart' to define a non-periodic tiling of the plane.  

 

For his initial point in the unbounded orbit, Schwartz used  p = {(1−q)/2 ,1}. The first 6 points in 

that orbit are shown below.  
 

                                        

http://en.wikipedia.org/wiki/Kite_%28geometry%29
http://en.wikipedia.org/wiki/Congruent_triangles
http://en.wikipedia.org/wiki/Tessellations


All the points in the orbit if p lie on a lattice of  horizontal lines of the form y = k where k is an odd 

integer. They are woven through the web like thread in fabric and they form almost perfect Cantor sets. 

The numbers given here are the periods of prominent regions. Most regions have period doubling and 

these are the periods of the centers. The web is intricate but not fractal - so there is no obvious signs 

pointing to the complexity. 

 

              

Using the notebook NonRegular.nb, set Mc = {{0,1},{Sqrt[5]-2,,0},{0,-1},{-1,0}} 

To watch the web develop: 

Gr[depth_]:=Show[Graphics[{AbsolutePointSize[1.0],poly[Mom],Blue, 

Point[WebPoints[.02,15,depth]]},PlotRange->{{left,right},{bottom,top}}]];   

 

GraphicsGrid[{{Gr[0],Gr[1],Gr[2],Gr[3]},{Gr[4],Gr[5],Gr[6],Gr[7]}},Frame->All] 

 

 

 



To see the Cantor thread: 

The unbounded orbit is p = {1/2 (3-Sqrt[5]),1};  K = V[p,50000]; 

 W1= WebPoints[.02,12,200]; box[{0,0},10]; 

Show[Graphics[{AbsolutePointSize[1.0],poly[Mom],Blue,Point[W1], 

Magenta,AbsolutePointSize[3.0], Point[K]},PlotRange->{{left,right},{bottom,top}}]]  

                       

Compare this with the graphic below from page 417 of the Math Book by Clifford Pickover. In 

the accompanying article, Pickover discusses the Tangent Map and the proof by Richard 

Schwartz. 



      

 

 

 

 



To zoom in on the region around p use a finer web and generate the first 500,000 points in the 

orbit. 

K = V[p,500000]; W1= WebPoints[.01, 6, 1000];  box[p,1] 

Show[Graphics[{AbsolutePointSize[1.0],poly[Mom],Blue,Point[W1], 

Magenta,AbsolutePointSize[3.0], Point[K], AbsolutePointSize[5.0], Green, 

Point[p]},PlotRange->{{left,right},{bottom,top}}]] (*on the left below*) 

 

                

 

Because this orbit is unbounded, the neighborhood around p will always be unresolved, but it 

must be identical to the neighborhood of each point in the orbit. In this case the neighborhood 

consists of intervals because the points all lie on the line y = k for k odd. The case shown above 

is k = 1. 

In any web we can identify the exact point in the step sequence where the neighboring regions 

differ  In the example below, the step sequence of p and the step sequence of q are identical until 

the 39th place and therefore the boundary line between them is part of the level-39 web but not 

the level-38 web. 

 

Step sequence for p: 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 

2, 2, 2, 1, 3, 1, 2, 2, 1, ...  

 

Step sequence for q: 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 3, 1, 2, 2, 

2, 2, 2, 1, 3, 1, 2, 2, 2, ...  

 
 

 



 

Below is an 'upright' version of the Kite, rotated by Pi/4 and scaled: 

Mc={{-2+Sqrt[5],-2+Sqrt[5]},{1,-1},{-1,-1},{-1,1}}; 

Graphics[poly[Mc], Axes->True] 

                                                            

The unbounded orbit is now at p = {1/2 (1-Sqrt[5]),1/2 (5-Sqrt[5])}; as shown in green below 

and the 'thread' from its orbit has an angle of Pi/4. 

W1= WebPoints[.02,15,500]; box[{0,0},10]; K = V[p, 50000]; 

Show[Graphics[{AbsolutePointSize[1.0],poly[Mom],Magenta,Blue,AbsolutePointSize[1.0], 

Point[W1],AbsolutePointSize[2.0], Magenta, Point[K], AbsolutePointSize[5.0], Green, 

Point[p]},PlotRange->{{left,right},{bottom,top}},AspectRatio->Automatic]] 

 

                



This enables us to easily generate Pinwheel maps or strips to track the progress of the web. Our 

primary strip will include the Dads, so 

                     top = 3; bottom = -1; left = 0; right = arbitrary; 

We can probe the initial part of this strip be extending the web: 

W2= WebPoints[.2,50,300]; 

 

Mom is just visible on the left. The magenta points are part of the orbit of the unbounded point p. 

The green dot is the center of 'Dad' at {1,1}. The period is 3.These centers can be found because 

of period doubling. The remaining points inside Dad have period 6. 

 

The strip below runs from -1 to 90. It seems that the initial part of the web is 'almost' periodic. 

The green dot at {84,0} shows the start of a new cycle. 

 

 
 

 

To find the exact cycle length, use the new DadRight as shown below. We will find its center 

and subtract {1,1} to obtain the local origin. To find the center,  pick an arbitrary point p1 inside 

DadRight and iterate. K = V[p1,2000]; Period[K]. In this case the period is 246 so it will return 

in 123 iterations: p2 = K[[124]]. These are the two small green dots below. The center is half-

way between at c1 ≈{85.068883707497,1.068883707497}. In the plot below we can see that 

DadRight (and DadLeft) are a little higher than the earlier Dads whose edges were on the 

boundaries. This error term is the same in x and y. 

 

 

This means that the surrogate origin2 is at c1-{1,1} ≈{84.06888370749726,0.06888370749726}. 

The new origin is shown above in magenta. The web period for the first cycle is about 84.Recall 

that the N5Kite also had a semi-periodic web with period about 299.) 



 

Now we can test a surrogate non-periodic point p1 = p + origin2 .This point has period 10362 so 

it is not in the orbit of p, but the plot below shows that it is perfectly aligned with the lattice of 

points from the orbit of p. The green dot is p1 and the magenta points are points in the orbit of p 

obtained from 20 million iterations. (The black dot is origin2.) 

 

 
 

Since the slope of this lattice line is 1, we can choose test points close to p1with this same slope. 

We know that the immediate neighbors of p1 will have period 10362 but this periodic 

neighborhood is small and p2 = p1 + {.053,.053}≈ {83.50384971874738, 1.5038497187473712} 

has an orbit with a long period,or no period. This point is shown below in green slightly above 

p1. The first points in its orbit are shown below in black. They seem to track the unbounded orbit 

of the point p (in magenta) and it is possible that they are part of this orbit. 

 

                       
 

 

The orbit of p must always return to the neighborhood of each point in its orbit, so its unbounded 

path involves long cycles of 'semi-periodic' behavior. If it is tracked for long enough on any 

computer, the program would declare it to be periodic - no matter what test was used. To prove 

that it was unbounded, Richard Schwartz did not track its orbit, but instead used an algebraic 

description of the orbit called an Arithmetic Graph. Arithmetic Graphs and Pinwheel maps are 

discussed in the section on Projections. 

 



In his monograph Outer billiards on kites , Richard Schwartz shows that the Tangent Map has 

unbounded orbits on any irrational kite - that is any kite wih a single irrational vertex. He 

conjectures that this is 'generic' for large classes of polygons. 
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