Superconformal Quantum Mechanics from M2-branes

Tadashi Okazaki
Osaka Univ. \& Caltech
Nucl. Phys. B890 (20|5) 400-44I, I4I0.8I80 arXiv: I503.XXXXX

Motivations

M5-branes

$\mathbf{R}^{1,3} \times \sum_{\mathbf{g}} \quad$ AGT relations '09 Alday Gaiotto Tachikawa
$\mathbf{R}^{\mathbf{1}, 2 \times} \mathbf{M}_{\mathbf{3}} \quad$ 3d-3d relations \quad 'II Dimofte Gaiotto Gukov;
$\boldsymbol{R}^{\mathbf{I}, \mathbf{I} \times} \mathbf{M}_{4}$ 2d-4d relations 'I3 Gadde Gukov Putrov
SCFT on $\mathbf{R}^{1,5-d} \Leftrightarrow$ Geometry $\mathbf{M}_{\mathbf{d}}$

Q. How about curved M2-branes ?

Idea

M2-branes

Outline

I. SCQM
(Superconformal Quantum Mechanics)
Review
II. M2-brane
(BLG-model \& ABJM-model)
III. SCQM from M2-branes
IV. Conclusion
I. SCQM

Conf. Transf.

conformal $\quad \Rightarrow$ transf. which locally preserves the angle transformation between two points

No angle in Id•••
generators
More precisely

Id conf. transf. => 3 generators H, D, K

CQM

Q. How to construct Confroma Quantum Mechanics (CQM) ?
scale inv. scalar field theory

$$
\begin{gathered}
L=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-g \phi^{\frac{2 d}{d-2}} \\
S=\frac{1}{2} \int d t\left(\dot{x}^{2}-\frac{g}{x^{2}}\right)
\end{gathered}
$$

finite conf. transf.
$t^{\prime}=\frac{a t+b}{c t+d} \quad x^{\prime}\left(t^{\prime}\right)=\frac{x(t)}{c t+d} \quad A=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right) \operatorname{det} A=1$
1.Translation

$$
t^{\prime}=t-\epsilon_{1} \quad x^{\prime}\left(t^{\prime}\right)=x(t) \quad A=\left(\begin{array}{cc}
1 & 0 \\
-\epsilon_{1} & 1
\end{array}\right)
$$

2. Dilatation

$$
t^{\prime}=e^{-\epsilon_{2}} t \quad x^{\prime}\left(t^{\prime}\right)=e^{-\frac{\epsilon_{2}}{2}} x(t) \quad A=\left(\begin{array}{cc}
e^{-\frac{\epsilon_{2}}{2}} & 0 \\
0 & e^{\frac{\epsilon_{2}}{2}}
\end{array}\right)
$$

3. Conformal boost

$$
t^{\prime}=\frac{t}{\epsilon_{3} t+1} \quad x^{\prime}\left(t^{\prime}\right)=\frac{x(t)}{\epsilon_{3} t+1} \quad A=\left(\begin{array}{cc}
1 & \epsilon_{3} \\
0 & 1
\end{array}\right)
$$

Conformal invariant!

infinitesimal conf. transf.

$$
\delta t=f(t) \quad \delta x=\frac{1}{2} \dot{f} x
$$

Noether's thm.

Hamiltonian

$$
H=\frac{1}{2}\left(p^{2}+\frac{g}{x^{2}}\right)
$$

Dilatation generator $\quad D=t H-\frac{1}{4}(x p+p x)$
Conformal boost generator $K=t^{2} H-\frac{1}{2} t(x p+p x)+\frac{1}{2} x^{2}$

$\mathbf{s I}(\mathbf{2}, \mathbf{R})$ conformal alg.

$$
[H, D]=i H \quad[K, D]=-i K \quad[H, K]=2 i D
$$

CQM is expected to be solved algebraically!

But story is not so simple •

i. no normalizable ground state!
ii. continuous energy spectrum!

$$
\begin{array}{r}
\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}\right) \phi(x)=0 \\
\phi(x)=x^{\alpha} \\
\alpha_{+}=\frac{1+\sqrt{1+4 g}}{2} \\
\alpha_{-}=\frac{1-\sqrt{1+4 g}}{2}
\end{array}
$$

Non-normalizable wavefct

DFF's proposal

$$
G=u H+v D+w K \longrightarrow \frac{\partial G}{\partial t}+i[H, G]=0
$$

\mathbf{G} is constant of motion
$\Rightarrow G$ can be used as the new Hamiltonian describing the time evolution

$$
\begin{aligned}
d \tau & =\frac{d t}{u+v t+w t^{2}} \\
q(\tau) & =\frac{x(t)}{\sqrt{u+v t+w t^{2}}}
\end{aligned}
$$

G can be non-compact :

compactness condition for G

$$
v^{2}-4 u w<0
$$

potentials

$$
L_{0}=\frac{1}{2}\left(\frac{K}{a}+a H\right)
$$

eigenvalue

$$
\begin{aligned}
& L_{0}|n\rangle=r_{n}|n\rangle \\
& r_{n}=r_{0}+n, \quad n=0,1,2, \cdots \\
& \mathcal{C}_{2}=r_{0}\left(r_{0}-1\right) \\
& r_{0}=\frac{1}{2}\left(1+\sqrt{g^{2}+\frac{1}{4}}\right)
\end{aligned}
$$

Physical quantities can be computed from the eigenstate of L_{0} !

wavefunction

‘76 de Alfaro et al.

$$
\begin{aligned}
& \psi_{0}(x)=\sqrt{\frac{2}{\Gamma\left(2 r_{0}\right)}} e^{-\frac{x^{2}}{2}} x^{\frac{1}{2}+\sqrt{g^{2}+\frac{1}{4}}} \underbrace{\psi_{0}(x)}_{\substack{x_{0}=\sqrt{\frac{1}{2}+\sqrt{g^{2}+\frac{1}{4}}}}} x \\
& \psi_{n}(x)=\sqrt{\frac{\Gamma(n+1)}{2 \Gamma\left(n+2 r_{0}\right)}} x^{-\frac{1}{2}}\left(\frac{x^{2}}{a}\right)^{r_{0}} e^{-\frac{x^{2}}{2 a} L_{n}^{2 r_{0}-1}\left(\frac{x^{2}}{a}\right)}
\end{aligned}
$$

correlation function

'76 de Alfaro et al. ‘'I2 Jackiw et al.

$$
\begin{aligned}
& F_{2}\left(t_{1}, t_{2}\right)=\left\langle t_{1} \mid t_{2}\right\rangle=\frac{\Gamma\left(2 r_{0}\right) a^{2 r_{0}}}{\left[2 i\left(t_{1}-t_{2}\right)\right]^{2 r_{0}}} \\
& F_{3}\left(t ; t_{2}, t_{1}\right)=\left\langle t_{2}\right| B(t)\left|t_{1}\right\rangle \\
& =\langle 0| B(0)|0\rangle\left(\frac{i}{2}\right)^{2 r_{0}+\Delta} \frac{\Gamma\left(2 r_{0}\right) a^{2 r_{0}}}{\left(t-t_{1}\right)^{\Delta}\left(t_{2}-t\right)^{\Delta}\left(t_{1}-t_{2}\right)^{-\Delta+2 r_{0}}} \\
& F_{4}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\langle 0| B(0)|0\rangle\langle 0| \tilde{B}(0)|0\rangle \frac{\Gamma\left(2 r_{0}\right)}{2^{\Delta+\tilde{\Delta}+2 r_{0}}} \\
& \times \frac{1}{\left(t_{13}\right)^{\Delta-r_{0}}\left(t_{24}\right)^{\tilde{\Delta-r_{0}}\left(t_{12}\right)^{\tilde{\Delta}+r_{0}}\left(t_{34}\right)^{\Delta+r_{0}}\left(t_{14}\right)^{2 r_{0}-\Delta-\tilde{\Delta}}} x^{r_{0}}{ }_{2} F_{1}\left(\Delta, \tilde{\Delta} ; 2 r_{0} ; x\right)}
\end{aligned}
$$

Gauged Quantum Mechanics

$$
L=\frac{1}{2} D_{0} z D_{0} \bar{z}+c A_{0} \quad D z:=\dot{z}+i A_{0} z
$$

integrate out auxiliary gauge field

$$
L=\frac{1}{2}\left(\dot{x}^{2}-\frac{c^{2}}{x^{2}}\right) \quad \text { DFF-model }!
$$

Hamiltonian reduction (Routh reduction)

$$
\tilde{\mathcal{M}}_{c}=\mu^{-1}(c)
$$

Gauged Matrix Model

$$
\begin{gathered}
S=\int d t\left[\operatorname{Tr}(D X D X)+\frac{i}{2}(\bar{Z} D Z-D \bar{Z} Z)+c \operatorname{Tr} A\right] \\
D X:=\dot{X}+i[A, X] \\
\downarrow \quad \text { integrate out auxiliary gauge field } \\
S=\frac{1}{2} \int d t\left[\sum_{a} \dot{x}_{a}^{2}-\sum_{a \neq b} \frac{c^{2}}{\left(x_{a}-x_{b}\right)^{2}}\right] \text { Calogero model ! } \\
\text { Hamiltonian reduction } \\
\text { (Routh reduction) }
\end{gathered}
$$

(Super)conformal Quantum Mechanics can be constructed by "gauging"!
'91 Polychronakos; '08 Fedoruk et al.

Supersymmetry

Supersymmetric quantum mechanics (SQM) was originally introduced as the simple model of SUSY QFT

But SUSY in QM is much more fruitful and exotic !

i. \#(component in supermultiplet) $\geqq \#(S U S Y)$
ii. \#(physical boson) \neq \#(fermion)

Superspace and Superfield

Witten's construction is restricted to specific $\mathcal{N}=2$ SQM
Superspace \& superfield formalism is useful for the construction of SQM

But only $\mathcal{J} \leqq 8$ sQM is available
‘00 Pashnev et al.; ‘ 02 Gates et al.

\mathcal{N}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$d_{\mathcal{N}}$	1	2	4	4	8	8	8	8	16	32	64	64	128	128	128	128

\#(components in supermultiplet) \geqq \#(SUSY)

AD map

\#(physical boson) $\neq \#($ fermion $)$

Why does this happen in Id ?

Hodge dual $\quad *: d \Omega_{p} \rightarrow d \Omega_{d-p-2}$
0 -form $\quad \leftrightarrow \quad(-1)$-form
physical boson \leftrightarrow auxiliary boson
Automorphic Duaity Map '96 Gates et al.

From the above facts
i) Only $\mathcal{N}=1,2,4,8$ sQM have been constructed via superspace $\&$ superfield formulation.
ii) Supermultiplet is denoted by
(\#(boson), $\mathcal{N}, \mathcal{N}-\#(b o s o n))$

Superconformal symmetry

conf. sym. + SUSY = superconf. sym.
$\mathrm{sL}(2)=\mathrm{SU}(1,1)=\mathrm{Sp}(2) \quad \mathrm{R}$-sym \quad Lie supergroup

Id superconformal group

Conjectured $\mathcal{N} \geqq 8$ SCQM

$\mathcal{N}>8$ SCQM is not available from superfield \& superspace.
However, $\mathbf{S U}(\mathbf{I}, \mathbf{I} \mid \mathcal{N} / \mathbf{2}) \mathbf{S C Q M}$ action is conjectured from $\mathcal{N}=4 \mathbf{S U}(\mathbf{1}, \mathbf{1} \mid \mathbf{2}) \mathbf{S C Q M}$.

$$
S=\int d t\left[\dot{x}^{2}+i\left(\bar{\psi}_{i} \dot{\psi}^{i}-\dot{\psi}_{i} \psi^{i}\right)-\frac{\left(c+\bar{\psi}_{i} \psi^{i}\right)^{2}}{x^{2}}\right]
$$

‘88 Ivanov et al.
II. M2-brane

M2-brane

IId SUGRA '78 Cremmer et al.
metric
$\begin{array}{ll}g_{M N} & 44 \\ \psi_{M \alpha} & 128\end{array}$
gravitino

3-form gauge field
$(I+2)$ dimensional object in IId SUGRA background M2-brane (electric)
$(I+2)$ dimensional extended object in IId SUGRA bckd.

decoupling lim
$(I+2)$ dimensional world-volume theory on the branes

World-volume theory of M2-branes

Required information

- X^{I} (position of M2-brane)
- $\Psi \quad$ (SUSY)
- $A_{\mu} \quad$ (internal d.o.f.)
- conformal (IR theory of D2-brane (3d SYM))

$$
M_{3}=R^{1,2} \longrightarrow \quad \begin{aligned}
& \text { '07 BLG-model } \\
& \text { '08 ABJM-model }
\end{aligned}
$$

BLG-model

'08 Bagger Lambert; Gustavsson

- 3d $\mathcal{N}=8$ superconformal CS-matter w/OSp(8|4)

$\operatorname{Conf}\left(\mathrm{R}^{1,2}\right)$

$$
\left(\begin{array}{cc}
S p(4) & \text { fermionic } \\
\text { fermionic } & \begin{array}{l}
\text { SO(8) } \\
\text { R-sym }
\end{array}
\end{array}\right)
$$

- Lie 3-alg. $\left\{\begin{aligned} {\left[T^{a}, T^{b}, T^{c}\right] } & =f^{a b c}{ }_{d} T^{d} & & \text { structure constant } \\ h^{a b} & =\operatorname{Tr}\left(T^{a}, T^{b}\right) & & \text { metric }\end{aligned}\right.$

field content

X_{a}^{I}
8_{v}
Ψ_{a} 8_{c}
$A_{\mu a b} \quad 1$

Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\mathrm{BLG}}= & -\frac{1}{2} D^{\mu} X^{I a} D_{\mu} X_{a}^{I}+\frac{i}{2} \bar{\Psi}_{\dot{A}}^{a} \Gamma_{\dot{A} \dot{B}}^{\mu} D_{\mu} \Psi_{\dot{B} a} \\
& +\frac{i}{4} \bar{\Psi}_{\dot{A} b} \Gamma_{\dot{A} \dot{B}}^{I J} X_{c}^{I} X_{d}^{J} \Psi_{\dot{B} a} f^{a b c d}-V(X)+\mathcal{L}_{T C S} \\
V(X) & =\frac{1}{12} f^{a b c d} f^{e f g}{ }_{d} X_{a}^{I} X_{b}^{J} X_{c}^{K} X_{e}^{I} X_{f}^{J} X_{g}^{K} \\
\mathcal{L}_{T C S} & =\frac{1}{2} \epsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right)
\end{aligned}
$$

ABJM-model

- 3d $\mathcal{N}=6$ superconfomal CS-matter w/Osp(6|4)

$\operatorname{Conf}\left(\mathrm{R}^{1,2}\right)$

$$
\left(\begin{array}{cc}
S p(4) & \text { fermionic } \\
\text { fermionic } & S U(4) \cong S O(6)
\end{array}\right)
$$

- $\mathrm{U}(\mathrm{N})_{\mathrm{k}} \times \mathrm{U}(\mathrm{N})_{-\mathrm{k}}$ quiver gauge theory

Moduli space \& brane interpretation

$$
\mathcal{M}_{N, k}=\frac{\left(\mathbb{C}^{4} / \mathbb{Z}_{k}\right)^{N}}{S_{N}}=\operatorname{Sym}^{N}\left(\mathbb{C}^{4} / \mathbb{Z}_{k}\right)
$$

‘08 Aharony et al.

ABJM-model
SO(4) BLG-model $\mathrm{k}=\mathrm{I}$
Spin(4) BLG-model k=2

N M2-branes propagating in $\quad \mathbb{C}^{4} / \mathbb{Z}_{k}$
2 M2-branes propagating in
\mathbb{R}^{8}
2 M2-branes propagating in $\quad \mathbb{C}^{4} / \mathbb{Z}_{2}$

III. SCQM from M2-branes

World-volume theories of M2-branes

$$
\begin{aligned}
M_{3}=\mathbf{R}^{1,2} & \rightarrow \\
& \text { '07 } \mathbf{r 0 8} \text { ABJG }
\end{aligned}
$$

$M_{3}=R \times \Sigma \longrightarrow$ My work
energy scale characterized by volume of $\Sigma \gg$ enegy
Further IR limit can be taken!

IR QM emerging

Namely

$$
\text { IR QM with energy scale << vol(} \Sigma)^{-1}
$$

How to derive?

Step I. BPS eq. \rightarrow low-energy conf.
Step2. Integration over the Riemann surface
'95 Bershadsky Sadov Vafa; '06 Kapustin Witten

\mathcal{A}_{1} BLG-model/ $\mathbf{T}^{\mathbf{2}}$

Stepl.BPS eq. \rightarrow low-energy conf.

$$
\left[X^{I}, X^{J}, X^{K}\right]=0 \quad D_{z} X^{I}=0 \quad D_{\bar{z}} X^{I}=0
$$

BPS conf.

$$
X^{I+2}=\left(\begin{array}{c}
\cos \theta^{I} \\
\sin \theta^{I} \\
0 \\
0
\end{array}\right) r^{I} \quad \tilde{A}_{z}=\left(\begin{array}{cccc}
0 & -2 \pi \frac{\Theta}{\tau-\bar{\tau}} \omega_{z} & 0 & 0 \\
2 \pi \frac{\Theta}{\tau-\bar{\tau}} \omega_{z} & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{A}_{z 4}^{3}(z, \bar{z}) \\
0 & 0 & -\tilde{A}_{z 4}^{3}(z, \bar{z}) & 0
\end{array}\right)
$$

Step2. Integration over the Riemann surface

$$
S=\int_{\mathbb{R}} d t\left[\frac{1}{2} D_{0} X^{I a} D_{0} X_{a}^{I}-\frac{i}{2} \bar{\Psi}^{\alpha a} D_{0} \Psi_{\alpha a}-k C_{1}(E) \tilde{A}_{02}^{1}\right]
$$

$\mathcal{N}=16$ Superconformal gauged QM

integrate out auxiliary gauge field

$$
\begin{aligned}
& S=\frac{1}{2} \int_{\mathbb{R}} d t\left[\dot{q}^{2}+\sum_{I \neq K}\left(\dot{r}^{I}\right)^{2}-i \bar{\Psi}^{\alpha a} \dot{\Psi}_{\alpha a}\right. \\
&\left.-\frac{\left[k C_{1}(E)+\sum_{I \neq K} h^{I}+i \bar{\Psi}_{A}^{\alpha} \Psi_{\alpha B}\right]^{2}}{q^{2}}-\sum_{I \neq K} \frac{\left(h^{I}\right)^{2}}{\left(r^{I}\right)^{2}}\right]
\end{aligned}
$$

Hamiltonian reduction (Routh reduction)
decoupled motion associated with local charge

$$
\begin{aligned}
& S=\frac{1}{2} \int_{\mathbb{R}} d t\left[\dot{q}^{2}-i \bar{\Psi}^{\alpha a} \dot{\Psi}_{\alpha a}-\frac{\left(k C_{1}(E)+i \bar{\Psi}_{A}^{\alpha} \Psi_{\alpha B}\right)^{2}}{q^{2}}\right] \\
& \text { OSp(16|2) SCQM }
\end{aligned}
$$

ABJM-model/ T^{2}

Stepl. BPS eq. \rightarrow low-energy conf.

$$
D_{z} Y^{A}=0, \quad D_{\bar{z}} Y^{A}=0 \quad Y^{C} Y_{C}^{\dagger} Y^{B}-Y^{B} Y_{C}^{\dagger} Y^{C}=0 \quad Y^{C} Y_{A}^{\dagger} Y^{D}=0
$$

$$
\int_{a} \omega=1, \quad \int_{b} \omega=\tau
$$

R

BPS conf.

$$
\begin{aligned}
& Y^{A}=\operatorname{diag}\left(y_{1}^{A}, \cdots, y_{N}^{A}\right) \\
& A_{z}=\operatorname{diag}\left(A_{z 11}, \cdots, A_{z N N}\right) \\
& \hat{A}_{z}=A_{z}+\partial_{z} \varphi=\operatorname{diag}\left(A_{z 11}+\partial_{z} \varphi_{1}, \cdots, A_{z N N}+\partial_{z} \varphi_{N}\right)
\end{aligned}
$$

Step2. Integration over the Riemann surface

$$
\int_{\mathbb{R}} d t\left[D_{0} \bar{y}_{A}^{a} D_{0} y_{a}^{A}-i \psi^{\dagger \alpha A a} D_{0} \psi_{\alpha A a}+k C_{1}\left(E_{a}\right) \mathcal{A}_{0 a}^{-}\right]
$$

$\mathcal{N}=12$ superconformal gauged $\mathbf{Q M}$

integrate out gauge field

$$
\begin{aligned}
S=\int_{\mathbb{R}} d t & \sum_{a=1}^{N}\left[\dot{x}_{a}^{2}-\frac{i}{2} \sum_{A \neq B}\left(\psi^{\dagger \alpha A a} \dot{\psi}_{\alpha A a}-\dot{\psi}^{\dagger A a} \psi_{\alpha A a}\right)\right. \\
& +\sum_{A \neq B}\left(\dot{r}_{a}^{A}\right)^{2}-\frac{i}{2}\left(\lambda^{\dagger \alpha a} \dot{\lambda}_{\alpha a}-\dot{\lambda}^{\dagger \alpha a} \lambda_{\alpha a}\right) \\
& \left.-\frac{\left[k C_{1}\left(E_{a}\right)+\sum_{A \neq B} h_{a}^{A}+\sum_{A \neq B} \psi^{\dagger \alpha A a} \psi_{\alpha A a}+\lambda^{\dagger \alpha a} \lambda_{\alpha a}\right]^{2}}{4 x_{a}^{2}}-\sum_{A \neq B} \frac{\left(h_{a}^{A}\right)^{2}}{4\left(r_{a}^{A}\right)^{2}}\right]
\end{aligned}
$$

Hamiltonian reduction (Routh reduction)

decoupled motion associated with local charge

$$
S=\int_{\mathbb{R}} d t \sum_{a=1}^{N}\left[\dot{x}_{a}^{2}-i \psi^{\dagger \alpha A a} \dot{\psi}_{\alpha A a}-\frac{\left(k C_{1}\left(E_{a}\right)+\psi^{\dagger \alpha A a} \psi_{\alpha A a}\right)^{2}}{4 x_{a}^{2}}\right]
$$

SU($1,1 \mid 6$) SCQM

$\mathcal{N}>8$ SCQM conjectured Lagrangian

$$
S_{\mathcal{N} \geq 4}=\int d t\left[\dot{x} \dot{x}+i\left(\bar{\psi}_{k} \dot{\psi}^{k}-\dot{\bar{\psi}}_{k} \psi^{k}\right)-\frac{\left(m+\bar{\psi}_{k} \psi^{k}\right)^{2}}{x^{2}}\right], 88 \text { Ivanov et al. }
$$

exactly same !

flat branes

flat BPS branes
decoupling limit
world-volume theory of flat BPS branes
$=\quad$ SUSY gauge theory
$\begin{array}{ll}\text { Dp-branes } & \rightarrow(I+p) \text { dimensional SYM } \\ \text { M2-branes } & \rightarrow \text { BLG-model, ABJM-model }\end{array}$

Curved Branes

Curved BPS branes

decoupling limit
world-volume theory of = Topologically twisted theory curved BPS branes

‘95 Bershadsky Sadov Vafa

Curved M2-branes

wrapped M2-branes around Riemann surface Σ_{g}

holomorphic curve (SUSY 2-cycle)
Σ g

CY mfd X
decoupling limit
Q. What is the world-volume theory

Now consider
 topological twisting !

Topological twisting

‘88 Witten

Topological twisting

‘88 Witten

Topological twisting

‘88 Witten

$$
\begin{array}{|l}
\text { Topological twisting }=\text { Modifying } \\
\text { the Euclidean rotational sym. group } \\
\text { M2-brane perspective the R-sym. group } \\
\text { rotational sym. group } \\
\text { on the SUSY-cycle } \\
\mathrm{SO}(2)_{\mathrm{E}}
\end{array}
$$

Consider

$$
X=\mathcal{L}_{1} \oplus \mathcal{L}_{2} \oplus \mathcal{L}_{3} \oplus \mathcal{L}_{4} \rightarrow \Sigma_{g}
$$

$\mathrm{SO}(8)_{\mathrm{R}} \rightarrow \mathrm{SO}(2)_{1} \times \mathrm{SO}(2)_{2} \times \mathrm{SO}(2)_{3} \times \mathrm{SO}(2)_{4}$

BLG theory probing K3

$$
S O(2)_{E} \times S O(8)_{R} \quad \longrightarrow \quad S O(2)_{E}^{\prime} \times S O(6)_{R}
$$

$\begin{array}{ll}X^{I} & \mathbf{8}_{v}\end{array}$

$\Psi \quad \mathbf{8}_{c+} \oplus \mathbf{8}_{c-}$

$$
\begin{array}{llll}
\mathbf{4}_{2} \oplus \overline{\mathbf{4}}_{0} \oplus \mathbf{4}_{0} \oplus \overline{\mathbf{4}}_{-2} \\
\Psi_{z} & \tilde{\lambda} & \psi & \tilde{\Psi}_{\bar{z}}
\end{array}
$$

$\epsilon \quad \mathbf{8}_{s+} \oplus \mathbf{8}_{s-}$

Twisted K3 BLG Lagrangian

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(D_{0} \phi^{I}, D_{0} \phi^{I}\right)-\left(D_{z} \phi^{I}, D_{\bar{z}} \phi^{I}\right)+\left(D_{0} \Phi_{z}, D_{0} \Phi_{\bar{z}}\right)-2\left(D_{z} \Phi_{\overline{\bar{w}}}, D_{\bar{z}} \Phi_{w}\right) \\
& +\left(\tilde{\tilde{\lambda}}, D_{0} \psi\right)+\left(\bar{\Psi}_{z}, D_{0} \tilde{\Psi}_{\bar{z}}\right)-\left(\tilde{\Psi}_{\bar{z}}, D_{0} \Psi_{z}\right)-2 i\left(\tilde{\Psi}_{\bar{z}}, D_{z} \psi\right)+2 i\left(\overline{\tilde{\lambda}}, D_{\bar{z}} \Psi_{z}\right) \\
& +\frac{i}{2}\left(\overline{\tilde{\lambda}} \hat{\Gamma}^{I J},\left[\phi^{I}, \phi^{J}, \psi\right]\right)-i\left(\overline{\tilde{\Psi}}_{\bar{z}} \hat{\Gamma}^{I J},\left[\phi^{I}, \phi^{J}, \Psi_{z}\right]\right) \\
& +2 i\left(\bar{\psi} \hat{\Gamma}^{I},\left[\Phi_{\bar{z}}, \phi^{I}, \Psi_{z}\right]\right)-2 i\left(\overline{\hat{\lambda}} \hat{\Gamma}^{I},\left[\Phi_{z}, \phi^{I}, \tilde{\Psi}_{\bar{z}}\right]\right) \\
& +i\left(\overline{\tilde{\lambda}},\left[\Phi_{z}, \Phi_{\bar{z}}, \psi\right]\right)-2 i\left(\overline{\tilde{\Psi}}_{\bar{w}},\left[\Phi_{z}, \Phi_{\bar{z}}, \Psi_{w}\right]\right) \\
& -\frac{1}{12}\left(\left[\phi^{I}, \phi^{J}, \phi^{K}\right],\left[\phi^{I}, \phi^{J}, \phi^{K}\right]\right)-\frac{1}{2}\left(\left[\Phi_{z}, \phi^{I}, \phi^{J}\right],\left[\Phi_{\bar{z}}, \phi^{I}, \phi^{J}\right]\right) \\
& -\frac{1}{2}\left(\left[\Phi_{z}, \Phi_{w}, \phi^{I}\right],\left[\Phi_{\bar{z}}, \Phi_{\bar{w}}, \phi^{I}\right]\right)-\frac{1}{2}\left(\left[\Phi_{z}, \Phi_{\bar{w}}, \phi^{I}\right],\left[\Phi_{\bar{z}}, \Phi_{w}, \phi^{I}\right]\right) \\
& +\frac{1}{6}\left(\left[\Phi_{z}, \Phi_{w}, \Phi_{v}\right],\left[\Phi_{\bar{z}}, \Phi_{\bar{w}}, \Phi_{\bar{v}}\right)+\frac{1}{2}\left(\left[\Phi_{z}, \Phi_{w}, \Phi_{\bar{v}}\right],\left[\Phi_{\bar{z}}, \Phi_{\bar{w}}, \Phi_{v}\right]\right)+\mathcal{L}_{\mathrm{TCS}}\right.
\end{aligned}
$$

Stepl.BPS eq. \rightarrow low-energy conf.

$$
\begin{aligned}
& \quad D_{z} \phi^{I}=0, \quad D_{\bar{z}} \phi^{I}=0 \\
& D_{z} \Phi_{\bar{z}}=0, \quad D_{\bar{z}} \Phi_{z}=0 \\
& {\left[\phi^{I}, \phi^{J}, \phi^{K}\right]=0} \\
& {\left[\Phi_{z}, \Phi_{\bar{z}}, \phi^{I}\right]=0, \quad\left[\Phi_{z}, \phi^{I}, \phi^{J}\right]=0, \quad\left[\Phi_{\bar{z}}, \phi^{I}, \phi^{J}\right]=0} \\
& {\left[\Phi_{w}, \Phi_{\bar{w}}, \Phi_{z}\right]=0, \quad\left[\Phi_{\bar{w}}, \Phi_{w}, \Phi_{\bar{z}}\right]=0 .}
\end{aligned}
$$

$$
\int_{a_{i}} \omega_{j}=\delta_{i j}, \quad \int_{b_{i}} \omega_{j}=\Omega_{i j}
$$

BPS conf.

$$
\phi^{I}=0 \quad \Phi_{z}=\sum_{i=1}^{g}\left(\begin{array}{c}
\frac{1}{2}\left(e^{-i \varphi} x_{A}^{i}+e^{i \varphi} x_{B}^{i}\right) \\
\frac{i}{2}\left(e^{-i \varphi} x_{A}^{i}-e^{i \varphi} x_{B}^{i}\right) \\
0 \\
0
\end{array}\right) \omega_{i}
$$

$$
\tilde{A}_{z}=\left(\begin{array}{cccc}
0 & \partial_{z} \varphi(z, \bar{z}) & 0 & 0 \\
-\partial_{z} \varphi(z, \bar{z}) & 0 & 0 & 0 \\
0 & 0 & 0 & \tilde{A}_{z 4}^{3}(z, \bar{z}) \\
0 & 0 & -\tilde{A}_{z 4}^{3}(z, \bar{z}) & 0
\end{array}\right)
$$

Step2. Integration over the Riemann surface

$$
\left.\left.S=\int_{\mathbb{R}} d t\left[\sum_{i, j} \operatorname{Im} \Omega\right)_{i j}\right)\left(D_{0} x^{i a} D_{0} \bar{x}_{a}^{j}+\bar{\Psi}^{i a} D_{0} \tilde{\Psi}_{a}^{j}-\overline{\tilde{\Psi}}^{i a} D_{0} \Psi_{a}^{j}\right)-k C_{1}(E) \tilde{A}_{02}^{1}\right]
$$

Effective action possesses $\{$ • SL(2,R) conformal symmetry - $\mathcal{N}=\mathbf{8}$ SUSY

$\mathcal{N}=8$ superconformal gauged $\mathbf{Q M}$ may describe curved M2-branes!

Now testing...
(reduced Gromov-Witten inv. etc.)

IV. Conclusion

Conclusion

We found $\mathcal{N} \geqq 8$ SCQM models which are not available via superfield \& superspace formalism.

They may describe the M2-branes wrapping a Riemann surface.

Future work

- Other Calabi-Yau case
- ABJM with $g \neq 1$ case
- Analysis of the M2-branes through SCQM

Application

- $\mathrm{AdS}_{2} / \mathrm{CFT}_{1}$ (Black hole physics)
- $3=1+2$ (AGT like relation arising from M2)
- reduced Gromov-Witten inv.
- construction of new SCQM

