
Sums and products:

What we still don’t know about

addition and multiplication

Carl Pomerance, Dartmouth College

Hanover, New Hampshire, USA

Based on joint work with

R. P. Brent, P. Kurlberg, J. C. Lagarias, & A. Schinzel



You would think that all of the issues surrounding addition and

multiplication were sewed up in third grade!

Well in this talk we’ll learn about some things they didn’t tell

you . . .
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Here’s one thing they did tell you:

Find 483 × 784.

483

× 784

———

1932

3864

3381

————

378672
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If instead you had a problem with two 23-digit numbers, well

you always knew deep down that math teachers are cruel and

sadistic. Just kidding! (Aside: evil laugh . . . )

In principle if you really have to, you could work out 23-digits

times 23-digits on paper, provided the paper is big enough, but

it’s a lot of work.

So here’s the real question: How much work?
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Of course the amount of work depends not only on how long

the numbers are, but on what they are. For example,

multiplying 1022 by 1022, that’s 23-digits times 23-digits, but

you can do it in your head.

In general, you’ll take each digit of the lower number, and

multiply it painstakingly into the top number. It’s less work if

some digit in the lower number is repeated, and there are

definitely repeats, since there are only 10 possible digits. But

even if it’s no work at all, you still have to write it down, and

that’s 23 or 24 digits. At the minimum (assuming no zeroes),

you have to write down 232 = 529 digits for the

“parallelogram” part of the product. And then comes the final

addition, where all of those 529 digits need to be processed.
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So in general if you multiply two n-digit numbers, it would

seem that you’d be taking n2 steps, unless there were a lot of

zeroes. This ignores extra steps, like carrying and so on, but

that at worst multiplies the n2 by maybe 2 or 3. We say that

the “complexity” of “school multiplication” for two n-digit

numbers is of order n2.

Here is what we don’t know:

What is the fastest way to multiply?

There’s a method known as the Fast Fourier Transform that

allows you to multiply in about n logn steps. But we don’t

know if this is the best possible.
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The function “logn” can be thought of as natural log, or

common log, or base-2 log, they are all within a constant

factor of each other. The takeaway is that logn grows to

infinity as n does, but eventually much more slowly than any

root of n. For example, using the natural log, we have

logn < n1/2 for n ≥ 1

logn < n1/4 for n ≥ 5504

logn < n1/10 for n ≥ 3.431× 1015

logn < n1/100 for n ≥ 1.286× 10281

So, “n logn” is really just barely bigger than “n”.
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Let’s play Jeopardy Multiplication!

Here are the rules: I give you the answer to the multiplication

problem, and you give me the problem phrased as a question.

And you can’t use “1”.

So, if I say “15”, you say “What is 3× 5?”

OK, let’s play.

21
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Good. That was easy. Let’s up the ante.

91
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Good. That was easy. Let’s up the ante.

91

What is 7× 13?
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Let’s do 8051.
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Let’s do 8051.

(Thinking, thinking . . . . Hmm,

8051 = 8100− 49 = 902 − 72 = (90− 7)(90 + 7) = 83× 97.

Got it!)

What is 83× 97?
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So, here’s what we don’t know:
How many steps does it take to come up with the answer,
if you are given an n-digit number which can be factored?
(A trick problem would be: 17. The only way to write it as
a× b is to use 1, and that was ruled out. So, prime numbers
cannot be factored, and the thing we don’t know is how long it
takes to factor the non-primes.)

The best answer we have so far is about 10n
1/3

steps, and even
this is not a theorem, but our algorithm (the number field
sieve) seems to work in practice.

This is all crucially important for the security of Internet
commerce. Or I should say that Internet commerce relies on
the premise that we cannot factor much more quickly than
that.
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Here’s something else, also related to multiplication.

Let’s look at the multiplication table, but not necessarily up to

10× 10, but more generally the N ×N multiplication table.

It has N2 entries. It is a symmetric matrix, so most entries

appear at least twice. What we don’t know:

How many different numbers appear in the table?
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Let M(N) be the number of distinct entries in the N ×N
multiplication table.

× 1 2 3 4 5
1 1 2 3 4 5
2 2 4 6 8 10
3 3 6 9 12 15
4 4 8 12 16 20
5 5 10 15 20 25

So, M(5) = 14.
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× 1 2 3 4 5 6 7 8 9 10
1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100

M(10) = 42.
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It may be too difficult to expect a neat exact formula for M(N).

Instead, we could ask for its order of magnitude, or even

approximate order of magnitude.

For example, does M(N) go to infinity like a constant times

N2, or more slowly. That is, maybe

lim
N→∞

M(N)

N2
= c > 0?

Or maybe

lim
N→∞

M(N)

N2
= 0?
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Here are some values of M(N)/N2 (Brent & Kung 1981):

N M(N) M(N)/N2

1 1 1.0000
3 6 0.6667
7 25 0.5102

15 89 0.3956
31 339 0.3528
63 1237 0.3117

127 4646 0.2881
255 17577 0.2703
511 67591 0.2588

1023 258767 0.2473
2047 1004347 0.2397
4095 3902356 0.2327
8191 15202049 0.2266
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And some more values (Brent & Kung 1981, Brent 2012):

N M(N) M(N)/N2

214 − 1 59410556 0.2213
215 − 1 232483839 0.2165
216 − 1 911689011 0.2123
217 − 1 3581049039 0.2084
218 − 1 14081089287 0.2049
219 − 1 55439171530 0.2017
220 − 1 218457593222 0.1987
221 − 1 861617935050 0.1959
222 − 1 3400917861267 0.1933
223 − 1 13433148229638 0.1909
224 − 1 53092686926154 0.1886
225 − 1 209962593513291 0.1865
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And some statistically sampled values (Brent & P 2012):

N M(N)/N2 N M(N)/N2

230 0.1774 2100000 0.0348
240 0.1644 2200000 0.0312
250 0.1552 2500000 0.0269

2100 0.1311 21000000 0.0240
2200 0.1119 22000000 0.0216
2500 0.0919 25000000 0.0186

21000 0.0798 210000000 0.0171
22000 0.0697 220000000 0.0153
25000 0.0586 250000000 0.0133

210000 0.0517 2100000000 0.0122
220000 0.0457 2200000000 0.0115
250000 0.0390 2500000000 0.0095
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Richard P. Brent

OK, maybe you’re convinced that M(N)/N2 → 0 as N →∞.

But can you prove it?

And if so, how fast does it tend 0?
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Paul Erdős studied this problem in two papers, one in 1955, the

other in 1960.

Paul Erdős, 1913–1996
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In 1955, Erdős proved (in Hebrew) that M(N)/N2 → 0 as

N →∞ and indicated that it was likely that M(N) is of the

shape N2/(logN)E.

In 1960, at the prodding of Linnik and Vinogradov, Erdős

identified (in Russian) the value of “E”. Let

E = 1−
1 + log log 2

log 2
= 0.08607 . . . .

Then M(N) = N2/(logN)E+o(1) as N →∞.

(Here, “o(1)” is a function that tends to 0 as N →∞.)
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However, the formula N2/(logN)E doesn’t look too good with
our numbers. For example, at N = 25·108

, 1/(logN)E ≈ .1841,
or close to 20 times higher than the experimental value .0095.
While at N = 230 it is only 4 times higher.

In work of Tenenbaum progress was made (in French) in nailing
down the “o(1)”.

In 2008, Ford showed (in English) that M(N) is of order of
magnitude

N2

(logN)E(log logN)3/2
.

No matter the language,
we still don’t know an asymptotic estimate for M(N),
despite this just being about multiplication tables!
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So how can the fact that M(N) is small compared to N2 be

explained?

It all comes down to the function Ω(n), the total number of

prime factors of n, counted with multiplicity. For example,

Ω(8) = 3, Ω(9) = 2, Ω(10) = 2, Ω(11) = 1, Ω(12) = 3.

Some higher values: Ω(1024) = 10, Ω(1009) = 1, and

Ω(217 − 1) = 1, Ω(217) = 17.

But what is Ω(n) usually? That is, can Ω(n) be approximately

predicted from the size of n if we throw out thin sets like

primes and powers of 2?

Indeed it can.
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In 1917, Hardy and Ramanujan proved that the normal order of

Ω(n) is log logn. That is, for any given small number, say 1
100,

all but a vanishingly small fraction of numbers have

|Ω(n)− log logn| <
1

100
log logn.

So, this explains the multiplication table. For a, b ∈ [1, N ], most

products ab have both a >
√
N and b >

√
N , and most of these

have Ω(a) and Ω(b) fairly close to log logN (note that

log log
√
N differs from log logN by less than 1).

But Ω(ab) = Ω(a) + Ω(b).

So most of the products formed have about 2 log logN prime

factors, which is unusual for a number below N2.
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G. H. Hardy S. Ramanujan
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So, log logN for integers below N is the center of the
distribution. To quantify M(N) one needs to know about
estimates for the tail, and that’s where the constant c arises.

I should take a small diversion from our progress here and
mention one of the most beautiful theorems in number theory,
the Erdős–Kac theorem. It says that the “standard deviation”
for Ω(n) for integers up to N is (log logN)1/2 and that the
distribution is Gaussian. Namely, for each real number u, the
set

{n : Ω(n) ≤ log logn+ u(log logn)1/2}

has “asymptotic density” equal to
1√
2π

∫ u

−∞
e−t

2/2 dt.

This impressive looking function gives the area under the Bell
curve up to u.
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Einstein: “God does not play dice with the universe.”
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.
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Einstein: “God does not play dice with the universe.”

Erdős & Kac: Maybe so but something’s going on with the

primes.

(Note: I made this up, it was a joke . . . )
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Prime numbers, the most mysterious figures in math, D. Wells
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Keeping with the theme of multiplication, what can be said

about sets of positive integers that are product-free? This

means that for any two members of the set, their product is

not in the set. It is as far away as you can get from being

closed under multiplication.

It is easy to find such sets, for example the set of primes. But

how dense can such a set be?

For example, take the integers that are 2 (mod 3); that is, the

numbers 2, 5, 8, 11, ... . The product of any two of them is

1 (mod 3), so is not in the set. And this set has asymptotic

density 1
3.

Can you do better?
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Well, the set of integers that are 2 or 3 (mod 5), mamely, 2, 3,

7, 8, 12, 13, ... is product-free and has density 2
5.

The set of integers that are 3, 5, or 6 (mod 7) is product-free

with density 3
7.

These sets are all periodic with some period n.

For all product-free sets that are periodic with period n, let

D(n) denote the maximal possible density. So, D(5) = 2
5 and

D(7) = 3
7.

Do we have D(n) < 1
2 for all n?
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P, Schinzel (2011): We have D(n) < 1
2 for all n except

possibly those n divisible by the square of a number with at

least 6 distinct prime factors. Further, the asymptotic density

of those n divisible by such a square is about 1.56× 10−8.

Moscow Journal of Combinatorics and Number Theory,

1 (2011), 52–66.
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Andrzej Schinzel
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Surely that cements it, and D(n) < 1
2 for all n, right?
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Surely that cements it, and D(n) < 1
2 for all n, right?

Well, no.

Kurlberg, Lagarias, P (2011): There are infinitely many

values of n with D(n) arbitrarily close to 1. In particular, there

are infinitely many values of n where all of the pairwise

products of a subset of 99% of the residues (mod n) all fall

into the remaining 1% of the residue classes.

Acta Arithmetica 155 (2012), 163–173.
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Pär Kurlberg Jeffrey C. Lagarias
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Let’s be more modest, just show me one n where D(n) ≥ 1
2.

It’s not so easy!

Here’s a number. Take the first 10,000,000 primes. For those

primes below 1,000,000, take their 14th power, and for those

that are larger, take their square, and then multiply these

powers together to form N . Then D(N) > 0.5003. Further,

N ≈ 101.61×108
.

Can you find an example with fewer than 100,000,000 decimal

digits?

39



What is behind this construction and proof?

It is actually very similar to the proof of the multiplication table

theorem.

Suppose n is a high power of the product of all of the primes

up to x, say the exponent is blogxc. Then consider all residues

r (mod n) with

2

3
log logx < Ω(gcd(r, n)) <

4

3
log logx.

Then these residues r (mod n) form a product-free set, and in

fact most residues (mod n) satisfy this inequality.
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Actually the numbers 2
3 and 4

3 are not optimal, but e
4 and e

2 are.

Being especially careful with the estimates leads to the

following result:

Kurlberg, Lagarias, P (2011): There is a positive constant c

such that for infinitely many n we have

D(n) > 1−
c

(log logn)1−e
2 log 2(log log logn)

1
2

.

Note that 1− e
2 log 2 = 0.0579153 . . . .

We also showed that apart from “c” this is best possible.

International Mathematical Research Notices, to appear.
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We have seen there is a lot we don’t about multiplication, but

what about addition?

Here’s a famous problem due to Erdős & Szemerédi that

involves both concepts, in fact, their interaction:

Among all sets A of N positive integers what is the

minimum value of

|A+A| + |A · A|?

Here A+A is the set of all numbers a+ b where a, b ∈ A, and

|A+A| is the number of elements in this set. Similarly for

|A · A|.
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To repeat:
Among all sets A of N positive integers what is the
minimum value of

|A+A| + |A · A|?

We don’t know. The conjecture is that this minimum value
exceeds N1.99 for all large N , and “1.99” can be replaced with
any number smaller than “2”.

Since Erdős & Szemerédi asked this in 1983, and got the result
that there is some positive number σ such that

|A+A| + |A · A| > N1+σ

for all sets A of N integers and N sufficiently large, people have
tried to do better with “σ”.
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The game players with the sum/product problem:

Erdős, Szemerédi, Nathanson, Chen, Elekes, Bourgain, Chang,

Konyagin, Green, Tao, Solymosi, . . .

The best that they can do is σ = 1
3.

Seeing a couple of Fields medalists, a Wolf Prize winner, an

Abel Prize winner, four Salem Prize Winners, and two Crafoord

Prize winners in this list, with the problem still not solved, is a

bit daunting!
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So far, all of the problems we’ve looked at have been fairly

new, as far as Mathematics goes. Here’s a very old problem

that we still haven’t solved and involves both sums and

products, liberally interpreted.

A prime number, as we saw earlier, is a trick problem in

Jeopardy Multiplication. It is a number larger than 1 that

cannot be factored into two smaller (positive) whole numbers.

Dating to correspondence in 1742 between Goldbach and

Euler, it is conjectured that every even number starting at 4

can be represented as the sum of two primes.

271 years later: We still don’t know if Goldbach’s

conjecture is true.
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I’d like to close with one last problem that involves both sums

and products, and it’s a new one.

Suppose you have a set of residues mod n that is both

sum-free and product-free.

For example, take the numbers that are 2 or 3 (mod 5). It is a

set of asymptotic density 2
5 and is both sum-free and

product-free. It is easy to see that we cannot do better than 1
2,

and in another paper of Kurlberg, Lagarias, & P we showed

that one can get arbitrarily close to 1
2.

Here’s the problem: Give a numerical example that beats 2
5.

We know one exists, can one be explicitly described?
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Thank You!
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