SUMMARY OF VECTOR AND TENSOR NOTATION

-Bird, Stewart and Lightfoot "Transport Phenomena"

-Bird, Armstrong and Hassager "Dynamics of Polymeric Liquids"

The Physical quantities encountered in the theory of transport phenomena can be categorised into:
- Scalars (temperature, energy, volume, and time)
- Vectors (velocity, momentum, acceleration, force)
- Second-order tensors (shear stress or momentum flux tensor)
While for scalars only one type of multiplication is possible, for vectors and tensors several kinds are
possible which are:
- single dot .
- double dot :
- Cross X
The following types of parenthesis will also be used to denote the results of various operations.
( )=scalar (u.w),(c:7)
[ ] =vector [uxw],[z.u]

}

The multiplication signs can be interpreted as follows:

{ } =tensor {c.

Il

Multiplication sign Order of Result
None z
X -1
-2
>-4

Scalars can be interpreted as Oth order tensors, and vectors as first order tensors.

Examples:
ST order is 0+2=2 which is a 2nd order tensor
uxw order is 1+1-1=1 whichis a vector
o1 order is 2+2-4=0 which is a scalar



Definition of a Vector: A vector is defined as a quantity of a given magnitude and direction.

|u| is the magnitude of the vector u

Two vectors are equal when their magnitudes are equal and when they point in the same direction.

Addition and Subtraction of Vectors:

w
u-w
u
Dot Product of two Vectors:
(u. w) = [uf [w| cos(p) w
Q u >

commutative (u.v)=(v.u) Area=(u.w)
not associative (u.v)w=#u(v.w) e
distributive (u. [v+w])=(u.v)+(u.w)
Cross Product of two Vectors:
[uxw] = [u| |[w]| sin(¢) n where n is a vector (unit magnitude) normal to the plane containing u

and w and pointing in the direction that a right-handed screw will

move if we turn u toward w by the shortest route.

\
Area of this equals the
length of [uxw]



not commutative [uxw] = -[wxu]
not associative[u x [vx w]] # [[ux v] x w]

distributive [[utv]xw]=[uxw]+[vxWw]



VECTOR OPERATIONS FROM AN ANALYTICAL VIEWPOINT

Define rectangular co-ordinates: 1,2,3 — x,y, z respectively
Many formulae can be expressed more compactly in terms of the kronecker delta 6; and the
alternating unit tensor &, which are defined as:

o =1 if i=j

0 =0 if i#

and
giji=1 if jk=123, 231, 312
&ijx= -1 if k=321, 132, 213
&ijk =0 if any two indices are alike

We will use the following definitions, which can be easily proved:

2 2k ijk £njk = 2 5ih

and

2k Eijk Emnk = 8im jn = Sin J jm

The determinant of a three-by-three matrix may be written as:

a11 012 Q13

Q21 22 Q23| = 2i2j2k Eijk Ali a2j a3k

31 a32 a33
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DEFINITION OF A VECTOR AND ITS MAGNITUDE: THE UNIT VECTORS

A vector u can be defined completely by giving the magnitudes of its projections u;, up, and uz on

the co-ordinate axis 1, 2, and 3 respectively. Thus one may write

3
U= St t3o3us = 2 diui
i=l1

where dj, J2, and 03 are the unit vectors in the direction of the 1, 2 and 3 axes respectively. The

following identities between the vectors can be proven readily:

A

1 01-01 = 062-62 = 53.03 =1
u3 2 01:62 = 62.63=63.01=0

01%X01 = 02%X82 = 03%x03 =0

[61 % 5217835 [62x83]1=61 [83 % 01152

[62x81]1=-835 [03 % 621=-81 [81 x531=-82
All these relations can be summarized as:
(6i-57) = 5

3
[sixs;] = kZ Eijk Ok
o



Addition of vectors:

utw = Y. Siuit Xidiwi = 2i0i(uitwy)

Multiplication of a Vector by a Scalar:

su = s[Y;0iuil = 2;0i(sup)

Dot Product:

(v.w) = [Zisiul.[Zjoiwil = ZiXi(6i-S)uiwj =

= 2iZjSijuiwj = 2juiwi

Cross Product:

[uxw] = [(Z;5ju)*x xSk wi)]
= 3 5 [8% Sk Tujwi = 5% Tk ijk i uj wi
51 62 63
= uw uz us3

Wi w2 w3

Proofs of Identities (Example):

Prove the following identity
ux[vxw]=v(u.w)-w(u.v)

This identity will be proven for the i-component, so the summation %; will be dropped out for the



sake of simplicity.

(ux[vxw])y XXk €k Ui [ VX W [k = X Xk Eijk U [21 ZinEkimVI W] =
= % X 2 L Eijk €kim Uj VI Wiy
= 2 2k 21 Zm Eijk Elmk Uj VI Wi
= % 21 Zim (810jm = Oim Oj1) Uj Vi Wiy
= % X1 iy 0i®jm Uj Vi Wiy - X Xj Xy Oim 01 Uj Vi Wiy
set I=1 in the first term and m=i in the second term
= Vi Zj Zin Ojm Uj Win - Wi X X1 851 u; Vi
set m=j in the first term and l=j in the second term

= ViZjuJ' Wj-Wi Zj uj Vj

vi(u.w)-wi(u.v)

viu.w)-w(u.v)



VECTOR DIFFERENTIAL OPERATIONS

Define first the del operator, which is a vector

The Gradient of a Scalar Field:

0s 0s 0s 0s
Vs = 61 + 65> + 385 =3 55—
Ox; Oxy ~O0x3 o lox
not commutative Vs #sVL
not associative (Vr)s #V(1s)
distributive V(r+s)=Vr+ Vs

The Divergence of a Vector Field:

0 0
(V.u)= [Zi&a}[zj'é‘juj]: ZiZj[§i-5j]a_)(in

i

0 Ouj
= %357 ) = B
i ”aXi j IaXi
not commutative V.u)#(u.V)
not associative (V.s)u= (Vs.u)
distributive V.(utw)=(V.u)+(V.w)

The Curl of a Vector Field:




[Vxu]= { {Zjéjaix:lx[Zké‘kUk] } = ZjZk[§jX§k]iuk
j

o1 02

0 0

8Xj
03

0

uj uz

0x1 Oxz Ox3

u3

g OQu2_Ou
\ox, 0xo

[Vxu]=curl (u)=rot (u) Itis distributive but not commutative or associative.

The Laplacian Operator:

The Laplacian of a scalar is:

0? 0%s _ o%s
V.Vs)=>. S = +

The Laplacian of a vector is:
Viu=V(V.u)-[Vx[Vxu]]

The Substantial Derivative of a Scalar Field:

If u is assumed to be the local fluid velocity then:
D 0

—=—+Uu.V
Dt ot ( )

The substantial derivative for a scalar is:

2
S
L0

8x§



The substantial derivative for a vector is:

Du ou Ou;
— = —+.V)u=X6 | —+W.V)y
Dt o (u.V)u=3;s; ( 2t (u )ulj

This expression is only to be used for rectangular co-ordinates. For all co-ordinates:

UV = %(u.u) —[ux[Vxu]]

10
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SECOND - ORDER TENSORS

A vector u is specified by giving its three components, namely u;, u, and us. Similarly, a second-

order tensor T is specified by giving its nine components.

711 T12  T13
T =121 722 723

731 732 733

The elements 7,1, 22, and t33 are called diagonal while all the others are the non-diagonal elements
of the tensor. If 11,=121, 131=T13, and T3,=T»3 then the tensor is symmetric. The transpose of T is
defined as:
I 121 T3l
T T T2 T2 TR

713 723 733

If T is symmetric then T=T%.

Dvadic Product of Two Vectors:

This is defined as follows:
upwi ujw? upwji
Uw = | uz2wi Uz w2 uz2wjs

U3 wi u3w u3zwsi
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Unit Tensor:

1 0 O
o=10 1 0
0 0 1

The components of the unit tensor are d; (kronecker delta for 1,j=1,3)

Unit Dyads:

These are just the dyadic products of unit vectors, 8,0, in which m,n=1,2,3.

1 0 0 0 1 0
s51610=|0 0 0] &6,=|0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
5163=10 0 0| &36,=]/0 0 0
0 0 0 0 1 0

Thus, a tensor can be represented as:

T = 2i2;0i0Tij

and the dyadic product of two vectors as:

uw = 3>;2,;58i5juiwj



Also note the following identities:

(8i5j:0k81) = Sudjk scalar

[6i5;-0k] = Sisjx vector

[6i-5j0k] = 5ijox  vector

0i0j-0kd1 = Jjkdio) tensor

Addition of Tensors:

otT = 2;2i0idjoit 2 2j0i T

=2i2joi0j(oiit i)

Multiplication of a Tensor by a Scalar:

ST =58 2;2ididjrij = 2i2isioj(sty)

Double Dot Product of Two Tensors:

o:7= (LiXjsidjoi) : Xk XSk 1K)

13



= 2iZj Lk Zi( 616 sk oD ot

= 2 2j 2k 21 9l O jk Oij Tkl

set I=1 and k=j to simplify to:

= 3%, oyjri Whichisascalar 2+2-4 =10

Dot Product of Two Tensors:

o.7= (XiXjsisjoi) - Xk XiSk 171
= %X k2 ( 65 - Sk aijru
= %Y NS (S8 6 o
= ZiXisio1(Zjoijry)

Vector Product (or Dot Product) of a Tensor with a Vector:

[z.u] = [(212j515j71j ) (Zh Scu) ]

= 2 2j 2k 0i Ojk Tij uk

= 2 6i(Zjrijuj)

14



Differential Operations:

[VT] = |:( zié‘iaixj}.[ZjZké‘jé‘ijk]

0
= YiXj2 Lo -5j5k]a_2'jk
Xi

0
= 2i2j2k T 5ka_2'jk
Xi

0
2k Ok [ i T'kj

1
0x;

Some other identities which can readily be proven are:

0
w.Vu = 3.3 Sk Wi Uk
Ox;

0
7:Vu = ZiZjTija_Ui
Xj

15
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INTEGRAL THEOREMS FOR VECTORS AND TENSORS

Gauss - Ostrogradskii Divergence Theorem :

If V is a closed region in space surrounded by a surface S then

[T1(V.u)dv=[[(n.u)dS=][(u.n)dS = [[u,dS
\Y S S S

where n is the outwardly directed normal vector.

[[{vsdv = [[nsdS
v S

where s is a scalar quantity.

[[[[V.z1dV = [[[n.z]dS
\% S

where 7 1s a tensor.

The Stokes Curl Theorem:

If S is a surface bounded by a close curve C, then:

[T([Vxxul.n)dS = §(ut) dC
S C

where t is the tangential vector in the direction of the integration and n is the unit vector normal to
S in the direction that a right-handed screw would move if its head were twisted in the direction of

integration along C.
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The Leibnitz Formula for Differentiating a Triple Integral:

d _ oS
aH\{st—H\{EdVHiS(uS-n)ClS

where u; is the velocity of any surface element, and s is a scalar quantity which can be a function of
position and time i.e., s=s(X,y,z,t). Keep in mind that V=V(t) and S=S(t).

If the surface of the volume is moving with the local fluid velocity (us=u), then
d Ds
—[[]psdv=][] p—dv
a3 F TP ot

where p is the fluid density.
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CURVILINEAR COORDINATES

Thus far, we have considered only rectangular co-ordinates x, y and z. However, many times
in fluid mechanics it is more convenient to work with curvilinear co-ordinates. The two most
common curvilinear co-ordinate systems are the cylindrical and the spherical. In this development,
we are interested in knowing how to write various differentials, such as Vs, [Vxv], and (t:Vv) in
curvilinear co-ordinates. It turns out that two are the useful tools in doing this
a. The expression for V in the curvilinear co-ordinates.

b. The spatial derivatives of the unit vectors in curvilinear co-ordinates.

Cyvlindrical Coordinates

4z There a point is located by giving the values of 1, 0, and z
(x,y,z) or (1,0,2) instead of x, y, and z which is the case for the Cartesian co-

ordinates. From simple geometry one may derive the

following expressions between these two systems of co-

v

0 ordinates. These are:

X=rcosé r=++x2+y?

y=rsind 6 = arctan (y/x)

To convert derivatives with respect to x, y, and z into derivatives with respect to r, 0, and z, the

"chain"rule of differentiation is used. Thus one may derive

o
OX

=(cos0)£+[- sind ji+(0)3
or r o6 0z
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i: cosd

oy

. 0 0 0

o _ d d d
2, =0 )5+(0)£+( 1)

With these relations, derivatives of any scalar functions with respect to x, y and z can be expressed
in terms of derivatives with respect to r, 6 and z. Now we turn out attention to the interrelationship
between the unit vectors. We note those in the Cartesian coordinates as 8y, 6y, and 6, and those in
the cylindrical coordinates as &y, 69, and 98,. To see how these are related consider the Figure below
where it can be seen that as the point P is moving in the (x,y) plane the directions of 8, 89 change.

Elementary trigonometrical arguments lead to the following relations:
5r=(cos0) 54t (sinb) 5,+(0) 5,

5o =(-sinf) 5yt (cosd) 5, +(0) 5,

5,=(0)6x+(0)5,+(1) 5,

v

These can be solved for 8, 8y, and 8, to result

5x = (c0s8) 5+ (-sind) 5o +(0) 5,

Sy=(sind) 5, +(cosb) 54 +(0) 5,

5,=(0)5:+(0)5p+(1) 5,

Vectors and tensors can be decomposed into components in all systems of co-ordinates just as with
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respect to rectangular co-ordinates discussed previously. For example:

[vxw] =6 (vowz-vawe) TS0 (vowr-vewz) T8, (vi wo-vowr)

(O--T):5r§r(0rrTrr+0r¢970r79r+O'rszr)+5r50(-)+5r5z(-)+---

Spherical Coordinates

The spherical co-ordinates are related to rectangular by the following relations
A

P(X,y,Z) or (r,G ,(I))

r
0 Figure: A Spherical system of co-ordinates

v

rsin@

x/
X=Trsiné cos¢g r=+\/x2+y2+22

y=rsindsin ¢ g =arctan (/x2+y*/z )

Z=rcosd ¢ = arctan(y/z)
The derivative operators are as follows:

%:( siné cos ¢ )§+(-

i=( sin 4 sin ¢ )£+[—cos051n¢ )i_{_co‘sqﬁ )i
oy or r 00 \rsinf )o¢

cosé cos ¢ Ji_{_ sin ¢ Ji
r 06 rsin@ )og¢



ﬁz(cose)3+(-51“‘9 ji+(0)i
0z or r 00 o¢

The relations between the unit vectors are:
Sr=(sinfcosg) 5+ (sinfsing) 5, +(cosb) s,
Sp=(cosfcosg) 5yt (cosfsing) 5+ (-sinb) 5,
Sg=(-sing) 5y +(cosg) 5, +(0) 5,

These can be solved for 84, 8y, and 8, to result:
Sx=(sinfcosg) 5.+ (cosfcosg) g+ (-sing) 5y
Sy=(sinfsing) s, +(cosfsing) 59+ (cosg) 5y
5,=(c0s0) 5, +(-sin0) 5p+(0) 5,

Some example operations in spherical co-ordinates are:
(o:1)=ontntororatorgrs T oato T cootoo T CopTeo T

Yoptrgtogoros opgtes



22

ur  ug  uy
(uw.fvxw]) =|vi vg vy

Wr W9 Wy

These examples tells us that the relations (not involving V!) discussed earlier can be written in terms

of spherical components.

DIFFERENTIAL OPERATIONS IN CURVILINEAR COORDINATES

The operator V will now be derived in cylindrical and spherical co-ordinates.

Cylindrical:

The following relations can be obtained by differentiating the relations between the unit

vectors in the cylindrical co-ordinates with those in the Cartesian ones.

3 8 3
2 5.=0 Ts.=0 Ls =0

or O o ¢ o 07
2 s=60 ZLop=-5. Ls,=0
00" %0 5999 Ot 599"

o 8 8
25=0 Ts.=0 ZLs =0

8z5r 8259 825Z

The definition of V in Cartesian co-ordinates is:

Vo5 lis2isl
*ox Yoy ‘oz

Substituting dy, 0y, and 8, in terms of 9., d¢, and &, and simplifying we obtain V for cylindrical co-

ordinates, that is:
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V:é'g‘i‘é' li_{_é‘i
oo %%t 00 %oz

Spherical Coordinates

The following relations can be obtained by differentiating the relations between the

unit vectors in the spherical coordinates with those in the Cartesian ones.

0 0 0
—5,=0 —359=0 —5,=0
ar o or 0 o ¢
i5 =0 i& =-0 ié‘ =0
00 " °° 00 % O 00 °?
ié‘ =5,481n6 ié‘ =054C08 ¢ ié‘ =-5.81In6 - 54cosb
a¢ r 1) a¢ 0 ¢ a¢ z r 0

The definition of V in Cartesian co-ordinates is:

V=5 Lus,Lrs L
*ox Yoy oz

Substituting dy, 6y, and §, in terms of d,, 8¢, and &,, and simplifying we obtain V for spherical co-

ordinates, that is:

0 1 0 1 0
- S —
or r 00 % rsin@ o¢

For more details see:

1. R.B. Bird, W.E. Stewart and E.N. Lightfoot, "Transport Phenomena," Wiley, New York, 1960.
2.R.B. Bird, R.C. Armstrong and O. Hassager, "Dynamics of Polymeric Liquids," Vol.1,  "Fluid
Mechanics," Wiley, New York, 1977.



TABLE A.7-I
SUMMARY OF DIFFERENTIAL OPERATIONS INVOLVING THE V-OPERATOR
IN RECTANGULAR COORDINATES® (z, y, 2)

-5 dv, Ou, du, y
( -0 '_$+_83;_+¥ ()

925 o2 ats

vy o, v, dv, 9u,
(e: Vo) —Tm(a) +TW(aT;) +"zz(—a; Tl
dv, O, v, du,
'“vz(g i a—y) +*m(-a; S ©
[ v os b ( - dv, v, G
[S]x—a: (D) [ xv]:#*@—a—z )
os v, v,
*[Vs]y=a—y (E) *WXU];(=—3;——3; (H)
ds dv ou
Vs, = — (F) V x ol =— —— )
L oz L oz dy
[ or or ot
Vol =+ a_;y + = )
ar or o7,
A e e T (K)
: a"'a:z a""'1.rz aTzz
V-t =5 5+ (L)
i 3% b b )
V2], = — + ay;’ +— (M)
o2 o) %
(V2e], = — + e ag;’ (N)
- %0, v, 32, o
! vlzuax2+*a?+azz (0)
[ dv, v, v,
[U'VU]J:=U:DE +Uy-aiu ‘{‘ vz_,, (P)
dau du av
<{v-Vu], = v, m;+vy€j+026—; ()
(o- Vo] dv, du, v,
LU !’z—Uxar'fbyETy'*‘Uz P (R)

* Operations involving the tensor © are given for symmetrical © only.



TABLE A.7-2
SUMMARY OF DIFFERENTIAL OPERATIONS INVOLVING THE V-OPERATOR
IN CYLINDRICAL COORDINATES® (r, 0, z)

. 12 1a0, v, )
Weo=rglt 5%+ % “4)
5 1@ ds 1 3% s
VI=l7"=) Trw * = B)
du, 10y, o du,
C2VD =) Trelrm ) Tl
9 (v, 1 dv, 1 év, dy
el "o\ Tra) et T
av,\,
+( o +a) —
(v, =2 @ @i 2 ©
T ar T a0 9z
1 os v, v,
*[V-T]e-:;‘a*a (E) *[vale"-a'—“gr— (H)
s - - 180 ) 1 v, N
L[VS]Z-—'ETZ (F) [ x”]z”;a_r(we T (
P2 12 12 i e
M G K I o
18rgy 74 2 d7g,
(V=g t o et %)
12 | By iy,
[V.-:]z =;E‘(r7,z) —!—; aﬁ —}—? (L)
[ s ifl @ 1 3%, 23y, &,
v U]r*a—r ;E‘(?‘Ur) TaaE 2w T (M)
< [V20] =E13(ru) +l@+z.@'+§iﬂ (N)
O ar\r ar r2 962 2 88 922
. 1 2/ év, 1 %, %, o
VoL =13 Trw T ©)
[ - v, v, 0o, oyt du, 5
(o~ v]r—brarﬁL?Fé‘—TJrvz-é;— P
dv, vy Ouy; v, o,
fe =g ety TR {2
v, v, v, ov,
V=g e T e (B

* Operations involving the tensor © are given for symmetrical © only.
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739C Summary of Vector and Tensor Notation

TABLE A7-3

SUMMARY OF DIFFERENTIAL OPERATIONS INVOLVING THE V-OPERATOR
{N SPHERICAL COORDINATES® (r, 0, ¢)

o 18 py ., T B op 1 an, s
(V-2 Pr_z_i_i;(r br) rsinﬂga(%sm )+r5in08_¢ ()
ey _LB(L0) L (0 ) 1 & 5
%) =a35\" %) T Esmew\"" " 3%) T st 0 og? (B)
ov, 1 6y, v,
(c:Ve) = mor a—..—) +”m(;3'a'+?)
1 o v, vgcotb
e e s G 0
+7¢°"(rsin8 ap T )
vy 10v, 7 vy 1 o, vy
+fre(a—r+;¥—‘;) +"r¢(a—r+7§n—a‘£“7
I oy 1 dv, cotb
-2 0 _ =
+Ta¢(r % ' rsing o r ) ©
( 2s [ 1 1,
= - D = ——— i —_—
sk =% (D) |V % o) = s 5 e 5in 0 — g 5y ()
o 1 os 1 o, 12 .
1Vsh =-% (E) *vala-—ma—#)—;'a—r(r%) (H)
Vsl = 1 9 F 13( ) 1 9o, 0
L Sdﬂrsinﬂaﬁ (F) va}é#;?r T

w
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Differential Operations in Curvilinear Coordinates 739D

TABLE A.7-3 (continued)

(v -, = J%%(rzfrr) 4 Elﬁa—ag(fﬂsin 0) + - S:n g a;;“‘ T j i )
18 . 1 2 : 1 Oy
Vel = a5 ) ¥ g5 (0 O+ T
)
+1%0 —CO:OT,H, (K)
\[V sty = rlzsa;(rz,r“o +l 3;'?5 + _,,silng a;';qs fig& " 2(:::)101,%5 (L)
2 [V2], = Vi, +§a?l;’ -3 ;;flzﬂ - ;Z?;:e% (N)
Wz"]ézv"é“rzsl;iﬁe+rzs?§eaa_j i—z?r%% @
‘[v-Vv]r=v,% +%% r;;iez—:-—Lf%z (P)
O iy _ B4 CO2 ©
[U-Vv1¢=v,.a—;f+ff% ;%% v‘f‘vIr Uevéfotﬂ (R)

-

a Operations involving the tensor T are given for symmetrical © only.



740 summary of Vector and Tensor Notaflon

We now use the relations given in Eqs. A.7-1, 2, and 3 to evaluate the derivatives
of the unit vectors. This gives

do, duy do,
V.v)i(sr- 8()‘a_r+(8r. BQ)F*—(ar ) 8:)_5-

lau
r o8

130

d
+(8;," & ) (8- 59)1 06

+ (80 8)+2( 8" {~8,))

? 3 3o,
F(8, 8 4(8, 8ot (Br b5 (ATB)

Since (8, - 6,)=1, (5, - §)=0, etc., the latter simplifies to

1809 v, do,

(Vo= S e (A.7-19)

r oz
which is the same as Eq. A of Table A.7-2.
b. Next we examine the dyadic product Vv:

9
rar

do, du, dv,
= Sr 8,?"‘ 8,- 89W+ 8,. Bz'a—r

1 3

V"={ 8 + 83";@"’ az'%}{sruf+ 86'09+ 521):}

1 9o,

0
+8, 8, ‘ ”‘*

| do,

+ 8 Bt 8 8,0t

+ & 39%_ 8, 51%

‘ do, du, du,
+8, 85,4 8 8o+ 0. By

do, du,
fa 8898 887

[ 9o, 1y 180 v ] dc,
+89 8,(';86' r)+ 8989(?+r)+5082?"——

=3,0

do, dog du,
+ 8y B 8, o5+ 8. 8.5 (A.7-20)

Hence the rrcomponent is dv,/dr, the rf-component is do,/ dr, etc.
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INTRODUCTION - FUNDAMENTAL CONCEPTS

Definition of a Fluid

All forms of matter can be classified in terms of their physical appearance or phase into three
classes: solids, liquids and gases. Liquids and gases are called fluids. A fluid is defined as "a
substance that under the action of an infinitesimal force deforms permanently and continuously.

Consider that the space between two parallel plates is

a. | — '

T t |t r occupied by a fluid (Fig. la). If a small force is

h Fluid <ti<ts applied on the upper plate, then the plate will move
with a constant velocity, V. As a result, the fluid will

_’| Ax |<_ ‘ deform permanently and continuously. If instead a

b. ' F' solid is placed in the space between the two plates and
the same force is applied, the solid will be deformed

Solid by a certain amount, indicated by the displacement,

Ax, in Fig.1b. This displacement will remain there as

long as the force is not removed. The above
Fig 1 behaviour is customarily indicated by plotting (F/4-
shear stress vs dh/h-rate of strain) for fluids and (£7/4

vs Ax/h-strain) for solids.

Continuum Hypothesis

It is possible to study the flow of gases and liquids (fluids) from the molecular point of view
by writing the appropriate equations for each molecule and taking into account all molecular
interactions. However, mathematically this is a very complex problem and very impractical for most

engineering applications. It is possible to describe many flow problems without a detailed

knowledge of molecular motions and interactions, by introducing the continuum hypothesis.

According to this we assume that at every point in the region occupied by a deformable material the
state of that material can be described in terms of the velocity components, V;, and material
properties such as 7, p, p, and x.

However, we know that matter consists of discrete molecules. The precise location defined
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by the coordinates, x, y, and z may correspond in reality to a point within a molecule or to a point in
the open space between molecules. In the former case density is very high and in the latter density is
zero. T and p have also no meaning in either case, as they are associated with statistical averages
involving many molecules. However, for practical purposes, it is still possible to make use of the
concept of a continuum as long as there exist a volume size that is sufficiently small that spatial
derivatives can be defined but also sufficiently large that there are enough molecules to give
averages that converge to unique values of the field variables. See Fig.2, which utilises the density to

illustrate the concept of the continuum.

A - om
= im el
Elemental » sV—ev+ OV
Volume, 6V P
mass, om

2

/ SV*=10" mn®

Region containing fluid ov

Fig.2

A criterion used to evaluate the validity of the continuum approach is based on Knudsen
number, Kn/(mean free path of molecules)/(characteristic length of flow), so that

Kn <0.01 continuum approach valid

Kn>0.1 must use statistical approach
At intermediate values, we can sometimes use continuum equations with modified boundary
conditions involving a relaxation of the no-slip boundary condition. For an ideal gas the mean free

path is proportional to 7'/ p.

Compressibility
Compressibility defines the ability of a fluid to change its density under the action of

pressure. It is defined as the inverse of the bulk modulus, that is
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where £ is the compressibility, U is the specific volume and p is the density of the fluid. For liquids
the bulk modulus is very high (water at 20°C, E=2,140,000 kPa), so that the change of density with
pressure is negligible. In analysis of flows, liquids are treated as incompressible fluids. For gases at
low speeds compared to the speed of sound the density changes are also small. Thus for gas flow a

useful measure of the role of compressibility is the Mach number defined as:

S
Ml
A<

where U is the characteristic velocity of problem and C is the velocity of sound in the fluid. For an

ideal gas, the velocity of sound is given by:

IRT
M

C =

where M is the molecular weight of the gas, y is the specific gravity, and R is the gas constant. If Ma
< 0.3 one may neglect the density changes occurring due to compressibility effects.
Finally note that density gradients may also arise from temperature gradients (viscous

heating) and composition in situations where heat and mass transfer are occurring (taking place).

No-Slip Boundary Condition

Experiments have shown that a fluid adjacent to a solid interface cannot slip relative to the
surface. This is true no matter how small the viscosity is. This was basically concluded from the fact
that the use of the no-slip boundary condition has led to predictions, which agreed very well with

experimental observations. Thus,

Viwia =V

wall
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which implies no relative motion between the wall and the fluid. The no-slip boundary
condition for Newtonian fluids was the subject of some controversy among nineteenth-century
theoreticians who tried to formulate such slip laws (for example Navier proposed such a model). It
was rather difficult to accept the no-slip condition for fluids that do not "wet" adjacent solid surfaces
like water on wax. However, the wetting phenomenon is related to the surface tension which has
absolutely nothing to do with the no-slip condition.

Gases at extremely low pressures do not obey the no-slip condition and are the subject of a

special field of study called rarefied gas dynamics. In addition some rheologically complex fluids

exhibit a slip at the wall under certain conditions. For example, molten polyethylenes of high
molecular weight have been found to slip when the wall shear stress exceeds a critical value usually
about 0.1 MPa. For example for the case of a passive polymer/wall interface (no interaction between
the polymer and solid surface), de Gennes [C.R. Acad.Sci. Paris serie B, 288, 219-222 (1979)]

proposed an interfacial rheological law in terms of an extrapolation length, b, as follows (inspired by

d - T
vy =b Uy =by = éaw
dy |, H

Navier),

where Vg is the slip velocity, 7, is the shear rate at the wall (the slope of the velocity profile at

the interface, see Figure above), and y is the viscosity of the melt at ), .
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Surface Tension
At the interface between a liquid and a gas, or between two immiscible liquids, forces
develop which relate the anisotropy of the interactions between liquid molecules in the case of a

liquid-liquid interface.

For molecules in the interior (bulk),
interactions are isotropic and the net force on each
liquid molecule vanishes. This is not the case for
molecules at the interface. These are attracted more in

the interior of the liquid than by gas molecules such

that a nonzero net force results.

Fig.3

As a result of these forces a small amount of
mercury forms an almost spherical droplet or a small
amount of water forms a spherical droplet on a waxed
surface. If such a droplet is cut half, there, there is the
action of a force per unit length (surface tension) and
this 1s balanced from the pressure force. If Ap = pg-p4
where pp: interior pressure, p4:exterior pressure, the

net pressure force is:
Fig. 4

2
AprR =2nRoc or Apz?o-

This pressure difference is called the capillary pressure, which is due to the surface tension. Note
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that the pressure inside a drop is greater than the pressure outside the drop.
These principles can also be generalised for 2-dimensional surfaces to produce the Young-

Laplace equation of capillary

where R;, and R, are the two principal radii of curvature of the 2-dimensional surface.

(1) For a plane surface: R =R),=w
Ap=0 or pa = pp (For plane interfaces there is no pressure
B :
jump).
A
(2) For a sphere: R, =R,=R

Ap=20/R or pp- ps=20/R (For this case there is a pressure

jump from the inside to outside).

A

(3) For a cylinder: R;=0 and R, =R

ps - p4 = o/R (For cylindrical interfaces there is also a pressure

% B ? jump from the inside to outside).

A
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2nRG
_ — 0 7/ Among common phenomena

associated with surface tension is the

h rise (or fall) of a liquid in a capillary

v tube. The height h can be predicted if

one considers the forces acting on the

2
pTR"h interface. The tension along 2nR

should balance the weight of the liquid

column, that is

Fig. 5: Rise of liquid in a capillary tube

2
pPSTR°h=2rRocosd or h= 20cos6
P Rg
N Measuring 4, and 6, one may use this equation as a
L . :
method to determine the surface tension.
| | 'l_/I

Surface tension plays a significant role in a
| diversity of small-scale slow flows, as well as in

Fiz. 5b:fall of liquid in 4 capilliny tibe  iMmMiscible liquids under equilibrium.,

Liquid volumes tend to attain spherical shapes
that exhibit the minimum surface-to-volume ratio, the more so the higher their surface tension.
-Movement of liquids through soil and other porous media, flow of thin films, formation of drops
and bubbles, breakage of liquid jets.

-Formation and stabilisation of thin films, also surface tension controls levelling and spreading of
liquids on substrates with application to spray coating or painting.
-Enhanced oil recovery. Crude oil is trapped in underwater porous natural reservoirs, confined

between impermeable rock layers).
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KINEMATICS

Kinematics comes from the Greek word Kinesis, which means motion. It is defined as the
science that deals with the study of motion without making reference to the forces that cause motion.
It is essential for:

- The development of a quantitative theory of Fluid Mechanics.

- The interpretation of data obtaining using various visualisation experimental methods.

Streamlines, Pathlines, Streaklines and Timelines

Four generally different types of curves are considered in the study of fluid motion: the

streamlines, pathlines, streaklines and timelines. The curves describe various aspects of fluid motion.

Streamline: It is a line in space that is everywhere tangent to the velocity vector at every instant of

time.

Consider the velocity V at some point with components V =
(u, v, W)=(vx, Vy, V), and an infinetesimal arc length along the
streamline ds = (dx, dy, dz). The velocity, V, at that point is

parallel to ds, so that V x ds = 0. From this, one may derive

the following equation for the streamline.v

Fig. 6

Note that the form of this parametric equation is f{x, y, z)=0.

Pathline: It is the actual path traversed by a given fluid particle. The position of this line depends on

the particle selected and the time interval over which this line is traversed by the particle. The
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equations for the pathline are as follows:

Pathline

% = vi(xx2,x3) for i=123

Integrating these equations one may obtain the parametric equations for the pathline:

x1 = xi() x2= x200) x3= x3(0)

A pathline may be identified by a fluid with a luminous dye injected instantaneously at one point and

take a long exposure photograph (shutter open).

Streakline: It is the line joining the temporary location of all the particles that have passed through a
given point in a flow field. A plume of smoke or dye injected at one point gives a streakline. Fig. 7
below illustrates pathlines and streaklines for an unsteady flow. Note that for a steady state flow all

streamlines, pathlines and streaklines coincide.

—_— Streakline
................... Pathline

Fig. 7
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Timeline: At time 7=ty a set of fluid particles is marked and the subsequent behaviour of the lines

thus formed is monitored.

/ / / timelines at different times
to t, t

Fig. 8

EULERIAN VERSUS LANGRAGIAN POINTS OF VIEW

Two approaches are possible for the study of fluid motion, namely the Langrangian and the
Eulerian approach. The Langrangian approach is based on an analysis of the motion of a particular
collection of matter (particles). For each of the particles the following two fundamental principles
can be applied:

- Conservation of mass (mass of the body cannot change with time)

dm _
dt

- Newton's second law of motion (The rate of change of the momentum of the particle is

equal to the sum of all forces acting on that particle).

" F

This description is not very convenient to analyse fluid motion and it is used mainly in particle
mechanics. In continuum mechanics this method requires the description of motion of a large

number of particles and the mathematical problem to solve becomes cumbersome. For deformable
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materials the Eulerian approach is more convenient where our focus of interest is generally a fixed
region of space through which the material moves, rather than a particular body of material. We are
interested to determine p, V, Tand p at various positions in the space (field variables). For example,
it is the function p(x, y, z, t) that is of interest (Eulerian approach), rather than how the pressure of a
particular fluid particle changes as a function of time (Langrangian approach).

To transform the above two equations (conservation of mass and momentum) from the
Langrangian to the Eulerian point of view, we need two tools:
1. The material or substantial derivative operator.

2. The Reynolds transport theorem.

THE MATERIAL DERIVATIVE
Let us consider a fluid property or a field variable ¢, which is a function of position and time,

that is:

$=9¢(xyzt)
we wish to derive an expression that relates the rate of change of ¢ with time, for the particular fluid

element that happens to be located at (x, y, z) at the time ¢. This can be found as follows. The total

derivative is

dg = %dx+%dy+%dz+%dt
ox oy oz ot

and dividing by dt, the total derivative now becomes

49 _0pdx 0pdy 0pdz 0f
di  oxdi dydi ozdi o

Note that dx/dt=Vy, dy/dt=Vy, and dz/dt=V,, then
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dp _0¢ _0p _0p  O¢

—vwt—vwt—v,t—

dt ox = 0oy 0z ot

or in a vector notation

a9 _ M.V¢+%
dt ot

To distinguish the Eulerian time rate of change from the Langrangian one, some authors use the

symbol D/Dy, i.e.

This derivative is usually called the material or substantial derivative. If the field variable is the

velocity itself V, then the acceleration in the Eulerian frame is:

DV oV oV oV oV
= + + +

Dt x> e o

The partial derivative 0V/ot is the acceleration in the Langrangian frame. Note for steady flow
o0V/0t=0, however, DV/Dt is not always zero for steady flows. For example in a converging channel,

where the convective acceleration terms are not zero, in spite of the fact that the local or temporal

acceleration is zero.
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THE REYNOLDS TRANSPORT THEOREM

Suppose that our control volume V¢=Vj(?) at time t is
the one in Figure 9. Due to the bulk motion this
moves and deforms, so that after a time interval of dt

takes a new shape V=Vs(t+dt). We wish to

S)

find a relationship between the rate of change of a volume integral over a moving system consisting
of particular fluid elements, and operators involving an integral over a fixed volume in space. In
other words express a time derivative following a fluid body (Langrangian frame) in terms of
field variables described in the Eulerian frame. Thus, we are interested to express derivatives of

the following form,

9 gpzpdy
dt Vs®

in terms of derivatives involving an integral over a fixed volume in space. Note that if p=p the above
integral gives the rate of change of the mass in the control volume, and if p=pV then the integral
represents the rate of change of the momentum of the fluid in the control volume. Therefore this type
of integral will be very useful to use in deriving the equation of fluid mechanics.

Because Vs is a function of time, we cannot simply move the derivative inside the integral

and replace Vs(t) by V. To do this, one may use the definition of derivative, that is

[ @@+St)ydV- | ¢(t)dV

< [ d(xy.z0)dV = lim Vs(ttot) vs(t)
dt ysa 5t—0 ot
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Add and subtract in the above equation
S [ ¢(t+St)dv
Sty s(t)

Thus the right-hand side becomes

a0 Ot Vel t+t) Vs(t) Ve(t) Ve(t)

lim(i{ [ ¢@+6t)av- | ¢(t+§t)dV}+é{ [ ga+o)dv- [ ¢(t)dv }j

However,
s -1
lim|— | [ @@+5t)dv- [ ¢(t+6t)dv| |= [ |—=|dV
5HO[5f Vs(y Vs(t) ye \ O

Because the limits are the same and as &t — 0 then Vs (2) > V¢ This explains why we have
replaced Vs(?) with V¢ in the above integral, or we can say that at time t: Vs(z)=V¢.
Also,

[ pa+se)ar- [ ge+se)dv = | G(t+5t) dV
Vs(t+d) vs(t) V. (1+8t)-) (1)
However,

dV = (n.V)St dA

Thus, the volume integral becomes a surface integral

] p(t+5t)dV = [ @@+6t)(n.V)StdA
Vs(t+t)-yg(t) As(t)



Dividing by 6¢ and taking the limit

lim L | ¢(t+6t)(n.V)StdA|= [ ¢(t)(n.V)dA

ot—0 ot As(t) AC

As ot — 0, then Ags—Ac.

Using now the Gauss theorem

J'(zﬁ(t)(n.V)dA = jv.(¢V)dV
Thus

_ (|92
[ sct)av = j{aﬁv'(w) }dV

s(t) Ve

4
di |

This is the Reynolds transport theorem.

43
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THE CONTINUITY EQUATION

The law of conservation of mass tells us that the mass of a particular collection of material particles

cannot change. From the Langrangian point of view this can be expressed mathematically as:

4 [ pdV =20

dt Vs(t)

where Vs ('t ) is a function of time due to the motion of the fluid. Using the Reynolds transport

theorem and substituting p for ¢, then the above equation becomes

l[z—’[;JrV.(pV)}dV:O

or
op
L4V (pV) =0
Py (pV)

or using index notation

. apv) _,
ot 0 x;

This is the continuity equation for a Cartesian Co-ordinate System. For a fluid with constant density

Ovi
O x;i

V.V=0 or =0



Other Co-ordinate Systems

1. Cylindrical

op 10
_—|—__ /4 .
o P (prv
2. Spherical
6p+ 10

ot

2
—_— T —— +
r28r(pl” Vi )

1 0
+-
r oo

A
rsin@ 060

( pvosing )+

(pv6)+a—i(pvz) — 0

1o
rsin@ 0¢

45

(pPv,) =10
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STREAM FUNCTIONS

For two dimensional and axisymmetric flows, the continuity can be used to show that the
complete velocity field can be described in terms of a single, scalar field variable, which is called
streamfunction, y/(x, y, ¢). In this development, we will consider only the case of constant-density

flow.

2-D Case
In a 2-D flow the velocity components are: vy (x, y), and vy (x, y). Thus for steady state,

incompressible flow the continuity reduces to

an—F% =0 or Ovy __Ov
ox oy Ox dy

This implies the existence of a scalar function, v (x, y) whose total differential is:
0 0
dy = vy, dy-v,dx or dy =—l//dx+—wdy
ox oy

It can be seen that:

where w(x, y) is called the Langrange stream function.

Consider a line along which y is a constant:

dl//=0=vxdy-vydx or (Qj :&
74

dx Vx
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This is the Equation for the streamline. Thus, streamlines are lines of constant .

Axisymmetric Flow
In these type of flows no velocity gradients exist in the 6 direction. Thus the continuity

equation for steady incompressible flow reduces to

10

ror

(rvr)+a—az(vz) )

This can be rearranged to give

0 0
—_— e — prm— 0
or (7" Vi ) oz (7" V2 )

This implies
dy = rv,dr-rv,dz
Thus

where w(r,z) is called the Stokes stream function.

in spherical coordinates, the Stokes stream function is defined by

L ov 1o
> sin@ 06 rsin @ or

Vi T
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THE MOMENTUM EQUATION

Newton's second law of motion is:
d
—mV) =2F
dt

or using index notation,

d _
E(mvi) =>F

If this equation is applied for a fluid system consisting of a particular set of fluid elements then one

may write:
d
dt { Y

where V5 (1) is the volume of space occupied by the fluid system at time z. This equation is based on
a Langrangian description of the flow (follow the behaviour of a particular set of fluid elements over
a period of time). As discussed previously, in fluid mechanics we prefer a description in terms of
field variables. In other words we focus our attention at a specific space in the flow field and
calculate the field variables such as p, V, and p. This is the Eulerian description. The above equation

can be transformed by using the Reynolds transport theorem. Thus,

dv =
dt Vs'[t)pVl f

{5(,0%)

v |l av
ot ax(pvvﬂ}

J

Expanding terms, one may write
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d 0 v op o(pv;) O vi
— dV = Lt +v; LA RSN ) e
dt { PV i{p a Vo Y PVig,,

The second and third terms are

op, o(pv,)
From continuity this is zero. Now, using the notation for the material or substantial derivative one

may write

Then Newton's second law in the Eulerian form is

DV DV
—dV =%XF or —dV =F
I 17

Vv Vv

There are two types of force that can act on the system, body and surface forces. Thus,

F = F, + Fs

THE BODY FORCE

The body force acts directly on the whole mass of the fluid element. This can be gravitational
or electromagnetic (conducting fluid). In this development we will only consider the gravitational
body force. The gravitational force per unit mass, G, is derivable from a potential, gh, where g is the

acceleration of gravity and # is the vertical distance above a reference plane.
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G =-V(gh)
Assume g constant (not a function of /) for practical fluid mechanics problems

G=-gVh or G =-g—

Thus, the body force can be expressed as:

Fo = [pGdV =-[pgVhdV

vV

THE SURFACE FORCE (For more details see R. Aris "Vectors, Tensors and the Basic Equations
of Fluid Mechanics".

Represent the surface force, Fg, in terms of a volume integral over some function of a field
variable. This field must describe the state of stress at a point (force per unit area).

Consider a surface element of the field system.

f f = surface force vector acting on the element

n n = outer-directed unit vector at point P

Cauchy's stress principle asserts that f/0A, tends towards a limit as A — 0. This limit is called

the stress vector.
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The orientation of the surface is specified by giving the vector n.

For local equilibrium the Newton's law of action and reaction applies.

() — _ g(m
t = -t

Thus,

Fs = J.t(n) dA
A

However, since the components of t depend on n, it appears that to describe completely the
state of stress at point P, it is necessary to give the values of the components for every possible
orientation of the surface, i.e. for every direction of the normal vector n.

Fortunately, this is not the case. If the components of t are known for any three,
perpendicular, unit normal vectors, the components of t can be found for any other direction of the
unit normal vector.

Ax, ) Consider the small tetrahedron. Sides 1,
-t ¢

2, and 3 are perpendicular to the
co-ordinate axes, while the fourth has an

(n)
t" area SA.

v

X2
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The net surface force acting on this element is:
Fs = t(n) 5A - t{m) 5A1 - tge” 5A2 - tgm) 5A3

The minus signs are coming from:

(-ei) —

(ei)
ti ¢

-t

The areas can be expressed as: 0A; = n; 0A

Thus, we may write

Fs = t(n)-ni ti(ei) 04

If the tetrahedral fluid element shrink in volume toward a point P, then the net surface force

will approach 0 (principle of local equilibrium). Thus, the above equation simplifies to

(n) _— (ei)
t" = mit

Thus, in order to describe completely the state of stress at a point in a continuum, we must

specify the components of the three stress vectors (9 components). Therefore,

Fs = Jl’li ti(e‘) dA

A

or defining the stress tensor, 0;; and using dyadic notation



6=|0u On O»n symmetric tensor

Gij 1 indicates the co-ordinate axis that is normal to the face the stress acts on.

Jj indicates the direction in which the force is acting.

Using the divergence theorem of Gauss

Fs = [(ne6) dA = [ Veo dV

where

53
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CAUCHY'S EQUATION

Substituting Fs and Fg in Newton's second law written in a Eulerian frame, we obtain:

DV

jpEdV =-[pgVhdV+[(Ves) dV

or
j(pﬂ + pgVh - Voc) dV =0
v Dt

or

DV
Z' =_peVh +(Ves
th Pg ( )

This is called Cauchy's equation. In the following pages, this equation is given in expanded form

in Cartesian, Cylindrical and Spherical coordinates.



CAUCHY's EQUATION IN RECTANGULAR COORDINATES (x, y, z)

X - component

Y - component

v x o o %%

o 5Vy+ 5Vy+vy5Vy Ovy | _ aaxy+ao-yy+aazy_ o Oh
ot ox oy 0z

z - component

80'yz+ao-zz o Oh

+ vy tv

_|_
ot ox oy oz

aVz aVz aVz aVZ — aO-xz hidd
p o oy oz %%



CAUCHY's EQUATION IN CYLINDRICAL COORDINATES (r, 0, z)

r — component

oo “or ro0 r oz

p(5Vr+ Ov: . Vo Ovi V§+ 5\&]

] a(ro-rr)_l_lao-rﬁ_o-ﬁﬁ_’_ao-rz ah

r or r 80 r oz or

60 — component

O ve Ove _ Vo Ovy |, Vi Vo Ovy )
+ + Yo Ve + =
P ( o Vo roe0 5 Ve

iza(rzare)+£5age_aaaz_ pg%
2 or r 00 0z 06

z — component

aVz 8Vz Vo aVZ aVZ
+ + V0TV =
p(@t Yo 1 00 VZ@Z)

la(rarz)_l_lag&_l_aazz_pg%
r or r 060 0z 0z

56
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CAUCHY's EQUATION IN SPHERICAL COORDINATES (r, 0, ¢)

r — component

p aVr +VraVr +E8Vr+ \.](P aVr_Vg—'—Vi —
ot or r 00 rsinf 0¢ r
_10(ro.), 1 0o, esin0) 1 Oowy owtogy. pga_h
por rsin @ 00 rsin@ O¢ r or

0 — component

P 0V9+ 8V9+EOVe+ \.Qo 8V9+VrVe_V$COt0
ot or r 00 rsin@ op ,

5 :
iza(l” 0r9)+ ] 5(0-9951n9)+ 1 60'9¢+O'r9_00t‘90_¢¢_ pg%
r or 7 sin 6 06 rsin@ O¢ r r 06

@ — component

o 5V¢+Vrav¢+ﬁav¢+ Ve anp_’_V(er_i_Vqu,COte _
ot or r 00 rsin@ 0¢ r ¥

2
%5(1” o) 1000, I 50¢¢+0’¢+2°°t609¢- pet
p or r 00 rsin@ 0¢ r r 0¢
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ROLE OF RHEOLOGY IN FLUID MECHANICS

The Equations we have developed so far, the continuity and the Cauchy's equations are not
sufficient to solve a boundary value problem involving the motion of a deformable material. We
need an additional relationship that describes how the material deforms when under stress. In other
words additional equations relating the stress tensor components to deformation rates are required.
These type of relations are called rheological equations of state or simply constitutive equations.

Rheological constitutive equations are material dependent and must be determined by
experiment or from a valid molecular theory. Here in this course, we will consider a constitutive
equation for an incompressible fluid that is inelastic, has no yield stress and whose structure is time-
and deformation rate-independent. Such a fluid is called a Newtonian Fluid. Single-phase liquids of

low molecular weight are usually Newtonian fluids, i.e., most gases, water, glycerine, etc.,

The Viscous stress: For a fluid at rest, all the components of the stress tensor are not zero. For such

a fluid, the stress tensor is isotropic, and its components are:

or

cij = -P0Si; Where §;;istheKronecker delta

Thus there is a contribution to the stress tensor that is not related to the motion of the fluid.
This contribution is thus not relevant to the rheological constitutive equation. To account for this, we

define a "viscous stress" ("'extra stress') as follows:
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c=1-pl

Thus in a fluid at rest the viscous stress, T, is 0. Thus, now Cauchy's equation can be

rewritten in terms of the viscous stresses as follows:

DV
— =-Vp+V.T- V h
th p Prg

In the following pages the Cauchy's equation is written in terms of viscous stresses in
Cartesian, Cylindrical and Spherical coordinates. To solve this equation along with the continuity,
expressions for the viscous stresses are needed in terms of the kinematics of flow (as discussed
before rheological equations of state or simply constitutive equations).

The rheological constitutive equations can be classified according to the type of mechanical
behaviour described by the equation. Specifically, the viscous stress at time, t, 7(t), in a material
element may depend on one or more of the following features of deformation history of that material

element.

Deformation at time t

Purely elastic material

Rate of deformation at time t

Purely viscous material

Deformation at past times t' (where -0 <t'<t)

(a) Material exhibiting structural time-dependency

(b) Viscoelastic material

In this course of fluid mechanics we will be concerned only with the case of purely viscous

material with focus on the Newtonian fluid.



CAUCHY's EQUATION IN RECTANGULAR COORDINATES (x, y, z)

X - component

+
o0 oo oy e

,0( O vy an+ an+ anj
Ox

Y - component

ap+arxx+aryx+

Ox

Oy

ot Oox

pLaVY+ %_{_ aVy+ %j — _ap+aZ—Xy+aTyy+arzy_ pg

Z - component

p( 8Vz+ %4_ aVz+ asz — _ap+8sz+aTyZ+aTzz

ot ax Yoy oz
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CAUCHY's EQUATION IN CYLINDRICAL COORDINATES (r, 0, z)

r — component

+Vr

o Ovi, Ovi voOvi vi  Ovi)_
ot or r 00 r Oz
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rofd °  or r 060 or 00

Z — component

aVz aVz Vo aVZ aVZ
+ + Yo T Ve =
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CAUCHY's EQUATION IN SPHERICAL COORDINATES (r, 0, ¢)

r — component

+ v, —
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ANALYSIS OF DEFORMATION

In this section, we seek a relationship to describe the deformation undergoing by elements in
flowing fluids and then relate those with the stress tensor to result constitutive equations. It is noted
that such deformation measures should be symmetric tensors in order to be able to relate them with
the stress tensor, which is also symmetric.

Consider the system depicted in the Figure below undergoing deformation. To describe this
deformation, we first seek the motion of point P relative to C. The difference between the x-

component of the velocity vy at points P and C, which are considered to be very close, is:

S
y System at t @

System at t+At

Fig. 11

dV dz

_ Ovs g, Ovs dy+an
0x 0y Oz

X

In general using index notation to also include the other two components,

Ov;
dv.= —2 dy.
\% 6mdm

The motion of P relative to C depends, therefore, on the nine components dVv;/dx; and may be

written as:
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v, Ov, Oy,

e oy 0z
qv = |0 On o Ov g
ox oy 0z

or

dV = VV.dr

where VV is the gradient of the velocity tensor (not a symmetric tensor), which is not a very good
choice to be related with the stress tensor (symmetric tensor). As an example consider simple shear:

The velocity components are:

V1:7}x2
2T L, h v,=v,=0
1
Fig 12
Then
0 vy 0
VV =10 0
0 0O O

which is not symmetric. Also this tensor is not zero for rigid body rotation where clearly there is no
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deformation.

The relative motion described by the previous equations results from the combined effects of
rotation and deformation. Rotation is not a result of shear stresses but is only due to the normal
stresses. Since a relation is sought between the stress tensor and the rate of deformation, the effect of
rotation should be eliminated from the above relation.

From rigid body theory, one may prove that the rotational velocity dV, is given by

0 a@i2 i3

d Vi = | @2 0 @3] .dr

3] 32 0
where
w;j = S| -~
72\ 0x; Oy

is the rotation tensor (not symmetric) which describes the rotation of fluid elements in flows. Two
times of this tensor gives the vorticity tensor, {, thatis {=2m.
Having calculated the rotation contribution to the motion of the fluid elements, one may

write:

dVdef = dV—dVrot

or
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Ovi 1 {0y, L Ovy 1 [an N 5vzj
ox 2\ oy Ox 2\ oz ox
d V — i aVy + an aVy l aVy + 8Vz dl”
def .
2 ox oy Oy 2\ oz Oy
l (% + %j i % + 0 Vy v,
2\ ox Oz 2\ oy Oz Oz

The above tensor is called the rate of deformation tensor, Y , which is a symmetric tensor as should

be and can be put in the following form

N |~

¥ aVi+%
v an aXi

or

v =%(VV+VVT)

where VV" is the transpose of the velocity gradient tensor.
As an example consider simple shear as obtained by means of a sliding plate rheometer (see

above Fig.12). The shear rate, 9, is defined as the ratio of the velocity of the upper plate to the gap

spacing between the plates. The rate of deformation tensor for this flow is:
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0 5 0
Y =17 0
0 0 0

which is clearly a symmetric tensor. It can be proved that this tensor is equal to zero for solid body
rotation as it should be (no deformation). Thus, the tensor ¥ is a good choice for measuring the
deformation rate of fluid elements.

In the following pages the components of rate-of-deformation tensor are given in Cartesian,

Cylindrical and Spherical co-ordinates.



COMPONENTS OF ’.Y IN CARTESIAN COORDINATES (x,y, z)
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COMPONENTS OF ’.Y IN CYLINDRICAL COORDINATES (r, 0, z)

69

oy,
yrr (97”
, , 1( O(vy/1) ]8Vr)
= =_ + =
7/}’9 7/6’}’ 2 (r (9}” r 80
_ :i(avz %)
yrz yzr 2 a]" 82
. ]aVO Vr
=_ Ve Vr
Yoo roed r
= —i(%+laVz)
7/92 726’ 2 82 r 80
ov,




COMPONENTS OF ’.Y IN SPHERICAL COORDINATES (r, 0, ¢)
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ov,
or

]})’7‘:

1 (ra(vg/l") +£5Vr)

]/}’9:]/9}’:3 8}" r@@

o I 1 0Ov, | O(vy/r)
Vo= Vor— 75 . tr
2\ rsin@ o0¢ or

_ 1 avq,_i_&_i_vecot@
40" Lsind 0 r 1

o z(smea(v@/sme)+ i awj

Tos™ Voo~ 5|7 06 rsin 6 0
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THE NEWTONIAN FLUID

Newtonian fluid is defined as the one, which satisfies the following relationship

Ty = 207

or in index notation

aVi an
L= + —
E lu(ax‘/ 53@)

which implies that the stress tensor in such a fluid is proportional to the rate-of-deformation tensor

with the coefficient p to be the viscosity of the fluid. This is Newton's law of viscosity. In the

following pages the components of the stress tensor for an incompressible Newtonian fluid are

given.



COMPONENTS OF T IN CARTESIAN COORDINATES (x,y, z)

72




COMPONENTS OF T IN CYLINDRICAL COORDINATES (r, 0, z)
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Ov
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Tr H o
O( vy /1) ]ﬁvr)
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Tro~ Tor ,U(” or - 00

Trz" Ty H o oz

10
21200

roeg r
aVG 1 aVz
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Toz— Tzo ﬂ( 82 - 89)
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COMPONENTS OF T IN SPHERICAL COORDINATES (r, 0, ¢)

74

Ov,
or
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O( vy /1) ]ﬁvrj
= = 4+ =
Tro~ Tor ﬂ(’” or - 00
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NON-NEWTONIAN FLUIDS
Fluids, which do not obey Newton’s law of viscosity, are called non-Newtonian fluids. Gases
and single-phase low molecular weight liquids are Newtonian fluids (water, glycerine, and ethanol).
However, many other commercially important materials are non-Newtonian fluids (slurries,
paints, foodstuffs, and molten polymers). Some of these fluids simply exhibit non-linear viscous
effects, while others show effects of "memory" which are related to their viscoelastic behaviour. In
general phenomena exhibited by non-Newtonian fluids include:
1. Shear rate dependent viscosity (non-linear viscous effect)
i1. Yield stress
iii. Time-dependent structure

iv. Elasticity

Shear rate dependent viscosity:

This is the simplest case of non-Newtonian behaviour, where the viscosity depends on the
rate deformation. The most common type of behaviour is when the viscosity decreases with an
increase of the shear rate. Materials exhibiting such behaviour are said to be ""shear-thinning" or
"pseudoplastic". Less commonly encountered behaviour is the increase of viscosity with increase
of the shear rate ("'shear-thickening' or "dilatant'). Molten polymers are shear-thinning fluids,
while some concentrated suspensions behave as shear-thickening ones. Figure 13 illustrates the
behaviour of a Newtonian, shear-thinning, shear thickening and a plastic fluid (see below) in a shear
stress versus shear rate plot. Note that the viscosity is given by the local slope of the curve.

To model such behaviour the "power-law" viscosity model is frequently employed, that is:

T=nY

where 1) is the non-Newtonian viscosity given by:
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. -1
n=K|y
N Bingham Plastic
c
Pseudoplastic (n<1)
Newtonian Fluid
K Dilatant (n>1)
Oy
du/dy (shear rate)
Fig.13

where K is the consistency index, n is the power-law exponent and |y| is the magnitude of the rate-
of-deformation tensor given by 4/ ‘ vy i . The different types of behaviours are obtained as follows:

n=1  Newtonian
n>1  Dilatant or shear-thickening

n<l  Pseudoplastic or shear-thinning

Yield Stress and Plasticity:

The existence of yield stress is frequently encountered in the rheological behaviour of
concentrated suspensions. This is some critical value of the shear stress below, which the material
does not flow. For shear stresses greater than this critical stress the material may behave as a

Newtonian, pseudoplastic or dilatant. Materials exhibiting such a behaviour are said to be "plastic'.

6 =o,1t7,7

The simplest type of plasticity is the one which follows the Bingham model, that is:
where Oy is the yield stress and 7, is the viscosity. In other words, a Bingham fluid is a Newtonian

fluid with a yield stress.
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Time-dependent structure:

All types of materials involved in our previous discussion have a time-independent structure.
In other words, if a constant shear rate or stress is applied, their structure as well as their viscosity do
not change with time (time-independent) once a steady-state is obtained. This is in contrast with the
behaviour of some concentrated suspensions whose structure changes with time and as a result their
viscosity changes with time as well. When the viscosity decreases with time the material is said to be
"thixotropic'. The opposite behaviour is rheopexy and the material following this behaviour is said

to be "rheopectic".

Viscoelasticity:

Materials that exhibit viscous resistance to deformation and elasticity are said to be
viscoelastic materials. Such a behaviour is time-dependent and the stress at some time t depends on
the past deformation history that the fluid elements were subjected to. This effect is also known as
"memory" effect.

In start up and cessation of steady shear of a Newtonian fluid the stress builds up to its
steady-state value and to zero respectively, instantaneously. This is not the case with a viscoelastic
material. In start up of steady shear, the stress is time dependent and only approaches its steady
value after a significant period of time which depends on the rate of shear. This behaviour is
different from that of a material exhibiting structural time dependency where all the energy is
dissipated. In the viscoelastic materials some of the energy is stored. Thus, in the cessation of steady
shear the shear stress decays to zero again after a significant period of time which also depends on
the past deformation history. This also implies that the material will also exhibit partial recoil in

order to relax.



THE NAVIER-STOKES EQUATIONS

We start with Cauchy's equation written in terms of viscous stresses, that is:

DV
—_— = - Vh-Vp+V.t
P Di Pe p

Using index notation this can be written as:

Dv; 8h_8p+ar,-j

Dt __pgax axj Ox

P

J i

The extra or viscous stress is given by the definition of an incompressible Newtonian fluid is:

dvi , 9v;
= +—-
Tij ﬂ( dx, Ox ]

1

Combining the last two equations to eliminate Tj;,

pDVj:_pgah_ap+5 ,U 8Vi+an
Dt axj 8)(?]' axi '

Assuming constant viscosity, u

The first term in the parenthesis can be written as:

78
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22
axj aXi

But for an incompressible fluid, the continuity equation tells us that the quantity in the parenthesis
is zero.

Thus for a Newtonian fluid with constant density and viscosity we can write:

D v, .
P VJ:_pgﬁh_ﬁp i 0 [ Ov; =123
Dt Ox 6xj Ox;\ Oy

J
Using vector notation:

p% =-pgVh-Vp+uv’Vv

or if the Laplacian is written in a standard vectorial form then

p% =-pgVh-Vp+uVx(VxV)

These are the Navier-Stokes Equations for constant fluid density and viscosity. They constitute a

system of three non-linear second order partial differential equations. Together with the continuity
equation they form a set of four equations which is complete for incompressible flows, in principle
they are sufficient to solve for the four dependent variables, P, vy, vy, and v, for a Cartesian system
of coordinates.

The Navier-Stokes equations also require initial and boundary conditions. The proper

boundary conditions for the velocity on a solid boundary are:
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Vi = v, = 0

where Vv, is the normal component of the velocity relative to the solid boundary and v is the
tangential exponent. These conditions are known as the no-penetration and no-slip viscous
boundary conditions respectively. If there are free surfaces involved in the flow additional boundary
conditions are also required to solve the problem. Finally the pressure which is also a dependent
variable, requires boundary conditions too.

Finally, if the flow is fully enclosed by solid boundaries, the only role of gravity force is to
increase the pressure by an amount equal to the static head, pgh. In this case the pressure and the
gravity force terms in the Navier-Stokes equations can be combined by defining the hydrodynamic

pressure, that is:

P=ptpgh

and the N-S equations can be rewritten as:

Dv. .
P VJ:_8P+IU 6 aVl j:],2,3
Dt 8)6_; Ox; Xi

In the following pages the Navier-Stokes equations for an incompressible fluid of constant viscosity

are given in Cartesian, Cylindrical and Spherical coordinates.
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NAVIER-STOKES EQUATIONS IN RECTANGULAR COORDINATES (x,y, z), p,u = constant

X — component

Ovi, Ovx, Ovy, Ovy op v O vy, 07 v, Oh
+ + + =y + + -
p( o o ey a J o “( ox oy 07 ) '8

y - component

aVy 8Vy 8Vy aVy 0 p 52 Vy 52 Vy 0’ Vy oh
+ + + S + 9 Wy _
r [ o o Vo e # p

zZ - component

Ov, Ov, Ov, Ov, op v, v, 0% oh
+ + + S + + Ve |
p(@t o oy Vzazj ”( re
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NAVIER-STOKES EQUATIONS IN CYLINDRICAL COORDINATES (r, 0, z), p, 4 = constant

r — component

(avur 8Vr+E%_V_§+ aVr\J:
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2 2
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NAVIER-STOKES EQUATIONS IN SPHERICAL COORDINATES (r, 0, @), p, u = constant

r — component
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THE VISCOSITY

Viscosity is perhaps the most important property of flowing Newtonian fluids because it completely
characterises their rheological behaviour. Gases in general do not offer any significant resistance to flow and
therefore may be treated as fluids of zero viscosity. The viscosity of liquids is a function of composition,
pressure and temperature. It increases with increase of the molecular weight and with increase of pressure,
more and more steeply as the molecular weight increases.

An equation frequently employed to model the pressure dependency of viscosity is the following,

Up = pyexp( S p)

where up is the viscosity at pressure p, uy is the viscosity at ambient pressure and f is the pressure
dependency coefficient of viscosity. Under common processing pressure conditions, the viscosity changes
very little. For example at 30°C, the viscosity of toluene changes from 5220 uP to 8120 pP when the
pressure changes from 0.1 MPa to 63.5 MPa.

Temperature has a much stronger effect on the viscosity of fluids. The viscosity of gases in general
increases with increase of temperature while that of liquids decreases. This is because the relative roles of
collision and intermolecular forces are different in these two states of matter. In gases momentum is
transferred through molecular collisions. Thus, an increase of temperature increases the number of
molecular collisions which increases the resistance to flow and as a result gases at a higher temperature
appear to have a higher viscosity. In liquids the molecular collisions are overshadowed by the effects of
interacting fields among the closely packed liquid molecules. An increase of temperature in general
increases the free volume in liquids and in general decreases molecular collisions and interaction
intermolecular forces. These effects are reflected upon a decrease of the viscosity of liquids.

An Arrhenius type equation is frequently used to model the effect of 7 on the viscosity of liquids,

that is:

where puris the viscosity at temperature 7, 1 is the viscosity at temperature 7y and E is an activation energy
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for viscosity.

b T1/2

R,

For gases the effect of T on their viscosity is modelled through Sutherland correlation as follows:
where b and S are empirical constants.

Finally the ratio of the viscosity to density is the kinematic viscosity, v, defined by

v=£

Yo,
As explained later this kinematic viscosity is also a vorticity transfer coefficient, which determines how fast

a shear signal propagates into fluids. The two Figures below show the viscosity and kinematic viscosity of

some selected gases and liquids as a function of 7.
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THE EULER EQUATIONS

Substitution of u=0 in the Navier-Stokes equations reduces them to a form known as the Euler

equations:

DV
ZY = pgVh-V
P, ~ PEVh-Vp

These equations were developed earlier than the Navier-Stokes equations. It is noted that these equations
may be considered as an approximation and because are first order equations cannot satisfy both boundary
conditions applied to the Navier-Stokes ones. These are recommended to be used away from solid

boundaries where viscous effects are minimal. In these areas the assumption =0 is a fair estimate.

THE NAVIER-STOKES EQUATIONS IN TWO-DIMENSIONAL FLOWS - THE STREAM FUNCTION

Consider a 2-D flow in the (x, y) plane and no velocity component in the z-direction. Thus:

The equation of continuity and the Navier-Stokes equations can be simplified as:

Ovs | Ovy

ox oy

=0
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2 2
N
ot Ox 0z oy Ox" Oy oy

Cross-differentiating the last two equations and subtracting one from the other, we have two equations, with
two unknowns, namely v,, and v,. Since the flow is also 2-D we can make use of the Langrange stream

function to further reduce the number of unknowns. The final result is a fourth-order partial differential

equation
OV'y Oy ovy Oy ovy _ My,
ot 0y 0O0x Ox Oy o,
METHODS OF SOLUTION

The Navier-Stokes are non-linear partial differential equations and there is no general method to

obtain an analytical solution. In other words there is no existence theorem for a solution. Thus, each problem

in fluid mechanics must be carefully formulated as to geometry and proper boundary conditions. Then a
method to attack the problem should be chosen in order to get a solution. The obtained solution, which
depends on the method, falls in one of the following categories:

1. Exact Solution: Such solutions in general are possible to obtain under special cases such as:

A. Ifthe BC's are independent of time and the starting transient is not of interest, the solution is assumed to

be independent of time;

B. If the BC's have a certain symmetry, it is assumed that the solution will also have this symmetry;

C. Assumptions that there are no "end effects" i.e., no variations of velocity in the downstream directions.
Such solutions are true, exact solutions to the equations of motion.

2. Approximate Solution: If the simplifications of the type described above do not reduce the

system of equations to one that can be solved directly, simplifying approximations may be justified
under certain circumstances.

A. If the Reynolds number is very low (much less than 1), the inertia terms in the N-S equations
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may be neglected.
B. Flow at high Reynolds number very near a solid boundary, certain simplifying approximations
lead to the Boundary layer equations.

It is noted that these types of approximations are coming from a method known as ordering
analysis and examples will be discussed later. The solutions arising from such procedures are
approximate solutions, not exact solutions.

3. Numerical Solution: In the most general case, neither an exact nor an approximate analytical

solution is possible. In this case, a numerical solution must be sought using:
-Finite differences
-Finite elements

This is the domain of Computational Fluid Mechanics.
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FLUID STATICS

Hydrostatics is the branch of fluid mechanics which considers static fluids, i.e., fluids at rest with
respect to any co-ordinate system. Therefore, the Langrangian approach is sufficient to describe
fluids at rest once the co-ordinate system is attached to the fluid. For fluids at rest or moving as
“rigid bodies” (again the subject of study of hydrostatics) there is no deformation undergone by the
fluid. In other words all viscous normal and shear stresses are set to zero. In this case, one may write

the equations that describe these fluids (i.e. pressure distribution, effects of acceleration as:

p%—‘t]=-ngh-Vp or pa=-pgVh-Vp (1)

Using index notation this can be written as:

dy, oh op oh op
— = - —-—  0or a = - —_— (2)
r dt pgan an r pgaxj an

where ais the acceleration vector. For a Cartesian system of co-ordinates (X, y, z) this equation

takes the following form:

a —_9P
POy ox P9y
op
paty==o, A9, ®)
P ’

For a fluid at rest with the acceleration zero and the direction of g in the negative z direction these
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»_,
OX

equations become: P _ 0 (4)
oy

Figure 1. Pressure in an incompressible fluid.

Simply in Figure 1, by integrating equation 4, it can be said that:

p=p, +09(z, - 2) )
Sometimes one is interested in the pressures excess above that of the atmosphere. This is called the
gage pressure, as distinguished from the absolute pressure p.
Using the same principles on the manometers (combinations of tubes using different liquids)
depicted on Figure 2, one may easily derive the following relationships, where pa is the pressure in

the thalamus.

@  Pa=p, +pgh
() P, =P, +pgh

(c) P, = 9(Z, — Z,) where the pressure within the capillary is zero.



@ P, =p9(z, —2,)=pgsin(L)

@and(®  p,=p, +§"lpig(zi+l 7))

Figure 2: Manometers

91
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EQUATION OF HYDROSTATICS IN ACCELARATING FRAMES OF REFERENCE

Considering that the variation of g is negligible with elevation (good assumption), Equation 1 can be

rewritten as:
po=-pg-Vp or 0=-Vp+p(g-a)
This is exactly the same as the equation of hydrostatics except for the body force term which is now

g-a.
Example: A cylindrical bucket, originally filled with water to a level h, rotates about its axis of

symmetry with an angular velocity o, as shown in Figure 3. After sometime the water rotates like a

rigid body. Find the pressure distribution in the fluid and the shape of the free surface, z, = f(r).

The equations in cylindrical co-ordinates can be written as:

z
f O:—@+pw2r
or
1o
: roo
o 0=-P g
: 0z

where the second equation implies that pressure is not a function

of 8. The other two equations can be integrated to yield.

p :%pwzrz + fl(z)
p=-p9z+ f,(r)

The constant c is evaluated from p(0,h,) = p, . Thus, once c is evaluated and substituted back into

or E
p==pa’r’—pgz+c

Figure 3. Rotating bucket. 5

the pressure equation:

p(r,z)=p, +%pw2r2 — P9z + pgh,
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The equation for the free surface can be found from the condition that p(r,z,) = p,. Thus,

The value of h, can be found from the original volume

R R a)ZrZ
V =R*h=[z,27rdr :j[ho + JZ;zrdr,
0

o 49
Integrating
2p?2
szh:nRz(ho LJOR ]
49
Finally,
2p?2
h, = ho @ R
49

FORCES ACTING ON SUBMERGED SURFACES
Surfaces in contact with a fluid are called submerged surfaces. The force acting on an element of a
submerged surface dS is then:
dF =—pndS
n being the element’s outer normal unit vector. The total force acting on the surface S is:

F =-|, pndS = (p, + pgh)ndS
where h is the depth of the fluid below p=p.,.

Considering a Cartesian system of coordinates where (i,j,k) are the unit vectors in (x,y,z), then:
P, ==Js pdS, == (p, + pgh)dS,
F, =, pdS, =-].(p, + pgh)dS,
F, ==J;pds, =-[;(p, + pgh)s,

where Sy, Sy, and S; are the projections of S on the X, y and z planes respectively.
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FORCE ON A SUBMERGED PLANE SURFACE

Consider a submerged plane surface which coincides with the z-plane , i.e. ndS, = kdS . See Figure

4 below.

Figure 4. Force on a submerged plane surface with its centroid at C.

Then the resultant force is acting in the z-directions with:
F, =—[, pdS =, pghdS
Substituting h=ysin« ,
F, =—pgsin aL ydS = —pgy.Ssina
F,=—p:S

where yc is the y-coordinate of the centroid of the area S, which is defined by,
1
yC = gjs de

and p. = pgY. Sine is the hydrostatic pressure at yc. This method is useful for surfaces with

known centroids.
The conditions to calculate the resultant force represented by the distributed forces correctly and its
point of application are:

1. Equal these forces in magnitude and direction (already done above)

2. The resultant has its point of application such that its moment about any axis parallel to the

x-coordinate axis equals the total moment of the distributed forces about the same axis; and
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3. The resultant has its point of application such that its moment about any axis parallel to

the y-coordinate axis equals the total moment of the distributed forces about the same axis.
Condition (2) determines yg and condition (3) determines xg. Therefore, condition (2) can be written

as:
F.¥e =—[, ydF =—pgsina|, y*dS

The surface integral is the second moment of the area or the moment of inertia of the area with
respect to the x-axis, i.e. Ixx. This moment can be related to the moment about any axis parallel to x-

axis and passing through the centroid through the Steiner’s theorem.
2 2
Ixx :J-Sy dS = Ix'x' +SyC
Combining the above equations, we can obtain y, as:
1
YeS

Some moments for standard shapes are tabulated.

...
jsyzdS :ﬁ+ Ye
C

Ye =
For a plane not symmetrical with respect to the y-axis X may be found in a similar way
from:
F,x. = [ xdF =—pgsina|, xydS =-pgsinal
Steiner’s theorem is used again:
Ixy = Ix'y' + SXC yC

This yields

1 .
L xydS=—Y yx
ycSIsy YeS °

where the x-coordinate of the area centroid is defined by

Xp =

1
XC = gjs XdS
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EXAMPLE (a) A vertical plate AA’B’B is set under water of density p as shown in Figure 5.

Find the resultant force, its direction and its point of application, y.
(b) A large plate is now shown in the same Figure. Find the resultant force, its direction and its point

of application, y.

Figure 5. Rectangular plate under water.

(a) The centroid of the plate is L/2 deep.

DL’
2

F, :—pgsinaL ydS =—pgy.Ssina or F =—kpg%DL:—kpg

The moment of inertia of the plate about its centroid is

L/2 3
2 (LY 1
| =2 [ Dy’dy=<D[=]| ==DU°
ox ! yidy =~ (zj >

Then

» Y,0LE L
Ye=otYe="  ~t,=35k
YeS ALD 2 3

(b) The resultant force is:

L L DL?
F=-kog—D——=-k
ng sing ngsina

Substituting the moment of inertia and the yc,

%2 DL L

lew ==55—, and y. =—
O sinda ¢ 2sing

we can obtain
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2L

3sina

Ye

The point of application is again 2/3 of the plate and at 2/3 of the maximal depth.

EXAMPLE: Two reservoirs A and B are filled with water and connected by a pipe (see Figure 6).

Find the resultant force and the point of application of this force on the partition with the pipe.

Front view Side view

Figure 6: two reservoirs connected by a pipe.

Let the subscripts 1 and 2 refer to the plate and to the circle. The sought force is the difference
between that of the rectangular plate and that of the circle.

L_ pgl’b
2 2

—-F =Lxbxpg

The point of application is at 2/3L.

The force on the circular pipe the size of the hole is:

2
_FzngHﬂD

For the circular plate
ﬂDA
64

R
Ix'x':ilr :ierZﬂrdr =
2 " 2]

The point of application

_sD'/e4 D’

=————+H+ +b
aDH /4 16H

Yeo
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The resultant force is:

-k, = _(F1 - Fz)
The point of application is found from:
Ye F12 = yFlFl - szFz

with the formulas all derived above.

COMPLETELY SUBMERGED BODIES

The force acting on a completely submerged body can be calculated by:

d
F =] pndS =—[, VpdV = —ijd—pdV k[, podV =kpgV
z
Therefore there is only one force acting on a completely submerged body and this is in the vertical
direction. This is also known as Archimedes Principle and the resultant force as the buoyancy force..
In deriving the above formula the Gauss theorem was utilized that transforms a surface integral into
a volume one.

The centre of buoyancy of a submerged body can also be calculated by:
1
xgpQV =[, xpgdV or x, :\7{\/ xdV
Similarly

1 1
yB:VijdV and zB:VszdV

The same analysis can also be performed for a floating body to calculate the buoyancy force.
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EXAMPLE: Ice at -10 °C has the density p, = 998.15kg/m®. A 1,000-ton spherical iceberg

floats at sea as shown in Figure 7. The salty water has a density of p, =1,025kg /m®. By how much

does the tip of the iceberg stick out of the water?

Figure 7: Spherical iceberg

The volume of the iceberg is V=10° kg/998.15=1001.9 m* which corresponds to a sphere of R=6.207
m. The volume of sea water it must displace by Archimede’s principle, is:

VvV, =10°/1,025 =975.6m®
From the Figure we can derive the following geometrical relations:

z=R(l-cosa) dz=Rsinada

L=Rsina dV =a%dz = 7R?sin’ ade

V= TzzR3 sin® ada = ﬂRgT(l— cos’ & )sin ade = 975.6m’
0

0

Solving we obtain:
a, =144° 7, =11.229m
The part sticking out of the water will be:

2R—z, =1.185m
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FORCES ON GATES AND SUBMERGED BOUNDARIES

The methodology developed so far can be used to calculated forces on gates as well as on submerged
surfaces in general. Consider the three shapes of gates indicated on figure 8. Calculate the resultant
force of the water pressure exerted on each gate and its line of application such as the correct

moments results.

Figure 8: Shapes of gates

Solution

For gate a
p=pgh=yH(l-cosa).
Using Eq. (3.18), we have

dF=-pndS=-pnHda,

where n =r; hence

dF, = -pH sino de = yH*(1 - cosax)sin o dex,
2
F, =J‘0n/ yH? (1-cose)sinada = yH? [1—%]:%7/1‘[2,

w2 i

Zch _ ,[ zsz(lfcosO:)sinada:H'%T J (cosa—cosza)sinada
oA &
=Hy [} { =i Hy, 2, =H1/3,

~dF, = pHcosada = yH*(1- cos o) cosada,

I
-F, :j: yH? (cosa—cosza)d(x = vH? |i1——%} = 0.2146 yH?,

. 3
(~F)~x,)= j:m;vH5 (cosa - cos’ax )sin ado = yH{%—%] = Iﬁi

(—x,)=0.7766 H ,



3

1w | () s o)

= 0.5441}412 =0.5441x 9,810 x4% = 85,403 N
and

5 _

O = arctan
¥ 0.2146

= urctan

1

v ‘ 66.7°.
z
For gate b, we have from Example 3.4
Z, = 3
F=HV2xyxiH =0.7071yH” =110,986N.

The point of application of that force is at H/3, and its direction is perpendicular to the
in¢lined plane.

For gate ¢

p=3vH(l-cosa),
dF, = pAsinada = L yH*(1-cosa )sinada,

o= Oﬁ %'sz(l—cosa’)sinada =1 yH*[2-0]= %THQ.
2, F, = I;r-éz-sz(l—cosa)sinadfxz -é'}f'H?’J:(1+cosa)(l—cosa]sina‘da

=é’}’H3E (l-cosza)sincxdoczé yH3[2_%] - LyH

Zpllye H
5

The force acting upward, F,, is found by Archimedes' law as the buoyancy force acting
on half the cylinder:

nH? x1 5
F=1V= =0.3927H~.
F=1 }’[ 4x2J 7

We also know from solid mechanics that the center of gravity of half a circle is at

PR o1 H

Im 3
o (2 2] 212 242
_;F|=‘\,Fx +F _‘..V(%]/H )" +(039279°) ‘

=0.63589H° = 0.6358x9,810x 4> = 99,792 N

and finally

= 308",

x

Op = 360 — arctan

-4

101
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HYDRODYNAMIC STABILITY

Two forces are acting on floating bodies, gravity and buoyancy. A static equilibrium is obtained
when both forces are acting on the same line (fig. 9a,c). A moment may appear which tends to
increae the roll angle « , in which case the situation is called unstable; or the moment may tend to to
decrease « and diminish the roll. When no moment appears the situation is denoted stable. When

the center of gravity is lower than that of buoyancy the situation is usually stable.

=1

Figure 9: A submarine and a sail boat with the centers of gravity and buoyancy.
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Figure 10 below shows stable and unstable equilibria and how the moments work to cause

instabilities.

4
i '
Y Smable Unstable
Stable | Ulosis 1ble

Figure 10: Stable and unstable equilibria
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MECHANICS OF INTERFACES

A force balance on the interace S of two immiscible liquids gives (surface density negligible

otherwise gravity and acceleration should be included)

Fluid B, Py

A5 Interface S

Fluid A, f,

Figure 11: The interface between two immiscible fluids

ne(oy —0,)+V,c+n2Ho =0
where n is the unit normal vector to the interface pointing from liquid B to A, o is the surface
tensionand o, and o are the stress tensor written across the interface for the two fluids. Note that

the gradient operator is defined in terms of local coordinates (n, t) that is normal and tangential to

the interface.
0 0
V, =t—(e)+n—
I ot (o) on (o)

The surface tension gradient which is present with surfactants and with nonisothermal interfaces is
responsible for shear stress discontinuities which often cause flow in thin films. In the absence of
these two effects, the gradient is zero.

V,o=0
Thus, the equation of the interface is reduced to:

ne(cy, —c,)+N2Ho =0
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The two components of this equation are those in the normal and tangential directions

respectively:

Normal: ne[ne(c, —c,)+n2Ho]|= (P, - P,) + (Tonn —Tmp) —2Ho =0
Tangential:  te[ne(o, —0,)+N2Ho| =17, , —7ys =0

The mean curvature, 2H, of a surface is necessary in order to account for the role of surface tension

that gives rise to normal stress discontinuities.

INTERFACES IN STATIC EQUILIBRIUM

Under no flow conditions, stresses are zero and therefore the equation for the interface reduces to the
Young-Laplace equation:

Vp=2Ho
This equation governs the configuration of interfaces under gravity and surface tension effects. This
equation most of the time is solved numerically to find the shape of the interface. For interfaces and

free surfaces with general configuration, the mean curvature 2H can be expressed as:

2Hn:E
ds

where t and n are the tangent and normal vectors respectively and s is the arc length.
For a cylindrically symmetric surface (translational summetry with constant curvature, see Figure
12), the surface wave (shape) can be described by

z=12(X)

. (x)

e

=
H

Figure 12: Cylindrically symmetric interface
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The mean curvature is:

TN [ —

(1+ 2’ )3
For rotationally symmetric surface (surface generated by rotating a rigid curve, see Figure 13), the
surface can be described by:
z=12(r)

The mean curvature then becomes:

oHo Z e _ldp 1z
r(+ 22 )" (e 2?)” 2dr| 1422

L L Ll o S o T T oy T )

Figure 13: Rotationally symmetric surface

The same interface can be alternatively described by:
r=r(z)
in which case:

2H 1 "

] r(1+ r’ )1/2 B (1+ rz)?’/2

z

For static interfaces as described above, the Young-Laplace equation applies

2H:pB_pA
(o2
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For planar interfaces H=0 and there is no jump in pressure across the interface.

For cylinders: 2H = i + i = i
R, ©» R
For spheres: 2H —i+i _E
' R, R, R

Which means that the pressure is smaller inside the cylinder or sphere compared to outside.
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MEASUREMENT OF SURFACE TENSION

1. Wilhelmy method: A Plate of known dimensions S, L and h and density p, is being pulled

from a liquid of density p, and surface tension o in contact with air of density p, .

Y A Ve 2
B (contact angle)
hp h \ Y

Y P=2(5+L)
b e’

_#_Y_ha Y B

o

Figure 14: The Wilhelmy plate method

The net force exerted by fluid A on the submerged part is (buoyancy):
Fa=—-pagh,SL

The net force exerted by fluid B on the submerged part is (buoyancy):
F, =—psgh,SL

The surface tension force on the plate is (pulling downwards):
F_=oPcosd

The weight of the plate is:
W =p.gV = p,g(h, +hg)SL

The total force balance thus gives
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FotFe+F, +W=F or F=gSL[h,(p, - pa)+hs(p, —pg)]+ oPcoso

Since everything is known, o can be calculated.
An improved method is when the plate is completely immersed in fluid A. In this case the force, F,
becomes equal to:

F, =oPcoséd+ (p, — p,)9hSL

The surface tension can be easily calculated without knowing the densities of fluids.

2. Capillary rise on a vertical wall

Figure 15: Capillary rise

The Young-Laplace equation in the presence of gravity is:

~=-0A(p2)
From differential geometry:
1_d¢
R ds
where ¢ is the local inclination and s the arclength. Also from differential geometry:

dz . dx
— =sin and — =cos
ds ¢ ds ¢

Therefore,
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d¢ d¢ dz d¢ n¢——gApz
ds dzds dz o
Integration gives
CoS¢ = _980 2 ¢
20
If we let cos ¢ =1 at z=0, then
cos¢—1:—23in2(¢/2)=—gA—’Oz2
20

which yields

Z= J_rz\/Ungsin(%)

The meniscus intersects the wall at a contact angle 6 and a height h above the free surface.

Therefore,

-2 2 il %)

If 6< 77 , his positive; if 8> 77 , h is negative

3. Interfacial tension by sessile drop

Figure 16: Axisymmetric sessile drop
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Consider the points marked as A, B, C and D in Figure 16.

Across the meniscus we have

Ps — Py =2Ho
From hydrostatics:

Po = Pa=pPa02

Pc — Pg =ps0z

Pc = Pp

which yield
Ps — Pa :_(pB _IOA)gZ

Combining the above equations we obtain the equation for the interfacial tension.

gz
o=—- -
>y (s~ Pe)
The surface of the droplet is given by z = z(x,y). For rotationally symmetric interfaces of this

dependence:

zxx(l+ ziy)— 22,2,2,, +22,,(1+ z%)

2H =
(1+ 2’ +z§)3/2

The solution (numerical) of this contains two constants, which can be determined by:
x=y=0, z=2 or oz/or=0

The description is completed by:
r=+d/2, z, >, z2=12

r

which determines h.
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EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

As discussed before there are a few cases where a exact solution to the Navier-Stokes
equations can be found by integrating them analytically. Some of these will be presented in this

chapter and some others will be given in the assignments.

TIME - INDEPENDENT FLOWS
Plane Poiseuille Flow

Two parallel plates with a gap d between them in the y-direction are shown in the Figure
below. The flow field is extended infinitely in the x and z directions, so that end effects can be
neglected.

The fluid flows in the x positive
U—H»

”f/f/f/f/f/f/f/f/f/f/f/f

direction under the action of a pressure drop
Ap/Ax. In addition, the upper plate moves with a
— > 4 p/AX. d constant velocity U in the x-positive direction.

Determine the velocity profile, the maximum

A 4
LLLL LT velocity, its location and the volume flow rate

per unit width of the channel.

Neglecting the transients of the flow, this is an one-dimensional flow. One may clearly
assume that v,=0 and that from an intuitive guess one may take v,=0. This last guess is pursued until
either a solution is found or if a solution cannot be found then it is dropped.

Using the continuity for steady-state incompressible flow,

Ov,
Oox

=0

which tells us that vx=vy(). Thus, whatever the velocity is at some x-coordinate, it repeats itself for

other x values. Such a flow is called fully developed. Now considering the x-component of the

Navier-Stokes equations and using the simplifications discussed above, one may write.
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&’ Vi
= - _p + p gx + /u 2
oy
The y-component simplifies to:
ap
0=-—+
8y rPg,

we have taken -pg(Jdh/Ox)=pg, and -pg(Oh/Oy)=pg,. Furthermore, from the definition of co-

ordinates g,=0, and g,=g. Thus, the y-component tells us that there exists a pressure gradient in

the y-direction due to gravity. The x-component can be integrated twice to result,

Ap
Ax

2
Vx e +C,y+C;
2u

The gradient Jp/Jx has been substituted with 4 p/Ax, which is a constant. This can be inferred from
inspecting the viscous and pressure terms of the x-component of the Navier-Stokes equations (see
above).
The boundary conditions to be used in order to evaluate the constant C; and C, are:
y=0, vx=0
y=d, vw=U

Evaluating the constant C;, and C», one may obtain:

() ) L)

The special case U=0 results in
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2 2
Y = (_AP jd_ Z-(Zj
i Ax J2u| d \ d
which is known as plane Poiseuille flow, while the case of 4 p/Ax =0 results in
Y
vy = U=
d

which is known as simple shear flow or plane Couette flow. Several velocity profiles for all these
cases are given in the Figure below.

»

A A A AT AT AT S AL AT AL AT SAS AT SAS ST S AT ST SAS ST S AT ST

—

e
e

AL LSSSSSSSSSSSS,

a b C d

Figure: a.Plane Couette flow b.Shear Flow c.Flows with AP/Ax<0 and d.AP/Ax>0.

Maximum Velocity: The maximum velocity, vy max and its location, y, can be inferred from the

condition, dvy/dy=0 which results in,

and

; :(_g)d_z 1(wU Y\ 1, wU
e Ax )2u| 4 \(-Ap/Ax)d’ 2 (-Ap/Ax)
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For plane Poiseuille flow these expressions become:

and

The volume flow rate per unit width, O/w (w is the width) can be obtained from:

d Ap\ d&° Ud
/w= |y dy =] - +
Q [y ( Ax)]Zlu 2

The average velocity is defined as the flow rate divided by the cross sectional area where in this case

may be simplified to:

Flow in a round tube
Consider a round tube with the z-coordinate as its axis of symmetry. Determine the velocity
profile, the maximum velocity, flow rate and average velocity for steady, fully developed flow of an
incompressible Newtonian fluid. Considering one-dimensional flow with ve=v,=0, the continuity
equation reduces to:
Jv,
0z

=0

which is the condition for fully developed flow. The Navier-Stokes equations can be simplified as:

_odp
or
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S
Il
N I~
)]
i

S))
» O

0=-ap+£ (ravz)
oz ror or

Note that the effect of gravity has been neglected. In general the effect of gravity can always be

neglected except in these cases where is the primary driving force for flow. The first two equations

indicate that p is a function of z only, and in a manner similar to that in the flow between two

parallel plates, one may show that

A
6_p: const = op

z

Integrating twice the third equation results into:

The boundary conditions to be applied in order to evaluate the two constants of integration are:

BCI: v,=0 at r=R

B.C.2: =0 at r=0

dr

Evaluating the constants of integration, the following velocity profile results.
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The minus sign indicated that the flow is in the direction of decreasing pressure. The maximum

velocity occurs at the centerline where » = 0, so that

_ (APJRZ
Vzmax = ~
’ Az )4 u

The volume flow rate can be calculated from:

Finally the average velocity is defined as:

2
i

A\ 2

v,rdrd®

S —

_ Ap K
Az 8 u

N

S —

R
I rdrd?@
0
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Simple Shear Flow
The Sliding Plate Rheometer

The flow generated between two parallel plates is referred to as simple shear (see schema

below):
A
> u
— >
Iy
y >
>, .
L>x v  7=m=ulh

Figure: Velocity profile in simple shear (sliding plate rheometer)
Simplifying the Navier-Stokes equations for this flow
-no pressure gradient

-1-D flow (only v, which depends on y)

o’ v,
aJ}Z

Applying v=u at y=h and v=0 at y=0

=0 or v =cy+c,

v =2y or v =
xhy x = VY

Note that the velocity profile does not depend on the type of fluid used.

This is the simplest flow that can be generated in a lab to measure the viscosity of fluids. Using a
constant velocity that results a constant shear rate would generate a constant force (constant
shear stress at the wall) and thus the viscosity can be obtained by:

o
H=—"
Ve
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Torsional Flow between Two concentric Cylinders

Couette Viscometer

The Figure below shows a schematic of a Couette instrument, where the fluid is placed in the

cap. Then the cap is rotated. The viscosity causes the bob to turn until the torque produced by the

momentum transferred equals the product of the torsion constant &, and the angular

displacement 6, of the bob.

Quter cylinder

rotating
V5,

vy is a function of »

Inner cylinder
stationary

r-KR

(a)

Fixed

~— Torsion wire with torsion constani

Bob is suspended

W Mirror
and free to rotate _
\‘l\

In this ‘} Fixed
region the ™~§ cylindrical
fluidis § b~ surfaces

moving
with
vy = vy(r)

s
™ Rotating
cylindrical
cup

Fluid inside
is stationary

Reasonable postulates are: Vo = V (I’), V.=V, = 0, pP= p(l", Z). We expect p to be a

function of z due to gravity and a function of  due to centrifugal acceleration

Continuity All terms are zero
ve _ Op
r-component —pPp— =——
r or
d(1d
O-component O=—| —(rvy)
dr\ rdr
op
z-component 0=—"-
0z

Integrate the second equation and use

B.C.1: at r=«xR Vo = 0
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B.C.2: at »=R Vg = QOR

The velocity profile is:

The torque acting on the inner cylinder is

T, =(-7,)

2
_e27kRL e kR = 47wQOR2L(1 K 2}
- K

It is important to know when turbulent flow starts since the above analysis is valid only for

laminar flow



121

Flow between two Parallel Discs

Parallel Plate Rheometer

o(t)

i

Fluid
H V4
‘ sample
[ |
R
Pressure |
&
transducer

Figure: Parallel plate rheometer

The two plates are mounted on a common axis of symmetry, and the sample

is inserted in the space between them. The upper plate is rotated at a specified angular velocity o (t)
and as a result the sample is subjected to shear. The motion of the upper plate is programmed, and
the resulting torque, M, is measured (constant strain rheometers). Analysis of this flow gives the

velocity to be:

Vg = % so that the shear rate depends on the radial position
. RQr o '
V= TR which is a non-uniform flow?

However it is still possible to relate the viscosity of a fluid with the torque needed to rotate the

disk with a prescribed rotational speed.



Capillary Rheometer
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The most widely used type of melt rheometer is the capillary rheometer. This device consists of a

reservoir, or barrel and a plunger or piston that causes the fluid to flow through the capillary die of

known diameter, D, and length, L. The quantities normally measured are the flow rate, Q, (related to

the piston speed) and the driving pressure, AP, (related to force on the piston that is measured by

means of a load cell).

Capillary rheometers are used primarily to determine the viscosity in the shear rate range of 5 to

1,000 s, To calculate the viscosity, one must know the wall shear stress and the wall shear rate.

Constant force or
constant rate

— Teflon O-ring

Melt S
reservoir (—I

| Thermocouple

MR

Electric /' §
=

heaters “\_

_ﬁ

~—Capillary die

} D

Figure: Capillary rheometer

is:

_—Ap-R_—Ap-D
S Y) 4L

O =—-0

w rz

For the steady flow of an
incompressible fluid in a tube of
diameter R, driven by a pressure
gradient dP/dz, a force balance on
a cylindrical element of the fluid

gives:

0.5 %)

When the flow is fully-developed
over length L, the absolute value

of the shear stress at the wall o,
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where AP is the pressure drop over the length of tube.

The magnitude of the wall shear rate, y,, for a Newtonian fluid can be calculated as:

_ov,| 320
or|._, D’

Y

r=

The pressure drop must be corrected for the additional pressure required for the fluid to pass

through the contraction between the

BARREL

CAPILLARY barrel and the capillary. One can see
that there is a significant pressure

drop near the entrance of the die,

Apen. And a small at the end Ap,,,.

A
FULLY DEVELOPED . .
P4 F— A FLOW REGION The total pressure correction for exit
Pent| S and entrance regions is called the end
Pw )
pressure, Apenq, that is,
ENTRANCE )
LENGTH \\\\‘ Eex Apend = Apex + Apem‘
0 a
0 L

The true wall shear stress is then obtained as:

_ (Ap—Ap,..)
“ " 4Lp)

The Ap..q can be calculated using a capillary of L/D=0.
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TIME-DEPENDENT FLOWS
The Rayleigh Problem (Stokes first problem)

Consider an infinite flat plate with an infinite domain of fluid on its upper side. The fluid and
the plate are at rest. At the time /=0 the plate is impulsively set into motion with the velocity U and
continues to move at that speed. Determine the velocity profile as a function of time. This problem is

known as the Stokes first Problem, and again a solution is sought in which v,=0 everywhere.

This again is a one-dimensional problem where
there are no pressure gradients. The equation to

Fluid be solved is (vi=vx(y), Vy=v,=0):

XI LA LSS LSS S

subject to the following initial and boundary conditions respectively:

Vx(y’O):OJ Vx(oo)t)ZOJ Vx(O,t):U

To solve this problem a method is used which is called a similarity transformation. According to

this, a new independent variable 1| is sought in the form

n=Byt

The above equation can be transformed as follows:
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d ? Vx 2 y_z d Vx _ 0
dn° n\vt) dn
This equation should be expressed in such a way so that no y or t should appear. We therefore

choose 1 such that the combination y*/# is proportional to #° and select a convenient B such that the

equation now reduces to:

2
d VZX_anVx :0
dn dn

Comparison of the last two equations requires:

The boundary conditions in terms of # are

vww=U at n=0

vy=0 at n—ow

Writing the equation as

<:

L =-2n

<

and integrating
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Another integration results to

vo=C/le" dn+c;

Applying the two boundary conditions results in the final solution

ve=U[l-erf 7]=U {I—erf (ZH }

which is the similarity solution. Similarity because there are infinite pairs of (y,2) which give the

same 7 which, in turn, uniquely defines Vy. Some velocity profiles are sketched in the Figure below.
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Unsteady Laminar Flow Between Two Parallel Plates
Resolve the previous problem with a wall at y=h. This flow system has a steady-state limit,

whereas the previous did not.

The equation is the same:

Ovy _ MO vy
ot  p oy
with
LC.: att<0, v _=0 forally
B.C.1: aty=0, v _=U forallt>0
B.C.2: aty=h, v_=0 forallt>0

Using:¢=v /U; n=y/b; t=vt/b,itbecomes:

g _ ¢
or on’

This system has a finite solution at infinite time. This is:
g, =1-n
Therefore, we seek a solution of the form:
$(n,7) =9, () = 4,(n,7)

where the last part is the transient part of the solution which dies out with time. Substituting this

into the original equation and boundary conditions gives:
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with ¢ =@, at =0, ¢ =0atn=0and]1.The equation can be solved by using the “method

of separation of variables”. According to this a solution is sought of the form

@,(n,7) = f(1)g(r). Substitute to get

o f 2

og .

1
or  f on’

oQ | —

Thus we obtain two equations which can be solved to result.

v /U= (1 —~ %) —~ zilexp(—nzﬁzvt/hz)sin n7hzy

T n=1N
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Starting Flow in a Circular Pipe
Suppose that the fluid in a long pipe is at rest at t=0. at which time a constant pressure gradient dp/dz

is applied. An axial flow will commence which gradually approaches the steady state Poiseuille flow

This problem was solved by Szymanski in 1932. The boundary conditions are:

Initial condition: v, (r,0)=0
No slip condition:  v,(R,2)=0
ov,
Symmetry: =0
62 r=0

The solution is given in terms of the Bessel function Jj and is expressed as follows:

Xp£— ' V—f)
rO

In the next page the solution is plotted and the first ten roots of the Bessel function are listed in a

2
v, 1_(rj _ZSJ(;()LMF/R)e
n=1 //i’n‘]l(ﬂ’n)

z,max

table.
The above equation implies: Flows with small diameter and large viscosity will develop rapidly. At
a dimensionless time of 0.75 (see next page) the profile approaches almost its steady state shape. For

air 0.75 translates to /=1.25 s, whereas for SAE 30 oil this is 0.06 s for identical conditions.



r/

First ten roots of the Bessel function J

R )tn J](I\n)

1 2.4048 0.5191

9 5.5201 —0.3403

3 8.6537 0.2715

4 S90S —0.2325

5 14.9309 0.2065

6 18.0711 -0.1877

i 21.2116 (1733

8 24.3525 —0.1617

9 27.4935 081522
10 30.6346 —-0.1442
fForn > 10:

= (4e — 1)17' ~ n+1 2 s

n ‘4_ ‘]E(A'n) = ( l) (WA,,)
VIDIIVIIIIIIIVIIIIIIIII I I I I I I I IIIY
0.8
0.6
04
0.2} 0.75

VIV 7 max

| | |
0:23410:4. 1 0.6 K08 i
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OTHER EXACT SOLUTIONS

- Flow in an Axisymmetric Annulus

- Flow between Rotating Concentric Cylinders

- Flow in a pipe starting from rest

- The flow near an oscillating flat plate; Stokes second problem
- Stagnation in plane flow (Hiemenz flow)

- Two dimensional non-steady stagnation flow

- Stagnation in three-dimensional flow

- Flow near a rotating disk

- Flow in convergent and divergent channels

For more details see: H. Schlichting, "Boundary Layer Theory," 7th ed., McGraw-Hill, New York,
1979, Chapter 5.
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DIMENSIONAL ANALYSIS AND SIMILARITY

All the equations derived so far are dimensional. This means that their various terms have
physical dimensions. Before solving these equations a system of units should be adopted. However,
using the parameters of the problem to normalise the dependent and independent variables, the
Navier-Stokes equations can be written in terms of dimensionless variables, and thus the equations
can be solved without making reference to a particular system of physical units.

Apart from this, this dedimensionalisation is of interest for several other reasons:

- Solving the dimensionless equations the obtained solution is in a generalised form. For example all
solutions for the fully developed flow in a circular tube can be shown to reduce to a single solution.
- Using the principles of dimensional analysis, the experimental results can be generalised by
making use of dimensionless variables, thus substantially reducing the number of experiments. For
example in an experimental study, instead of establishing the relative importance of each of the
independent variables on the dependent variable, the variables are grouped into dimensionless
groups and then the relative importance of these dimensionless groups is studied on the group which

includes the dependent variable.

Dimensionless form of the Navier-Stokes Equations:

To write the Navier-Stokes equations in dimensionless form, the parameters of the problem
should be used in order to normalise the dependent and independent variables. These parameters
include the physical properties of the fluid i.e. density, p, and viscosity, u, geometric variables such
as some characteristic length, D, and other parameters which may arise from the boundary
conditions, which could be some characteristic velocity, U.

Using these characteristic variables, we define the dimensionless variables as follows:

*

Vi =

*

Xi Xi =

B *

= D =

Vi X 14
U D D

Introducing these into the Navier-Stokes written in index form, we obtain
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pU'Dvi _ pU°Op  oh Uu 0 (avzﬁ]

D Df D oy p oxi D’ 0x;\ Ox,

Now we collect all the coefficients to the right-hand side of the equation to form dimensionless

groups

va:_ﬁp*_gDGh*+ po 0 [ dv
Dy Oxi U ox DUp 0x;\ 0x;

We define

e
—— = Froude number (Fr)
gD
pUD = Reynolds number (Re)
7,

Thus the Navier-Stokes can be written as:

Dvi _ 0p 10K, 1 8 (dv
0 x;

Similarly the continuity for an incompressible fluid can be put in a dimensionless form as follows:
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*
dvi

P=
0 x;

These equations tell us that the solution depends on the two dimensionless groups, £ and Re, and of
course a particular set of boundary conditions which depend on the problem. Thus, one may tabulate
the solution of these equations as a function of Fr and Re in a generalised form. It is noted, however,
that for flows without any free surfaces the role of gravity is only to increase the pressure. In such
cases, if one introduces a modified pressure (P = p + pgh), then he can eliminate the term which
involves the Froude number. Therefore, in flows through closed conduits the solution depends only
on the Reynolds number.

For flows with a free surface, the surface tension, o, may be important particularly if the free
surface is curved. When the fluid whose flow is being analysed is a liquid and the fluid on the other

side is a gas, then we can assume:

nliq « ngas

P lig « p gas

The proper boundary conditions for the interface are:

and

= - = - +J i_l_L
On = Tn p pa R R
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where g, and g, are the tangential and normal stresses respectively, o is the surface tension of the

liquid, p, is the pressure in the gas phase and R;, and R, are the radii of curvature. If this boundary

condition is made dimensionless, a new dimensionless group appears as a coefficient, that is,

2
Weber number (We) = pUD
o

The dimensionless numbers can be interpreted in terms of ratios of the various forces involved in
fluid flow. Thus,

Inertia force
Re = [

Viscous force

Inertia force
Fr = : J
Gravity force

Inertia force

Surface force

The term "inertia" force is to be understood as a measure of the magnitude of the rate of change of

momentum (mass X acceleration). It is not actually a force.
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Dimensional Analysis

As discussed before the purpose of dimensional analysis is to reduce the number of variables
and group them in dimensionless form. This significantly reduces the number of experiments
required to complete an experimental study as well as helps in establishing empirical models to
describe experimental results.

Example: Suppose that the force required holding a particular body immersed in a free stream of

fluid is known to be depended on:

F=f(LYV p u)

Analytical solution is not possible to obtain, thus we must find F experimentally. In general it takes
about 10 points to well define a curve.

To address the effect of L, we need to perform experiments with 10 different values of L. For
each L, we need 10 fluids with different density while constant viscosity, 10 fluids with different
viscosity while same density and 10 different values of fluid velocity, which means 10* experiments.
At $5/experiment and 1/2 hr each of them, one may understand the money and time required.
Another problem is finding liquids with different density, although same viscosity and vice versa.

However, using dimensional analysis,
F pVL
PV L H

cr = f(Re)

or

where ¢ is the force coefficient (in a slightly different form is called the drag coefficient). The
problem has now been reduced to studying the effect of the second dimensionless group, pVL/u, on
the first dimensionless group F/pV°L’. Thus, performing 10 only experiments, we can establish the

form of the function f.
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Buckingham PI Theorem

Given a physical problem in which the dependent parameter is a function of n-1 independent

parameters, we may express this as follows:

q; = f(q2’ q3, - qn)

In the previous example the dependent parameter is F, thus ¢; while the independent parameters are
D, V, p and u, with n=5 in this case.

We can define now a new functional:

q,- 1 (95 95 - q,) = 8(q,, 45, s q,) = 0

Therefore we have a functional of n parameters (including dependent and independent parameters).
Then the n parameters may be grouped into n-m independent dimensionless groups or ratios, where
m is equal to the minimum number of independent variables required to specify the dimensions of

all parameters ¢y, g», ..., ¢ In other words

I, = G (L2, s, oo T )

Note: A Il parameter is not independent if it can be formed from a product or quotient (combination)

of the other parameters of the problem. For example,

4/5
2H1 or H6 = Hl

1> 113 1

IIs =

I1s, and I are not independent dimensionless groups.
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Determining the I1 groups

The drag force on a smooth sphere depends on the relative velocity between the fluid and the
sphere, V, the sphere diameter, D, the fluid density, p, and the fluid viscosity, p. Obtain a set of

dimensionless groups that can be used to correlate experimental data.

GIVEN:

F=f(pV.D u)

One dependent variable: F
Four independent variables: p, i, V, D
S1: List all parameters involved

F p U V D

S2: Select a system of fundamental dimensions

M, L, t (Mass, Length, time)
S3: List the dimensions of all parameters

ML L M M
Fo—, Vo>— D->L, p->—, U->—
t t L Lt

From this we find that /=3 (three primary dimensions)

S4: Select from the list of parameters a number of repeating parameters which is equal to the number
of primary dimensions, »=m. Since we have 5 parameters the selection is not uniquely defined.
However, certain rules apply to the procedure of selection.

(1) Do not select the dependent variable
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(i1)) Do not select two variables, which can result from the same fundamental dimensions. For

example, if we have L and L’, select only one.

In this case we select p, V, and D.

S5: Set up dimensionless groups. We have to set up n-m=5-3=2 groups

or

L:

t:

paVchF — MOLOZO

at+1=0
Ba+b+c+1=0

-b-2=0

Solving this system of equations we may get: a=-1, b=-2, c=-2. Thus the first dimensionless group

1S:

F

_ A2 2 —
I, =p VveDF=—3—
pVZDZ

Similarly setting:

paVchﬂ :M0L0t0

we can get:
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Thus we end up with:

S6: Check to see that each group obtained is dimensionless.

Modelling

As discussed before, dimensional analysis is a valuable tool in modelling experimental data.
In other words is a tool valuable in establishing empirical correlations for experimental findings.

From dimensional analysis we obtain

Hl = f(HZ’ H3: ceey Hn-m)

With sufficient testing, the model data will reveal the desired dimensionless function between
variables. This ensures complete similarity between model and prototype.

Formal Statement: Flow conditions for a model test are completely similar if all relevant

dimensionless parameters have the same corresponding values for model and prototype provided
also that the boundary conditions are the same in both model and prototype.

However, complete similarity is very difficult to attain. Engineering literature speaks of
particular types of similarity.

1. Geometric Similarity: A model and prototype are geometrically similar if and only if all body

dimensions in all three co-ordinates have the same linear-scale ratio. This is tantamount to say that
the initial and boundary conditions are the same in both model and prototype.

2. Kinematic Similarity: The motions of two systems are kinematically similar if homologous

particles lie at homologous points at homologous times.

3. Dynamic Similarity: It exists when model and prototype have the same length-scale ratio, time-
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scale ratio, and force-scale ratio. Geometric similarity is a first requirement; otherwise proceed no
further. Then dynamic similarity exists, simultaneously with kinematic similarity, if model and
prototype force and pressure coefficients are identical. For example for incompressible flow:

a. With no free surface: Reynolds number equal

b. With a free surface: If all dimensionless groups describing the problem are equal, Re, Fr, and We.

In both the above cases geometric similarity is presumed.
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EXAMPLE: CAPILLARY RISE-USE OF DIMENSIONAL MATRIX

T T T s wa eadanw il nIWLLGE WAL LA
When a small tube is dipped into a pool of liquid, surface tension causes a meniscus
to form at the free surface, which is elevated or depressed depending on the contact
angle at the liquid-solid-gas interface. Experiments indicate that the magnitude of
this capillary effect, Ah, is a function of the tube diameter, D, liquid specific weight,
Y, and surface tension, . Determine the number of independent I1 parameters that
can be formed and obtain a set,

EXAMPLE PROBLEM 7.3
’EIVEN: Ah=f(D,v, o)

FIND: (a) Number of independent I1 parameters.
(b) Evaluate one set,

SOLUTION: Liquid

(Circied numbers refer to steps in the procedure for (Specific weight = y
determining dimensionless IT parameters. ) Surface tension = o)

@ An D Y o # =4 parameters

@ Choose primary dimensions (use both M,L tandF L, ¢ dimensions to illustrate
the problem in determining )

r =3 primary dimensions r =2 primary dimensions

1
@ @ ML ‘(b)Y F,L, ¢
A Dy o CAD y o
M M | F F
L L el ; L
L2 g2 :L N I3 L
!
|




Thus we ask, “Is m equal to r?” Let us check the dimensional matrix to find out.

The dimensional matrix is
| Ah D vy o

M 0 0 1 1
L 1 I -2 0
t o 0 -2 -2

1
1
1
1
1
1
T
I
I
1
|
1

|AhDycr

F‘O(}ll
L I 1 -3 -1

The rank of a matrix is equal to the order of its largest nonzero determinant.

[0 1 1 ,
’ I =2 0]=0-(1)=2)
0 =2 =2 HD(-2)=0
-2 0| _ Som=2
‘“'2 —2‘ =4=0 m#Fr
@ m=2. Choose D, y as repeating
parameters.
(® n-m =2 dimensionless groups will
result.
I, =D%%?*Ah

b
=(L)° (%) (L) = ML

M: b+40=0 b=0
L: a-2b+1=0 a =-—1
t: —2b+0=0

Ah
Theref: I, = —
Ererore, I D

Hz EDE'YJO‘
MM o0
M: d+1=0 d ==1
L: ¢-2d=0 c ==2
t —2d-2=0
ar
Therefore, I1; = D_Ly

©® Check, using F, L, t dimensions

Ah_ _
m =5 2=

_o F1D
"Dy LIIF

11, =[1]

Therefore, both systems of dimensions yield the same dimensionless IT parameters. The

predicted functional relationship is

M= /() or 2=y

o
D%y

-3 -1
Som =2
m=r

m =2. Choose D, vy as repeating
parameters.

n—m =2 dimensionless groups will
result.

I, =Dy Ak

FY .
=(L)* (E) L=Fo.0,0

F: f=0

L: e-3f+1=0] e=-1
Ah

Therefore, 11, = D

H'z = Dg')'hO'
h oy
=(L)® (IF—B) % =FOL00

F: h+1=0 } h=-1

L: g-3h—-1=0 g=-2
o
Therefore, IT, = by

Check, using M, L, 1 dimensions

Ak L
=7 :g=l
2,2
ugzi.-gi‘r‘_"_- (1

DY L2 M
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This result is reasonable on physical grounds. The fluid is static; one would not
expect time to be an important dimension.

The purpose of this problem is to illustrate use of the dimensional matrix to determine
‘the required number of repeating parameters.

HR DIMENSIONLESS GROUPS OF SIGNIFICANCE IN FLUID MECHANICS

Over the years, several hundred different dimensionless groups that are important
in engineering havé been identified. Following tradition, each such group has been
given the name of a prominent scientist or engineer, usually the one who pioneered
its use. Several are so fundamental and occur so frequently in fluid mechanics that we
should take time to learn their definitions. Understanding their physical significance
also gives insight into the phenomena we study.

Forces encountered in flowing fluids include those due to inertia, viscosity, pres-
sure, gravity, surface tension, and compressibility. The ratio of any two forces will
be dimensionless. We have previously shown that the inertia force is proportional to
pV2L2. To facilitate forming ratios of forces, we can express each of the remaining
forces as follows: '

Viscous force = 74 « pj—;A o ;},%Lz o« uVL

Pressure force = (A p)A o« (A p)L?
Gravity force = mg « gplL*

Surface tension force = oL
Compressibility force = E,A o« E,L?

Inertia forces are important in most fluid mechanics problems. The ratio of the inertia
force to each of the other forces listed above leads to five fundamental dimensionless
groups encountered in fluid mechanics.

In the 1880s, Osborne Reynolds, the British engineer, studied the transition be-
tween laminar and turbulent flow regimes in a tube. He discovered that the parameter
(later named after him)

u v
is a criterion by which the flow regime may be determined. Later experiments have
shown that the Reynolds number is a key parameter for other flow cases as well.
Thus, in general,
Re=8VL _YL
n v

where L is a characteristic length descriptive of the flow field geometry. The Reynolds
number is the ratio of Tnertia forces to viscous forces. “Large” Reynolds number flows
generally are turbulent. Flows in which the inertia forces are “small” compared to
viscous forces are characteristically laminar flows.

In aerodynamic and other model testing, it is convenient to present pressure data
in dimensionless form. The ratio

144
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FLOWS WITH NEGLIGIBLE ACCELERATION

The non-linear terms in the Navier-Stokes equations result from the acceleration of the fluid.
These terms contribute the most difficulty in the solution of the equation. For fully-developed
incompressible flows in conduits of constant cross section these non-linear terms disappear and as a
result the equations are easily solved.

There are some cases where the acceleration is not identical to zero, but still the inertia terms
may be neglected without presenting a serious error. The question is what are these types of flows
(flows with negligible acceleration) and how we identify them. There are at least two such families

of flows: flows in narrow gaps and creeping flows.

Flow in Narrow Gaps
Consider the two dimensional flow of an incompressible fluid in a narrow gap
between the two plates shown inthe Figure. For the sake of simplicity and without loss of
A generality the plates are assumed to be flat
Y and the gap width to be slightly diverging

to the direction of flow. The lower plate is

set stationary and the upper plate may be

]
8 inclined to it with the small angle a. We
1
o L . \_' make the following assumptions to assure
A B the small degree of convergence.

o o

— <<l a<-=

L L

The mean velocity in the x-direction is defined as:

O~

o
Vi [ v.dy
0
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Conservation of mass requires,

Vx,A 5 = \_/x,B (5+La)

Thus,

8 Vx ~ a ;x ~ ;x,B - ;x,A - a
~ ~ T VxB o
0x 0x L o
From the equation of continuity
a Vx _ a Vy
0Xx oy
Therefore, combining
dvy - ;x,B o
oy )

The boundary conditions for vy are

v,=0 at y=0 and at y=96

The largest value vy can attain is in the vicinity of the middle of the gap, and this could be

approximately

<< | ;X,B |

> s o IwlEgg

8Vy~vy—0 0 ov,
2 2

Therefore the y-component of the velocity may be neglected in comparison with the x-component.

Furthermore in the B-cross section
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Vx,B

Q

dv,
ay

x=B

Therefore,

[ovsex| s __

A
| Ov,/ | L

The x-derivative of vy is negligible compared to its y-derivative. Using these two simplifications, the

approximate form of the Navier-Stokes equations for two dimensional gap flows becomes,

This can be easily integrated to result the fully developed velocity profile illustrated previously.
However, the pressure drop is not a constant quantity any longer. There is a way to determine how

pressure changes with the axial length. This will be illustrated in the next section.

Reynolds Lubrication Theory
An important application of flows in narrow gaps (flows with negligible acceleration) is in
Reynolds lubrication theory. This theory yields the forces which appear in bearings and other
lubricating sliding surfaces provided that acceleration forces may be neglected.
The x component of the momentum

for the flow in the Figure besides is

=_Cl'_p+lua’zvx

dx dy’

— o | Once this solved for fully developed

flow yields
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1 (dp Yy
Vx—zﬂ(d)yb’lm@I+Uh()

Assuming a wide bearing, then the mass flow between the plates is conserved

h(x)
= f pv, dy =1 pUh(x)—— P (dp jh (x) =const =1 pUh,
0 121\ dx

where, A is a parameter defining the mass flow rate to be determined later. Solving for the pressure

drop
d, h—nh,
L _ 6y~
dx h
The lower plate in inclined to the horizontal by the angle
dh
oa=—
dx
dp dp dh
Thus, @ _ _p_ =« @ . Substitute into the pressure drop equation yields
dx dh dx dh
%) Uh-h
_p — 6/1_ 3 o
dh a h

Integration and satisfaction of the boundary conditions that p=p, at /; and 4, yields the values of the
constant of integration and #4,.

g(h_hl)(h_hz)

AP AT

p—p,=6

The mass flow rate can now be calculated from

2hh,

m =% pUh, =3 pU
Y 2phh

The lift force L per unit width (force of separation) acting on the upper plate is

mmmz[mk_zw—n}

L=[(p-p,)x=
[(p-p,)dx v

5 (k=1) hy
where Kk =h /hy >l and L=x, —x, =L (h, — h))
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The drag force D per unit width acting on the upper plate is:

D:fﬂ(dvxj o 2HUL [Zlnk_?)(k—l)}
J\dy ), (k=Dh k+1

To maximize lift (applications in floating magnetic readers) let dL/dA=0, that results k=2.2
Which corresponds to:

L=0.4puUR D=12uUR  D/L=3/R
with

R=2L/(h;+h,)

The pressure in between the edges of the bearing might reach very high values this prevents the two
surfaces from touching. The figure below plots some pressure profiles. It can be seen that the

maximum pressure depends heavily on the degree of contraction.

%: 0.3

P-P .| i
FOTGXOR]

0.4

{'\
—-"""-‘-'—_

(X2=X ;)
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Flow in a Slightly Tapered Tube

The taper of the tube will require a flow
Ro in the radial direction and an acceleration

1
T R in the axial direction. Assume that flow

Y

maintains axial symmetry and that
V=Vy(7,2), Vi=Vi(T,2), Vo=0.

_ - The Reynolds number for this flow id
R=R,+a:

RV
Re:a[p = j
Y7,

Where V is the average velocity at a given cross section where R is given by R=R,+az.

defined as:

The equations of continuity and those of motion in the r and z direction can be simplifies as

follows:

Continuity

1 0 Ov,
- +
r@r(rvr) 0z

=0

r-component

z-component
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This set of equations is difficult to be solved. However, we can perform an ordering analysis to
simplify it. We estimate the order of magnitude of the various velocities and derivatives. (Define an

average velocity V=0/zR.?).

v-~O(V )~O0(0Q/mR;)

We can calculate the order of v, from continuity

2 2
ov, =0 0 0 /L|=0O| V| I- Ly /L | expected tobe small
Oz TR TR; R

because (R,-R;)/L << 1. If U now denotes the order of v, then,

i(”vr)=0(gj
r R

Finally, from continuity one may estimate U in terms of ¥, that is

o3 )3

Similarly all the terms in the Navier-Stokes equations can be analyzed in this way to find their order

of magnitude. Using the approximations,
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v. is small

ov, ov,
<<

oz or

ov,

or

is also very small

It can be shown that for slightly tapered tubes the equations can be reduced to only one equation in

the z-direction, that is:

0z ror\ or

This was solved previously to result the velocity profile. Integrating the velocity profile to calculate

the volume flow rate we can get

TR d
e
Su\ dz

Note that R=R(z) and during integration to obtain this equation, we hold z constant. The process of
adapting locally the results for a uniform geometry to a slowly varying geometry is known as
lubrication approximation.

Now express the change in R as,
R=R,*(R-R,)(ZL)

Also note that,
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Thus,

_ 7R dp \( R.-R,
o=l )

Note that Q is constant for all z (and hence all R). Solving this ODE for the pressure distribution as

a function of R;, we get:

Q: 37[ po_pL RO-RL —
8u L R7-R]

_ (p,-p )RS |, I+(R/R)F(R/R)-3(R/R,) }
Sul I+(R./R,)*(R/R, )

Note that the final result may be expressed as the Haagen-Poiseuille result multiplied by a correction

factor.

For more details on this particular problem see: Bird, R.C. Armstrong and O. Hassager, Dynamics
of Polymeric Liquids,"Vol. 1, "Fluid Mechanics, Wiley, New York, 1987.
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Creeping Flows
The Navier-Stokes equations for steady flows not involving free surfaces can be written in

dimensionless form as follows:

Dt Ox; an an

where P* stands for the modified pressure which also contains the effect of gravity. For very small

values of the Reynolds number Re/pVD/u << 1 this equation simplifies to:

ovi _ oP, @ (avz‘J

at* _axf axj- axj

or in vector notation (dimensional)

N _ VP + uv’V
ot

The flows described by these equations are called Stokes creeping flows. The equations are linear
and possess some properties, which are useful in their solution.

Taking the divergence of this equation,
V'(aa_vj =V (V'P-uvV(V'V))
t

or it may be rewritten as:
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%(V.V) =V’ P+uvV’(V.V)

From continuity V.V = 0 for incompressible flow. Therefore,
V:P =0

Thus the pressure in creeping flows is a harmonic function, i.e., it satisfies the Laplace equation. In

addition , it can be shown that (how?):
V2 (VxV ) =0

This is a more useful form since most of the time the boundary conditions are specified in terms of
velocities. The solutions to Stokes' equations possess the following interesting properties:

1. For start-up flows, the velocity distribution reaches steady state instantly.

2. All flows are "kinematically reversible". This means that if the velocities in the boundary
conditions are suddenly reversed in sign, all fluid particles will flow back along the same streamline
they were following before the reversal. In other words, the streamlines are the same for forward and

backward flow.

Creeping Flow past a Sphere

The low Reynolds number flow around a sphere is an important problem in classical fluid
mechanics. The sphere has a radius of R and a Newtonian incompressible fluid with a uniform
velocity V flows around the sphere. The fluid has a density p and a viscosity u.
a. Find the velocity field for the flow around the sphere.

b. Obtain an expression for the drag force
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The boundary conditions far from the sphere can be expressed as:

v; > -Vcosl, forr—oo

ve — Vsinf, forr—o©

radius, R

At the surface of the sphere the conditions

arc:

de
/ Sphere of
%
R — /‘7
—_—
—_—
Uniform
Velocity
\Y/

v, =0, forr=R

vo = 0, forr=R

This problem can be solved with the use of the streamfunction in spherical co-ordinates for

axisymmetrical flow with no ¢-dependence. The velocity components can be expressed as:

Vi T -

Vo =

1 oy
sin6 60

I oy
rsiné or

The boundary conditions far from the sphere become

v — éVrzsinzg, fOl’ ¥ —>



157

In view of this condition, we assume for

w = f(r)sin’0
The equation for y becomes
Vig =0

This can be solved (see Bird et al., Dynamics of Polymeric Liquids) to yield.

To find the drag force on the sphere we need also the pressure distribution. This can be obtained by
substituting the velocity components in both the » and & components of the equation of motion.
Solving these two equations will result (neglect the effect of gravity):

3 R
P = E,UV?COSH—PO

Thus the total drag force can be calculated (Force exerted by the fluid on the sphere in the horizontal

direction or direction of flow)

Tr0

—pcosl—r,gsiné
—> _______________
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_ (1dvy, vy ve ) _  uVsin@[ 3R
o= M| T | = 3
rod or r r 2

Thus

F:

S =y

Trol,_g8iN0dA + [ p|_, cos6dA
0

where dA=2m°sinfd6. The final result is:

F=47nuVR+2nuVR=6ruVR

which is Stokes law.

Drag Coefficient: This coefficient is defined as:

¢, - F _F

1 i
5P v’ (PRAR) 5P V7 R’

where PR.AR. stands for projected area which for a sphere becomes the area of a circle, that is TR
Thus,

., where Re = %

24
e JZ

CD:R

Skin Friction Coefficient: This is defined as:

_ skin friction force (shear force) 16
= =7
é pV TR ke

C

Thus we have contributions from skin friction (shear force) and pressure or form drag force.



159

A Sphere Moving in a Stationary Fluid

For a sphere moving in a stationary fluid to the right, we can use superposition to determine the
stream function, since the governing equations are linear.

- First we change the direction of the flow by introducing a minus sign

- We superpose a uniform flow to the right, which "stops the fluid and moves the sphere". The

Stokes streamfunction for uniform flow to the right is:

v = Vrzsinzg / 2

and the new streamfunction is thus:
w =V 'sin’ 0 (T__j

The total drag force on the sphere is again the same as previously:
Fp=060uV xR

This result agrees very well with experimental data for Re < 0.1, and the error is only a few
percent up to Re=1. This is very surprising, because Stokes equation is only valid when the Reynolds
number is much less than 1. However, drag depends on the flow near the body, and this is where the
ratio of inertia to viscous forces is smallest. Far from the sphere the assumption that Re<<1 becomes
locally incorrect and the predicted velocity distribution becomes increasingly inaccurate as r

Increases.
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OSEEN'S SOLUTION
Oseen (1910) proposed a method for liniarizing the inertia terms of the N-S equation for the

case where the acceleration is not neglected entirely but is still assumed to be quite small. He

proposed to write Vy as the main flow velocity plus a perturbation.

Vi = VAV,
Thus the non-linear term becomes neglect
0 o(V+v ov' 0
VX VX:(V+V'X) ( X):V X+V' -
0x 0x ox 0x

Oseen proposed to neglect the last term. In this way we end up with a linearized approximation valid
when the perturbation is small. When the drag coefficient, Cp is calculated using Oseen's solution,

the result is:

This is a good approximation up to Re numbers of about 2.
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HIGH REYNOLDS NUMBER FLOWS

Regions Far from Boundaries

The Navier-Stokes equations in dimensionless form and using the modified pressure are:

Dv; :_5P*+i 0 [5V?j

For very high Reynolds number the last term may be omitted and the following equations are

recovered in a vectorial dimensional form,

DV
— =-VP- Vh
th P&

or in index notation

aVi avi oh 0P
—+Vj g
ot 8xj 8)6,- P axi

which are the Euler's equations. Flows of constant density fluid, which obey these equations, are
called "ideal fluid flows".

Internal flows of high Reynolds number are normally turbulent and Euler's equations are not useful
for such flows. These equations are mostly useful for external flows, i.e., flows around an immersed
body, such as aerofoil, flows around the wing of an aircraft. Also these equations are useful for the
calculation of dp/dx as will be explained later.

As one approach the surface of the immersed body, the Reynolds number locally becomes smaller
and smaller and there the Eulers's equations are not useful. In such regions the viscous terms are
becoming important. Thus, there is a layer in fact extremely thin where the viscous effects are
important and there the Navier-equations should be solved. This layer known as the boundary layer

will be the subject of study in the next chapter. Outside of this layer (free stream flow), viscous
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effects are negligible and there one may use the Euler equations to determine the velocity patterns.
Therefore for external flows, one may proceed as follows:

1. Solve the ideal flow problem as if the boundary layer were not present, i.e., use the Euler equations

2. Take the ideal flow solution for y=0, i.e., at the wall as the outer boundary conditions at y=¢ for

solution of the flow in the boundary layer, where ¢ is the thickness of the boundary layer.

Figure: Point F is far away from
boundary (Euler equation valid)
whereas point C close to boundary
(Euler equation invalid)

Boundary Conditions
To solve the Navier-Stokes equations we used as boundary conditions at a solid boundary the
assumptions of no-slip and of impenetrable wall. In other words, the tangential and normal

components of the velocity at a solid wall are zero

vi=0 v, =0 at solid boundaries

This is the case because the Navier-Stokes are second order PDE's. However, the Eulers's equations
are first order and therefore one has to drop one of the two. The no slip boundary condition is

dropped, since the zero normal velocity defines the solid boundary. Thus,

is to be used with the Euler's equations.
Irrotational Motion

The Euler's equations can also be written as
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Taking the curl of this equation zeros the right hand side, thus V
0
a—(VxV)-Vx(VxVxV) =0
t
Define a vorticity vector { = V x V and then the above equation becomes

%—Vx(VxC) =0
ot

One way to satisfy this equation is by {=0. Flow for which {=0 are irrotational flows. The vorticity
tensor equals twice the angular velocity defined previously. Hence, the term irrotational flow, which

implies flows with no angular velocity. The Figure below illustrates nicely the difference between

rotational and irrotational flows and indeed provides some physical insight into the character of

these types of flows.

C> D

Direction . .
Direction
of flow
of flow

Figure. Rotational vs. irrotational flow

If now we return to the original Euler's equation and assume irrotational steady flow, then
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which implies

£JréVZJrgh = const.

p

This equation is the "strong" Bernoulli equation which holds for steady, inviscid and irrotational
flows in the whole domain.

It is noted that there is also the "weak"
Bernoulli equation, which holds along streamlines
for ideal fluid flow (no irrotational). This can be

derived if the Euler's equation is rewritten for a co-

Center of ordinate, s, that lies along a streamline, so that ds
curvature . . .
represent an infinitesimal distance along the
> streamline (see Figure besides).
X
Ovi Oy, 10 2)_1d(2)
Vi -V - L (Vv - (Vv
"0y i * Os 20s 2ds

Integrating and rearranging

—+§V2 +gh = const.
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which is the same as the above Bernoulli's equation, but this time was derived for an ideal (inviscid)
steady flow and only holds along a streamline. Thus, the constant in this equation may vary from
streamline to streamline while the one in the strong Bernoulli equation is a constant for the entire

flow field.

In the direction normal to a streamline one may derive the following equation:

where R is the radius of curvature of the streamline and @,=-V*/R is the centripetal acceleration.

The above equation tells us that there is an increase of pressure in the outwardly normal direction to

the streamline.

The Circulation I”

The circulation is defined as the counterclockwise line integral around any closed contour in

the field flow, of the tangential component of the velocity vector
I'={v, ds =§V.ds
From Stoke's theorem

I = jSVOds = §(V><V).ndA

A4

or

r=[(.n)dd

A flow in which the vorticity is everywhere zero is said to be irrotational as discussed before.
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Clearly the circulation is also zero for any contour in such a flow.

Kelvin's Theorem (Conservation of Circulation)
Starting from Euler's equations one can show that for ideal fluid flow, for a contour that

follows fluid elements circulation is conserved, that is

This equation is valid for any contour, no matter how small. Thus this implies that the vorticity of a

fluid element can never change in an ideal fluid flow.

Corrolary: If the upstream flow is irrotational, it must remain irrotational at all downstream points

(principle of persistence of irrotationality).

POTENTIAL FLOW (Irrotational Flow)

Velocity Potential

From vector calculus, if o is a scalar, then

curl( grad ¢ ) = Vx(Vg) =10

For irrotational flow the condition is: Vx V=0. Thus for every irrotational flow there must exist a

scalar field, ¢(x, y,z) whose gradient is equal to the velocity vector,

V=V¢

where ¢ is called the "velocity potential". In Cartesian this is:
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and in cylindrical,

_0¢ _10¢ _0¢
==Y ==, ==t
or

r 06’ 0z

Vr

Substituting these into the continuity for incompressible flows results in

V2¢=0 or 0% =0
axi axl-

which is the Laplace equation. Thus the velocity potential is a harmonic function and solutions can
obtain easily due to the linearity of this equation. A proper set of boundary conditions must
guarantee no normal flow relative to rigid surfaces. This Laplace equation is really a direct
integration of the equation of continuity. Euler's equation is still used through Bernoulli equation to
evaluate the pressure. Thus the momentum and continuity equations become coupled.

Since the Laplace equation is linear, superposition of solutions is permissible, and elaborate
flows may be constructed by superposition of simpler ones. It is noted, however, that Bernoulli's
equation is not linear. Therefore, the pressure in a flow obtained by superposition of two flows is not

a sum of the pressures of the two partial flows.
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Two-Dimensional Irrotational Flows:

We now consider two-dimensional irrotational flows. The equation for the definition of the

velocity potential (V=V¢) implies:

_ 09 _ 99

. and = —
v ox vy oy

The corresponding equations for the streamfunction are:

Using the continuity one may also prove that in two-dimensional irrotational flow the streamfunction

is also harmonic. Furthermore,

=2V g =W
ox oy oy ox
or in cylindrical coordinates
o4 10 10 Oy
=Lt gy, =22 Y
Yo roe YT a0 T

But these are the Cauchy-Rieman condition that guarantee the existence of an analytic function, f(z),
of'a complex variable, z, where
z=x+iy
or in polar coordinates
z=r(cos@+isinf )=re'?
Thus for every irrotational flow there exists an analytic function, f{z), that is related to the velocity

potential and streamfunction as follows:

12 = d(xy)+iy(xy)
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where f(z) is called the "complex potential". Since f{z) is analytic, its derivative exists:

This function is called the "complex velocity". In polar coordinates this is

wz) = (vi-ivy)e'’

Giving the complex potential, it is a very concise way of describing the potential flow. Since both ¢

and y satisfy linear differential equations, their solutions are superposable. Thus f(z) is

superposable. In other words, if f;(z) and f>(z) are complex potentials, f;+/> is also a complex

potential that describes some irrotational flow field.
The family of ¢=const lines and that of y=const lines intersect orthogonally. This is easily

shown by noting that

Vo=ivitjvy, Vy=-ivytjv,, Vo.Vy=0



EXAMPLES

Uniform Flow in the x-direction

The components of the velocity are:

-}(, —_— —-—
- 7
— = vw=U v,
- Then

| X

p=Ux wy=Uy [f(z)=U(x+iy)=Uz

Uniform flow at an angle a with the x-direction

The components of the velocity are:

.(f‘
A "
P - -";; vy =U cosa
) a Then
T
¢=U xcosa
and
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0

vy,=Usina v,=0

w=U ysina

w(z)=v,-iv,=Ucosa-iUsina=U(cosa-isina )=U ¢

and finally integrating
f(z)=U¢"z
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Source or Sink Flow
For a two-dimensional source axisymmetric flow (line source) the only non-zero component

is the radial, that is (from continuity)

Y
c= =, vy =0
A% 2 Vo

where Q is the "strength" of the sink i.e., fluid flow per unit length of tube if such a radial flow is
visualised to be emitted through the wall of a long slender tube made of porous material. Q is taken
positive for a source and negative for a sink. It is noted that such a velocity profile does not satisfy
continuity at the origin.

Integrating the velocity profile, the velocity potential may be obtained, that is

¢ nr ecause v ;

and the stream function

Thus, the complex potential is:

f(z Z%In(z) because Inz=Inr+i6
7T

For a source located at zj rather than at the origin

f(z)=22ln(z-20)
T

For a sink replace QO with -Q in all the above equations. The schematic below illustrates streamlines

and equipotential lines as well as the velocity field for a 2-D source flow. Note that the streamlines



172

are orthogonal to the equipotential lines.

y b/

e

Velocity
vector

v

sink
Streamlines,

Potential Vortex
In potential vortex flow the radial velocity component v, is zero and only vy exists. From the
continuity,
10(rvy) _ 0
r or

Integration yields

v = S0
r

and because nothing depends on 6, /=0. Thus

C
Vo — T
r

The velocity potential and streamfunctions are as follows:

v
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6=C0O, y=-Clr

Comparison with the source flow shows that ¢ and y lines have simply changed their roles. The

constant C is related to the circulation around the vortex as shown below

2r
I'=§V.ds=] (£j59.(5,dr+59rd9)= [ cdo=2xnC
c r 0

Hence
c= 1
2r
and
s=L0 y=-Li
2r T
The complex potential is:
I I'i Ii
z) = ¢+tiy = —0O-—Inr =-—1Inz
f& = oxiv 2 2=x 2n

For a vortex located at zy, rather than at the origin:

f2) =i - 2)

2r
There is no contradiction between /'# 0 and the irrotationality of this flow. The circulation
along any closed path not linked with the origin is zero. The singular point at the origin contributes

the /" value, and the same /" is obtained along any contour linked with the origin.
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Flow over Streamlined Bodies

1. Around a 2-D half body
First we consider the superposition of a two-dimensional source flow and a parallel flow. In

this way we describe the flow past a 2-D streamlined "half body". This combined flow has the

following velocity potential and streamfunction

¢ = ngVJFUVCOS@, v = g9+Ursin9

2 2

and the following velocity components

Vi 0 +Ucosf, v, =-Usind
2rr

For this flow we may recognise the need for the stagnation point A. Inspecting we see that for 6=n

and =Q/2nU both velocity components vanish, and thus a stagnation point is obtained.

The same conclusion could have been reached by

the argument that the zero streamline, y=0, could

not pass through the source and therefore it must
split. At the splitting point the velocity vector has

more than one direction, and therefore its

magnitude must be zero.
We also note that the streamline y=0 encircling the source cannot close again. Far to the right the
flow becomes parallel again, but the splitting streamline does not close because if it did, the output

of the source would have nowhere to go.
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2. Source plus sink plus uniform flow

If a sink is superposed with a source and a parallel flow the zero streamline of the previous
case can be closed again. In this way, the result represents a finite solid two-dimensional body
immersed in the flow.

One possible arrangement is shown in the

7 Vo4 .
' figure besides. The shapes resulted are

— known as the Rankine ovals. The complex
—* v potential in a case where the source is at

» ‘/\* X - position x = - a and the sink is at x = a is:
— A

-Cf L

—

f(z)=Uz+21n( Z+“j
2

Z-x

3. Flow around a Cylinder

If we let the source and the sink move toward each other in the flow described previously,
the body will become more circular. To obtain the flow around a true circular cylinder, the source
and the sink must be at the same location, i.e., @ must go to zero. But then this simplifies to a parallel
flow. To avoid this, we imagine a process where as 2a — 0, O — oo . We wish Q to increase at such a

rate that the limit for the complex potential is well defined and finite. In other words we let:

lim 200 =m

a—0,0—x

By taking the limit, the result can be written as:

flz)=Uz+2
z

where A is the strength of the doublet (source+sink), A=m/2.
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But what is the radius of the cylinder? This can be found by finding the location of the
stagnation point, the point where v=0 on the axis of symmetry. The result is that the radius is VAU.

Thus the complex potential can be written as:

f(z)=U(z+“—2]

.............. Equipotential
—  Streamlines

Doublet Flow

4. Superposition of Vortex Flow on the Flow around a Stationary Cylinder
If we superpose vortex flow on the flow around a stationary cylinder, we get a flow in which
there is a tangential velocity at the wall of the cylinder, as would occur if the cylinder were rotating.

The complex potential in this case can easily written by using the superposability principle of f{z).

Thus
f(z)=U (era—ZJ-ﬂln ( z j

z 2r o

The sign on the vortex is such that the cylinder is rotating in the counterclockwise direction.

v
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Also the arbitrary constant is chosen to give y=0 on the surface of the cylinder. It can be shown that
for negative circulation there is positive (upward) lift on the cylinder. To calculate this lift one needs

the pressure distribution around the cylinder. This can be obtained by using Bernoulli equation.

and the radial one is:

Thus, from Bernoulli the pressure distribution is:

2 2
PaZPoo+p§] [1-4sin29]-§( d j—prUsinﬁ

The first two terms are symmetrical so that contribute nothing on the lift force. The last yields a lift

rub

T

dL=-p,bdssmfd=-p,basinfdf= p sin° @do

force, that is (sin comes from projection of the pressure force in the vertical direction)
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where b is the length of the cylinder, Py, is the pressure on the surface, ds is some differential surface
area on the cylinder and 0 is the angle defined as in the unit trigonometric circle. Integrating,

L= pbUT
The presence of this lift is called the Magnus effect, has some very important implications in
aerodynamics. Also it helps to explain why spin on a golf ball can cause it to veer off to the side and

how a curve ball can be thrown. The Figure below illustrates the velocity patterns with and without

circulation.

circulation.

p=0, r:o) L=0

Front : Reay

St+agmadti :Io\ i
. p 3
sieamlines 74

Flow around a cylinder without circulation and with circulation
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DRAG ON BODIES - d' Alambert's Paradox

Using the ideal fluid theory to calculate the drag force on immersed bodies gives the
surprising result of zero. While it is obvious that there would be no viscous drag predicted by this
theory, it is well known that the principle source of drag at high Reynolds numbers is form drag i.e.,
pressure drag.

The great French mathematician d'Alabert showed in 1752 that drag predicted by ideal fluid
theory is zero. This paradox threw some doubt on the validity of Euler's equations. It was not until
1904 that Prandtl resolved this issue by developing the boundary layer theory.

The role of viscosity is "dual".
- First viscosity plays a direct role in drag as the mechanism of skin friction or viscous drag.
- However, even though it operates only in a thin layer near the body, it also affects the pressure

distribution in such a way that form drag occurs.

ADDED MASS - (Hydrodynamic mass)

While there is no drag for a body moving at constant velocity in an ideal fluid at rest, as
shown by d'Alambert, it is necessary to apply a force to accelerate a body in an ideal fluid, and this
force is greater than the mass of the body multiplied by its acceleration. This is because it is
necessary at the same time to accelerate a large body of fluid surrounding the body. This additional

force is usually accounted for by use of the concept of the "added mass".

where the surface integral is taken over the surface of the body, ds is the infinitesimal surface, and n
is the spatial co-ordinate normal to the surface.

Thus the total force required to accelerate the body is:

dU
F:(Ma+Mboddy )E
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HIGH REYNOLDS NUMBER FLOWS

2. Regions close to Boundaries - The Boundary Layer Theory

In this chapter we still consider high Reynolds number flows, but this time our focus will be
concentrated in regions close to solid boundaries where viscous effects become important. As also
discussed in the previous chapter for high Reynolds number flows we have two solutions.
-For regions far from solid boundaries the Euler's equations apply and if the flow is also irrotational
we can use the much simpler Laplace equation.
-However, there always be a thin layer near a solid boundary wall where this solution is not valid,
because the local Reynolds number is small in that region. In addition the Euler's equations do not
satisfy the no-slip boundary condition, an observation well documented experimentally. Because this
boundary layer is thin, it makes possible a simplification of the Navier-Stokes that is similar to that
used in lubrication flows.

To match the two solutions, it is assumed that the solution to the potential flow problem at
the boundary (y=0) gives an acceptable approximation of the velocity and pressure distributions at
the outer limit of the boundary layer. For example consider a flow in the x-direction parallel to a flat

plate, as shown in the figure below. The potential flow for this example has already been solved,
¢ =Ux v,=U=const.
which implies a uniform velocity profile. The real velocity profile matches the no-slip boundary

condition at the solid boundary as shown schematically below. Comparing the two velocity profiles,

we see that the solution to the potential flow problem is correct only far from the solid wall.

vV.VY

VYVY

/_> V(X’Y)

o o

X
Boundary layer Theory Potential Flow
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PRANDTL's BOUNDARY LAYER THEORY

A procedure for simplifying the N-S equations for the special case of boundary layer flow
was originally developed by Ludwig Prandtl, a professor at the University of Gottingen in Germany,
to solve problems in aerodynamics. The resulting equations and techniques constitute "Prandtl's
boundary layer theory". We will illustrate the theory for the simplest two-dimensional case, the flow

over a surface.

N U 0 is only a function of x.
y —» T Vy is a function of x, and y.
Vi (x,5) ox,y) Vy is a function of x, and y.
d -

For this problem we have from the Navier-Stokes equations for plane flow:

Continuity:

an +% 0

ox Oy
direction x:

2 2
VX%_‘_Vyan:_i@_p_i_ﬁ an+aV2x
0 x 0y pox pl ox oy

direction y:

%4_ v aVy - _ia_p+ﬁ ( 82VY+62VY]
2
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The boundary conditions are: absence of slip between the fluid and the wall, i.e. vi=v,=0 for y=0,
and v,=U, v,=0 for y—co.

Because the boundary layer, 4, is thin, Prandtl proposed for y<J

0 vi 0 vy
6 x2 8 y2

which means that the streamwise diffusion of momentum is negligible compared to the transverse
diffusion of momentum. From continuity one may estimate the order of magnitude of ov,/dy which
is the same as that of 0 vx /0 x. With similar arguments the y-component of the Navier-Stokes
simplifies to (see also H. Schlichting, Boundary Layer Theory, 7th ed., McGraw-Hill, New York,
1979):

8_p:0 for y , o0
oy

which tells us that the pressure is not a function of the y direction, but it only depends on the x-

direction. Thus, one may use the results from potential theory to calculate the pressure distribution.

The Bernoulli equation is:

2
£-i-gh-i-U7 = const.

P

Differentiating with respect to x, we get

Using these simplifications, one may write the continuity and the Navier-Stokes equations as:
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an + Vy - 0
ox oy
0 0 dU ?
vy Vy Y = +V8VZX
0x o0y dx h%

The boundary conditions are:

Vx:VyZO at y:0

v =U(x) at y=0

Using the streamfunction these two equations can be reduced to a single equation

oy &'y Oy gy _ 1dP _ Jy
0y 0x0y 0x &y’  pdx 0y’

THE BOUNDARY LAYER THICKNESS

Within the boundary layer thickness the velocity, v«(x,y) increases from the value of 0 at the
solid boundary and approaches U(x) asymptotically. Thus, it is impossible to indicate a boundary-
layer thickness in an unambiguous way. However, it is convenient to define some measures for the
boundary layer. These are the following:

1. The boundary layer thickness, §: This thickness is also referred to as the ninety-nine percent

boundary layer thickness. This is defined as the distance from the wall at which the velocity

component, vx(X,y) approaches 99% of the value of U(x). Thus,

0(0.99 ) = value at which v,=0.99U
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2. The displacement thickness, 8;: The presence of the boundary layer reduces the total mass flux in

the x-direction, and this reduction can be expressed in terms of a characteristic distance, 9;

(displacement thickness).

)

h
[ pUdy-[ pv.dy = | pUdy
0 0

The quantity h is sufficiently large that the entire boundary layer is included within it. If the density

is uniform then this expression may be simplified to:

h V)
si=1[1-% |a
I( v )

Displacement thickness

3. The momentum thickness, 63: The total momentum flux is also reduced by the presence of the

boundary layer, and this reduction can also be used to define a distance scale, d,, called the

momentum thickness.

h h P
[ pviUdy-| pvidy = [ pU’dy
0 0 0
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For a fluid with uniform density this reduces to:

Note that d;, and J, would not change much, if the upper limit of the integral, 4, is replaced
with the 99% boundary layer thickness 6. This is because the term in the parenthesis, it takes values

from 0.01 (at y=0) and less (at y>0). In fact it approaches asymptotically 0 for y>d.

THE BOUNDARY LAYER ON A FLAT PLATE AT ZERO INCIDENCE
For such a case, the solution to the potential flow problem is that the velocity is uniform in

the x-direction (direction of flow)
U(x,y=0)=U(x)=U=const.

From Bernoulli

dp _

dx
Thus, the Boundary Layer equations can be simplified to:

aVX+%

ox oy

=0

0 0 ?
Vx o Vx_Van

“ox oy a8y
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and the boundary conditions are:
vi=vy,=0 at y=0
vs =U at y=ow
In terms of the streamfunction:

oy 'y oy dy_ oy

0y 0x0y Ox 6y2 8y3

and the boundary conditions become:

oy _ov_,

i y=0
vy o 7

8—W=U(x) at y=m
oy

This problem was studied by Blasius, a doctoral student of Prandtl. He found that a similarity
variable exists which can be used to transform the problem into an ODE. Specifically he assumed

that:

or

where
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VX

In terms of velocity this becomes:
Vx ’
— =1
U

This implies that the velocity profiles at various x-locations are "self-similar". Using this

transformation into the partial differential equation for the streamfunction yields:
m ] "
ST =0

with
f=1"=0 at n=0

f'=1 a n=w

This ODE must be solved numerically. The velocity profile is given by:

w=ﬁﬂﬁmv(de[“j=Uf%n)
By dn )\ ay

Fluid Mechanics books tabulate values of /* (). The Table below summarises some values:
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1 I A f
0 0.332 0 0
1 0.323 0.330 0.166
2 0.267 0.630 0.650
3 0.161 0.846 1.397
4 0.0642 0.956 2.306
5 0.0159 0.992 3.283
6 0.0024 0.999 4.280
o0 0 1.000 o0

The wall shear stress is:

3
oo=u| Do | = U D | = BB g <0332, [PUH
Y y

or

_0332pU°

Ow
Rey

where Re, is the Reynolds number defined as Re,= Ux/v. For a plate of width b and length L, we

have for the drag force, F)p, on one side:

L 0.664 pU°b L
Fp=[owbdx = PYU
0 \/ReL
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where Rey is the Reynolds number defined as Re; /UL/v. Thus the local skin friction coefficient, Cy,

for this case becomes:

o 0.664

i 2 - \/Rex
,PU

Cr=

while the average skin friction coefficient over a length L, C ;s

Also the following relations can be derived:

5x 1.73x 0.664 x
— 0] = 02 =
Rex Rex Rex

The figure below shows the Blasius solution in graphical form, as well as comparison of the solution

5(0.99 ) =

with experimental measurements. It can be seen that the agreement is excellent.
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Figure (adopted from White , Viscous Fluid Flow, 2006) (a) numerical solution of Blasius for the
flat plate boundary layer and (b) comparison with experiments.
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OTHER SIMILARITY SOLUTIONS
Falker and Skan (1931) carried out an analysis of the boundary layer equations to find all

similarity solutions that could be expressed in the form (similar to a generalized Blasius solution).

w:UU)fM)MWW7Fai)

They found that such similarity solutions exist when (see White, 2006 for a proof):

cd ve)=a aa =Y - p

;E v dx

where o and f are constants. In fact f is a measure of the pressure gradient dp/dx. Substituting these

into the Navier-Stokes in terms of streamfunction the following ODE is obtained.

Srraf fTEBLI-f ] =0

Special cases from these equation may be obtained:

1. Flow over a flat Plate

oa=1/2

p=0 U,

¢ =~/(w/U) | |

This gives the Blasius solution
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2. Flow over a Wedge stagnation point

a=1 P
) = wedge angle

Ug) = cx /P ’—\
and

E(x)= \/@ (B
c

3. Other Flows

These include stagnation 2-D and 3-D, flow around a corner, flows in convergent and divergent

channels etc. For more details see Schlichting (1979).

VON KARMAN - POHLHAUSEN INTEGRAL METHOD

Up to this point we have seen some of the exact solutions to the boundary layer equations.
Exact in a sense that the equations are solved exactly irrespectively of the method used, analytic or
numerical. However, there are situations where exact solutions cannot be found (except full
numerical solution of the PDE's). For these cases an approximate method due to Von Karman and
Pohlhausen can be used. The approximation is that the boundary layer equation is not satisfied
pointwise but rather on the average over the region.

Todor Von Karman, a native Budapest was a research assistant at Gottingen. His research
had to do with beam stability, but he became interested in the work on boundary layers that was
going on there. He and Pohlhausen developed independently an approximate technique for solving
the boundary layer equations which is discussed in this section.

According to the method, the differential boundary layer equations are first transformed into
an integral equation. This stage is exact. Then we proceed to satisfy this integral equation by the
selection of an appropriate velocity profile inside the boundary layer. This stage introduces the
approximation into the method, because satisfying the integral relation is a necessary condition, but

not a sufficient condition.
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Consider again the boundary layer equation

Integrate the above equation with respect to y from y=0 to y=h >¢

f Ov Ov dUu
o T ~-U dy =
g { o oy dx } Y

The right hand side integral is:

&’ vy
0 y2

]k
_fﬂ dy =
P o

Consider the second term on left and integrate by parts to get

h aVX h a\/y
.[ Vy

dy = VxV |h_ Vx_dy
) Oy 7 £ oy
From continuity

an - _ a\/y

ox oy
or
h Oy
= X d
vy £ ox 4

and
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([ Ov, b Ovy
VxVyy:h = _U_([( ax jdy = _£ U ax dy

Thus the term being considered is:

h Ov h Ov h Ov
“dy = [ U@y +[ v, 222 g
gvyayy £ axyivaxy

The first term on the right

h GVX o(vi U ) hoU
dy — X" Zdy- —d
!; £ 0x 4 £ "O0x 4

Using all the above

h
I[2‘])(8V,(_8(VXU) dU UdU }dy_ T
0

ox ox “dx dx
But
Lo 0w _ (V)
" Oox 0x

Multiply by (-1) and rearrange

}{ o(v.,U) a(Vx)

Oox

dU
+(U-Vx)—}dy= =
dx yo,
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or
o " dU "
— [ v(U-vi)dy +=— [ (U-v,) dy = =
ox j dx P
Using
h
[(U-v, )dy =Uy¢,
0
and

h
j Vx (U_Vx )dy = U2§2
0

Finally we get

- —|— = "7
dx(U 5:) T8 i p

This is the momentum integral equation of Von Karman and Pohlhausen. If we has considered an

unsteady flow then this equation would have become:

d d dU T
— (U 4+ 2 + 7 = v
dt( 51) dx(U 5:)F 6 Jx -

For steady flow the momentum integral equation can be rewritten as:

pU’ dx U dx Udx
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Up to this point this equation is still exact. The approximation comes in when a velocity profile,
Vvx=f (/0), is assumed to evaluate the various terms. The procedure is as follows:
- Assume a reasonable form for the velocity profile, vy=f ()/d), parabolic or higher order. This
profile should meet the following basic criteria
i. Continuity of V(»)

vy =U at y=o
ii. Continuity of shear stress

Ovy/cy =0 at y=6

1il. Zero second derivative of Vy()) at y=0 because i.e., for a flat plate
op _dU _,
ox dx

From momentum at y=0)
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Example: Consider flow over a flat plate, and make a very naive assumption regarding the form of

the velocity distribution:

Uy
o(x)

Vx =

Note that this crude approximation satisfies only the first and third criterion. Using the definitions of

0, 0;, and 0, then calculate:

5:é
1 2’

S(x)= 2\/*/%"
€x

and

Vil X J’):—yU Re.
o 243 x

One may now obtain

3.43x

\ Rex

5(0.99 ) =
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_ 1.732 x
’ Re,

1.156
Re.

D

The corresponding exact coefficients are 5, 1.73 and 1.328 respectively. Thus a very crude
approximation leads to correct functional forms and values of the constants that are of the right order

of magnitude.

BOUNDARY LAYER SEPARATION

The boundary layer near a flat plate in parallel flow and at zero incidence is particularly
simple, because the static pressure remains constant in the whole field of flow. Note also that the
pressure gradient in the direction of flow is governed by the mainstream potential flow through
Bernoulli's equation. In cases where there is an "adverse" pressure gradient, i.e. dp/dx > 0 a
phenomenon referred to the boundary layer separation may occur. According to this a reversal of
flow in the boundary layer near the wall may occur.

To explain the very important phenomenon of boundary layer separation let us consider the
flow about a blunt body, e.g. about a circular cylinder as shown in the Figure below. In the
frictionless flow, the fluid particles are accelerated on the upstream half from D to E, and
decelerated on the downstream half from E to F. Hence the pressure decreases from D to E and
increases from E to F. Because from E to F the pressure gradient is "adverse" a separation in the
boundary layer occurs which is accompanied by a flow reversal. Also below a schematic diagram
(magnification of the surface of the cylinder) illustrates more comprehensively the phenomenon in
terms of velocity profiles.

The fact that separation occurs only in decelerated flow (dp/dx > 0) can be easily inferred

from a consideration of the relation between the pressure gradient dp/dx and the
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Figure: Boundary layer separation

velocity distribution, vy, with the aid of the boundary layer equations. Evaluating the momentum

equation at the wall ( vy= vy = 0) leads to:

In the neighbourhood of the wall the curvature of the velocity profile depends only on the pressure
gradient, and the curvature of the velocity profile at the wall changes its sign with the pressure

gradient. For flow with decreasing pressure gradient (dP/dx<0) this relation tells us that

( ‘v /oy’ )Wa” <0 and therefore (82 v,/ 5y2)< 0 over the whole domain. In the region of
pressure increase (dP/dx > 0) we have (52 v,/ oy’ )Wa ;> 0 and since at distances far from the wall

( 2 v,/ 6y2)> 0 the velocity profile always exhibits a point of inflexion in the region where

separation exists. From the Figure below one may infer that the condition for the onset of separation

[anj =0
0y ),

1S:
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Fig. Velocity distribution in a boundary layer with Fig. Velocity distribution in a boundary layer with
pressure decrease pressure increase; PI=point of inflexion

Note: Separation decreases Cp (drag coefficient), while no separation increases Cp (Applications:

design of planes, cars, aerodynamics etc).

Flow Separation

W all with suction

v/\(no separation)

/;—-___-_-—\‘“\.

.

O

all with no suction
(flow separation)
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THE FLAT PLATE WITH WALL SUCTION OR BLOWING
As discussed above boundary layer separation decreases drag in general. To impose or prevent

separation, one may alter the boundary conditions at the wall by imposing a nonzero wall velocity in

the transverse direction, vy <<U, wither positive (blowing) or negative (suction). The streamwise
wall velocity Vy wa=0. This has practical applications in mass transfer, drying, ablation, transpiration

cooling and boundary layer control (already discussed). The wall velocity, vy, at the wall where

n = yJU/2x v isequalto zero, is: Vywar = —J (0)4/vU /2x . Note that this velocity component

at the wall is allowed to vary in such a fashion that a similarity solution exists. Therefore suction and
blowing can be simulated by a nonzero value of the Blasius stream function, f{0). This problem was
solved by  Schlichting and Bussmann (1943) subject to the following
conditions: f'(0) =0, f'(0) =1, f(0) # 0. The results are strongly dependent on the suction-

* Vy.wa - 0 :
blowing parameter, vV, = yU ! JRe = /) . The figure below summarizes the results.

2

10 Suction thins the

boundary layer and
greatly increases wall

slope (friction, heat
v,/ U

0.5

transfer). These profiles

are very stable and delay

transition to turbulence.

Blow-off Blowing thickens the
at0.619
boundary layer and
0 s . makes profile S-shaped
0 2 4 6 8 10
U and prone to transition
=YV o

to  turbulence. At
V’:V=0.619, the solution yields 0v_/0y = 0 at the wall. The boundary layer is said to be blown off

and the heat transfer and friction are zero.
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FREE-SHEAR FLOWS

Shear free layers are unaffected by walls and develop and spread in an open ambient fluid. They
possess velocity gradients, created by some upstream mechanism that they try to smooth out by
viscous diffusion in the presence of convective deceleration. Examples are (1) free-shear layer
between parallel moving streams (2) jet i.e. injection of a fluid through a small opening into a still
ambient fluid and (3) wake behind a body immersed in a stream. Jets and wakes are unstable and are
more likely in practice to be turbulent than laminar.

For such flows if the Reynolds number is large most of the boundary-layer approximations are valid

and for 2-D flows these are:

0
Ovx  Ovy _ 0 (continuity)
ox 0oy

0 vy Ovy _ &’ vy

x 1%
ox oy 0y

(x-momentum equation)

Note that in solving these equations there are no walls to enforce a no-slip condition. In most of
these flows, just downstream from the disturbance the velocity profiles are non-similar and
developing. These will be similar further downstream. In our brief discussion we will discuss similar
solutions for the shear layer of shear layers of two different streams. For all the other cases and many

more, see White (2006).
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| Viscosity 1, i P

Uy

(a) Shear Layers (b) Plane Laminar Jet (c) Plane Laminar Wake
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The Free-Shear Layer between Two Different Streams
The figure below shows the flow problem under consideration. The discontinuity in the velocity
profiles is smoothed out by viscosity into an S-shaped shear layer between the two. The case U, =0

corresponds to boundary layer flow over a flat plate.

| A [

:r—* Density p; | B
— . .

: U, Viscosity 14 : 1

| Ug Vx'_ .
> . |

> U D_ensﬂy Po

-2 Viscosity

= ™ U

Figure: Velocity distribution between two parallel streams of different properties

The equations for solving this problem are defined in terms of the following Blasius-type similarity

variables:

Ul
2x v,

Vx,j
U,

n,=y fi= for j=1,2

Substitute into the equation s for shear free flows, Blasius type of equations can be developed, these

are:
S Af =0 =12

The boundary conditions require equality of velocities at the interface, equality of shear stress at the

interface and asymptotic approach to the free stream velocities at infinite distance. The solution is

plotted below. Note the Blasius solution for flow over a flat plate and the development of the S-

shaped velocity profile.
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+3

k = < (Blasius)
M k = 60,000 (air-water)
=100

V/U1

Figure: Velocity profiles
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