
SUMMARY OF VECTOR AND TENSOR NOTATION 
 
-Bird, Stewart and Lightfoot "Transport Phenomena" 

-Bird, Armstrong and Hassager "Dynamics of Polymeric Liquids" 

 

The Physical quantities encountered in the theory of transport phenomena can be categorised into: 

- Scalars (temperature, energy, volume, and time) 

- Vectors (velocity, momentum, acceleration, force) 

- Second-order tensors (shear stress or momentum flux tensor) 

While for scalars only one type of multiplication is possible, for vectors and tensors several kinds are 

possible which are: 

- single dot  . 

- double dot  : 

- cross   x 

The following types of parenthesis will also be used to denote the results of various operations. 

(   ) = scalar (u . w), (σ : τ)  

[   ]  = vector   [ u x w], [τ . u] 

{   }  = tensor  {σ . τ} 

The multiplication signs can be interpreted as follows: 

 

Multiplication sign  Order of Result 

None    Σ 

  x    Σ-1 

  .    Σ-2 

  :    Σ-4 
________________________________________ 
 
Scalars can be interpreted as 0th order tensors, and vectors as first order tensors.

Examples:  

sτ order is 0+2=2   which is a 2nd order tensor 

uxw order is 1+1-1=1  which is a  vector 

σ:τ order is 2+2-4=0  which is a scalar 
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Definition of a Vector: A vector is defined as a quantity of a given magnitude and direction. 

|u| is the magnitude of the vector u 

Two vectors are equal when their magnitudes are equal and when they point in the same direction. 

 

Addition and Subtraction of Vectors: 

 

w      w 

 

u+w      u-w 

 

u      u  

 

Dot Product of two Vectors: 

 

(u . w) = |u| |w| cos(φ)       w  

             ϕ  u 

commutative (u . v) = (v . u)         Area=(u.w) 

not associative  (u . v)w ≠ u(v . w) 

distributive (u . [v + w]) = (u . v) + (u . w) 

 

Cross Product of two Vectors: 

 

[uxw] = |u| |w| sin(φ) n where n is a vector (unit magnitude) normal to the plane containing u 

and w and pointing in the direction that a right-handed screw will 

move if we turn u toward w by the shortest route. 

      ϕ         w 
   u 
 
Area of this equals the  
length of [uxw] 
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not commutative [uxw] = -[wxu] 

not associative [u x [v x w]] ≠ [[u x v] x w] 

distributive  [[u + v] x w] = [u x w] + [v x w] 
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VECTOR OPERATIONS FROM AN ANALYTICAL VIEWPOINT 
 

Define rectangular co-ordinates:  1, 2, 3  →   x, y, z  respectively 

Many formulae can be expressed more compactly in terms of the kronecker delta δij and the 

alternating unit tensor εijk, which are defined as: 

δij = 1 if i=j 

δij  =0  if i≠j 

and 

εijk=1  if ijk=123, 231, 312  

εijk= -1   if ijk=321, 132, 213 

εijk =0    if any two indices are alike 

 

We will use the following definitions, which can be easily proved: 

 

δεε ihhjkijkkj 2 = ∑∑  

and 

 

The determinant of a three-by-three matrix may be written as: 

 

 

 

δδδδεε jminjnimmnkijkk  -  = ∑  

αααε

ααα

ααα

ααα

3k2j1iijkkji

333231

232221

131211

      =  

  

  

  

∑∑∑  
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DEFINITION OF A VECTOR AND ITS MAGNITUDE: THE UNIT VECTORS 

 

A vector u can be defined completely by giving the magnitudes of its projections u1, u2, and  u3 on 

the co-ordinate axis 1, 2, and 3 respectively. Thus one may write 

u  =  u + u + u ii
3

1=i
332211 δδδδ ∑  =u   

where δ1, δ2, and δ3 are the unit vectors in the direction of the 1, 2 and 3 axes respectively. The 

following identities between the vectors can be proven readily: 

 

 

 

 

 

 

 

All these relations can be summarized as: 

 

 

 

0  =   .   =   .   =   . 133221 δδδδδδ  

0  =      =      =    332211 δδδδδδ ×××  

1  =   .   =   .   =   . 332211 δδδδδδ  

δδδδδδδδδ 231123312 - = ]     [     - = ]      [     - = ]     ××× [  

δδδδδδδδδ 213132321  = ]      [      = ]      [      = ]     ××× [  

δεδδ kijk
3

1=k
ji    =  ]  ∑× [  

δδδ ijji   =  ) . (  

1 

2 

 3 

u3 

u2 

u1 

u 
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Addition of vectors: 

 

)w + u(   =  w + u   =  w + u iiiiiiiiii δδδ ∑∑∑  

 

Multiplication of a Vector by a Scalar: 

 

)su(  =  ]u[ s  =  u iiiiii δδ ∑∑ s  

 

Dot Product: 

 

=  wu) . (  =  ]w[ . ]u[  =  )w . u jijijijjjiii δδδδ ∑∑∑∑(  

wu  =  wu   = iiijiijji ∑∑∑ δ  

 

Cross Product: 

 

)]w(  )u[(  =  ] w  u kkkjjj δδ ∑×∑×[  

   w u   =  wu ]   kjiijkkjikjkj δεδδ ∑∑∑×∑∑ [    = kj  

 w  w  w 

 u  u  u 

     

321

321

321 δδδ 

  =  

 

Proofs of Identities (Example): 

Prove the following identity 

 

)  v.u  (  w- )  w.u  (  v= ]  w [v u ××  

 

This identity will be proven for the i-component, so the summation Σi will be dropped out for the 
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sake of simplicity. 

 

(u x [v x w])i = Σj Σk εijk uj [ v x w ]k = Σj Σk εijk uj [Σl Σmεklmvl wm] = 

= Σj Σk Σl Σm εijk εklm uj vl wm 

= Σj Σk Σl Σm εijk εlmk uj vl wm 

= Σj Σl Σm (δilδjm - δim δjl) uj vl wm 

= Σj Σl Σm δilδjm  uj vl wm - Σj Σl Σm δim δjl uj vl wm  

set l=i in the first term  and m=i in the second term 

= vi Σj Σm δjm  uj wm - wi Σj Σl δjl uj vl 

  set m=j in the first term  and l=j in the second term 

= vi Σj uj wj - wi Σj uj vj 

= vi ( u . w) - wi ( u . v) 

= v (u . w ) - w (u . v )  
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VECTOR DIFFERENTIAL OPERATIONS 
 

Define first the del operator, which is a vector 

 

The Gradient of a Scalar Field: 

not commutative ∇s ≠ s∇L 

not associative  (∇r)s ≠∇(rs) 

distributive  ∇(r+s) = ∇r + ∇s 

 

The Divergence of a Vector Field: 

 

[ ] u
x

 ] . [    =   u  .  
x

j
i

jijijjj
i

i ∂
∂

∑∑∑⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∑∇ δδδδ   =  )u  .  ( i  

x
u   =  u

x
    =

i

i
ij

i
ijji ∂

∂
∑

∂
∂

∑∑ δ  

 

not commutative (∇ . u ) ≠ ( u . ∇ ) 

not associative  (∇. s ) u ≠  (∇s . u ) 

distributive  ∇ . ( u + w ) = (∇ . u ) + (∇ . w ) 

 

 

 

The Curl of a Vector Field: 

x
   =  

x
 + 

x
 + 

x
  =  

i
ii

3
3

2
2

1
1 ∂

∂
∑

∂
∂

∂
∂

∂
∂

∇ δδδδ  

x
s   =  

x
s  + 

x
s  + 

x
s   =  s 

i
ii

3
3

2
2

1
1 ∂

∂
∑

∂
∂

∂
∂

∂
∂

∇ δδδδ  
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u
x

]   [  =    ]u [ x 
x

k
j

kjkjkkk
j

j ∂
∂

×∑∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

∑×∇ δδδδj    =]  u    [  

 u  u  u 

 
x

  
x

  
x

 

     

321

321

321

∂
∂

∂
∂

∂
∂

δδδ 

  =  

 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂  

x
u - 

x
u  +  

x
u - 

x
u  +  

x
u - 

x
u 

2

1

1

2
3

1

3

3

1
2

3

2

2

3
1 δδδ  =  

 

[ ∇ x u ] = curl (u) = rot (u)    It is distributive but not commutative or associative. 

 

The Laplacian Operator: 

The Laplacian of a scalar is: 

 

x
s + 

x
s + 

x
s  =   s

x
  =  ) s . ( 2

3

2

2
2

2

2
i

2

2
i

2

i ∂
∂

∂
∂

∂
∂

∂
∂∑∇∇  

The Laplacian of a vector is: 

 

]] u    [  [ - )u  .  (   =u  2 ×∇×∇∇∇∇  

 

The Substantial Derivative of a Scalar Field: 

 

If u is assumed to be the local fluid velocity then: 

)  .(u  + 
t

  =  
Dt
D

∇
∂
∂  

 

The substantial derivative for a scalar is: 
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x
s u  + 

t
s  =  

Dt
Ds

i
ii ∂
∂

∑
∂
∂  

 

The substantial derivative for a vector is: 

 

⎟
⎠
⎞

⎜
⎝
⎛ ∇
∂
∂

∑∇
∂
∂

u ) .(u  + 
t
u   =u  )  .(u  + 

t
u  =  

Dt
u

i
i

iiδ
D  

 

This expression is only to be used for rectangular co-ordinates. For all co-ordinates: 

 

 

 

 

 

 

]][[).(
2
1).( uuuuuu ×∇×−=∇
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SECOND - ORDER TENSORS 

 

A vector u is specified by giving its three components, namely u1, u2, and u3. Similarly, a second-

order tensor τ is specified by giving its nine components. 

 

      

      

      

  =  

333231

232221

131211

τττ

τττ

τττ

τ  

 

The elements τ11, τ22, and τ33 are called diagonal while all the others are the non-diagonal elements 

of the tensor. If  τ12=τ21,   τ31=τ13,  and  τ32=τ23  then the tensor is symmetric. The transpose of  τ  is 

defined as: 

      

      

      

  =  

332313

322212

312111

*

τττ

τττ

τττ

τ  

 

If τ is symmetric then τ=τ*. 

 

 

Dyadic Product of Two Vectors: 

 

This is defined as follows: 

 wu  wu  wu 

 wu  wu  wu 

 wu  wu  wu 

  =  uw

332313

322212

312111
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Unit Tensor: 

 1  0  0 

 0  1  0 

 0  0  1 

  =  δ  

 

The components of the unit tensor are δij (kronecker delta for i,j=1,3)  

 

 

Unit Dyads: 

These are just the dyadic products of unit vectors, δmδn in which m,n=1,2,3. 

 

 0  0  0 

 0  0  0 

 0  1  0 

  =         

 0  0  0 

 0  0  0 

 0  0  1 

  =   2111 δδδδ  

 0  1  0 

 0  0  0 

 0  0  0 

  =         

 0  0  0 

 0  0  0 

 1  0  0 

  =   2331 δδδδ  

 

Thus, a tensor can be represented as: 

 

τδδτ ijjiji      =  ∑∑  

 

and the dyadic product of two vectors as: 

 

w u      =  w u jijiji δδ∑∑  
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Also note the following identities: 

 

  scalar        =  )   :  jkillkji δδδδδδ(  

 

r     vecto   =  ]  .  jkikji δδδδδ[  

 

r     vecto   =  ]   . kijkji δδδδδ[  

 
r    tenso   =     .  lijklkji δδδδδδδ  

 

 

Addition of Tensors: 

 

τδδσδδτσ ijjijiijjiji      +       =   + ∑∑∑∑  

 

)  +  (  ijijji τσδδ    = ji ∑∑  

 

 

Multiplication of a Tensor by a Scalar: 

 

)  s (       =        s  =  ijjijiijjiji τδδτδδτ ∑∑∑∑ s  

 

Double Dot Product of Two Tensors: 

 

)    (  :  )    (   =    :  kllklkijjiji τδδσδδτσ ∑∑∑∑  
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τσδδδδ klijlkji   )   :    (      = lkji ∑∑∑∑  

 

τσδδ klijjkillkji          = ∑∑∑∑

 

set  l=i  and  k=j  to simplify to: 

 

0  =  4 - 2 + 2    scalara is ch       whi      = jiijji τσ∑∑  

 

Dot Product of Two Tensors: 

 

)    (  .  )    (   =    .  kllklkijjiji τδδσδδτσ ∑∑∑∑  

τσδδδδ klijlkji   )   .    (      = lkji ∑∑∑∑  

τσδδδ klijli   )   (      = jklkji ∑∑∑∑  

)    (  jlijjli τσδδ ∑∑∑     = li  

 

Vector Product (or Dot Product) of a Tensor with a Vector: 

 

 ] ) u   ( . )     ( [  =  ]u  . kkkijjiji δτδδτ ∑∑∑ [  

 

 u  kijjki τδδ     = kji ∑∑∑  

 

 ) u   ( jijji τδ ∑∑    = i
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Differential Operations: 

 

[ ]jk  [ τδδδτ jk kj
i

ii   
x

     =  ]  . ∑∑•⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∑∇  

τδδδ jk
i

kji  
x

 ]   .  
∂
∂

∑∑∑ [      =  kji  

τδδ jk
i

k  
x

 
∂
∂

∑∑∑        = ijkji  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∑∑ τδ ik
i

ik  
x

        = k  

 

Some other identities which can readily be proven are: 

 

u 
x

 w     =u   . w k
i

ikki ∂
∂

∑∑∇ δ  

 

    u 
x

     =u   : i
j

ijji ∂
∂

∑∑∇ ττ
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INTEGRAL THEOREMS FOR VECTORS AND TENSORS 

 
Gauss - Ostrogradskii Divergence Theorem :  

If V is a closed region in space surrounded by a surface S then 

 

 dS u   =  dS )n  .u  (  = dS )u  .n  (  = dV )u  . n
SSS
∫∫∫∫∫∫∇∫∫∫  ( 

V
 

 

where n is the outwardly directed normal vector. 

 

dS sn    =  dV s 
SV
∫∫∇∫∫∫  

where s is a scalar quantity. 

 

dS ]  .n  [   =  dV ] .
S

ττ ∫∫∇∫∫∫   [ 
V

 

where τ is a tensor. 

 

The Stokes Curl Theorem: 

If S is  a surface bounded by a close curve C, then: 

 

dC  (u.t)  =  dS )n  .
C
∫×∇∫∫ ] u  x [ ( 

S
 

 

where  t  is the tangential vector in the direction of the integration and n is the unit vector normal to 

S in the direction that a right-handed screw would move if its head were twisted in the direction of 

integration along C. 
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The Leibnitz Formula for Differentiating a Triple Integral: 

 

dS )n  . u (  s + dV 
t
s  = dV  s 

dt
d

s
SVV
∫∫

∂
∂

∫∫∫∫∫∫  

 

where us is the velocity of any surface element, and s is a scalar quantity which can be a function of 

position and time i.e., s=s(x,y,z,t). Keep in mind that V=V(t) and S=S(t). 

If the surface of the volume is moving with the local fluid velocity (us=u), then 

 

dV 
Dt
Ds   = dV  s  

dt
d

VV
ρρ ∫∫∫∫∫∫  

 

where ρ is the fluid density. 
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CURVILINEAR COORDINATES 
 

Thus far, we have considered only rectangular co-ordinates x, y and z.  However, many times 

in fluid mechanics it is more convenient to work with curvilinear co-ordinates. The two most 

common curvilinear co-ordinate systems are the cylindrical and the spherical.  In this development, 

we are interested in knowing how to write various differentials, such as  ∇s, [∇xv], and (τ:∇v) in 

curvilinear co-ordinates. It turns out that two are the useful tools in doing this 

a. The expression for ∇ in the curvilinear co-ordinates. 

b. The spatial derivatives of the unit vectors in curvilinear co-ordinates. 

 

Cylindrical Coordinates 

There a point is located by giving the values of r, θ, and z 

instead of x, y, and z which is the case for the Cartesian co-

ordinates. From simple geometry one may derive the 

following expressions between these two systems of co-

ordinates. These are: 

 

 

z=z            z          =z 
 

 (y/x)  =           rsin =y 
 

 y + x+ = r          r = x 22

arctan

cos

θθ

θ

 

 

To convert derivatives with respect to x, y, and z into derivatives with respect to r,  θ, and z, the 

"chain"rule of differentiation is used. Thus one may derive 

 

z
(0) +  

r
- + 

r
)( = 

x ∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
θθ sincos  

(x,y,z) or (r,θ,z) 

z 

y 

x 

θ 
r 
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z
(0) +  

r
 + 

r
)( = 

y ∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
θθ cossin  

 

( )
z

) 1 ( +  0  + 
r

) 0 ( = 
z ∂

∂
∂
∂

∂
∂

∂
∂

θ
 

 

With these relations, derivatives of any scalar functions with respect to x, y and z can be expressed 

in terms of derivatives with respect to r, θ and z. Now we turn out attention to the interrelationship 

between the unit vectors. We note those in the Cartesian coordinates as δx, δy, and δz and those in 

the cylindrical coordinates as δr, δθ, and δz. To see how these are related consider the Figure below 

where it can be seen that as the point P is moving in the (x,y) plane the directions of δr, δθ change. 

Elementary trigonometrical arguments lead to the following relations: 

 

δδθδθδ zyxr  (0) +  )sin( +  )cos( =  

 

δδθδθδθ zyx  (0) +  )cos( +  )sin(- =  

 

δδδδ zyxz  ) 1 ( +  ) 0 ( +  ) 0 ( =  

 

 

These can be solved for δx, δy, and δz to result 

 

δδθδθδ θ zrx  (0) +  )sin - ( +  )cos( =  

 

δδθδθδ θ zry  (0) +  )cos( +  ) sin ( =  

 

δδδδ θ zrz  ) 1 ( +  ) 0 ( +  ) 0 ( =  

 

Vectors and tensors can be decomposed into components in all systems of co-ordinates just as with 

P(x,y) or P(r,θ) 

y 

x 

δθ 
δy 

δr 

δx 
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respect to rectangular co-ordinates discussed previously. For example: 

 

) w v - w v (  + ) w v - w v (  + ) w v - wv (   =  ]  w v rrzzrrzzzr θθθθθ δδδ× [  

 

... + ) . (   + ) . (   + )  +  +   (   = )  . zrrzrrzrrrrrrrrr δδδδτσττστσδδτσ θθθθ (  

 

Spherical Coordinates 

The spherical co-ordinates are related to rectangular by the following relations 

 

 

 

 
Figure: A Spherical system of co-ordinates 

 

 

 

 

(y/z) =                    rcos =z 
 

 )/z y + x (  =            rsin =y 

 
 z + y + x+ = r            r = x

22

222

arctan

arctansin

cossin

φθ

θφθ

φθ

 

 

The derivative operators are as follows: 

 

φθ
φ

θ
φθφθ

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂  

 r
- +   

r
 - + 

r
)   ( = 

x sin
sincoscoscossin  

φθ
φ

θ
φθφθ

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂  

 r
 +   

r
  + 

r
)   ( = 

y sin
cossincossinsin  

θ 

 φ 

z 

y 

x 
rsinθ 

P(x,y,z) or (r,θ,φ) 

r 
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φθ
θθ

∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ) 0 ( +   

r
 - + 

r
)  ( = 

z
sincos  

 

The relations between the unit vectors are: 

 

δθδφθδφθδ zyxr  ) cos ( +  ) sin sin( +  ) cos sin( =  

 

δθδφθδφθδθ zyx  )sin(- +  )sin cos( +  ) cos cos( =  

 

δδφδφδφ zyx  ) 0 ( +  ) cos ( +  ) sin - ( =  

 

These can be solved for δx, δy, and δz to result: 

 

δφδφθδφθδ φθ  ) sin- ( +  ) cos cos ( +  ) cos sin( = rx  

 

δφδφθδφθδ φθ  ) cos ( +  ) sin cos ( +  ) sin sin ( = ry  

 

δδθδθδ φθ  ) 0 ( +  ) sin- ( +  ) cos ( = rz  

 

Some example operations in spherical co-ordinates are: 

 

 +  +  +  +  +  +  = )  : rrrrrrrrrr τστστστστστστσ φθθφθθθθθθφφθθ (  

 

τστστσ φφφφθφφθφφ +++ rr
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 w  w  w 

 v  v  v 

 u  u  u 

  =  ) ]  x w v[ .u 

r

r

r

φθ

φθ

φθ

 (

 

These examples tells us that the relations (not involving ∇!) discussed earlier can be written in terms 

of spherical components. 

 

DIFFERENTIAL OPERATIONS IN CURVILINEAR COORDINATES 

The operator ∇ will now be derived in cylindrical and spherical co-ordinates. 

 

Cylindrical: 

The following relations can be obtained by differentiating the relations between the unit 

vectors in the cylindrical co-ordinates with those in the Cartesian ones. 

0 =  
z

  0 =  
z

  0 =  
z

 

 0 =    - =     =   

 0 =  
r

  0 =  
r

  0 = 

zr

zrr

zr

δδδ

δ
θ

δδ
θ

δδ
θ

δδδ

θ

θθ

θ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂  
r

 

 

The definition of ∇ in Cartesian co-ordinates is: 

 

z
  + 

y
  + 

x
   =  zyx ∂

∂
∂
∂

∂
∂

∇ δδδ  

 

Substituting δx, δy, and δz in terms of δr, δθ, and δz and simplifying we obtain ∇ for cylindrical co-

ordinates, that is: 
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z
  +   

r
1  + 

r
   =  zr ∂

∂
∂
∂

∂
∂

∇ δ
θ

δδ θ  

 

Spherical Coordinates 

The following relations can be obtained by differentiating the relations between the 

unit vectors in the spherical coordinates with those in the Cartesian ones. 
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The definition of ∇ in Cartesian co-ordinates is: 

 

z
  + 

y
  + 

x
   = zyx ∂

∂
∂
∂

∂
∂

∇ δδδ  

 

Substituting δx, δy, and δz in terms of δr, δθ, and δφ,  and simplifying we obtain ∇ for spherical co-

ordinates, that is: 
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∇  
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r
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For more details see: 

1. R.B. Bird, W.E. Stewart and E.N. Lightfoot, "Transport Phenomena," Wiley, New York,  1960. 

2. R.B. Bird, R.C. Armstrong  and O. Hassager, "Dynamics of Polymeric Liquids," Vol.1,       "Fluid 

Mechanics," Wiley, New York, 1977. 
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INTRODUCTION - FUNDAMENTAL CONCEPTS 
 
Definition of a Fluid 

All forms of matter can be classified in terms of their physical appearance or phase into three 

classes: solids, liquids and gases. Liquids and gases are called fluids. A fluid is defined as "a 

substance that under the action of an infinitesimal force deforms permanently and continuously.  

Consider that the space between two parallel plates is 

occupied by a fluid (Fig. 1a). If a small force is 

applied on the upper plate, then the plate will move 

with a constant velocity, V. As a result, the fluid will 

deform permanently and continuously. If instead a 

solid is placed in the space between the two plates and 

the same force is applied, the solid will be deformed 

by a certain amount, indicated by the displacement, 

∆x, in Fig.1b. This displacement will remain there as 

long as the force is not removed.  The above 

behaviour is customarily indicated by plotting (F/A-

shear stress vs dh/h-rate of strain) for fluids and (F/A 

vs ∆x/h-strain) for solids. 

Continuum Hypothesis 

It is possible to study the flow of gases and liquids (fluids) from the molecular point of view 

by writing the appropriate equations for each molecule and taking into account all molecular 

interactions. However, mathematically this is a very complex problem and very impractical for most 

engineering applications. It is possible to describe many flow problems without a detailed 

knowledge of molecular motions and interactions, by introducing the continuum hypothesis. 

According to this we assume that at every point in the region occupied by a deformable material the 

state of that material can be described in terms of the velocity components, vi, and material 

properties such as T, p, ρ, and µ .     

However, we know that matter consists of discrete molecules. The precise location defined 

Fluid 

Solid 

 h 
t t1 t2 

to<t1<t2 

F

∆x 

F

a. 

b. 

Fig 1
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by the coordinates, x, y, and z may correspond in reality to a point within a molecule or to a point in 

the open space between molecules. In the former case density is very high and in the latter density is 

zero. T and p have also no meaning in either case, as they are associated with statistical averages 

involving many molecules. However, for practical purposes, it is still possible to make use of the 

concept of a continuum as long as there exist a volume size that is sufficiently small that spatial 

derivatives can be defined but also sufficiently large that there are enough molecules to give 

averages that converge to unique values of the field variables. See Fig.2, which utilises the density to 

illustrate the concept of the continuum. 

 
Elemental     
Volume, δV    ρ 
mass,  δm 

 
 
 

δV*=10-9 mm3  
 

Region containing fluid     δV 
 
 Fig.2 
 
 

A criterion used to evaluate the validity of the continuum approach is based on Knudsen 

number, Kn/(mean free path of molecules)/(characteristic length of flow), so that 

Kn < 0.01 continuum approach valid 

Kn > 0.1 must use statistical approach 

At intermediate values, we can sometimes use continuum equations with modified boundary 

conditions involving a relaxation of the no-slip boundary condition. For an ideal gas the mean free 

path is proportional to T / p. 

 

Compressibility 

Compressibility defines the ability of a fluid to change its density under the action of 

pressure. It is defined as the inverse of the bulk modulus, that is 

 

V
m     =  

*VV δ
δρ

δδ
lim
→
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dp
d1  =  

dP
d1-  =  

E
1  =  ρ

ρ
υ

υ
β

~
~

 

where β is the compressibility, υ~  is the specific volume and ρ is the density of the fluid. For liquids 

the bulk modulus is very high (water at 200C, E=2,140,000 kPa), so that the change of density with 

pressure is negligible. In analysis of flows, liquids are treated as incompressible fluids. For gases at 

low speeds compared to the speed of sound the density changes are also small. Thus for gas flow a 

useful measure of the role of compressibility is the Mach number defined as: 

 

     
C
U    Ma ≡  

 

where U is the characteristic velocity of problem and C is the velocity of sound in the fluid. For an 

ideal gas, the velocity of sound is given by: 

 

    
M
RT  =  C γ  

 

where M is the molecular weight of the gas, γ is the specific gravity, and R is the gas constant. If Ma 

< 0.3 one may neglect the density changes occurring due to compressibility effects.  

Finally note that density gradients may also arise from temperature gradients (viscous 

heating) and composition in situations where heat and mass transfer are occurring (taking place). 

 

No-Slip Boundary Condition  

Experiments have shown that a fluid adjacent to a solid interface cannot slip relative to the 

surface. This is true no matter how small the viscosity is. This was basically concluded from the fact 

that the use of the no-slip boundary condition has led to predictions, which agreed very well with 

experimental observations. Thus, 

    wallfluid vv =  
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    y         

          
 

       v S  

     b 
 

which implies no relative motion between the wall and the fluid. The no-slip boundary 

condition for Newtonian fluids was the subject of some controversy among nineteenth-century 

theoreticians who tried to formulate such slip laws (for example Navier proposed such a model). It 

was rather difficult to accept the no-slip condition for fluids that do not "wet" adjacent solid surfaces 

like water on wax. However, the wetting phenomenon is related to the surface tension which has 

absolutely nothing to do with the no-slip condition.  

Gases at extremely low pressures do not obey the no-slip condition and are the subject of a 

special field of study called rarefied gas dynamics. In addition some rheologically complex fluids 

exhibit a slip at the wall under certain conditions. For example, molten polyethylenes of high 

molecular weight have been found to slip when the wall shear stress exceeds a critical value usually 

about 0.1 MPa. For example for the case of a passive polymer/wall interface (no interaction between 

the polymer and solid surface), de Gennes [C.R. Acad.Sci. Paris serie B, 288, 219-222 (1979)] 

proposed an interfacial rheological law in terms of an extrapolation length, b, as follows (inspired by 

Navier), 
.

0
ww

y

y
S

bb
dy
dv

bv σ
µ

γ ⎥
⎦

⎤
⎢
⎣

⎡
==⎥

⎦

⎤
⎢
⎣

⎡
=

•

=

 

 

 

 

 

 

   

 

where vS is the slip velocity,  wγ
•

 is the shear rate at the wall (the slope of the velocity profile at 

the interface, see Figure above), and µ is the viscosity of the melt at wγ
•

. 
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Surface Tension 

At the interface between a liquid and a gas, or between two immiscible liquids, forces 

develop which relate the anisotropy of the interactions between liquid molecules in the case of a 

liquid-liquid interface. 

 

For molecules in the interior (bulk), 

interactions are isotropic and the net force on each 

liquid molecule vanishes. This is not the case for 

molecules at the interface. These are attracted more in 

the interior of the liquid than by gas molecules such 

that a nonzero net force results. 
 

 

Fig.3 
 

 

 

As a result of these forces a small amount of  

mercury forms an almost spherical droplet or a small 

amount of water forms a spherical droplet on a waxed 

surface. If such a droplet is cut half, there, there is the 

action of a force per unit length (surface tension) and 

this is balanced from the pressure force. If ∆p = pB-pA 

where pB: interior pressure, pA:exterior pressure, the 

net pressure force is: 
Fig. 4 

 

   
R
 2  =  p      or     R  2  =  R   p 2 σσππ ∆∆   

This pressure difference is called the capillary pressure, which is due to the surface tension. Note 

F=0 

F≠0 
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that the pressure inside a drop is greater than the pressure outside the drop. 

These principles can also be generalised for  2-dimensional surfaces to produce the Young-

Laplace equation of capillary 

   ⎟
⎠

⎞
⎜
⎝

⎛
∆  

R
1 + 

R
1   =  p 

21

σ  

where R1, and R2 are the two principal radii of curvature of the 2-dimensional surface. 

(1) For a plane surface: R1 = R2 = ∞  

∆p=0  or  pA = pB (For plane interfaces there is no pressure   

    jump). 

 

 

(2) For a sphere:  R1 = R2 = R  

∆p=2σ/R  or  pB - pA = 2σ/R (For this case there is a pressure  

    jump from the inside to outside). 

 

 

 

(3) For a cylinder:   R1 = 0  and R2 = R  

pB - pA = σ/R (For cylindrical  interfaces there is also a pressure  

    jump from the inside to outside). 

   

 

 

B 
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Among common phenomena 

associated with surface tension is the 

rise (or fall) of a liquid in a capillary 

tube. The height h can be predicted if 

one considers the forces acting on the 

interface. The tension along 2πR 

should balance the weight of the liquid 

column, that is 
    Fig. 5: Rise of liquid in a capillary tube 

 

gR 
   2  =  h     or         R  2  =  h R g 2

ρ
θσθσππρ coscos  

Measuring h, and θ, one may use this equation as a 

method to determine the surface tension.  

Surface tension plays a significant role in a 

diversity of small-scale slow flows, as well as in 

immiscible liquids under equilibrium. 

Liquid volumes tend to attain spherical shapes 

that exhibit the minimum surface-to-volume ratio, the more so the higher their surface tension. 

-Movement of liquids through soil and other porous media, flow of thin films, formation of drops 

and bubbles, breakage of liquid jets. 

-Formation and stabilisation of thin films, also surface tension controls levelling and spreading of 

liquids on substrates with application to spray coating or painting. 

-Enhanced oil recovery. Crude oil is trapped in underwater porous natural reservoirs, confined 

between impermeable rock layers). 

θ
A

h 

ρπR2h 

2πRσ 
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KINEMATICS 
Kinematics comes from the Greek word kinesis, which means motion.  It is defined as the 

science that deals with the study of motion without making reference to the forces that cause motion. 

It is essential for: 

- The development of a quantitative theory of Fluid Mechanics. 

- The interpretation of data obtaining using various visualisation experimental methods. 

 

Streamlines, Pathlines, Streaklines and Timelines 

Four generally different types of curves are considered in the study of fluid motion: the 

streamlines, pathlines, streaklines and timelines. The curves describe various aspects of fluid motion. 

 

Streamline: It is a line in space that is everywhere tangent to the velocity vector at every instant of 

time. 

Consider the velocity V at some point with components  V = 

(u, v, w)=(vx, vy, vz), and an infinetesimal arc length along the 

streamline  ds = (dx, dy, dz). The velocity, V, at that point is 

parallel to ds, so that  V x ds = 0. From this, one may derive 

the following equation for the streamline.v 

 
                  Fig. 6 

 

    
vvv zyx

dz  =  dy  =  dx
 

 

Note that the form of this parametric equation is f(x, y, z)=0. 

 

Pathline: It is the actual path traversed by a given fluid particle. The position of this line depends on 

the particle selected and the time interval over which this line is traversed by the particle. The 

ds 

V
r

V
r
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equations for the pathline are as follows: 

 
Pathline 

t = t'  

 

t = 0 

 

   

    1,2,3=i  for     )x ,x ,x(  =  
dt
dx

321
i vi  

 

Integrating these equations one may obtain the parametric equations for the pathline: 

 

    (t)x  =  x     (t)x  =  x     (t)x  =  x 332211  

 

A pathline may be identified by a fluid with a luminous dye injected instantaneously at one point and 

take a long exposure photograph (shutter open). 

 

Streakline: It is the line joining the temporary location of all the particles that have passed through a 

given point in a flow field. A plume of smoke or dye injected at one point gives a streakline. Fig. 7 

below illustrates pathlines and streaklines for an unsteady flow. Note that for a steady state flow all 

streamlines, pathlines and streaklines coincide. 

 

 

 

 
      Fig. 7 
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Timeline: At time t=t0 a set of fluid particles is marked and the subsequent behaviour of the lines 

thus formed is monitored. 

 

 
timelines at different times 

 

t0 t1 t2 

 

Fig. 8 

 

 

EULERIAN  VERSUS LANGRAGIAN POINTS OF VIEW 

Two approaches are possible for the study of fluid motion, namely the Langrangian and the 

Eulerian approach. The Langrangian approach is based on an analysis of the motion of a particular 

collection of matter (particles). For each of the particles the following two fundamental principles 

can be applied: 

- Conservation of mass (mass of the body cannot change with time) 

 

    0  =  
dt
dm  

 

- Newton's second law of motion (The rate of change of the momentum of the particle is 

equal to the sum of all forces acting on that particle). 

 

    F   =  
dt
dV m i∑  

 

This description is not very convenient to analyse fluid motion and it is used mainly in particle 

mechanics. In continuum mechanics this method requires the description of motion of a large 

number of particles and the mathematical problem to solve becomes cumbersome. For deformable 
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materials the Eulerian approach is more convenient where our focus of interest is generally a fixed 

region of space through which the material moves, rather than a particular body of material. We are 

interested to determine ρ, V, T and p  at various positions in the space (field variables). For example, 

it is the function p(x, y, z, t) that is of interest (Eulerian approach), rather than how the pressure of a 

particular fluid particle changes as a function of time (Langrangian approach). 

To transform the above two equations (conservation of mass and momentum) from the 

Langrangian to the Eulerian point of view, we need two tools: 

1. The material or substantial derivative operator. 

2. The Reynolds transport theorem. 

 

THE MATERIAL DERIVATIVE 

Let us consider a fluid property or a field variable φ, which is a function of position and time, 

that is: 

   ) t z, y, x, (   =  φφ  

 

we wish to derive an expression that relates the rate of change of φ with time, for the particular fluid 

element that happens to be located at  (x, y, z) at the time t. This can be found as follows. The total 

derivative is 

 

   dt 
t

 +dz  
z

 +dy  
y

 + dx 
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∂
∂

∂
∂

∂
∂

∂
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and dividing by dt, the total derivative now becomes 
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Note that dx/dt=vx, dy/dt=vy, and dz/dt=vz, then 



 
 

 

40 

 

   
t

 +  
z

 +  
y

 + 
x

  =  
dt
d

∂
∂

∂
∂

∂
∂

∂
∂ φφφφφ

vv v zyx

 

or in a vector notation 

 

    
t

 +   . V
∂
∂

∇
φφφ   =  

dt
d  

 

To distinguish the Eulerian time rate of change from the Langrangian one, some authors use the 

symbol  D/Dt, i.e. 

    ∇
∂
∂  . V + 
t

  =  
t D

D  

 

This derivative is usually called the material or substantial derivative. If the field variable is the 

velocity itself   V, then the acceleration in the Eulerian frame is: 

 

   
t

 +  
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∂

∂
∂ VVVVV

vvv zyx  

 

The partial derivative ∂V/∂t is the acceleration in the Langrangian frame. Note for  steady flow 

∂V/∂t=0, however, DV/Dt is not always zero for steady flows. For example in a converging channel, 

where the convective acceleration terms are not zero, in spite of the fact that the local or temporal 

acceleration is zero. 
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THE REYNOLDS TRANSPORT THEOREM 

Suppose that our control volume VC=VS(t) at time t is 

the one in Figure 9. Due to the bulk motion this 

moves and deforms, so that after a time interval of dt 

takes a new shape VC=VS(t+dt). We wish to  

 

 
Fig. 9  

 

find a relationship between the rate of change of a volume integral over a moving system consisting 

of particular fluid elements, and operators involving an integral over a fixed volume in space. In 

other words express a time derivative following a fluid body (Langrangian frame) in terms of 

field variables described in the Eulerian frame. Thus, we are interested to express derivatives of 

the following form, 

 

    dV t)z,y,(x,     
dt
d

(t) V S

φ∫  

 

in terms of derivatives involving an integral over a fixed volume in space. Note that if φ=ρ the above 

integral gives the rate of change of the mass in the control volume, and if φ=ρV then the integral 

represents the rate of change of the momentum of the fluid in the control volume. Therefore this type 

of integral will be very useful to use in deriving the equation of fluid mechanics. 

Because VS is a function of time, we cannot simply move the derivative inside the integral 

and replace VS(t)  by  VC. To do this, one may use the definition of derivative, that is 
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Add and subtract in the above equation  
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Thus the right-hand side becomes 
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Because the limits are the same and as  δt → 0 then VS (t) → VC.  This explains why we have 

replaced VS(t) with VC in the above integral, or we can say that at time t: VS(t)=VC. 

Also, 

dV  ) t  + t (  
VV
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However, 

 

    dAt   ) V .n δ(  =  dV  

 

Thus, the volume integral becomes a surface integral 
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Dividing by δt and taking the limit 
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As δ t → 0, then AS →AC. 

Using now the Gauss theorem 
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This is the Reynolds transport theorem. 
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THE CONTINUITY EQUATION 

 

The law of conservation of mass tells us that the mass of a particular collection of material particles 

cannot change. From the Langrangian point of view this can be expressed mathematically as: 

 

     0  =  dV    
dt
d

) t ( V S

ρ∫  

 

where VS ( t ) is a function of time due to the motion of the fluid. Using the Reynolds transport 

theorem and substituting  ρ  for  φ, then the above equation becomes 
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or using index notation 
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This is the continuity equation for a Cartesian Co-ordinate System. For a fluid with constant density 
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Other Co-ordinate Systems 

 

1. Cylindrical 
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2. Spherical 
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STREAM FUNCTIONS 

For two dimensional and axisymmetric flows, the continuity can be used to show that the 

complete velocity field can be described in terms of a single, scalar field variable, which is called 

streamfunction, ψ(x, y, t). In this development, we will consider only the case of constant-density 

flow. 

 

2-D  Case 

In a 2-D flow the velocity components are: vx (x, y), and vy (x, y). Thus for steady state,  

incompressible flow the continuity reduces to 
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This implies the existence of a scalar function, ψ (x, y) whose total differential is: 

  dy
y

dx
x

dordx  -dy    =  d
∂
∂

+
∂
∂

=
ψψψψ vv yx  

 

It can be seen that: 
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where ψ(x, y) is called the Langrange stream function. 

Consider a line along which ψ  is a constant: 
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This is the Equation for the streamline. Thus, streamlines are lines of constant ψ. 

 

Axisymmetric Flow 

In these type of flows no velocity gradients exist in the θ direction. Thus the continuity 

equation for steady incompressible flow reduces to 
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This can be rearranged to give 
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where  ψ(r,z) is called the Stokes stream function. 

 

in spherical coordinates, the Stokes stream function is defined by 
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THE MOMENTUM EQUATION 
 
Newton's second law of motion is: 

 

or using index notation, 

If this equation is applied for a fluid system consisting of a particular set of fluid elements then one 

may write: 

 

where VS (t) is the volume of space occupied by the fluid system at time t. This equation is based on 

a Langrangian description of the flow (follow the behaviour of a particular set of fluid elements over 

a period of time). As discussed previously, in fluid mechanics we prefer a description in terms of 

field variables. In other words we focus our attention at a specific space in the flow field and 

calculate the field variables such as p, V, and ρ. This is the Eulerian description. The above equation 

can be transformed by using the Reynolds transport theorem. Thus, 
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The second and third terms are 

From continuity this is zero. Now, using the notation for the material or substantial derivative one 

may write 

 

Then Newton's second law in the Eulerian form is 

There are two types of force that can act on the system, body and surface forces. Thus, 

 

THE BODY FORCE 

The body force acts directly on the whole mass of the fluid element. This can be gravitational 

or electromagnetic (conducting fluid). In this development we will only consider the gravitational 

body force. The gravitational force per unit mass, G, is derivable from a potential,  gh, where g is the 

acceleration of gravity and h is the vertical distance above a reference plane. 
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Assume g constant (not a function of h) for practical fluid mechanics problems 

 

Thus, the body force can be expressed as: 

 

THE SURFACE FORCE (For more details see R. Aris "Vectors, Tensors and the Basic Equations 

of Fluid Mechanics". 

 

Represent the surface force, FS, in terms of a volume integral over some function of a field 

variable. This field must describe the state of stress at a point (force per unit area). 

Consider a surface element of the field system. 

 

f  f  = surface force vector acting on the element 

point P  n  n = outer-directed unit vector at point P 

 
Area = δA 
  Fig. 10 

 

 

Cauchy's stress principle asserts that  f /δA, tends towards a limit as δA → 0. This limit is called 

the stress vector. 
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The orientation of the surface is specified by giving the vector n. 

For local equilibrium the Newton's law of action and reaction applies. 

Thus, 

 

However, since the components of t depend on n, it appears that to describe completely the 

state of stress at point P, it is necessary to give the values of the components for every possible 

orientation of the surface, i.e. for every direction of the normal vector n. 

Fortunately, this is not the case. If the components of t are known for any three, 

perpendicular, unit normal vectors, the components of t can be found for any other direction of the 

unit normal vector. 

Consider the small tetrahedron. Sides 1,  

       2, and 3 are perpendicular to the   

       co-ordinate axes, while the fourth has an  

       area δA. 
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The net surface force acting on this element is: 

 

The minus signs are coming from: 

The areas can be expressed as:  δAi = ni δA 

Thus, we may write 

 

If the tetrahedral fluid element shrink in volume toward a point P, then the net surface force 

will approach 0 (principle of local equilibrium). Thus, the above equation simplifies to 

 

Thus, in order to describe completely the state of stress at a point in a continuum, we must 

specify the components of the three stress vectors (9 components). Therefore, 
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dA  )  .n  (    =  F
A

S σ∫  

 

σij i  indicates the co-ordinate axis that is normal to the face the stress acts on. 

j  indicates the direction in which the force is acting. 

 

Using the divergence theorem of Gauss 
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CAUCHY'S EQUATION 

Substituting Fs  and FB in Newton's second law written in a Eulerian frame, we obtain: 

 

or 

 

or 

This is called  Cauchy's equation. In the following pages, this equation is given in expanded form 

in Cartesian, Cylindrical and Spherical coordinates. 
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CAUCHY's EQUATION IN RECTANGULAR COORDINATES (x, y, z) 

 

 

x - component 

 

 

y - component 

 

 

z - component 
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CAUCHY's EQUATION IN  CYLINDRICAL COORDINATES (r, θ, z) 

_______________________________________________________________________ 
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CAUCHY's EQUATION IN  SPHERICAL COORDINATES (r, θ, φ) 
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ROLE OF RHEOLOGY IN FLUID MECHANICS 
The Equations we have developed so far, the continuity and the Cauchy's equations are not 

sufficient to solve a boundary value problem involving the motion of a deformable material. We 

need an additional relationship that describes how the material deforms when under stress. In other 

words additional equations relating the stress tensor components to deformation rates are required. 

These type of relations are called rheological equations of state or simply constitutive equations. 

Rheological constitutive equations are material dependent and must be determined by 

experiment or from a valid molecular theory. Here in this course, we will consider a constitutive 

equation for an incompressible fluid that is inelastic, has no yield stress and whose structure is time- 

and deformation rate-independent. Such a fluid is called a Newtonian Fluid. Single-phase liquids of 

low molecular weight are usually Newtonian fluids, i.e., most gases, water, glycerine, etc., 

 

The Viscous stress: For a fluid at rest, all the components of the stress tensor are not zero. For such 

a fluid, the stress tensor is isotropic, and its components are: 

or 

 

Thus there is a contribution to the stress tensor that is not related to the motion of the fluid. 

This contribution is thus not relevant to the rheological constitutive equation. To account for this, we 

define a "viscous stress" ("extra stress") as follows: 
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Thus in a fluid at rest the viscous stress, τ, is 0. Thus, now Cauchy's equation can be 

rewritten in terms of the viscous stresses as follows: 

 

In the following pages the Cauchy's equation is written in terms of viscous stresses in 

Cartesian, Cylindrical and Spherical coordinates. To solve this equation along with the continuity, 

expressions for the viscous stresses are needed in terms of the kinematics of flow (as discussed 

before rheological equations of state or simply constitutive equations).  

The rheological constitutive equations can be classified according to the type of mechanical 

behaviour described by the equation. Specifically, the viscous stress at time, t, τ(t), in a material 

element may depend on one or more of the following features of deformation history of that material 

element.  

 

Deformation at time t 

Purely elastic material 

 

Rate of deformation at time t 

Purely viscous material 

 

Deformation at past times t' (where  -∞ < t' < t ) 

(a) Material exhibiting structural time-dependency 

(b) Viscoelastic material 

 

In this course of fluid mechanics we will be concerned only with the case of purely viscous 

material with focus on the Newtonian fluid. 
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CAUCHY's EQUATION IN RECTANGULAR COORDINATES (x, y, z) 

 

 

x - component 

 

y - component 

 

 

z - component 
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CAUCHY's EQUATION IN  CYLINDRICAL COORDINATES (r, θ, z) 
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CAUCHY's EQUATION IN  SPHERICAL COORDINATES (r, θ, φ) 
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ANALYSIS OF DEFORMATION 

In this section, we seek a relationship to describe the deformation undergoing by elements in 

flowing fluids and then relate those with the stress tensor to result constitutive equations. It is noted 

that such deformation measures should be symmetric tensors in order to be able to relate them with 

the stress tensor, which is also symmetric.   

Consider the system depicted in the Figure below undergoing deformation. To describe this 

deformation, we first seek the motion of point P relative to C. The difference between the x-

component of the velocity vx at points P and C, which are considered to be very close, is: 

 

 

 

 

 

 

 

 
 Fig. 11 

In general using index notation to also include the other two components,  

The motion of P relative to C depends, therefore, on the nine components dvi/dxj and may be 
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or 

where ∇V is the gradient of the velocity tensor (not a symmetric tensor), which is not a very good 

choice to be related with the stress tensor (symmetric tensor). As an example consider simple shear:

      The velocity components are: 

 

 

 
Fig 12 
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which is not symmetric. Also this tensor is not zero for rigid body rotation where clearly there is no 

rV d .  

z
v  

y
v  

x
v 

 
z
v  

y
v  

x
v 

 
z
v  

y
v  

x
v 

  =  

zzz

yyy

xxx

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

 d  

rV d.V = ∇d  

 0  0  0 

 0  0  0 

 0    0 

  =   

γ&

V∇  

0vv
v

32

21

==
= xγ&

1 

2 h 



 
 

65

deformation. 

The relative motion described by the previous equations results from the combined effects of 

rotation and deformation. Rotation is not a result of shear stresses but is only due to the normal 

stresses. Since a relation is sought between the stress tensor and the rate of deformation, the effect of 

rotation should be eliminated from the above relation. 

From rigid body theory, one may prove that the rotational velocity dVrot is given by 

 

where 

 

is the rotation tensor (not symmetric) which describes the rotation of fluid elements in flows. Two 

times of this tensor gives the vorticity tensor, ζ, that is   ζ = 2ω. 

Having calculated the rotation contribution to the motion of the fluid elements, one may 

write: 
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The above tensor is called the rate of deformation tensor, γ& , which is a symmetric tensor as should 

be and can be put in the following form 

 

or 

 

where ∇VT is the transpose of the velocity gradient tensor. 

As an example consider simple shear as obtained by means of a sliding plate rheometer (see 

above Fig.12). The shear rate, γ& , is defined as the ratio of the velocity of the upper plate to the gap 
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which is clearly a symmetric tensor. It can be proved that this tensor is equal to zero for solid body 

rotation as it should be (no deformation). Thus, the tensor γ&   is a good choice for measuring the 

deformation rate of fluid elements. 

In the following pages the components of  rate-of-deformation tensor are given in Cartesian, 

Cylindrical and Spherical co-ordinates. 
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COMPONENTS OF  γ  IN CARTESIAN COORDINATES (x, y, z) 
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COMPONENTS OF  γ  IN CYLINDRICAL  COORDINATES (r, θ, z) 

 

 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
γγ θθ

vv rθ

r
1 + 

r
/r)(r 

2
1 =  = r  r &&  

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

z
 + 

r
 

2
1 =  = rz z r

vv rzγγ &&  

r
 + 

r
1 =  

vv rθ

θ
γ θθ ∂

∂
&  

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
γγ θθ

vv zθ  
r
1 + 

z
 

2
1 =  = z z &&  

z
 = zz ∂
∂vzγ&  

r
 = rr ∂
∂vrγ&  

. 



 
 

70

 

COMPONENTS OF  γ  IN SPHERICAL  COORDINATES (r, θ, φ) 

 

 

r
 = rr ∂
∂ vrγ&  

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

θ
γγ θθ

vv rθ

r
1 + 

r
/r)(r 

2
1 =  = r   r &&  

 

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
∂
∂

r
/r)(

 r +  
  r

1 
2
1 =  = r   r

vv
sin

φr

φθ
γγ φφ &&  

 

 
r

   + 
r

 +  
  r

1 =   
θ

φθ
γ φφ

cotvvv
sin

θrφ

∂
∂

&

 

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

∂
∂

φθθ
θθ

γγ θφθφ
v

sin
sinvsin θφ  

  r
1 + 

) /(
 

r
  

2
1 =  =  &&  

 

 

r
 + 

r
1 =  

vv rθ

θ
γ θθ ∂

∂
&

. 



 
 

71

THE NEWTONIAN FLUID 

 

Newtonian fluid is defined as the one, which satisfies the following relationship 

or in index notation 

 

which implies that the stress tensor in such a fluid is proportional to the rate-of-deformation tensor 

with the coefficient µ to be the viscosity of the fluid. This is Newton's law of viscosity. In the 

following pages the components of the stress tensor for an incompressible Newtonian fluid are 

given.  
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COMPONENTS OF  τ  IN CARTESIAN COORDINATES (x, y, z) 
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COMPONENTS OF  τ  IN CYLINDRICAL  COORDINATES (r, θ, z) 
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COMPONENTS OF  τ  IN SPHERICAL  COORDINATES (r, θ, φ) 
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NON-NEWTONIAN FLUIDS 

Fluids, which do not obey Newton’s law of viscosity, are called non-Newtonian fluids. Gases 

and single-phase low molecular weight liquids are Newtonian fluids (water, glycerine, and ethanol).  

However, many other commercially important materials are non-Newtonian fluids (slurries, 

paints, foodstuffs, and molten polymers). Some of these fluids simply exhibit non-linear viscous 

effects, while others show effects of "memory" which are related to their viscoelastic behaviour. In 

general phenomena exhibited by non-Newtonian fluids include: 

i. Shear rate dependent viscosity (non-linear viscous effect) 

ii. Yield stress 

iii. Time-dependent structure 

iv. Elasticity 

 

Shear rate dependent viscosity: 

This is the simplest case of non-Newtonian behaviour, where the viscosity depends on the 

rate deformation. The most common type of behaviour is when the viscosity decreases with an 

increase of the shear rate. Materials exhibiting such behaviour are said to be "shear-thinning" or 

"pseudoplastic". Less commonly encountered behaviour is the increase of viscosity with increase 

of the shear rate ("shear-thickening" or "dilatant"). Molten polymers are shear-thinning fluids, 

while some concentrated suspensions behave as shear-thickening ones. Figure 13 illustrates the 

behaviour of a Newtonian, shear-thinning, shear thickening and a plastic fluid (see below) in a shear 

stress versus shear rate plot. Note that the viscosity is given by the local slope of the curve. 

To model such behaviour the "power-law" viscosity model is frequently employed, that is: 

 

where η is the non-Newtonian viscosity given by: 

 

γτ & = η  
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 Fig.13 
 

where K is the consistency index, n is the power-law exponent and |γ| is the magnitude of the rate-

of-deformation tensor given by ( )γ:γ && . The different types of behaviours are obtained as follows: 

n=1 Newtonian 

n>1 Dilatant or shear-thickening 

n<1 Pseudoplastic or shear-thinning 

 

Yield Stress and Plasticity: 

The existence of yield stress is frequently encountered in the rheological behaviour of 

concentrated suspensions. This is some critical value of the shear stress below, which the material 

does not flow. For shear stresses greater than this critical stress the material may behave as a 

Newtonian, pseudoplastic or dilatant. Materials exhibiting such a behaviour are said to be "plastic". 

The simplest type of plasticity is the one which follows the Bingham model, that is: 

where σy is the yield stress and ηp is the viscosity. In other words, a Bingham fluid is a Newtonian 

fluid with a yield stress. 

| 1-nγη &| K  =   

γσ σ y &  +  =  pη  

σy 

σ 

du/dy (shear rate) 

Dilatant (n>1) 

Newtonian Fluid 

Pseudoplastic (n<1) 

Bingham Plastic 
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Time-dependent structure: 

All types of materials involved in our previous discussion have a time-independent structure. 

In other words, if a constant shear rate or stress is applied, their structure as well as their viscosity do 

not change with time (time-independent) once a steady-state is obtained. This is in contrast with the 

behaviour of some concentrated suspensions whose structure changes with time and as a result  their 

viscosity changes with time as well. When the viscosity decreases with time the material is said to be 

"thixotropic". The opposite behaviour is rheopexy and the material following this behaviour is said 

to be "rheopectic".  

 

Viscoelasticity: 

Materials that exhibit viscous resistance to deformation and elasticity are said to be 

viscoelastic materials. Such a behaviour is time-dependent and the stress at some time t depends on 

the past deformation history that the fluid elements were subjected to. This effect is also known as 

"memory" effect. 

In start up and cessation of steady shear of a Newtonian fluid the stress builds up to its 

steady-state value and to zero respectively, instantaneously. This is not the case with a viscoelastic 

material. In start up of steady shear, the stress is time dependent and only approaches its steady 

value after a significant period of time which depends on the rate of shear. This behaviour is 

different from that of a material exhibiting structural time dependency where all the energy is 

dissipated. In the viscoelastic materials some of the energy is stored. Thus, in the cessation of steady 

shear the shear stress decays to zero again after a significant period of time which also depends on 

the past deformation history. This also implies that the material will also exhibit partial recoil in 

order to relax. 
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THE NAVIER-STOKES EQUATIONS 
 
We start with Cauchy's equation written in terms of viscous stresses, that is: 
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The extra or viscous stress is given by the definition of an incompressible Newtonian fluid is: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂   

x
 

 + 
x

    =  
ij

ij
vv jiµτ  

 

Combining the last two equations to eliminate τij, 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂  

x
 + 

x
    

x
 + 

x 
p  - 

x
h  g -  =  

t D
 D

 
ijijj

vvv jij µρρ  

 

Assuming constant viscosity, µ 
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The first term in the parenthesis can be written as: 
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But for an incompressible fluid, the continuity equation tells us that the quantity in the parenthesis 

is zero. 

Thus for a Newtonian fluid with constant density and viscosity we can write: 
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Using vector notation: 

 

VV    + p  - h g -  =  
Dt
 D 2∇∇∇ µρρ  

 

or if the Laplacian is written in a standard vectorial form then 
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These are the Navier-Stokes Equations for constant fluid density and viscosity. They constitute a 

system of three non-linear second order partial differential equations. Together with the continuity 

equation they form a set of four equations which is complete for incompressible flows, in principle 

they are sufficient to solve for the four dependent variables, P, vx, vy, and vz for a Cartesian system 

of coordinates. 

The Navier-Stokes equations also require initial and boundary conditions. The proper 

boundary conditions for the velocity on a solid boundary are: 
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 =  0v = v tn

where vn is the normal component of the velocity relative to the solid boundary and vt is the 

tangential exponent. These conditions are known as the no-penetration and no-slip viscous 

boundary conditions respectively. If there are free surfaces involved in the flow additional boundary 

conditions are also required to solve the problem. Finally the pressure which is also a dependent 

variable, requires boundary conditions too. 

Finally, if the flow is fully enclosed by solid boundaries, the only role of gravity force is to 

increase the pressure by an amount equal to the static head, ρgh. In this case the pressure and the 

gravity force terms in the Navier-Stokes equations can be combined by defining the hydrodynamic 

pressure, that is: 
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and the N-S equations can be rewritten as: 
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In the following pages the Navier-Stokes equations for an incompressible fluid of constant viscosity 

are given in Cartesian, Cylindrical and Spherical coordinates.  
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NAVIER-STOKES EQUATIONS IN RECTANGULAR COORDINATES (x, y, z),  ρ,µ = constant  
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NAVIER-STOKES  EQUATIONS IN  CYLINDRICAL COORDINATES (r, θ, z),  ρ, µ = constant   
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NAVIER-STOKES EQUATIONS IN  SPHERICAL COORDINATES (r, θ, φ),  ρ, µ = constant 
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THE VISCOSITY 
Viscosity is perhaps the most important property of flowing Newtonian fluids because it completely 

characterises their rheological behaviour. Gases in general do not offer any significant resistance to flow and 

therefore may be treated as fluids of zero viscosity. The viscosity of liquids is a function of composition, 

pressure and temperature. It increases with increase of the molecular weight and with increase of pressure, 

more and more steeply as the molecular weight increases. 

 An equation frequently employed to model the pressure dependency of viscosity is the following, 

 

) p  (    =  0P βµµ exp  

 

where µP is the viscosity at pressure p, µ0 is the viscosity at ambient pressure and β is the pressure 

dependency coefficient of viscosity. Under common processing pressure conditions, the viscosity changes 

very little. For example at 300C, the viscosity of toluene changes from 5220 µP to 8120 µP when the 

pressure changes from 0.1 MPa to 63.5 MPa. 

Temperature has a much stronger effect on the viscosity of fluids. The viscosity of gases in general 

increases with increase of temperature while that of liquids decreases. This is because the relative roles of 

collision and intermolecular forces are different in these two states of matter. In gases momentum is 

transferred through molecular collisions. Thus, an increase of temperature increases the number of 

molecular collisions which increases the resistance to flow and as a result gases at a higher temperature  

appear to have a higher viscosity. In liquids the molecular collisions are overshadowed by the effects of 

interacting fields among the closely packed liquid molecules. An increase of temperature in general 

increases the free volume in liquids and in general decreases molecular collisions and interaction 

intermolecular forces. These effects are reflected upon a decrease of the viscosity of liquids. 

An Arrhenius type equation is frequently used to model the effect of T on the viscosity of liquids, 

that is: 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛   
T
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T
1  
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0T

T

0

exp
µ
µ  

 

where µT is the viscosity at temperature T, µ0 is the viscosity at temperature T0 and E is an activation energy 
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for viscosity. 

 S/T+ 1
T b = 

1/2

µ  

For gases the effect of T on their viscosity is modelled through Sutherland correlation as follows: 

where b and S are empirical constants. 

Finally the ratio of the viscosity to density is the kinematic viscosity, v, defined by 

ρ
µν     ≡  

As explained later this kinematic viscosity is also a vorticity transfer coefficient, which determines how fast 

a shear signal propagates into fluids. The two Figures below show the viscosity and kinematic viscosity of 

some selected gases and liquids as a function of T. 
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THE EULER EQUATIONS 

 

Substitution of µ=0 in the Navier-Stokes equations reduces them to a form known as the Euler 

equations: 

ph -   =  -ρ
Dt

D ρ ∇∇gV
 

 

These equations were developed earlier than the Navier-Stokes equations. It is noted that these equations 

may be considered as an approximation and because are first order equations cannot satisfy both boundary 

conditions applied to the Navier-Stokes ones. These are recommended to be used away from solid 

boundaries where viscous effects are minimal. In these areas the assumption µ=0 is a fair estimate. 

 

 

THE NAVIER-STOKES EQUATIONS IN TWO-DIMENSIONAL FLOWS - THE STREAM FUNCTION 

 

Consider a 2-D flow in the (x, y) plane and no velocity component in the z-direction. Thus: 

 

0  =  
z
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∂
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The equation of continuity and the  Navier-Stokes equations can be simplified as: 
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Cross-differentiating the last two equations and subtracting one from the other, we have two equations, with 

two unknowns, namely vx, and vy. Since the flow is also 2-D we can make use of the Langrange stream 

function to further reduce the number of unknowns. The final result is a fourth-order partial differential 

equation 

 

ψ
ρ
µψψψψψ     =  

y 
   

x 
  - 

x 
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  - 

t 
  224

4∇
∂
∇∂

∂
∂

∂
∇∂

∂
∂

∂
∇∂  

 

 

METHODS OF SOLUTION 
The Navier-Stokes are non-linear partial differential equations and there is no general method to 

obtain an analytical solution. In other words there is no existence theorem for a solution. Thus, each problem 

in fluid mechanics must be carefully formulated as to geometry and proper boundary conditions. Then a 

method to attack the problem should be chosen in order to get a solution. The obtained solution, which 

depends on the method, falls in one of the following categories: 

1. Exact Solution: Such solutions in general are possible to obtain under special cases such as: 

A. If the BC's are independent of time and the starting transient is not of interest, the solution is assumed to 

be independent of time;  

B. If the BC's have a certain symmetry, it is assumed that the solution will also have this symmetry;  

C. Assumptions that there are no "end effects" i.e., no variations of velocity in the downstream directions. 

Such solutions are true, exact solutions to the equations of motion. 

2. Approximate Solution: If the simplifications of the type described above do not reduce the 

system of equations to one that can be solved directly, simplifying approximations may be justified 

under certain circumstances. 

A. If the Reynolds number is very low (much less than 1),  the inertia terms in the N-S equations 
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may be neglected. 

B. Flow at high Reynolds number very near a solid boundary, certain simplifying approximations 

lead to the Boundary layer equations. 

It is noted that these types of approximations are coming from a method known as ordering 

analysis and examples will be discussed later. The solutions arising from such procedures are 

approximate solutions, not exact solutions. 

3. Numerical Solution: In the most general case, neither an exact nor an approximate analytical 

solution is possible. In this case, a numerical solution must be sought using: 

-Finite differences 

-Finite elements 

This is the domain of Computational Fluid Mechanics.  
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FLUID STATICS 

 
Hydrostatics is the branch of fluid mechanics which considers static fluids, i.e., fluids at rest with 

respect to any co-ordinate system. Therefore, the Langrangian approach is sufficient to describe 

fluids at rest once the co-ordinate system is attached to the fluid. For fluids at rest or moving as 

“rigid bodies” (again the subject of study of hydrostatics) there is no deformation undergone by the 

fluid. In other words all viscous normal and shear stresses are set to zero. In this case, one may write 

the equations that describe these fluids (i.e. pressure distribution, effects of acceleration as: 

 

p - h g -  =   orp - h g -  =  
dt
d ∇∇∇∇ ρρρρ αV

   (1) 

 

Using index notation this can be written as: 

 

   
x
p  - 

x
h  g -  =a or 

x
p  - 

x
h  g -  =  

dt
 d
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∂
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∂
∂ ρρρρ vj   (2) 

 

where α is the acceleration vector. For a Cartesian system of co-ordinates (x, y, z) this equation   

takes the following form: 
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−=

      (3) 

For a fluid at rest with the acceleration zero and the direction of g in the negative z direction these 
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equations become:             

g
z
p
y
p
x
p

ρ−=
∂
∂

=
∂
∂

=
∂
∂

0

0

       (4) 

These equations tell us that that the pressure in a fluid at rest changes in the vertical direction. 

 
Figure 1. Pressure in an incompressible fluid. 

 

Simply in Figure 1, by integrating equation 4, it can be said that: 

)( zzgpp oo −+= ρ        (5) 

Sometimes one is interested in the pressures excess above that of the atmosphere. This is called the 

gage pressure, as distinguished from the absolute pressure p. 

Using the same principles on the manometers (combinations of tubes using different liquids) 

depicted on Figure 2, one may easily derive the following relationships, where pA is the pressure in 

the thalamus. 

 

(a) ghpp oA ρ+=  

(b) ghpp Ao ρ+=  

(c)  )( oAo zzgp −= ρ  where the pressure within the capillary is zero. 
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(d) )sin()( Lgzzgp Aoo ρρ =−=  

(e) and (f) )( 1
1

iii

n

i
oA zzgpp −+= +

=
Σ ρ  

 
 

Figure 2: Manometers 
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EQUATION OF HYDROSTATICS IN ACCELARATING FRAMES OF REFERENCE 

 

Considering that the variation of g is negligible with elevation (good assumption), Equation 1 can be 

rewritten as: 

)-(p-0orp -   -  =   aggα ρρρ +∇=∇      

This is exactly the same as the equation of hydrostatics except for the body force term which is now 

g-a. 

 

Example: A cylindrical bucket, originally filled with water to a level h, rotates about its axis of 

symmetry with an angular velocity ω , as shown in Figure 3. After sometime the water rotates like a 

rigid body. Find the pressure distribution in the fluid and the shape of the free surface, )(rfzo = . 

 

The equations in cylindrical co-ordinates can be written as: 
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where the second equation implies that pressure is not a function 

of θ . The other two equations can be integrated to yield. 

 

Figure 3. Rotating bucket.  cgzrpor
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The constant c is evaluated from oo php =),0( . Thus, once c is evaluated and substituted back into 

the pressure equation: 

oo ghgzrpzrp ρρρω +−+= 22

2
1),(  

ho 

zo 

z 
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The equation for the free surface can be found from the condition that oo pzrp =),( . Thus, 

g
rhz oo 2

22ω
+=  

The value of ho can be found from the original volume 

∫ ∫ ⎟⎟
⎠

⎞
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+===
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o
oo rdr
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g
RhRhR o 4

22
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Finally, 

  
g
Rhho 4

22ω
−=  

 

FORCES ACTING ON SUBMERGED SURFACES 
Surfaces in contact with a fluid are called submerged surfaces. The force acting on an element of a 

submerged surface dS is then: 

dSpndF −=   

n being the element’s outer normal unit vector. The total force acting on the surface S is: 

   ( )∫ ∫ +−=−= S S o dSghpdSp nnF ρ  

where h is the depth of the fluid below p=po.  

Considering a Cartesian system of coordinates where (i,j,k) are the unit vectors in (x,y,z), then: 

( )
( )
( ) zS S ozz

yS S oyy

xS S oxx

dSghppdSF

dSghppdSF

dSghppdSF

∫ ∫

∫ ∫

∫ ∫

+−=−=

+−=−=

+−=−=

ρ

ρ

ρ

 

where Sx, Sy, and Sz are the projections of S on the x, y and z planes respectively.  
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FORCE ON A SUBMERGED PLANE SURFACE 

 

Consider a submerged plane surface which coincides with the z-plane , i.e. kdSndS z = . See Figure 

4 below. 

 
Figure 4. Force on a submerged plane surface with its centroid at C. 

 

Then the resultant force is acting in the z-directions with: 

∫ ∫−=−= S Sz ghdSpdSF ρ  

Substituting h=ysinα , 

∫ −=−=
S Cz SgyydSgF αραρ sinsin  

   SpF Cz −=  

where yC is the y-coordinate of the centroid of the area S, which is defined by, 

∫= SC ydS
S

y 1
 

and αρ sinCC gyp =  is the hydrostatic pressure at yC. This method is useful for surfaces with 

known centroids. 

The conditions to calculate the resultant force represented by the distributed forces correctly and its 

point of application are: 

1. Equal these forces in magnitude and direction (already done above) 

2. The resultant has its point of application such that its moment about any axis parallel to the 

x-coordinate axis equals the total moment of the distributed forces about the same axis; and 
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3. The resultant has its point of application such that its moment about any axis parallel to 

the y-coordinate axis equals the total moment of the distributed forces about the same axis. 

Condition (2) determines yF and condition (3) determines xF. Therefore, condition (2) can be written 

as: 

∫ ∫−=−= S SFz dSygydFyF 2sinαρ  

The surface integral is the second moment of the area or the moment of inertia of the area with 

respect to the x-axis, i.e. Ixx. This moment can be related to the moment about any axis parallel to x-

axis and passing through the centroid through the Steiner’s theorem. 

∫ +== S Cxxxx ySIdSyI 2
''

2  

Combining the above equations, we can obtain yF, as: 

∫ +== S C
C

xx

C
F y

Sy
I

dSy
Sy

y ''21
 

Some moments for standard shapes are tabulated.  

For a plane not symmetrical with respect to the y-axis xF may be found in a similar way 

from: 

  ∫ ∫ −=−== S S xyFz IgxydSgxdFxF αραρ sinsin  

Steiner’s theorem is used again: 

  CCyxxy ySxII += ''  

This yields 

  ∫ +== S C
C

yx

C
F x

Sy
I

dSxy
Sy

x ''1
 

where the x-coordinate of the area centroid is defined by 

  ∫= SC xdS
S

x 1
 

 



 96
EXAMPLE (a) A vertical plate AA’B’B is set under water of density ρ  as shown in Figure 5. 

Find the resultant force, its direction and its point of application, yF. 

(b) A large plate is now shown in the same Figure. Find the resultant force, its direction and its point 

of application, yF. 

     
Figure 5. Rectangular plate under water. 

 

(a ) The centroid of the plate is L/2 deep. 

∫ −=−=
S Cz SgyydSgF αραρ sinsin  or 

22

2DLgkDLLgkF ρρ −=−=  

The moment of inertia of the plate about its centroid is 

∫ =⎟
⎠
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(b) The resultant force is: 

α
ρ

α
ρ

sin2sin2

2DLgkLDLgkF −=−=  

Substituting the moment of inertia and the yC, 

αα sin2
,

sin
12

1
3

3

''
Lyand

DL
I Cxx ==  

we can obtain 
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a
LyF sin3

2
=  

The point of application is again 2/3 of the plate and at 2/3 of the maximal depth. 

 

EXAMPLE: Two reservoirs A and B are filled with water and connected by a pipe (see Figure 6). 

Find the resultant force and the point of application of this force on the partition with the pipe. 

 
Figure 6: two reservoirs connected by a pipe. 

 

Let the subscripts 1 and 2 refer to the plate and to the circle. The sought force is the difference 

between that of the rectangular plate and that of the circle. 

22

2

1
bgLLgbLF ρρ =××=−  

The point of application is at 2/3L. 

The force on the circular pipe the size of the hole is: 

4

2

2
DgHF πρ=−  

For the circular plate 
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The resultant force is: 

    )( 2112 FFF −−=−  

The point of application is found from: 

   221112 FyFyFy FFF −=  

with the formulas all derived above. 

 

 

COMPLETELY SUBMERGED BODIES 

 
The force acting on a completely submerged body can be calculated by: 

∫ ∫∫ ∫ ==−=∇−=−= V VS V gVkgdVkdV
dz
dpkdVpdSp ρρnF  

Therefore there is only one force acting on a completely submerged body and this is in the vertical 

direction. This is also known as Archimedes Principle and the resultant force as the buoyancy force.. 

In deriving the above formula the Gauss theorem was utilized that transforms a surface integral into 

a volume one. 

The centre of buoyancy of a submerged body can also be calculated by: 

∫ ∫== V VBB xdV
V

xorgdVxgVx 1ρρ  

Similarly 

∫ ∫== V VBB dVz
V

zandydV
V

y 11
 

 

The same analysis can also be performed for a floating body to calculate the buoyancy force. 
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EXAMPLE: Ice at -10 oC has the density 3/15.998 mkgi =ρ . A 1,000-ton spherical iceberg 

floats at sea as shown in Figure 7. The salty water has a density of 3/025,1 mkgS =ρ . By how much 

does the tip of the iceberg stick out of the water? 

 

 
Figure 7: Spherical iceberg 

 

The volume of the iceberg is V=106 kg/998.15=1001.9 m3 which corresponds to a sphere of R=6.207 

m. The volume of sea water it must displace by Archimede’s principle, is: 
36 6.975025,1/10 mVw ==  

From the Figure we can derive the following geometrical relations: 

ααππα

ααα

dRdzLdVRL
dRdzRz

332 sinsin
sin)cos1(
===

=−=
 

( )∫ ∫ =−==
1 1

0 0

32333 6.975sincos1sin
α α

αααπααπ mdRdRV  

Solving we obtain: 

mzo 229.11144 11 ==α  

The part sticking out of the water will be:  

   mzR 185.12 1 =−  
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FORCES ON GATES AND SUBMERGED BOUNDARIES 

 
The methodology developed so far can be used to calculated forces on gates as well as on submerged 

surfaces in general. Consider the three shapes of gates indicated on figure 8. Calculate the resultant 

force of the water pressure exerted on each gate and its line of application such as the correct 

moments results. 

 
Figure 8: Shapes of gates 
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HYDRODYNAMIC STABILITY 

 
Two forces are acting on floating bodies, gravity and buoyancy. A static equilibrium is obtained 

when both forces are acting on the same line (fig. 9a,c). A moment may appear which tends to 

increae the roll angle α , in which case the situation is called unstable; or the moment may tend to to 

decrease α  and diminish the roll. When no moment appears the situation is denoted stable. When 

the center of gravity is lower than that of buoyancy the situation is usually stable. 

 

 
Figure 9: A submarine and a sail boat with the centers of gravity and buoyancy. 
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Figure 10 below shows stable and unstable equilibria and how the moments work to cause 

instabilities. 

 
  

Figure 10: Stable and unstable equilibria 
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MECHANICS OF INTERFACES 

 
A force balance on the interace S of two immiscible liquids gives (surface density negligible 

otherwise gravity and acceleration should be included) 

 
Figure 11: The interface between two immiscible fluids 

 

( ) 02 =+∇+−• σσσσ Hnn IIAB  

where n is the unit normal vector to the interface pointing from liquid B to A, σ is the surface 

tension and Aσ  and Bσ  are the stress tensor written across the interface for the two fluids. Note that 

the gradient operator is defined in terms of local coordinates (n, t) that is normal and tangential to 

the interface. 

)()( •
∂
∂

+•
∂
∂

=∇
n

n
t

tII  

The surface tension gradient which is present with surfactants and with nonisothermal interfaces is 

responsible for shear stress discontinuities which often cause flow in thin films. In the absence of 

these two effects, the gradient is zero. 

0=∇ σII  

Thus, the equation of the interface is reduced to: 

( ) 02 =+−• σσσ Hnn AB  
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The two components of this equation are those in the normal and tangential directions 

respectively: 

Normal: ( )[ ] 02)()(2 ,, =−−+−=+−•• σττσσσ HPPHnnn BnnAnnABAB  

Tangential: ( )[ ] 02 ,, =−=+−•• BntAntAB Hnnt ττσσσ  

The mean curvature, 2H, of a surface is necessary in order to account for the role of surface tension 

that gives rise to normal stress discontinuities. 

 

INTERFACES IN STATIC EQUILIBRIUM 

 
Under no flow conditions, stresses are zero and therefore the equation for the interface reduces to the 

Young-Laplace equation: 

σHp 2=∇  

This equation governs the configuration of interfaces under gravity and surface tension effects. This 

equation most of the time is solved numerically to find the shape of the interface. For interfaces and 

free surfaces with general configuration, the mean curvature 2H can be expressed as: 

ds
dH tn =2  

where t and n are the tangent and normal vectors respectively and s is the arc length. 

For a cylindrically symmetric surface (translational summetry with constant curvature, see Figure 

12), the surface wave (shape) can be described by 

)(xzz =  

 
Figure 12: Cylindrically symmetric interface 
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The mean curvature is: 
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z
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+
=  

For rotationally symmetric surface (surface generated by rotating a rigid curve, see Figure 13), the 

surface can be described by: 

)(rzz =  

The mean curvature then becomes: 
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     Figure 13: Rotationally symmetric surface 

 

The same interface can be alternatively described by: 

    )(zrr =  

in which case: 

( ) ( ) 2/322/12 11
12

z

zz

z r
r

rr
H

+
−

+
=  

For static interfaces as described above, the Young-Laplace equation applies 

σ
AB ppH −

=2  
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For planar interfaces H=0 and there is no jump in pressure across the interface. 

 

For cylinders:  
RR

H 1112
1

=
∞

+=  

 

For spheres:   
RRR

H 2112
21

=+=  

 

Which means that the pressure is smaller inside the cylinder or sphere compared to outside. 
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MEASUREMENT OF SURFACE TENSION 

 

1. Wilhelmy method: A Plate of known dimensions S, L and h and density sρ is being pulled 

from a liquid of density Bρ  and surface tension σ  in contact with air of density Aρ . 

 
   Figure 14: The Wilhelmy plate method 

 

The net force exerted by fluid A on the submerged part is (buoyancy): 

SLghF AAA ρ−=  

The net force exerted by fluid B on the submerged part is (buoyancy): 

SLghF BBB ρ−=  

The surface tension force on the plate is (pulling downwards): 

θσσ cosPF =  

The weight of the plate is: 

SLhhggVW BAss )( +== ρρ  

The total force balance thus gives 
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( ) ( )[ ] θσρρρρσ cosPhhgSLForFWFFF BsBAsABA +−+−==+++  

Since everything is known, σ  can be calculated. 

An improved method is when the plate is  completely immersed in fluid A. In this case the force, Fo 

becomes equal to: 

ghSLPF Aso )(cos ρρθσ −+=  

The surface tension can be easily calculated without knowing the densities of fluids. 

 

 

2. Capillary rise on a vertical wall 

 
Figure 15: Capillary rise 

 

The Young-Laplace equation in the presence of gravity is: 

)( zg
R

ρσ
∆−=  

From differential geometry: 

ds
d

R
φ

=
1  

where φ  is the local inclination and s the arclength. Also from differential geometry: 

φφ cossin ==
ds
dxand

ds
dz  

Therefore, 
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   zg
dz
d

ds
dz

dz
d

ds
d

σ
ρφφφφ ∆

−=== sin  

Integration gives 

   czg
+

∆
−= 2

2
cos

σ
ρφ  

If we let cosφ =1 at z=0, then 

( ) 22

2
2sin21cos zg

σ
ρφφ ∆

−=−=−  

which yields 

⎟
⎠
⎞⎜

⎝
⎛∆±= 2sin2 φρσ

gz  

The meniscus intersects the wall at a contact angle θ  and a height h above the free surface. 

Therefore, 

( )24sin2 θπ
ρ

σ
−

∆
=

g
h  

If 2
πθ < , h is positive; if 2

πθ > , h is negative 

 

3. Interfacial tension by sessile drop 
 

 
 

Figure 16: Axisymmetric sessile drop 
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Consider the points marked as A, B, C and D in Figure 16. 

 

Across the meniscus we have 

σHpp AB 2=−  

From hydrostatics: 

DC

BBC

AAD

pp
gzpp
gzpp

=
=−
=−
ρ
ρ

 

which yield 

      gzpp ABAB )( ρρ −−=−  

Combining the above equations we obtain the equation for the interfacial tension. 

          ( )BAH
zg ρρσ −=

2
 

The surface of the droplet is given by ),( yxzz = . For rotationally symmetric interfaces of this 

dependence: 

( )
( ) 2/322

22

1

)1(221
2

yx

xyyxyyxyyxx

zz

zzzzzzz
H

++

++−+
=  

The solution (numerical) of this contains two constants, which can be determined by: 

0,0 max =∂∂=== rzorzzyx  

The description is completed by: 

hzzzdr r −=∞→±= max,,2/ ,  

which determines h. 
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EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 
 

As discussed before there are a few cases where a exact solution to the Navier-Stokes 

equations can be found by integrating them analytically. Some of these will be presented in this 

chapter and some others will be given in the assignments. 

 

TIME - INDEPENDENT  FLOWS 

Plane Poiseuille Flow 

Two parallel plates with a gap d between them in the y-direction are shown in the Figure 

below. The flow field is extended infinitely in the x and z directions, so that end effects can be 

neglected.  

The fluid flows in the x positive 

direction under the action of a pressure drop 

∆p/∆x. In addition, the upper plate moves with a 

constant velocity U in the x-positive direction. 

Determine the velocity profile, the maximum 

velocity, its location and the volume flow rate 

per unit width of the channel. 

 

Neglecting the transients of the flow, this is an one-dimensional flow. One may clearly 

assume that vz=0 and that from an intuitive guess one may take vy=0. This last guess is pursued until 

either a solution is found or if a solution cannot be found then it is dropped.  

Using the continuity for steady-state incompressible flow, 

 

0  =  
x∂

∂ vx  

 

which tells us that  vx=vx(y). Thus, whatever the velocity is at some x-coordinate, it repeats itself for 

other x values. Such a flow is called fully developed. Now considering the x-component of the 

Navier-Stokes equations and using the simplifications discussed above, one may write. 

∆p/∆x. d 

U 
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y 
   + g  + 

x
p-  =  0 2

2

x ∂
∂

∂
∂  vxµρ  

 

The y-component simplifies to: 

 

g  + 
y 
p -  =  0 yρ

∂
∂

 

 

we have taken  -ρg(∂ h/∂ x)=ρgx and  -ρg(∂ h/∂ y)=ρgy. Furthermore, from the definition of co-

ordinates  gx=0, and gy=g.  Thus, the y-component tells us that there exists a pressure gradient in 

the y-direction due to gravity. The x-component can be integrated twice to result, 

 

C +y  C +   
2
y  

x
p  =  21

2

µ∆
∆

vx  

 

The gradient ∂ p/∂ x has been substituted with ∆ p/∆x, which is a constant. This can be inferred from 

inspecting the viscous and pressure terms of the x-component of the Navier-Stokes equations (see 

above). 

The boundary conditions to be used in order to evaluate the constant C1 and C2 are: 

y=0, vx=0 

y=d, vx=U 

Evaluating the constant C1, and C2, one may obtain: 

 

⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆  

d
y  U +   

d
y  - 

d
y   

 2
d  

x
p -   =  

22

µ
vx  

The special case U=0 results in 
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⎥
⎦

⎤

⎢
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⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆   

d
y  - 

d
y   

 2
d  

x
p -   =  

22

µ
vx

 

which is known as plane Poiseuille flow, while the case of ∆ p/∆x =0 results in  

 

d
y U  =  vx  

 

which is known as simple shear flow or plane Couette flow. Several velocity profiles for all these 

cases are given in the Figure below. 

 

 

 

 

 

 
 

Figure:   a.Plane Couette flow   b.Shear Flow  c.Flows with ∆P/∆x<0  and   d.∆P/∆x>0. 

 

Maximum Velocity: The maximum velocity, vx max and its location, y0 can be inferred from the 

condition, dvx/dy=0 which results in, 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆∆

 
d x)p/ - (

U  2 + 1  
2
d  =  y 20

µ
 

 

and  

⎥
⎦

⎤
⎢
⎣

⎡
∆∆⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆∆

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆  

x)p/(-
U  + 

2
1   U +  

dx)p/(-
U  - 

4
1  

 2
d  

x 
p -   =  

2

22 µµ
µ

v max x,  

a b c d 
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For plane Poiseuille flow these expressions become: 

 

2
d  =  y0  

and 

 
 8
d  

x 
p -   =  

2

µ
⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

v max x,  

 

The volume flow rate per unit width, Q/w (w is the width) can be obtained from: 

 

2
d U + 

 12
d  

x
p-   =dy      =   w/ Q

3d

0 µ
⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

∫ vx  

The average velocity is defined as the flow rate divided by the cross sectional area where in this case 

may be simplified to: 

2
 U + 

 12
d  

x
p-   =  

d
Q  =  

2

µ
⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

vx  

 

Flow in a round tube 

Consider a round tube with the z-coordinate as its axis of symmetry. Determine the velocity 

profile, the maximum velocity, flow rate and average velocity for steady, fully developed flow of an 

incompressible  Newtonian fluid. Considering one-dimensional flow with vθ=vr=0, the continuity 

equation reduces to: 

0 = 
z∂

∂ vz  

 

which is the condition for fully developed flow. The Navier-Stokes equations can be simplified as: 

r 
p   =  0

∂
∂
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θ 
p  

r
1  =  0

∂
∂

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

∂
∂  

r
r  

r 
 

r
 + 

z 
p -  =  0 v zµ

 

 

Note that the effect of gravity has been neglected. In general the effect of gravity can always be 

neglected except in these cases where is the primary driving force for flow. The first two equations 

indicate that p is a function of z only, and in a manner similar to that in the flow between two 

parallel plates, one may show that 

 

z
p = const = 

z 
p 

∆
∆

∂
∂

 

 

Integrating twice the third equation results into: 

 

rC + C + r  
z
p  

 4
1  =  21

2 lnvz ⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

µ
 

 

The boundary conditions to be applied in order to evaluate the two constants of integration are: 

 

 

0=r    at    0 = 
dr

d     :B.C.2

  
R=r   at   0=    :B.C.1

v

v

z

z

 

Evaluating the constants of integration, the following velocity profile results. 

 



 
 

117

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆    

R
r  - 1  

 4
R  

z
p  -  =  

22

µ
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The minus sign indicated that the flow is in the direction of decreasing pressure. The maximum 

velocity occurs at the centerline where r = 0, so that 

 

µ 4
R  

z
p  -  =  

2

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

v maxz,  

 

The volume flow rate can be calculated from: 

 

⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

∫∫  
z
p -  

 8
R   =   d dr r      =  Q

4R

0

 2

0 µ
πθ

π

vz  

 

Finally the average velocity is defined as: 

 

 
 8
R  

z
p  -   =  

 d dr r   

 d dr r    
  =  

2

R

0

 2

0

R

0

 2

0

µθ

θ
π
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∆
∆
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Simple Shear Flow 

The Sliding Plate Rheometer 

The flow generated between two parallel plates is referred to as simple shear (see schema 

below): 

u

h 

γ = γn = u / h 
. . 

y 
x 

  

Figure: Velocity profile in simple shear (sliding plate rheometer) 

Simplifying the Navier-Stokes equations for this flow 

-no pressure gradient 

-1-D flow (only v2 which depends on y) 

 

21x2
x

2

v0v cycor
y

+==
∂

∂
 

Applying v=u at y=h and v=0 at y=0 

yory
h
u γ&== xx vv  

Note that the velocity profile does not depend on the type of fluid used. 

This is the simplest flow that can be generated in a lab to measure the viscosity of fluids. Using a 

constant velocity that results a constant shear rate would generate a constant force (constant 

shear stress at the wall) and thus the viscosity can be obtained by: 

γ
σµ
&

=  
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Torsional Flow between Two concentric Cylinders 

Couette Viscometer 

The Figure below shows a schematic of a Couette instrument, where the fluid is placed in the 

cap. Then the cap is rotated. The viscosity causes the bob to turn until the torque produced by the 

momentum transferred equals the product of the torsion constant 1k  and the angular 

displacement bθ of the bob. 

 

Reasonable postulates are: ),(,0vv),(vv zrθθ zrppr ==== . We expect p to be a 

function of z due to gravity and a function of r due to centrifugal acceleration 

Continuity  All terms are zero 

r-component  
r
p

r ∂
∂

−=−
2
θvρ  

θ-component  ⎟
⎠
⎞

⎜
⎝
⎛= )v(10 θr

dr
d

rdr
d

 

z-component  g
z
p ρ−

∂
∂

−=0  

Integrate the second equation and use 

B.C.1: at  r=κR 0vθ =  
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B.C.2: at  r=R    R0θv Ω=  

 

The velocity profile is: 

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

Ω=
κ

κ

κ
κ

1
v 0θ

r
R

R
r

R  

The shear stress distribution is: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠
⎞

⎜
⎝
⎛Ω−=⎟

⎠
⎞

⎜
⎝
⎛−= 2

22

0
θ

1
2v

κ
κµµτ θ r

R
rdr

drr  

 

The torque acting on the inner cylinder is 

    

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Ω=••−= = 2

2
2

0 1
42)(

κ
κπµκπκτ κθ LRRRLT Rrrz  

 

It is important to know when turbulent flow starts since the above analysis is valid only for 

laminar flow 
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Flow between two Parallel Discs 

Parallel Plate Rheometer 

 

 

 

 

 

 

 

 

 

 

Figure: Parallel plate rheometer 

 

The two plates are mounted on a common axis of symmetry, and the sample  

is inserted in the space between them. The upper plate is rotated at a specified angular velocity ω (t) 

and as a result the sample is subjected to shear. The motion of the upper plate is programmed, and 

the resulting torque, M, is measured (constant strain rheometers). Analysis of this flow gives the 

velocity to be: 

 

 
H

zrΩ
=θv            so that the shear rate depends on the radial position 

 
R
r

H
RΩ

=γ&   which is a non-uniform flow?   

 

However it is still possible to relate the viscosity of a fluid with the torque needed to rotate the 

disk with a prescribed rotational speed.  

R 

Fluid  
sample H 

Pressure 

transducer 

ω(t) 

z 
r 
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Capillary Rheometer 

The most widely used type of melt rheometer is the capillary rheometer. This device consists of a 

reservoir, or barrel and a plunger or piston that causes the fluid to flow through the capillary die of 

known diameter, D, and length, L. The quantities normally measured are the flow rate, Q, (related to 

the piston speed) and the driving pressure, ∆P, (related to force on the piston that is measured by 

means of a load cell).  

Capillary rheometers are used primarily to determine the viscosity in the shear rate range of 5 to 

1,000 s-1. To calculate the viscosity, one must know the wall shear stress and the wall shear rate.  

 

 

 

For the steady flow of an 

incompressible fluid in a tube of 

diameter R, driven by a pressure 

gradient dP/dz, a force balance on 

a cylindrical element of the fluid 

gives: 

        ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

dz
dprrrz 2

σ  

When the flow is fully-developed 

over length L, the absolute value 

of the shear stress at the wall σ w 

is: 

 

 

 

Figure: Capillary rheometer 
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where ∆P is the pressure drop over the length of tube. 

The magnitude of the wall shear rate, wγ& , for a Newtonian fluid can be calculated as: 

 

  3
z 32v

D
Q

r Rr
w π

γ =
∂

∂
=

=

&     

The pressure drop must be corrected for the additional pressure required for the fluid to pass 

through the contraction between the  

barrel and the capillary. One can see 

that there is a significant pressure 

drop near the entrance of the die, 

∆pent. And a small at the end ∆pent. 

The total pressure correction for exit 

and entrance regions is called the end 

pressure, ∆pend, that is, 

  entexend ppp ∆+∆=∆  

  

  

The true wall shear stress is then obtained as: 

 

  ( )DL
pp end

w 4
)( ∆−∆

=σ    

The ∆pend can be calculated using a capillary of L/D=0. 
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TIME-DEPENDENT FLOWS  

The Rayleigh Problem (Stokes first problem) 

Consider an infinite flat plate with an infinite domain of fluid on its upper side. The fluid and 

the plate are at rest. At the time t=0 the plate is impulsively set into motion with the velocity U and 

continues to move at that speed. Determine the velocity profile as a function of time. This problem is 

known as the Stokes first Problem, and again a solution is sought in which vy=0 everywhere. 

 

This again is a one-dimensional problem where  

      there are no pressure gradients. The equation to  

      be solved is (vx=vx(y), vy=vz=0):  

 

 

 

y
    =  

t
 

2

2

∂
∂

∂
∂ vv xx

ρ
µ

 

 

subject to the following initial and boundary conditions respectively: 

 

U  = )t0,(    0, = )t,(    0, =  ) 0 y, ( vvv xxx ∞  

 

To solve this problem a method is used which is called a similarity transformation. According to 

this, a new independent variable η is sought in the form 

 

ty  B  =  nη  

 

The above equation can be transformed as follows: 

 

y 

x 

Fluid 
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0  =  
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⎝

⎛
 

This equation should be expressed in such a way so that no y or t should appear. We therefore 

choose η such that the combination y2/t is proportional to η2 and select a convenient B such that the 

equation now reduces to: 

Comparison of the last two equations requires: 

 

The boundary conditions in terms of η are 

Writing the equation as 

 

and integrating 
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Another integration results to 

 

 

Applying the two boundary conditions results in the final solution 

 

 

which is the similarity solution. Similarity because there are infinite pairs of  (y,t)  which give the 

same η which, in turn,  uniquely defines vx. Some velocity profiles are sketched in the Figure below. 
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Unsteady Laminar Flow Between Two Parallel Plates 

Resolve the previous problem with a wall at y=h. This flow system has a steady-state limit, 

whereas the previous did not. 

 

The equation is the same: 

y
    =  

t
 

2

2

∂
∂

∂
∂ vv xx

ρ
µ

 

with 

I.C.:  at 0v,0 x =≤t  for all y 

B.C.1:  at Uy == xv,0  for all t>0 

B.C.2:  at 0v, x == hy  for all t>0 

Using: 2
x /;/;/v btbyU ντηφ === , it becomes: 

 

    2η
φ

τ
φ

∂
∂

∂
∂    =   2

 

 

This system has a finite solution at infinite time. This is: 

 

ηφ −=∞ 1  

 

Therefore, we seek a solution of the form: 

 

),()(),( τηφηφτηφ t−= ∞  

 

where the last part is the transient part of the solution which dies out with time. Substituting this 

into the original equation and boundary conditions gives: 
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2η
φ

τ
φ

∂
∂

∂
∂ t

2
t  

  =  
 

 

 

with 100,0 andatat tt ==== ∞ ηφτφφ . The equation can be solved by using the “method 

of separation of variables”. According to this a solution is sought of the form 

)()(),( τητηφ gft = . Substitute to get 
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Thus we obtain two equations which can be solved to result. 
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Starting Flow in a Circular Pipe 

Suppose that the fluid in a long pipe is at rest at t=0. at which time a constant pressure gradient dp/dz 

is applied. An axial flow will commence which gradually approaches the steady state Poiseuille flow 
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This problem was solved by Szymanski in 1932. The boundary conditions are: 

 

Initial condition:  vz(r,0)=0 

 

No slip condition: vz(R,t)=0 

 

Symmetry:  0v

0

z =
∂

∂

=rz
 

 

The solution is given in terms of the Bessel function J0 and is expressed as follows: 
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In the next page the solution is plotted and the first ten roots of the Bessel function are listed in a 

table. 

The above equation implies: Flows with small diameter and large viscosity will develop rapidly.  At 

a dimensionless time of 0.75 (see next page) the profile approaches almost its steady state shape. For 

air 0.75 translates to t=1.25 s, whereas for SAE 30 oil this is 0.06 s for identical conditions. 
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OTHER EXACT SOLUTIONS 

 

- Flow in an Axisymmetric Annulus 

- Flow between Rotating Concentric Cylinders 

- Flow in a pipe starting from rest 

- The flow near an oscillating flat plate; Stokes second problem 

- Stagnation in plane flow (Hiemenz flow) 

- Two dimensional non-steady stagnation flow 

- Stagnation in three-dimensional flow 

- Flow near a rotating disk 

- Flow in convergent and divergent channels 

 

For more details see: H. Schlichting, "Boundary Layer Theory," 7th ed., McGraw-Hill, New York, 

1979, Chapter 5. 
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DIMENSIONAL ANALYSIS AND SIMILARITY  
 

All the equations derived so far are dimensional. This means that their various terms have 

physical dimensions. Before solving these equations a system of units should be adopted. However, 

using the parameters of the problem to normalise the dependent and independent variables, the 

Navier-Stokes equations can be written in terms of dimensionless variables, and thus the equations 

can be solved without making reference to a particular system of physical units. 

Apart from this, this dedimensionalisation is of interest for several other reasons: 

- Solving the dimensionless equations the obtained solution is in a generalised form. For example all 

solutions for the fully developed flow in a circular tube can be shown to reduce to a single solution. 

- Using the principles of dimensional analysis, the experimental results can be generalised by 

making use of dimensionless variables, thus substantially reducing the number of experiments. For 

example in an experimental study, instead of establishing the relative importance of each of the 

independent variables on the dependent variable, the variables are grouped into dimensionless 

groups and then the relative importance of these dimensionless groups is studied on the group which 

includes the dependent variable. 

 

Dimensionless form of the Navier-Stokes Equations: 

To write the Navier-Stokes equations in dimensionless form, the parameters of the problem 

should be used in order to normalise the dependent and independent variables. These parameters 

include the physical properties of the fluid i.e. density, ρ, and viscosity, µ, geometric variables such 

as some characteristic length, D, and other parameters which may arise from the boundary 

conditions, which could be some characteristic velocity, U. 

Using these characteristic variables, we define the dimensionless variables as follows: 

 

Introducing these into the Navier-Stokes written in index form, we obtain 
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Now we collect all the coefficients to the right-hand side of the equation to form dimensionless 

groups 

 

We define 

 

Thus the Navier-Stokes can be written as: 

 

Similarly the continuity for an incompressible fluid can be put in a dimensionless form as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂  

x 
   

x 
 

D
 U + 

x
hg  - 

x 
p  

D
U -  =  

t D
 D 

D
U 

*
j

*
j

2*
i

*

*
i

*2

*

2 vv *
i

*
i µρρρ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂  

x 
   

x 
 

  U D
 + 

x
h 

U
D g  - 

x 
p -  =  

t D
 D

*
j

*
j

*
i

*

2*
i

*

*
vv *

i
*
i

ρ
µ

 

(Re)  number  Reynolds    D U  

 

   (Fr)  number  Froude    
D g

U 2

≡

≡

µ
ρ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

∂
∂

∂
∂  

x 
   

x 
 

Re
1 + 

x
h 

Fr
1 - 

x 
p -  =  

t D
 D

*
j

*
j

*
i

*

*
i

*

*
vv *

i
*
i  



 
 

 

134

 

 

These equations tell us that the solution depends on the two dimensionless groups, Fr and Re, and of 

course a particular set of boundary conditions which depend on the problem. Thus, one may tabulate 

the solution of these equations as a function of Fr and Re in a generalised form. It is noted, however, 

that for flows without any free surfaces the role of gravity is only to increase the pressure. In such 

cases, if one introduces a modified pressure (Pmod = p + ρgh), then he can eliminate the term which 

involves the Froude number. Therefore, in flows through closed conduits the solution depends only 

on the Reynolds number. 

For flows with a free surface, the surface tension, σ, may be important particularly if the free 

surface is curved. When the fluid whose flow is being analysed is a liquid and the fluid on the other 

side is a gas, then we can assume: 

 

The proper boundary conditions for the interface are: 
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where σt, and σn are the tangential and normal stresses respectively, σ is the surface tension of the 

liquid, pα is the pressure in the gas phase and R1, and R2 are the radii of curvature. If this boundary 

condition is made dimensionless, a new dimensionless group appears as a coefficient, that is, 

 

The dimensionless numbers can be interpreted in terms of ratios of the various forces involved in 

fluid flow. Thus, 

 

The term "inertia" force is to be understood as a measure of the magnitude of the rate of change of 

momentum (mass x acceleration). It is not actually a force. 
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Dimensional Analysis 

As discussed before the purpose of dimensional analysis is to reduce the number of variables 

and group them in dimensionless form. This significantly reduces the number of experiments 

required to complete an experimental study as well as helps in establishing empirical models to 

describe experimental results. 

Example: Suppose that the force required holding a particular body immersed in a free stream of 

fluid is known to be depended on: 

 

  

 

Analytical solution is not possible to obtain, thus we must find F experimentally. In general it takes 

about 10 points to well define a curve. 

To address the effect of L, we need to perform experiments with 10 different values of L. For 

each L, we need 10 fluids with different density while constant viscosity, 10 fluids with different 

viscosity while same density and 10 different values of fluid velocity, which means 104 experiments. 

At $5/experiment and 1/2 hr each of them, one may understand the money and time required. 

Another problem is finding liquids with different density, although same viscosity and vice versa. 

However, using dimensional analysis, 
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where cF is the force coefficient (in a slightly different form is called the drag coefficient). The 

problem has now been reduced to studying the effect of the second dimensionless group,  ρVL/µ,  on 

the first dimensionless group  F/ρV2L2. Thus, performing 10 only experiments, we can establish the 

form of the function f. 
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Buckingham  PI  Theorem 

Given a physical problem in which the dependent parameter is a function of n-1 independent 

parameters, we may express this as follows: 

 

In the previous example the dependent parameter is F, thus q1, while the independent parameters are 

D, V, ρ and µ, with n=5 in this case. 

We can define now a new functional: 

 

Therefore we have a functional of n parameters (including dependent and independent parameters). 

Then the n parameters may be grouped into n-m independent dimensionless groups or ratios, where 

m is equal to the minimum number of independent  variables required to specify the dimensions of 

all parameters  q1, q2, ..., qn. In other words 

 

Note: A Π parameter is not independent if it can be formed from a product or quotient (combination) 

of the other parameters of the problem. For example, 

 

Π5, and Π6 are not independent dimensionless groups. 
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Determining the Π  groups 

The drag force on a smooth sphere depends on the relative velocity between the fluid and the 

sphere, V, the sphere diameter, D, the fluid density, ρ, and the fluid viscosity, µ. Obtain a set of 

dimensionless groups that can be used to correlate experimental data. 

 

GIVEN: 

 

One dependent variable:  F 

Four independent variables: ρ, µ, V, D 

S1: List all parameters involved 

F ρ  µ  V  D 

 

S2: Select a system of fundamental dimensions 

M, L, t  (Mass, Length, time) 

 

S3: List the dimensions of all parameters 

 

From this we find that r=3  (three primary dimensions) 

 

S4: Select from the list of parameters a number of repeating parameters which is equal to the number 

of primary dimensions, r=m. Since we have 5 parameters the selection is not uniquely defined. 

However, certain rules apply to the procedure of selection. 

(i) Do not select the dependent variable 
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(ii) Do not select two variables, which can result from the same fundamental dimensions. For 

example, if we have L and L3, select only one.  

In this case we select  ρ, V, and D. 

 

S5: Set up dimensionless groups. We have to set up n-m=5-3=2 groups 

or 

M : a + 1 = 0 

L : -3a + b + c + 1 = 0 

t : -b - 2 = 0 

Solving this system of equations we may get:  a=-1, b=-2, c=-2. Thus the first dimensionless group 

is: 

 

Similarly setting:  

we can get: 
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Thus we end up with: 

 

 

S6: Check to see that each group obtained is dimensionless. 

 

 

Modelling 

As discussed before, dimensional analysis is a valuable tool in modelling experimental data. 

In other words is a tool valuable in establishing empirical correlations for experimental findings. 

From dimensional analysis we obtain 

With sufficient testing, the model data will reveal the desired dimensionless function between 

variables. This ensures complete similarity between model and prototype. 

Formal Statement: Flow conditions for a model test are completely similar if all relevant 

dimensionless parameters have the same corresponding values for model and prototype provided 

also that the boundary conditions are the same in both model and prototype. 

However, complete similarity is very difficult to attain. Engineering literature speaks of 

particular types of similarity. 

1. Geometric Similarity: A model and prototype are geometrically similar if and only if all body 

dimensions in all three co-ordinates have the same linear-scale ratio. This is tantamount to say that 

the initial and boundary conditions are the same in both model and prototype. 

2. Kinematic Similarity: The motions of two systems are kinematically similar if homologous 

particles lie at homologous points at homologous times. 

3. Dynamic Similarity: It exists when model and prototype have the same length-scale ratio, time-
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scale ratio, and force-scale ratio. Geometric similarity is a first requirement; otherwise proceed no 

further. Then dynamic similarity exists, simultaneously with kinematic similarity, if model and 

prototype force and pressure coefficients are identical. For example for incompressible flow: 

a. With no free surface: Reynolds number equal 

b. With a free surface: If all dimensionless groups describing the problem are equal, Re, Fr, and We. 

In both the above cases geometric similarity is presumed. 
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EXAMPLE: CAPILLARY RISE-USE OF DIMENSIONAL MATRIX 
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FLOWS WITH NEGLIGIBLE ACCELERATION 
 

The non-linear terms in the Navier-Stokes equations result from the acceleration of the fluid. 

These terms contribute the most difficulty in the solution of the equation. For fully-developed 

incompressible flows in conduits of constant cross section these non-linear terms disappear and as a 

result the equations are easily solved. 

There are some cases where the acceleration is not identical to zero, but still the inertia terms 

may be neglected without presenting a serious error. The question is what are these types of flows 

(flows with negligible acceleration) and how we identify them. There are at least two such families 

of flows: flows in narrow gaps and creeping flows. 

 

Flow in Narrow Gaps 

Consider the   two   dimensional   flow of an   incompressible   fluid   in a narrow   gap   

between the two plates shown    in the     Figure. For the  sake of     simplicity   and   without loss of 

 generality the plates are assumed to be flat 

and the gap width to be slightly diverging 

to the direction of flow. The lower plate is 

set stationary and the upper plate may be 

inclined to it with the small angle α. We 

make the following assumptions to assure 

the small degree of convergence. 
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The mean velocity in the x-direction is defined as: 
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Conservation of mass requires, 
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From the equation of continuity 
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The boundary conditions for vy are 

 

    δ=y  at  and  0=y  at    0 = vy  

 

The largest value vy can attain is in the vicinity of the middle of the gap, and this could be 

approximately 
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Therefore the y-component of the velocity may be neglected in comparison with the x-component. 

Furthermore in the B-cross section 
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The x-derivative of vx is negligible compared to its y-derivative. Using these two simplifications, the 

approximate form of the Navier-Stokes equations for two dimensional gap flows becomes, 

 

    
y d
 d   +  

dx
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2 vxµ  

 

This can be easily integrated to result the fully developed velocity profile illustrated previously. 

However, the pressure drop is not a constant quantity any longer. There is a way to determine how 

pressure changes with the axial length. This will be illustrated in the next section. 

 

Reynolds Lubrication Theory 

 An important application of flows in narrow gaps (flows with negligible acceleration) is in 

Reynolds lubrication theory. This theory yields the forces which appear in bearings and other 

lubricating sliding surfaces provided that acceleration forces may be neglected. 

The x component of the momentum 

for the flow in the Figure besides is 
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Once this solved for fully developed 

flow yields 
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Assuming a wide bearing, then the mass flow between the plates is conserved 
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where, h0 is a parameter defining the mass flow rate to be determined later. Solving for the pressure 

drop 
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The lower plate in inclined to the horizontal by the angle 
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Integration and satisfaction of the boundary conditions that p=po at h1 and h2 yields the values of the 

constant of integration and ho. 
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The mass flow rate can now be calculated from 
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The lift force L per unit width (force of separation) acting on the upper plate is 
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The drag force D per unit width acting on the upper plate is: 
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To maximize lift (applications in floating magnetic readers) let dL/dk=0, that results k=2.2 

Which corresponds to: 

   L=0.4µUR D=1.2µUR D/L=3/R 

with 

   R=2L/(h1+h2) 

 

The pressure in between the edges of the bearing might reach very high values this prevents the two 

surfaces from touching. The figure below plots some pressure profiles. It can be seen that the 

maximum pressure depends heavily on the degree of contraction. 
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Flow in a Slightly Tapered Tube 

 

The taper of the tube will require a flow 

in the radial direction and an acceleration 

in the axial direction. Assume that flow 

maintains axial symmetry and that 

vz=vz(r,z), vr=vr(r,z), vθ=0. 

The Reynolds number for this flow id 

defined as: 

 ⎟⎟
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Where V is the average velocity at a given cross section where R is given by R=Ro+az. 

 The equations of continuity and those of motion in the r and z direction can be simplifies as 

follows: 
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This set of equations is difficult to be solved. However, we can perform an ordering analysis to 

simplify it. We estimate the order of magnitude of the various velocities and derivatives. (Define an 

average velocity  V≡Q/πRL
2). 
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We can calculate the order of vr from continuity 
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because (Ro-RL)/L << 1. If U now denotes the order of vr then, 
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Finally, from continuity one may estimate U in terms of V, that is 
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Similarly all the terms in the Navier-Stokes equations can be analyzed in this way to find their order 

of magnitude.  Using the approximations, 
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It can be shown that for slightly tapered tubes the equations can be reduced to only one equation in 

the z-direction, that is: 
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This was solved previously to result the velocity profile. Integrating the velocity profile to calculate 

the volume flow rate we can get 
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Note that R=R(z) and during integration to obtain this equation, we hold z constant. The process of 

adapting locally the results for a uniform geometry to a slowly varying geometry is known as 

lubrication approximation. 

Now express the change in R as,  

 

   )z/L()R-R(+R  =  R oLo  

 

Also note that, 

 

smallveryalsois
r

rz

smallis

∂
∂

∂
∂

<<
∂
∂

r

zz

r

v

vv
v



 
 

 

153 

    
L

R - R  
dR
dp  =  

dz
dR  

dR
dp  =  

dz
dp oL

 

Thus, 

 

    ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛  

L
R - R   

dR
dp- 

 8
R   =  Q oL

4

µ
π

 

 

Note that Q is constant for all z  (and hence all R). Solving this ODE for the pressure distribution as 

a function of RL, we get: 
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Note that the final result may be expressed as the Haagen-Poiseuille result multiplied by a correction 

factor. 

 

For more details on this particular problem see:  Bird, R.C. Armstrong and O. Hassager, Dynamics 

of Polymeric Liquids,"Vol. 1, "Fluid Mechanics, Wiley, New York, 1987. 
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Creeping Flows 

The Navier-Stokes equations for steady flows not involving free surfaces can be written in 

dimensionless form as follows: 
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where P* stands for the modified pressure which also contains the effect of gravity. For very small 

values of the Reynolds number Re/ρVD/µ << 1 this equation simplifies to: 
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or in vector notation (dimensional) 
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The flows described by these equations are called Stokes creeping flows. The equations are linear 

and possess some properties, which are useful in their solution. 

Taking the divergence of this equation, 
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or it may be rewritten as: 
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From continuity  ∇.V = 0 for incompressible flow. Therefore, 

 

     0 = P2∇  

 

Thus the pressure in creeping flows is a harmonic function, i.e., it satisfies the Laplace equation. In 

addition , it can be shown that (how?): 
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This is a more useful form since most of the time the boundary conditions are specified in terms of 

velocities. The solutions to Stokes' equations possess the following interesting properties: 

1. For start-up flows, the velocity distribution reaches steady state instantly. 

2. All flows are "kinematically reversible". This means that if the velocities in the boundary 

conditions are suddenly reversed in sign, all fluid particles will flow back along the same streamline 

they were following before the reversal. In other words, the streamlines are the same for forward and 

backward flow. 

 

Creeping Flow past a Sphere  

The low Reynolds number flow around a sphere is an important problem in classical fluid 

mechanics. The sphere has a radius of R and a Newtonian incompressible fluid with a uniform 

velocity V flows around the sphere. The fluid has a density ρ and a viscosity µ. 

a. Find the velocity field for the flow around the sphere. 

b. Obtain an expression for the drag force 
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The boundary conditions far from the sphere can be expressed as: 

 

        

∞→→

∞→→

  r for      ,       
 

rfor      ,-  

θ

θ

sinVv
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θ

r

 

 

 

 

At the surface of the sphere the conditions  

       are: 

 

        

R = r for     ,0  =  
 

 R = r for    ,0 =

v

v

θ

r

 

 

This problem can be solved with the use of the streamfunction in spherical co-ordinates for 

axisymmetrical flow with no φ-dependence. The velocity components can be expressed as: 

 

    

rr
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  r
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∂
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The boundary conditions far from the sphere become 

 

    ∞→→   r  for    , r  
2
1    22 θψ sinV  
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δr δθ 
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In view of this condition, we assume for ψ 

     θψ   ) r ( f  =  2sin  

 

The equation for ψ becomes 

 

     0  =   4ψ∇  

 

This can be solved (see Bird et al., Dynamics of Polymeric Liquids) to yield. 
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To find the drag force on the sphere we need also the pressure distribution. This can be obtained by 

substituting the velocity components in both the r and θ components of the equation of motion.  

Solving these two equations will result (neglect the effect of gravity): 

    o2 P    
r
R V  

2
3    =  P −θµ cos  

Thus the total drag force can be calculated (Force exerted by the fluid on the sphere in the horizontal 

direction or direction of flow)  
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Thus 

   dA   |p   +  dA  |    =  F Rr=
0

Rr= r
0

θθτ
π

θ

π

cossin ∫∫  

 

where dA=2πr2sinθdθ. The final result is: 

 

   R6 = R2+R   4  =  F VVV µπµπµπ  

which is Stokes law. 

 

Drag Coefficient: This coefficient is defined as: 

 

   

R    
2
1

F =  
(PR.AR.) V  

2
1

F  =  C
22

D

πρρ V2
 

 

where PR.AR. stands for projected area which for a sphere becomes the area of a circle, that is πR2. 

Thus, 

   
µ
ρDV    Re         where,

Re
24  =  CD ≡  

 

Skin Friction Coefficient: This is defined as: 

   
Re
16  =  

R  V  
2
1

 force)  (shear  force friction skin  = C
22

f

πρ
 

Thus we have contributions from skin friction (shear force) and pressure or form drag force. 
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A Sphere Moving in a Stationary Fluid 

For a sphere moving in a stationary fluid to the right, we can use superposition to determine the 

stream function, since the governing equations are linear. 

- First we change the direction of the flow by introducing a minus sign 

- We superpose a uniform flow to the right, which "stops the fluid and moves the sphere". The 

Stokes streamfunction for uniform flow to the right is: 

 

     2  /    r V  =  22 θψ sin  

and the new streamfunction is thus: 

    ⎟
⎠

⎞
⎜
⎝

⎛
r 4

R - 
r 4
R 3     r V  =  

3

3
22 θψ sin  

The total drag force on the sphere is again the same as previously: 

 

     RV6 = F D πµ  

 

This result agrees very well with experimental data for Re < 0.1, and the error is only a few 

percent up to Re=1. This is very surprising, because Stokes equation is only valid when the Reynolds 

number is much less than 1. However, drag depends on the flow near the body, and this is where the 

ratio of inertia to viscous forces is smallest. Far from the sphere the assumption that Re<<1 becomes 

locally incorrect and the predicted velocity distribution becomes increasingly inaccurate as r 

increases. 
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OSEEN'S SOLUTION 

Oseen (1910) proposed a method for liniarizing the inertia terms of the N-S equation for the 

case where the acceleration is not neglected entirely but is still assumed to be quite small. He 

proposed to write vx as the main flow velocity plus a perturbation. 

 

    xx v'Vv  +   =   

 

Thus the non-linear term becomes 
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Oseen proposed to neglect the last term. In this way we end up with a linearized approximation valid 

when the perturbation is small. When the drag coefficient, CD is calculated using Oseen's solution, 

the result is: 
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⎜
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16
3 + 1  

Re
24  =  CD  

 

This is a good approximation up to Re numbers of about 2. 
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HIGH REYNOLDS NUMBER FLOWS  
Regions Far from Boundaries 

The Navier-Stokes equations in dimensionless form and using the modified pressure are: 
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For very high Reynolds number the last term may be omitted and the following equations are 

recovered in a vectorial dimensional form, 

 

h  g - P -  =  
t D

D ∇∇ ρρ V
 

or in index notation 

 

x
P  1 - 

x
h  g-  =  

x 
   + 

t iij ∂
∂

∂
∂

∂
∂

∂
∂

ρ
vvv i

j
i  

 

which are the Euler's equations. Flows of constant density fluid, which obey these equations, are 

called  "ideal fluid flows". 

Internal flows of high Reynolds number are normally turbulent and Euler's equations are not useful 

for such flows. These equations are mostly useful for external flows, i.e., flows around an immersed 

body, such as aerofoil, flows around the wing of an aircraft. Also these equations are useful for the 

calculation of dp/dx as will be explained later. 

As one approach the surface of the immersed body, the Reynolds number locally becomes smaller 

and smaller and there the Eulers's equations are not useful. In such regions the viscous terms are 

becoming important. Thus, there is a layer in fact extremely thin where the viscous effects are 

important and there the Navier-equations should be solved. This layer known as the boundary layer 

will be the subject of study in the next chapter. Outside of this layer (free stream flow), viscous 
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effects are negligible and there one may use the Euler equations to determine the velocity patterns. 

Therefore for external flows, one may proceed as follows: 

i. Solve the ideal flow problem as if the boundary layer were not present, i.e., use the Euler equations 

2. Take the ideal flow solution for y=0, i.e., at the wall as the outer boundary conditions at y=δ for 

solution of the flow in the boundary layer, where δ is the thickness of the boundary layer. 

 

 

Figure: Point F is far away from 
boundary (Euler equation valid)  
whereas point C close to boundary 
(Euler equation invalid) 
 

 

 

 

Boundary Conditions 

To solve the Navier-Stokes equations we used as boundary conditions at a solid boundary the 

assumptions of no-slip and of impenetrable wall. In other words, the tangential and normal 

components of the velocity at a solid wall are zero   

 

boundaries  solidat      0=       0 = vv nt  

 

This is the case because the Navier-Stokes are second order PDE's. However, the Eulers's equations 

are first order and therefore one has to drop one of the two. The no slip boundary condition is 

dropped, since the zero normal velocity defines the solid boundary. Thus,  

 

0vn =  

is to be used with the Euler's equations. 

Irrotational Motion 

The Euler's equations can also be written as  
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Taking the curl of this equation zeros the right hand side, thus V 

 

0  =  )     (   - )  (
t 
 VVV ×∇××∇×∇

∂
∂

 

 

Define a vorticity vector ζ = ∇ x V and then the above equation becomes 

 

              0  =  )  x (V x  - 
t 
 ζζ

∇
∂
∂

 

 

One way to satisfy this equation is by  ζ=0. Flow for which ζ=0 are irrotational flows. The vorticity 

tensor equals twice the angular velocity defined previously. Hence, the term irrotational flow, which 

implies flows with no angular velocity. The Figure below illustrates nicely the difference between 

rotational and irrotational flows and indeed provides some physical insight into the character of 

these types of flows. 

 

 

 

 

 

 
 Figure. Rotational vs. irrotational flow 
 

If now we return to the original Euler's equation and assume irrotational steady flow, then 

 

Direction 
of flow Direction 

of flow 
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0  =   h  +  
2
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ρ
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⎤
⎢
⎣

⎡
∇ gV2  
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const.  =   h g +  
2
1 + 

ρ
p

V2  

 

This equation is the "strong" Bernoulli equation which holds for steady, inviscid and irrotational 

flows in the whole domain.  

It is noted that there is also the "weak" 

Bernoulli equation, which holds along streamlines 

for ideal fluid flow (no irrotational). This can be 

derived if the Euler's equation is rewritten for a co-

ordinate, s, that lies along a streamline, so that ds 

represent an infinitesimal distance along the 

streamline (see Figure besides). 
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Thus the Euler's equation can be written for a steady flow 
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Integrating and rearranging 
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which is the same as the above Bernoulli's equation, but this time was derived for an ideal (inviscid) 

steady flow and only holds along a streamline. Thus, the constant in this equation may vary from 

streamline to streamline while the one in the strong Bernoulli equation is a constant for the entire 

flow field. 

In the direction normal to a streamline one may derive the following equation: 

 

    
R

  =  
n
p1 2V
∂
∂

ρ
 

 

where R is the radius of curvature of the streamline and  αn=-V2/R is the centripetal acceleration. 

The above equation tells us that there is an increase of pressure in the outwardly normal direction to 

the streamline.  

 

The Circulation  Γ 

The circulation is defined as the counterclockwise line integral around any closed contour in 

the field flow, of the tangential component of the velocity vector 

 

   ds .   =  ds    =  Γ ∫∫ VTv  

 

From Stoke's theorem 

 

   dA  . )   (  =  ds   = Γ
A

nVV ×∇• ∫∫  

or 

     

    dA  )  . (   =  Γ
A

nζ∫  

A flow in which the vorticity is everywhere zero is said to be irrotational as discussed before. 
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Clearly the circulation is also zero for any contour in such a flow. 

 

Kelvin's Theorem (Conservation of Circulation) 

Starting from Euler's equations one can show that for ideal fluid flow, for a contour that 

follows fluid elements circulation is conserved, that is 

 

   0  =  
t D

DΓ
 

 

This equation is valid for any contour, no matter how small. Thus this implies that the vorticity of a 

fluid element can never change in an ideal fluid flow. 

 

Corrolary: If the upstream flow is irrotational, it must remain irrotational at all downstream points 

(principle of persistence of irrotationality). 

 

 

POTENTIAL FLOW (Irrotational Flow) 
Velocity Potential 

From vector calculus, if  φ is a scalar, then 

 

 0  =  )  ( x φφ ∇∇  =  )  grad ( curl  

 

For irrotational flow the condition is: ∇x V=0. Thus for every irrotational flow there must exist a 

scalar field, φ(x, y,z) whose gradient is equal to the velocity vector, 

 

     φ=∇V  

 

where  φ is called the "velocity potential". In Cartesian this is: 
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and in cylindrical, 
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Substituting these into the continuity for incompressible flows results in 
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which is the Laplace equation. Thus the velocity potential is a harmonic function and solutions can 

obtain easily due to the linearity of this equation. A proper set of boundary conditions must 

guarantee no normal flow relative to rigid surfaces. This Laplace equation is really a direct 

integration of the equation of continuity. Euler's equation is still used through Bernoulli equation to 

evaluate the pressure. Thus the momentum and continuity equations become coupled. 

Since the Laplace equation is linear, superposition of solutions is permissible, and elaborate 

flows may be constructed by superposition of simpler ones. It is noted, however, that Bernoulli's 

equation is not linear. Therefore, the pressure in a flow obtained by superposition of two flows is not 

a sum of the pressures of the two partial flows. 
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Two-Dimensional Irrotational Flows: 

We now consider two-dimensional irrotational flows. The equation for the definition of the 

velocity potential (V=∇φ) implies: 
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v v yx  

The corresponding equations for the streamfunction are: 
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Using the continuity one may also prove that in two-dimensional irrotational flow the streamfunction 

is also harmonic. Furthermore, 

   
x

 -  =  
y

  =       and     
y

  =  
x

  =
∂
∂

∂
∂

∂
∂

∂
∂ ψφψφ

v  v yx  

or in cylindrical coordinates 
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But these are the Cauchy-Rieman condition that guarantee the existence of an analytic function, f(z), 

of a complex variable, z, where 

     yi+x =z   

or in polar coordinates 

    e r = )   i +   ( r  =z    i θθθ sincos  

Thus for every irrotational flow there exists an analytic function, f(z), that is related to the velocity 

potential and streamfunction as follows: 

 

    y)(x, i + y)(x,   =  f(z) ψφ  
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where f(z) is called the "complex potential". Since f(z) is analytic, its derivative exists: 

 

   vv yx  i -   =  i +   =  
dx
df  =  

dz
df  =  w(z) xx ψφ  

 

This function is called the "complex velocity". In polar coordinates this is 

 

   e )  i -  (  =  w(z)  i - θvv θr  

 

Giving the complex potential, it is a very concise way of describing the potential flow. Since both φ 

and ψ satisfy linear differential equations, their solutions are superposable. Thus f(z) is 

superposable. In other words, if f1(z) and f2(z) are complex potentials, f1+f2 is also a complex 

potential that describes some irrotational flow field.  

The family of  φ=const lines  and that of  ψ=const lines intersect orthogonally. This is easily 

shown by noting that 

 

 0=.   ,j +i-=      ,j  +  i =  ψφψφ ∇∇∇∇ vvvv xyyx  
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EXAMPLES 
 

Uniform Flow in the x-direction 

The components of the velocity are: 

 

 

 0=    U= vv yx  

  

 Then  

 

 z U = )y  i + x ( U = )z  ( fy      U =      x U = ψφ  

 

 

Uniform flow at an angle α with the x-direction 

 

The components of the velocity are: 

       

 0=       U=    U= vsinvcosv zyx αα  

 

 Then  

  

   y  U =         x U = αψαφ sincos  

and 

  e U = )  i -  ( U =  U i -  U =  i -  = )z  ( w -iααααα sincossincosvv yx  

 

and finally integrating 

    z e U = )z  ( f  -iα  
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Source or Sink Flow 

For a two-dimensional source axisymmetric flow (line source) the only non-zero component 

is the radial, that is (from continuity)   

   0  =  v      ,
r  2

Q  = θπ
 vr  

 

where Q is the "strength" of the sink i.e., fluid flow per unit length of tube if such a radial flow is 

visualised to be emitted through the wall of a long slender tube made of porous material. Q is taken 

positive for a source and negative for a sink. It is noted that such a velocity profile does not satisfy 

continuity at the origin. 

Integrating the velocity profile, the velocity potential may be obtained, that is 

 

   
r

  =     because   r  
 2
Q = 
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π
φ v ln r  

 

and the stream function 

 

    θ
π

ψ  
 2
Q  =   

 

Thus, the complex potential is: 

   θ
π

 i + lnr =lnz     because     (z) 
2
Q = )(z  f ln  

 

For a source located at z0 rather than at the origin 

    )z -ln(z 
 2
Q = )z  ( f 0π

 

For a sink replace Q with -Q in all the above equations. The schematic below illustrates streamlines 

and equipotential lines as well as the velocity field  for a 2-D source flow. Note that the streamlines 
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are orthogonal to the equipotential lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential Vortex  

In potential vortex  flow the radial velocity component vr is zero and only vθ exists. From the 

continuity, 

  0  =  
r 

) (r  
r
1

∂
∂  vθ  

 Integration yields 

   )f( + 
r
C  =  θvθ  

  

 and because nothing depends on θ, f=0. Thus 

 

   
r
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The velocity potential and streamfunctions are as follows: 

y y 

x x 
sink 

Velocity 
  vector 

Equipotential 
lines, φ=const 

Streamlines, 
ψ=const 
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    r C -  =        , C  =  lnψθφ  

 

Comparison with the source flow shows that φ and ψ lines have simply changed their roles. The 

constant C is related to the circulation around the vortex as shown below 

 C  2  =  d C    =  )d r  + dr ( .   
r
C      =  ds .   =  Γ

 2

0
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Hence 

     
π 2
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     r 
π 2
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π 2
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The complex potential is: 

   z 
π 2
Γi -  =  r  

π 2
i Γ -  

π 2
Γ  =  ψ i +   =  f(z) lnlnθφ  

For a vortex located at z0 , rather than at the origin: 

    ) z  -(z   
π 2
Γi -    f(z) 0ln≡  

There is no contradiction between Γ≠ 0 and the irrotationality of this flow. The circulation 

along any closed path not linked with the origin is zero. The singular point at the origin contributes 

the Γ value, and the same Γ is obtained along any contour linked with the origin. 
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Flow over Streamlined Bodies 

 

1. Around a 2-D half body 

First we consider the superposition of a two-dimensional source flow and a parallel flow. In 

this way we describe the flow past a 2-D streamlined "half body". This combined flow has the 

following velocity potential and streamfunction  

 

 θθ
π

ψθ
π

φ sincosln  r U +  
 2
Q  =         ,  r U + r  

 2
Q  =   

 

and the following velocity components 

 

   θθ
π

  U-  =        , U + 
r  2

Q  =  sinvcosv θr  

 

For this flow we may recognise the need for the stagnation point A. Inspecting we see that for θ=π 

and r=Q/2πU both velocity components vanish, and thus a stagnation point is obtained.  

 

The same conclusion could have been reached by 

the argument that the zero streamline, ψ=0, could 

not pass through the source and therefore it must 

split. At the splitting point the velocity vector has 

more than one direction, and therefore its 

magnitude must be zero. 

We also note that the streamline ψ=0 encircling the source cannot close again. Far to the right the 

flow becomes parallel again, but the splitting streamline does not close because if it did, the output 

of the source would have nowhere to go. 
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2. Source plus sink plus uniform flow 

If a sink is superposed with a source and a parallel flow the zero streamline of the previous 

case can be closed again. In this way, the result represents a finite solid two-dimensional body 

immersed in the flow. 

One possible arrangement is shown in the 

figure besides. The shapes resulted are 

known as the Rankine ovals. The complex 

potential in a case where the source is at 

position  x = - α  and the sink is at  x = α is: 
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3. Flow around a Cylinder 

If we let the source and the sink move toward each other in the flow described previously, 

the body will become more circular. To obtain the flow around a true circular cylinder, the source 

and the sink must be at the same location, i.e., α must go to zero. But then this simplifies to a parallel 

flow. To avoid this, we imagine a process where as 2α→0, Q ∞→ . We wish Q to increase at such a 

rate that the limit for the complex potential is well defined and finite. In other words we let: 

 

   m = Q2
Q  ,0

α
α

lim
∞→→

 

By taking the limit, the result can be written as:  

 

    
z

 +z  U  =  )z  ( f λ
 

 

where  λ is the strength of the doublet (source+sink), λ=m/2π. 
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But what is the radius of the cylinder? This can be found by finding the location of the 

stagnation point, the point where v=0 on the axis of symmetry. The result is that the radius is √λU. 

Thus the complex potential can be written as: 
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4. Superposition of Vortex Flow on the Flow around a Stationary Cylinder  

If we superpose vortex flow on the flow around a stationary cylinder, we get a flow in which 

there is a tangential velocity at the wall of the cylinder, as would occur if the cylinder were rotating. 

The complex potential in this case can easily written by using the superposability principle of f(z). 

Thus 
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z
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2

απ
α ln  

 The sign on the vortex is such that the cylinder is rotating in the counterclockwise direction. 

Doublet Flow 
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Also the arbitrary constant is chosen to give ψ=0 on the surface of the cylinder. It can be shown that 

for negative circulation there is positive (upward) lift on the cylinder. To calculate this lift one needs 

the pressure distribution around the cylinder. This can  be obtained by using Bernoulli equation. 
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The tangential component of the velocity from the complex potential is: 
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and the radial one is: 
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Thus, from Bernoulli the pressure distribution is: 
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The first two terms are symmetrical so that contribute nothing on the lift force. The last yields a lift 

force, that is (sinθ comes from projection of the pressure force in the vertical direction) 

θθ
π

ρθθαθ αα d   b U    =  d    b P- =   ds b P- = dL 2sinsinsin Γ  
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where b is the length of the cylinder, Pα is the pressure on the surface, ds is some differential  surface 

area on the cylinder and θ is the angle defined as in the unit trigonometric circle. Integrating, 

    Γ U b    =  L ρ  

The presence of this lift is called the Magnus effect, has some very important implications in 

aerodynamics. Also it helps to explain why spin on a golf ball can cause it to veer off to the side and 

how a curve ball can be thrown. The Figure below illustrates the velocity patterns with and without 

circulation. 
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DRAG ON BODIES - d' Alambert's Paradox 

Using the ideal fluid theory to calculate the drag force on immersed bodies gives the 

surprising result of zero. While it is obvious that there would be no viscous drag predicted by this 

theory, it is well known that the principle source of drag at high Reynolds numbers is form drag i.e., 

pressure drag. 

The great French mathematician d'Alabert showed in 1752 that drag predicted by ideal fluid 

theory is zero. This paradox threw some doubt on the validity of Euler's equations. It was not until 

1904 that Prandtl resolved this issue by developing the boundary layer theory. 

The role of viscosity is "dual". 

 - First viscosity plays a direct role in drag as the mechanism of skin friction or viscous drag. 

 - However, even though it operates only in a thin layer near the body, it also affects the pressure 

distribution in such a way that form drag occurs.  

 

ADDED MASS - (Hydrodynamic mass) 

While there is no drag for a body moving at constant velocity in an ideal fluid at rest, as 

shown by d'Alambert, it is necessary to apply a force to accelerate a body in an ideal fluid, and this 

force is greater than the mass of the body multiplied by its acceleration. This is because it is 

necessary at the same time to accelerate a large body of fluid surrounding the body. This additional 

force is usually accounted for by use of the concept of the "added mass". 

   ds 
n 
      

U
-  =  M

A
2a ∂

∂
∫

φφρ  

where the surface integral is taken over the surface of the body, ds is the infinitesimal surface, and n 

is the spatial co-ordinate normal to the surface. 

Thus the total force required to accelerate the body is: 
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HIGH REYNOLDS NUMBER FLOWS 

2. Regions close to Boundaries - The Boundary Layer Theory 
In this chapter we still consider high Reynolds number flows, but this time our focus will be 

concentrated in regions close to solid boundaries where viscous effects become important. As also 

discussed in the previous chapter for high Reynolds number flows we have two solutions. 

-For regions far from solid boundaries the Euler's equations apply and if the flow is also irrotational 

we can use the much simpler Laplace equation. 

-However, there always be a thin layer near a solid boundary wall where this solution is not valid, 

because the local Reynolds number is small in that region. In addition the Euler's equations do not 

satisfy the no-slip boundary condition, an observation well documented experimentally. Because this 

boundary layer is thin, it makes possible a simplification of the Navier-Stokes that is similar to that 

used in lubrication flows. 

To match the two solutions, it is assumed that the solution to the potential flow problem at 

the boundary (y=0) gives an acceptable approximation of the velocity and pressure distributions at 

the outer limit of the boundary layer. For example consider a flow in the x-direction parallel to a flat 

plate, as shown in the figure below. The potential flow for this example has already been solved, 

 

const.=U=    x,U  =  vxφ  

 

which implies a uniform velocity profile. The real velocity profile matches the no-slip boundary 

condition at the solid boundary as shown schematically below. Comparing the two velocity profiles, 

we see that the solution to the potential flow problem is correct only far from the solid wall. 

Boundary layer Theory                   Potential Flow 

y 

x 

U 
U

δ v(x,y) 
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PRANDTL's BOUNDARY LAYER THEORY 

A procedure for simplifying the N-S equations for the special case of boundary layer flow 

was originally developed by Ludwig Prandtl, a professor at the University of Gottingen in Germany, 

to solve problems in aerodynamics. The resulting equations and techniques constitute "Prandtl's 

boundary layer theory". We will illustrate the theory for the simplest two-dimensional case, the flow 

over a surface. 

 

U     δ is only a function of x. 

y        vx is a function of x, and y. 

        vx (x,y)  δ(x,y)   vy is a function of x, and y. 

 

x 

 

For this problem we have from the Navier-Stokes equations for plane flow: 
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The boundary conditions are: absence of slip between the fluid and the wall, i.e. vx=vy=0 for y=0, 

and vx=U, vy=0 for y→∞. 

Because the boundary layer, δ, is thin, Prandtl proposed for y<δ 
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2

2

∂
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∂ vv xx  

 

which means that the streamwise diffusion of momentum is negligible compared to the transverse 

diffusion of momentum. From continuity one may estimate the order of magnitude of ∂vy/∂y which 

is the same as that of ∂ vx /∂ x. With similar arguments the y-component of the Navier-Stokes 

simplifies to (see also H. Schlichting, Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 

1979): 

 

δ  y  ,   for     0  =  
y 
p

∂
∂

 

 

which tells us that the pressure is not a function of the y direction, but it only depends on the x-

direction. Thus, one may use the results from potential theory to calculate the pressure distribution. 

The Bernoulli equation is: 
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2

U + h g + p 2

ρ
 

 

Differentiating with respect to x, we get 
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dp 1 -

ρ
 

 

Using these simplifications, one may write the continuity and the Navier-Stokes equations as: 
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The boundary conditions are: 
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Using the streamfunction these two equations can be reduced to a single equation 
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THE BOUNDARY LAYER THICKNESS 

Within the boundary layer thickness the velocity, vx(x,y) increases from the value of 0 at the 

solid boundary and approaches U(x) asymptotically. Thus, it is impossible to indicate a boundary-

layer thickness in an unambiguous way. However, it is convenient to define some measures for the 

boundary layer. These are the following: 

1. The boundary layer thickness, δ: This thickness is also referred to as the ninety-nine percent 

boundary layer thickness. This is defined as the distance from the wall at which the velocity 

component, vx(x,y) approaches 99% of the value of U(x).  Thus, 

 

U 0.99  v      whichat value    ) 0.99 ( x ≡≡δ  
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2. The displacement thickness, δ1: The presence of the boundary layer reduces the total mass flux in 

the x-direction, and this reduction can be expressed in terms of a characteristic distance, δ1 

(displacement thickness). 

 

dy U     =dy       -dy  U   
1

0

h

0

h

0
ρρρ

δ

∫∫∫ vx  

 

The quantity h is sufficiently large that the entire boundary layer is included within it. If the density 

is uniform then this expression may be simplified to: 
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3. The momentum thickness, δ3: The total momentum flux is also reduced by the presence of the 

boundary layer, and this reduction can also be used to define a distance scale, δ2, called the 

momentum thickness. 
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For a fluid with uniform density this reduces to: 

 

Note that δ1, and δ2 would not change much, if the upper limit of the integral, h, is replaced 

with the 99% boundary layer thickness δ. This is because the term in the parenthesis, it takes values 

from 0.01 (at y=δ) and less (at y>δ). In fact it approaches asymptotically 0 for  y>δ. 

 

  

THE BOUNDARY LAYER ON A FLAT PLATE AT ZERO INCIDENCE 

For such a case, the solution to the potential flow problem is that the velocity is uniform in 

the x-direction (direction of flow) 
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From Bernoulli 
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Thus, the Boundary Layer equations can be simplified to: 
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and the boundary conditions are: 
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In terms of the streamfunction: 
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and the boundary conditions become: 
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This problem was studied by Blasius, a doctoral student of Prandtl. He found that a similarity 

variable exists which can be used to transform the problem into an ODE. Specifically he assumed 

that: 
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x 

Uy      
ν

η ≡  

 

In terms of velocity this becomes: 

 

)( f  =  
U

η′vx  

 

This implies that the velocity profiles at various x-locations are "self-similar". Using this 

transformation into the partial differential equation for the streamfunction yields: 
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This ODE must be solved numerically. The velocity profile is given by: 
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Fluid Mechanics books tabulate values of f' (η). The Table below summarises some values: 
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    η 

 
        f'' 

 
          f' 

 
          f 

 
    0 

    1 

    2 

    3 

    4 

    5 

    6 

    ∞ 

 
    0.332 

    0.323 

    0.267 

    0.161 

    0.0642 

    0.0159 

    0.0024 

       0 

 
          0 
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     1.000 
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The wall shear stress is: 
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where Rex is the Reynolds number defined as Rex≡Ux/v. For a plate of width b and length L, we 

have for the drag force, FD, on one side: 

 

Re
L b U  0.664  =  x d b    =  F

L

2

w

L

0
D

ρ
σ∫  



 
 

189

 

where ReL is the Reynolds number defined as ReL/UL/v. Thus the local skin friction coefficient, Cf, 

for this case becomes: 
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0.664  =  

U  
2
1  =  C
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while the average skin friction coefficient over a length L,  C f  is: 
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Also the following relations can be derived: 
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The figure below shows the Blasius solution in graphical form, as well as comparison of the solution 

with experimental measurements. It can be seen that the agreement is excellent. 
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Figure (adopted from White , Viscous Fluid Flow, 2006) (a) numerical solution of Blasius for the  
flat plate boundary layer and (b) comparison with experiments. 
 

vx /U 
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OTHER SIMILARITY SOLUTIONS 

Falker and Skan (1931) carried out an analysis of the boundary layer equations to find all 

similarity solutions that could be expressed in the form (similar to a generalized Blasius solution). 
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They found that such similarity solutions exist when (see White, 2006 for a proof): 
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where α and β are constants. In fact β is a measure of the pressure gradient dp/dx. Substituting these 

into the Navier-Stokes in terms of streamfunction the following ODE is obtained. 

 

0  =]    f - 1 [  + f f  + f 2′′′′′′ βα  

 

Special cases from these equation may be obtained: 

 

1. Flow over a flat Plate 

 

α = 1/2 

β = 0     U 

(vx/U)=ξ  

 

This gives the Blasius solution 
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2. Flow over a Wedge                  stagnation point 

 

α = 1 

πβ = wedge angle 

U(x) = c x β / (2-β) 
and 

x  
c

)   -  2 (   =  ) x ( )-)/(2-(1 βββνξ  

 

3. Other Flows 

These include stagnation 2-D and 3-D, flow around a corner, flows in convergent and divergent 

channels etc. For more details see Schlichting (1979). 

 

VON KARMAN - POHLHAUSEN INTEGRAL METHOD 

Up to this point we have seen some of the exact solutions to the boundary layer equations. 

Exact in a sense that the equations are solved exactly irrespectively of the method used, analytic or 

numerical. However, there are situations where exact solutions cannot be found (except full 

numerical solution of the PDE's). For these cases an approximate method due to Von Karman and 

Pohlhausen can be used. The approximation is that the boundary layer equation is not satisfied 

pointwise but rather on the average over the region. 

Todor Von Karman, a native Budapest was a research assistant at Gottingen. His research 

had to do with beam stability, but he became interested in the work on boundary layers that was 

going on there. He and Pohlhausen developed independently an approximate technique for solving 

the boundary layer equations which is discussed in this section.  

According to the method, the differential boundary layer equations are first transformed into 

an integral equation. This stage is exact. Then we proceed to satisfy this integral equation by the 

selection of an appropriate velocity profile inside the boundary layer. This stage introduces the 

approximation into the method, because satisfying the integral relation is a necessary condition, but 

not a sufficient condition. 

πβ 
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Consider again the boundary layer equation 
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Integrate the above equation with respect to y from y=0  to  y=h >δ  
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The right hand side integral is: 
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Consider the second term on left and integrate by parts to get 
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From continuity 
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Thus the term being considered is: 
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The first term on the right 
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Using all the above 
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Multiply by (-1) and rearrange 
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or 
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Using 
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Finally we get 
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This is the momentum integral equation of Von Karman and Pohlhausen. If we has considered an 

unsteady flow then this equation would have become: 
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For steady flow the momentum integral equation can be rewritten as: 
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Up to this point this equation is still exact. The approximation comes in when a velocity profile, 

vx=f (y/δ), is assumed to evaluate the various terms. The procedure is as follows: 

- Assume a reasonable form for the velocity profile, vx=f (y/δ), parabolic or higher order. This 

profile should meet the following basic criteria 

i. Continuity of vx(y) 

vx = U    at   y=δ 
ii. Continuity of shear stress 

∂ vx /∂y = 0    at  y=δ 

iii. Zero second derivative of vx(y)   at  y=0  because  i.e., for a flat plate 

 

From momentum at y=0 
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Example: Consider flow over a flat plate, and make a very naive assumption regarding the form of 

the velocity distribution: 

 

) x ( 
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δ
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Note that this crude approximation satisfies only the first and third criterion. Using the definitions of 

δ, δ1, and δ2 then calculate: 
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Substituting into the momentum integral equation 
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One may now obtain 
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Re

x 1.732  =  
x

2δ  
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1.156  =  C
x

D  

 

The corresponding exact coefficients are 5, 1.73 and 1.328 respectively. Thus a very crude 

approximation leads to correct functional forms and values of the constants that are of the right order 

of magnitude. 

 

 

BOUNDARY LAYER SEPARATION 

The boundary layer near a flat plate in parallel flow and at zero incidence is particularly 

simple, because the static pressure remains constant in the whole field of flow. Note also that the 

pressure gradient in the direction of flow is governed by the mainstream potential flow through 

Bernoulli's equation. In cases where there is an "adverse" pressure gradient, i.e. dp/dx > 0 a 

phenomenon referred to the boundary layer separation may occur. According to this a reversal of 

flow in the boundary layer near the wall may occur.  

To explain the very important phenomenon of boundary layer separation let us consider the 

flow about a blunt body, e.g. about a circular cylinder as shown in the Figure below. In the 

frictionless flow, the fluid particles are accelerated on the upstream half from D to E, and 

decelerated on the downstream half from E to F. Hence the pressure decreases from D to E and 

increases from E to F. Because from E to F the pressure gradient is "adverse" a separation in the 

boundary layer occurs which is accompanied by a flow reversal. Also below a schematic diagram 

(magnification of the surface of the cylinder) illustrates more comprehensively the phenomenon in 

terms of velocity profiles. 

The fact that separation occurs only in decelerated flow (dp/dx > 0) can be easily inferred 

from  a consideration of the relation between the pressure gradient  dp/dx and the  
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Figure: Boundary layer separation 

 

velocity distribution, vx, with the aid of the boundary layer equations. Evaluating the momentum 

equation at the wall  ( vx = vy = 0 ) leads to: 

 

x d
p d  =    

y 
    2

2

0 =y 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
∂ vxµ  

 

In the neighbourhood of the wall the curvature of the velocity profile depends only on the pressure 

gradient, and the curvature of the velocity profile at the wall changes its sign with the pressure 

gradient. For flow with decreasing pressure gradient (dP/dx<0) this relation tells us that    

( ) 0/v 2
x

2 <∂∂ wally  and therefore ( ) 0/v 2
x

2 <∂∂ y over the whole domain. In the region of 

pressure increase (dP/dx > 0) we have ( ) 0/v 2
x

2 >∂∂ wally  and since at distances far from the wall  

( ) 0/v 2
x

2 >∂∂ y  the velocity profile always exhibits a point of inflexion in the region where 

separation exists. From the Figure below one may infer that the condition for the onset of separation 

is: 
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y 

   
0 =y 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ vx  

 



 
 

200

 

 

 

 

 

 
Fig. Velocity distribution in a boundary layer with  Fig. Velocity distribution in a boundary layer with   

        pressure decrease             pressure increase; PI=point of inflexion 

 

 

Note: Separation decreases CD (drag coefficient), while no separation increases CD (Applications: 

design of planes, cars, aerodynamics etc). 
 

 

 

 

y y y 

vx ∂ vx /∂ y ∂ 2vx /∂ y2
vx ∂ vx /∂ y ∂ 2vx /∂ y2
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THE FLAT PLATE WITH WALL SUCTION OR BLOWING 

As discussed above boundary layer separation decreases drag in general. To impose or prevent 

separation, one may alter the boundary conditions at the wall by imposing a nonzero wall velocity in 

the transverse direction, vy <<U, wither positive (blowing) or negative (suction). The streamwise 

wall velocity vx,wall=0. This has practical applications in mass transfer, drying, ablation, transpiration 

cooling and boundary layer control (already discussed). The wall velocity, vy, at the wall where 

νη xUy 2=  is equal to zero, is: xUf 2/)0(v wall,y ν−= . Note that this velocity component 

at the wall is allowed to vary in such a fashion that a similarity solution exists. Therefore suction and 

blowing can be simulated by a nonzero value of the Blasius stream function, f(0). This problem was 

solved by Schlichting and Bussmann (1943) subject to the following 

conditions: 0)0(,1)(',0)0(' ≠=∞= fff . The results are strongly dependent on the suction-

blowing parameter, 
2

)0(Re
U

v
v wally,*

w
f

x
−

== . The figure below summarizes the results. 

Suction thins the 

boundary layer and 

greatly increases wall 

slope (friction, heat 

transfer). These profiles 

are very stable and delay 

transition to turbulence. 

Blowing thickens the 

boundary layer and 

makes profile S-shaped 

and prone to transition 

to turbulence. At 
*vw =0.619, the solution yields 0/vx =∂∂ y  at the wall. The boundary layer is said to be blown off 

and the heat transfer and friction are zero.  

 

vx /U 



 
 

202

FREE-SHEAR FLOWS 

Shear free layers are unaffected by walls and develop and spread in an open ambient fluid. They 

possess velocity gradients, created by some upstream mechanism that they try to smooth out by 

viscous diffusion in the presence of convective deceleration. Examples are (1) free-shear layer 

between parallel moving streams (2) jet i.e. injection of a fluid through a small opening into a still 

ambient fluid and (3) wake behind a body immersed in a stream. Jets and wakes are unstable and are 

more likely in practice to be turbulent than laminar. 

For such flows if the Reynolds number is large most of the boundary-layer approximations are valid 

and for 2-D flows these are: 

 

0  =  
y

 + 
x ∂

∂
∂
∂ vv yx     (continuity) 

 

  
y 
     =  

y 
    + 

x 
   2

2

∂
∂

∂
∂

∂
∂ vvvvv xx

y
x

x ν    (x-momentum equation) 

 

Note that in solving these equations there are no walls to enforce a no-slip condition. In most of 

these flows, just downstream from the disturbance the velocity profiles are non-similar and 

developing. These will be similar further downstream. In our brief discussion we will discuss similar 

solutions for the shear layer of shear layers of two different streams. For all the other cases and many 

more, see White (2006).  

 
(a) Shear Layers  (b) Plane Laminar Jet       (c) Plane Laminar Wake 
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The Free-Shear Layer between Two Different Streams 

The figure below shows the flow problem under consideration. The discontinuity in the velocity 

profiles is smoothed out by viscosity into an S-shaped shear layer between the two. The case U2 =0 

corresponds to boundary layer flow over a flat plate. 

       
Figure: Velocity distribution between two parallel streams of different properties 

 

The equations for solving this problem are defined in terms of the following Blasius-type similarity 

variables: 

j
j x

Uy
ν

η
2

1=   
1

jx,' v
U

f j =   for j=1,2 

Substitute into the equation s for shear free flows, Blasius type of equations can be developed, these 

are: 

21,jfff jjj ==+ 0'''''  

The boundary conditions require equality of velocities at the interface, equality of shear stress at the 

interface and asymptotic approach to the free stream velocities at infinite distance. The solution is 

plotted below. Note the Blasius solution for flow over a flat plate and the development of the S-

shaped velocity profile. 

vx 
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Figure: Velocity profiles  
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