
SuperNPU: An Extremely Fast Neural Processing
Unit Using Superconducting Logic Devices

Koki Ishida1∗, Ilkwon Byun2∗, Ikki Nagaoka3, Kosuke Fukumitsu1, Masamitsu Tanaka3, Satoshi Kawakami1,
Teruo Tanimoto1, Takatsugu Ono1, Jangwoo Kim2, and Koji Inoue1†

1Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University
{koki.ishida, kosuke.fukumitsu, satoshi.kawakami, teruo.tanimoto, takatsugu.ono, koji.inoue}@cpc.ait.kyushu-u.ac.jp

2Department of Electrical and Computer Engineering, Seoul National University
{ik.byun, jangwoo}@snu.ac.kr

3Department of Electronics, Nagoya University
nagaoka@super.nuee.nagoya-u.ac.jp, masami t@nagoya-u.jp

Abstract—Superconductor single-flux-quantum (SFQ) logic
family has been recognized as a highly promising solution for the
post-Moore’s era, thanks to its ultra-fast and low-power switching
characteristics. Therefore, researchers have made a tremendous
amount of effort in various aspects to promote the technology
and automate its circuit design process (e.g., low-cost fabrication,
design tool development). However, there has been no progress in
designing a convincing SFQ-based architectural unit due to the
architects’ lack of understanding of the technology’s potentials
and limitations at the architecture level.

In this paper, we present how to architect an SFQ-based
architectural unit by providing design principles with an extreme-
performance neural processing unit (NPU). To achieve the goal,
we first implement an architecture-level simulator to model an
SFQ-based NPU accurately. We validate this model using our
die-level prototypes, design tools, and logic cell library. This
simulator accurately measures the NPU’s performance, power
consumption, area, and cooling overheads. Next, driven by the
modeling, we identify key architectural challenges for designing
a performance-effective SFQ-based NPU (e.g., expensive on-chip
data movements and buffering). Lastly, we present SuperNPU,
our example SFQ-based NPU architecture, which effectively
resolves the challenges. Our evaluation shows that the proposed
design outperforms a conventional state-of-the-art NPU by 23
times. With free cooling provided as done in quantum computing,
the performance per chip power increases up to 490 times. Our
methodology can also be applied to other architecture designs
with SFQ-friendly characteristics.

Index Terms—Single flux quantum (SFQ), Cryogenic comput-
ing, Modeling, Simulation

I. INTRODUCTION

We are now facing the era where both Moore’s Law [1]
and Dennard scaling [2] do not hold anymore. In this era,
we are running out of a convincing option to improve the
performance of the computer system, while maintaining its
power and temperature budget. Therefore, we believe that it is
the right time to actively exploit emerging device technologies
with significant potentials and make a serious effort to improve
their feasibility by resolving their limitations.

∗Both authors contributed equally to this research.
†Corresponding author.

Among several candidates, superconductor SFQ logic fam-
ily [3], [4] is a highly promising solution thanks to its ultra-
fast speed and low-power consumption at 4 K. The SFQ tech-
nology enables a low-level voltage impulse-driven switching
which allows both extremely-fast switching (~10−12s) and
low-energy consumption (~10−19 J per switching) [3], [4].
That is, with this technology, it is feasible to improve the
device’s clock frequency (and thus performance) by order of
magnitude (i.e., several tens of GHz [5], [6]).

By focusing on these high potentials, many serious SFQ-
related research efforts have been made in various aspects to
promote the technology and automate its device and circuit-
level design process (e.g., technology hardening, low-cost
fabrication, design tool development) [7], [8]. As a result,
the SFQ logic is now considered for an extreme-performance
computing and a promising post-Moore solution.

However, due to its unique pulse-driven nature, SFQ logic
requires completely different architecture designs from con-
ventional CMOS technology. Therefore, with the architectural
trade-offs considered, the following questions must be clearly
addressed to computer architects: (1) what architecture is
promising for this technology, (2) how to implement various
microarchitectural units with the voltage pulse-driven logics,
(3) how to maximize its potential at the architecture level
while minimizing its limitations, and (4) how to simulate and
validate a proposed architecture design.

In this paper, we resolve the fundamental challenges by
(1) providing straightforward answers to the questions above,
and (2) presenting SuperNPU, our example SFQ-based neural
processing unit (NPU) design. First, as our case-study archi-
tecture in this work, we choose to architect a conventional
NPU and present the basic structure with carefully designed
microarchitectural units. For instance, we design our baseline
NPU architecture consists of processing elements (PEs) with
the weight-stationary dataflow, systolic array network, and
data alignment unit. This baseline NPU architecture well
satisfies the requirements of SFQ-based logics such as fast
computation, dataflow-like data movements, and shift-register-
based memory implementation, respectively.

58

2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

978-1-7281-7383-2/20/$31.00 ©2020 IEEE
DOI 10.1109/MICRO50266.2020.00018

Next, we implement an architecture-level simulation frame-
work to model an SFQ-based NPU architecture accurately.
Our simulator can accurately estimate the under-the-design
NPU’s performance, power consumption, area at various levels
(i.e., gate, microarchitecture, architecture). For the purpose,
the simulator constructs a target SFQ-based NPU architecture
by integrating SFQ-based microarchitecture and gate modules
using AIST 1.0 µm fabrication process technology [9]. We
carefully validate the simulator by comparing the results
obtained from our die-level microarchitecture prototypes and
post-layout simulations against our modeling results.

Third, based on the validated model, we identify key per-
formance bottlenecks in a naively designed SFQ-based NPU.
First, the data movement among different units and within a
single unit takes too long, mainly due to the shifting register-
based operation. Next, fast computing units often become
idle due to the workload’s low computational intensity and
relatively slow memory access. Also, the on-chip memory
underutilization can make the above overheads much worse.

Lastly, we present SuperNPU, our example SFQ-based NPU
design, which effectively resolves the performance bottlenecks
at the architecture level. First, it merges the partial-sum and
output memories to avoid unnecessary inter-memory data
movements. Second, it partitions a larger on-chip buffer to
multiple small chunks to reduce the length of intra-memory
shifting as well as the underutilization. Third, it increases the
computational intensity by balancing hardware resources for
a larger-batch purpose. Fourth, it further increases each PE’s
utilization by assigning more registers to each PE for enabling
multi-kernel execution.

Our evaluation shows that SuperNPU significantly outper-
forms a conventional NPU design by 23 times when running
various CNN workloads. However, without the SFQ-aware
architectural optimizations, the SFQ-based NPU design’s per-
formance drastically drops to the point even below the conven-
tional design. Therefore, it is extremely essential to identify the
SFQ-unfriendly bottlenecks and architect an optimized design
to resolve them. With the cooling cost considered, SuperNPU’s
performance per watt is slightly higher than the conventional
design. But, with free cooling cost assumed, SuperNPU’s
performance per watt becomes significantly higher than the
conventional design by 490 times.

In summary, our work makes the following contributions:
• Architecting an SFQ-based NPU: To the best of our

knowledge, this is the first work to design an NPU which
addresses the SFQ technology’s architectural trade-offs.

• Simulation framework: It is also the first work to model
and validate a simulator for SFQ-based architectures.

• SFQ-specific architectural optimizations: We identify
critical architectural bottlenecks and optimizations which
can cause a performance variance around 60 times.

• Significant results: SuperNPU provides extreme perfor-
mance and power efficiency by outperforming a conven-
tional design by 23 times and 490 times, respectively.

• Applicability: Our modeling-driven methodology can be
applied to other architectures favoring the SFQ logic.

(b)

(c)

Superconductor
Insulator

Superconductor

SFQLeft JJ
1

2

3

(a)

~
10
0µ
V

~1ps

Φ! =
2.07×10"#$Wb

I

V

𝐼%

Clock

Input

Output

Input Output

“1”

“1”

“0”

“0”

(d)

JJ structureSFQ

1 2

Clock

Right JJ

Fig. 1. (a) Superconductor ring with SFQ (b) Electrical characteristics of JJ
(c) Circuit diagram of an SFQ-based DFF with (d) its operating example

II. BACKGROUND & MOTIVATION

A. Superconductor SFQ logic technology

Superconductor SFQ logic [3], [10] and its energy-efficient
families [11]–[15] are representative ultra-fast and low-power
VLSI technologies using superconducting devices. Fig. 1(a)
shows a basic circuit element of SFQ technology, a super-
conductor ring. SFQ circuits utilize the existence of a single
magnetic flux quantum (SFQ) in the superconductor ring as an
information carrier, as similar to the voltage level in conven-
tional CMOS circuits. The superconductor ring can store and
transfer the SFQ by using a superconducting device called
Josephson junction (JJ), which consists of a thin insulator
sandwiched by the superconductors.

Fig. 1(c) shows the working principle of SFQ logic gates,
which operate based on the superconductor rings. We take an
SFQ-based delay-flip-flop (DFF) as our example due to its
simplest structure consisting of only a single superconductor
ring and a clock line. First, when the input pulse comes to the
ring, it makes the current flowing through the left JJ higher
than its critical current, Ic. With the electrical characteristic
shown in Fig. 1(b), the left JJ generates a voltage pulse and
it is stored to the ring as an SFQ (Fig. 1(c) ¶). Next, by
taking a clock pulse (Fig. 1(c) ·), the right JJ is activated
and the stored SFQ is transferred to the output as a voltage
pulse (Fig. 1(c) ¸). In this manner, SFQ gates can define the
logical value ‘1’ as the existence of stored SFQ between the
clock pulses (Fig. 1(d) ¬). On the other hand, if no input pulse
comes during a clock period, no voltage pulse is generated on
the output, and it indicates the logical value ‘0’ (Fig. 1(d) ­).

The SFQ technology’s voltage pulse-driven nature en-
ables the extremely low-latency (~10−12 s) and low-energy
(~10−19 J) JJ switching [3], [11]. With this promising aspects,
serious SFQ-related research efforts have been made in various
aspects to promote the technology and automate its design
process [7], [8], [11], [12], [16]–[19]. Moreover, several phys-
ical implementations have been successfully demonstrated at
outstanding frequencies, a few tens of GHz [5], [6]. As a result,
the SFQ logic is now considered as a highly promising solution
for the post-Moore era and extreme-performance computing.

59

M
UX

Input Output
N entries

(b)(a)

1st
stage

DFF DFF DFF

Clock

2nd
stage

N th
stage

Fig. 2. Example of the SFQ technology’s architectural characteristics (a)
Gate-level-pipelined datapath (b) 1-bit N-entry shift register

B. SFQ technology in the architect’s perspective

In the architect’s perspective, it is essential to understand
SFQ logic’s architectural characteristics originated from the
pulse-driven nature. Therefore, we summarize some notable
features as follows.

1) Deeply pipelined datapath: In the SFQ logic, architects
can naturally apply the gate-level pipelining without any
overhead. All SFQ logic gates are synchronized with the clock
because they need a clock pulse to transfer the stored SFQ
to the adjacent gates (Section II-A). In other words, every
SFQ gate has the latch functionality and thus can be pipelined
without additional DFFs (Fig. 2(a)). With this property, several
chips have been successfully demonstrated at several tens
of GHz [5], [6]. However, the deep pipeline structure can
suffer from performance degradation because it is difficult to
avoid data (or control) hazards and the huge pipeline stalls.
Therefore, the SFQ technology favors streaming execution
rather than applications with complex control flows.

2) Frequency determination with pulse-driven clocking:
Unlike conventional CMOS technology, SFQ circuits’ fre-
quency is determined by the timing difference between the data
and clock pulse arrival. In the CMOS technology, the clock
frequency is bounded by the longest datapath delay because it
only can put single digital information (i.e., voltage level) in a
wire. On the other hand, SFQ logic can put several data into a
single wire because its data is encoded as a voltage pulse. That
is, SFQ circuits can achieve high frequency by flowing many
data pulses through a single wire, simultaneously. However, if
there is a large difference between the data and clock arrival
timing for an SFQ gate, its frequency can be significantly
reduced. This is because the next clock pulse should wait for
the slow data pulse propagation, and thus the time interval
between two adjacent clock pulses increases. Therefore, it is
crucial to match the data and clock pulse arrival timing for
maximizing the SFQ circuits’ frequency.

3) Shift-register-based on-chip memory: For the SFQ
logic’s on-chip memory, the shift-register-based memory is
much more practical than the random access memory (RAM).
Even though we can implement RAM with SFQ technology,
it severely suffers from low driving capability and scalability.
Such limitations mainly result from the difficulty of driving the
word lines and bit lines with the small pulses [3], [20]. On the
other hand, a shift-register-based memory does not have those
problems because it just consists of the serially connected
DFFs and the feedback loop (Fig. 2(b)). However, it is difficult
for the shift-register-based memory to support the random
memory access due to the complex control logic and the

variable access latency [21]. Therefore, the SFQ technology
favors applications with sequential memory access when its
on-chip memory implementation is considered.

4) Lack of off-chip memory technology: It has been a long-
standing challenge to implement a large-scale and high-speed
off-chip memory operating at the 4K environment. There has
been a few research about JJ-based memories [22]–[24], and
one of them is Vortex Transition Memory (VTM) [22]. The
VTM is the largest Josephson memory whose 4-kbit prototype
has been demonstrated. Despite the demonstration, it has
been difficult to practically use the VTM mainly due to the
scaling and speed problems with the AC-biasing and the large
superconductor-ring-based memory cells. Even though several
off-chip memory technologies (e.g., hybrid Josephson-CMOS
memory [23], [24], Josephson magnetic memory [25]) are
currently being developed, these technologies also have not
been put to practical use yet. For these reasons, it is currently
practical to use CMOS memory technology, which is slower
than the 4 K JJ-based memory but large and reliable. There-
fore, SFQ technology favors computation-oriented applications
with a minimal number of off-chip memory access.

C. Challenges for designing SFQ-based architectural unit
Even though there have been several studies regarding the

SFQ architecture’s features [5], [16], [26]–[28], there still exist
critical challenges for designing SFQ-based architectural units.

SFQ-optimal architecture design: First, for the target
architecture application, architects should carefully design
each microarchitectural unit because the novel circuit-level
trade-offs occur in SFQ logic (e.g., frequency trade-off with
the applied clocking scheme). Furthermore, architects must
carefully analyze the performance bottlenecks and propose the
best SFQ architecture design based on the analyses. However,
as far as we know, there does not exist either such SFQ-
friendly microarchitecture implementation or the SFQ-optimal
architecture proposed with the bottleneck analysis.

Absence of an SFQ-based architecture modeling tool:
Architects are in dire need of high-level architecture modeling
tools to design and evaluate their architectural innovations,
especially for emerging technologies such as SFQ logic de-
vices. Even though researchers recently have made an effort
to develop several SFQ design automation tools [7], [8], to
the best of our knowledge, a reliable SFQ-based architecture
modeling tool is currently absent.

D. Research goal: Provide SFQ design principles with NPU
In this paper, we resolve the challenges and provide the

guidelines for designing an SFQ-optimal architectural unit by
presenting an extreme-performance SFQ-based NPU. We first
conduct thorough analyses and introduce the baseline SFQ-
based NPU architecture by designing all microarchitectural
units in the SFQ-friendly manner (Section III). Next, on top
of the baseline NPU architecture, we develop SFQ-NPU, a
validated SFQ-based architecture modeling tool (Section IV).
Finally, we use the tool to identify critical performance bottle-
necks and propose our SFQ-optimal NPU, which successfully
resolves the bottlenecks at the architecture level (Section V).

60

Baseline SFQ-based NPU

PE array

Psum buffer

Da
ta

 a
lig

nm
en

t u
ni

t

Ofmap buffer

W
ei

gh
t b

uf
fe

r

Ifm
ap

bu
ffe

r

Of
f-c

hi
p

DR
AM

Of
f-c

hi
p

DR
AM

Fig. 3. Overview of our baseline SFQ-based NPU design

In this work, we choose NPU as one of the promising
examples to apply our design principles for the following
reasons. First, there are no complex control flows in Deep
Neural Network (DNN) applications, and therefore we can
fully exploit the SFQ’s gate-level pipelining nature without
control hazard. Second, we can take the best advantage of
shift-register-based memory and avoid its disadvantage thanks
to the static memory access pattern of DNN algorithms.
Finally, NPUs can reduce off-chip memory access by utilizing
the data-reuse pattern in DNN applications. Note that the
underlying SFQ circuits, such as multipliers and adders, have
already been demonstrated with around 50 GHz frequency [5],
[6]. Besides, we currently target the DNN inference as the first
case study to show SFQ-based NPU’s potential.

III. BASELINE SFQ-BASED NPU DESIGN

In this section, we design the baseline SFQ-based NPU
architecture by identifying the SFQ-friendly implementation
for key microarchitectural units. Fig. 3 shows the overview
of our baseline SFQ-based NPU which mainly consists of
four microarchitectural units: on-chip network unit (NW unit),
processing element (PE), data alignment unit (DAU), and on-
chip buffers. We perform detailed circuit-level analyses to
describe our design choice for each unit, except for the shift-
register-based on-chip buffers explained in Section II-B.

A. On-chip network unit design

To design the SFQ-friendly on-chip network, we compare
two representative network unit (NW unit) designs: fan-out
network and store-and-forward chain. The fan-out network
multicasts the data to several PEs simultaneously by using the
bus or tree structure. On the other hand, the store-and-forward
chain provides the data and subsequently forwards it from a
PE to the adjacent PE. Note that a network branch consists of
a DFF (D in Fig. 4) and a wire component called splitter (S
in Fig. 4), which splits a pulse into two identical pulses.

Among these two network designs, we adopt the store-and-
forward chain because it is superior to the fan-out network
in terms of both clock frequency and area. Fig. 4 shows the
structures of three network design candidates: two splitter tree
(2D and 1D) designs (fan-out network) and a 2D systolic array
(store-and-forward chain). In our analysis, we include both
2D and 1D splitter tree designs which can be applied to the
output stationary (OS) and weight stationary (WS) dataflow,

Ifm
ap

bu
f.

PE

Weight buf.

PE

PE PE

(c
)

2D
 sy

st
ol

ic
ar

ra
y

(a
)

2D
 sp

lit
te

r t
re

e
(b

) 1
D

sp
lit

te
r t

re
e

S
D

D
S

S
D

Ifm
ap

bu
f.

½ PE array width
D
S

PE

DS

Clock

Ifm
ap

bu
f.

PE PE

PE PE

D
S
PE

Clock

+

❷

Ifm
ap

bu
f. PE

Weight buf.

PE

PE PE

Weight
Reg.

×
+

PE array overview

D DS S

PEPEPE

Ifm
ap

bu
f.

PEPEPE

PE width

∝ PE array width

D S

PE
D
S

Clock
∝ PE width

S
D

D
S

S
D

Ifm
ap

bu
f.

½ PE array width

PEPEPE

Detail network structure Input arrival timing

❶

❶

❶ ❷

+

Ex: OS

Ex: WS

Ex: OS

Fig. 4. On-chip network structure for three alternative designs

0 500 1000

4

16

64

Critical-path delay (ps)

PE
 a

rr
ay

 w
id

th

0 1 2 3 4 5

4

16

64

Area (mm2)

PE
 a

rr
ay

 w
id

th

2D splitter tree 1D splitter tree Systolic array

(b)(a)

Fig. 5. Network unit designs’ (a) critical-path delay and (b) area comparison

respectively. Also, we assume that all network designs target
2D square-shaped PE array.

Fig. 5 shows the critical-path delay (i.e., the inverse of
maximum frequency) and the area comparison for the three
network designs, obtained with JSIM [29]. First, the 2D splitter
tree significantly suffers from the long critical-path delay due
to the increasing timing difference of two PE inputs. As shown
in Fig. 4(a), a single PE requires two inputs from each splitter
tree. As both splitter trees share a global clock line, the critical-
path delay increases in proportion to the PE array width (Input
arrival timing in Fig. 4(a)). As a result, the critical-path delay
of the 2D splitter tree keeps increasing with the PE width and
reaches above 800 ps in 64×64 PE array. Even though we can
mitigate this problem with the aggresive clock skewing (i.e.,
intentionally increase the clock propagation delay in path ¶),
it incurs much more area overhead and lowers the yield of
fabrication [30]. Next, even if there is no such a timing issue
in the 1D splitter tree, its area overhead is high as the same
with the 2D tree. The large area overhead is mainly due to the
large number of wire cells for the tree construction.

On the other hand, the 2D systolic network has the shortest
critical-path delay and the smallest area, as shown in Fig. 5.
Even though the 2D systolic network also provides two
different inputs to a single PE as same with the 2D splitter
tree, their timing difference is negligible (Fig. 4(c)). Besides,
its simple structure does not require much wire cells. For these
reasons, we conclude that the systolic array is more suitable
and adopt it as our on-chip network design.

61

PE

×

+

Weight

Ifmap Psum

Psum or Ofmap

(a) PE with WS dataflow (b) PE with OS dataflow

PE

×

+

WeightIfmap

Psum

Ofmap

Fig. 6. PE designs with two different dataflows

0

50

100

150

FA SR

Fr
eq

ue
nc

y
(G

Hz
)

(c) Frequency comparison

Without feedback
With feedback

1
2

(a) Example of concurrent-flow clocking

(b) Example of counter-flow clocking

1 Without feedback

Clock

Input

Clock

Input

1
2

Clock
Data 2 With feedback

Fig. 7. Feedback loop’s impact on the frequency of SFQ circuits

B. PE design

For the SFQ-friendly PE design, we identify the most suit-
able dataflow by carefully considering the SFQ logic’s circuit-
level characteristics. Among three major dataflows in a 2D
systolic network, Weight Stationary (WS), Output Stationary
(OS), and Input Stationary (IS) [31], [32], we focus on WS
and OS because the PE with IS has almost the same hardware
structure as the PE with WS. Fig. 6(a) shows the PE with WS
dataflow, where PE holds a weight in its register, multiplies it
with the input feature map data (ifmap), and adds the result to
the partial sum input (psum). On the other hand, the PE with
OS dataflow has a feedback loop consisting of the adder and
its register, and continuously accumulates the partial sums to
generate final output feature map data (ofmap) (Fig. 6(b)).

Among these two PE designs, we choose the PE with WS to
maximize the clock frequency because it does not include any
feedback loop. Unlike the CMOS technology, the existence of
the loop significantly degrades the SFQ circuit’s frequency as
the loop enforest the slower clocking scheme.

Fig. 7 provides the example with two representative clock-
ing schemes: (a) concurrent-flow clocking and (b) counter-flow
clocking. In our example, we show how the SFQ circuit’s
frequency is affected by the feedback loop. As Fig. 7(a)¶
shows, when there is no feedback loop, SFQ circuits can
hide the data propagation delay by flowing the clock pulse
along with the data. However, such clocking cannot be utilized
when the circuit includes the feedback loop. In fact, the
circuit’s frequency is significantly reduced because the next
clock pulse should wait for a very long data transfer through
the feedback path (Fig. 7(a)·). On the other hand, we can
resolve this problem with the counter-flow clocking, which can
perfectly hide the data feedback delay (Fig. 7(b)·). However,

0% 50% 100%

AlexNet

ResNet50
VGG16

Unique pixels Duplicated pixels

Fig. 8. Data ratio breakdown for unique and duplicated ifmap pixels

Data alignment unitIfmap buffer PE array

D D

w1

w2

w4

D
Data

Ctrl

i9 i8 i2 i1

w3

D D

“0”

“0”

“0”

“0”

0 0 0 0 i5 i4 0 i2 i1

0 i6 i5 0 i3 i2 0

PE
 3

 st
ag

es
 =

 3
 c

yc
le

s

D D D

D D D

0 i5 i4 0 0 0

0 0 0 0
D

D

o4
o3
o2
o1

Ifmap Weight

=
Ofmap

2D Conv. example

C

C

C

C

1
2

4

3

o1o2o3o4

Fig. 9. Data alignment unit’s structure with the working example

the frequency of the counter-flow clocked circuit is much lower
than that of the concurrent-clocked circuit without feedback.
Such difference is due to the unhidden feed-forward delay of
the counter-flow clocking (Fig. 7(b)¶).

Fig. 7(c) shows the feedback loop’s impact on the SFQ
circuit’s clock frequency by running JSIM [29] simulations
with simple example circuits, a full adder (FA), and a shift
register (SR). For the circuits without the feedback loop and
with the loop, we apply the concurrent-flow clocking and
counter-flow clocking, respectively. As Fig. 7(c) clearly shows,
the existence of the feedback loop significantly degrades the
clock frequency, from 66 GHz to 30 GHz in FA and from
133 GHz to 71 GHz in SR. Thus, we conclude that the PE
design without a feedback loop, PE with WS, is a more SFQ-
friendly choice and adopt it as our PE design.

C. Data alignment unit design

In the SFQ-based NPU adopting systolic network and WS
dataflow, the ifmap buffer can suffer from a large amount
of duplicated data. As the ifmap buffer is the shift-register-
based memory, each ifmap buffer row dedicatedly feeds data to
the corresponding PE array row. However, in CNN execution,
weights mapped to the adjacent PE array rows require partly
the same ifmap data due to the weight sharing property of
CNN. Therefore, the duplicated data significantly wastes the
buffer capacity if adjacent ifamp buffer rows hold all ifmap
data shared across the different weights. Fig. 8 clearly shows
that the amount of duplicated data can be over 90% for three
CNN networks. Note that such a massive waste of on-chip
buffer capacity incurs a severe off-chip memory pressure.

To resolve the problem, we design a data alignment unit
(DAU), which replicates and forwards data to the appropriate
PE rows at exact timing. Fig. 9 shows the DAU’s structure
with a working example that runs a simple 2D-convolutional
operation. Our DAU consists of sets of a selector, a controller,
and cascaded special DFFs for each PE row. The DAU operates
in two steps: 1) data selection and 2) timing adjustment.

62

Gate parameters
Name Delay Static pow. Dynamic energy
AND 8.3 ps 3.6 µW 1.4 aJ
XOR 6.5 ps 3.0 µW 1.4 aJ

JSIM

1µm SFQ cell library

Device param.
• Feature size
• Bias voltage
• Critical current
• RSFQ/ERSFQ

Gate level

µArch. unit freq./power/area models

NW PE
Buf.

µArch.
structure
model

Intra-unit gate pairs
AND -> AND
OR -> XOR

Gate count
AND 10
XOR 32

User input

µArchitecture level

Architecture level

NPU freq./power/area models

Inter-unit connection
AND(Buf) -> XOR(PE)

OR(PE) -> DFF(NWunit)

Unit count
PE 256
Buf. 4

SFQ-NPU simulator

SFQ-NPU
estimator

Arch.
structure
model

DNN description
• Network size
• Batch size

µArchitecture param.
• NW unit : bit width
• PE : bit width,

MAC type, #Reg.
• Buf. Entry: bit width

Architecture param.
• Array: Height, Width,
• Buf.: Size, #chunk

Area Power Performance

DAU

Fig. 10. SFQ-NPU overview

Data selection: Before starting computation, each ifmap
buffer row dedicatedly holds data for a given ifmap channel.
First, each ifmap buffer row provides its data to all DAU rows
through a splitter tree, where each DAU row is dedicated to
a single PE row’s weight. For example, nine ifmap pixels are
transferred to all four DAU rows in Fig. 9 (¶). Next, the
selector in each DAU row selectively takes the required input
for the weight mapped in the corresponding PE array row.
The first row in Fig. 9 takes only i1, i2, i4, and i5, and 0
for others as a bubble to avoid the computation stall (·). The
bubbles are filtered at the end of computation by using a valid
bit. For such data selection, the controller in each DAU row
dynamically generates control signals. Note that the controllers
can identify whether the given input is required or not based
on the DNN layer configuration and current weight mapping
information (e.g., current ifmap and weight pixel index).

Timing adjustment: To adjust the arrival timing of selected
ifmap pixels, DAU utilizes the cascaded special DFFs with
different lengths. By using the DFFs, each DAU row delays
to feed the data because the computed psum in the above
PE and the ifmap data should simultaneously arrive at the
PE. For example, if the PE consists of three pipeline stages,
the inputs from the second row should be delayed at most 2
(= 3− 1) cycles. In fact, our 8-bit PE consists of 15 pipeline
stages. Also, we bypass some DFFs when the adjacent PE
rows map the weights with different row index. For example,
as the weight’s row index mapped to the third PE increases
from that of the second PE (from 1 (w2) to 2 (w3)), we should
bypass one DFF for the correct operation (¸). To support the
bypassing, our special DFF has a bypassing line, whose control
signal is statically determined by weight filter width, strides,
and current weight index (¹).

IV. SIMULATION FRAMEWORK

In this section, we describe our architectural simulation
framework, SFQ-NPU, to explore and optimize the SFQ-based
NPU architecture. Fig. 10 shows the overview of SFQ-NPU,
which consists of two simulation engines: SFQ-NPU estimator

Clock

Clock cycle time (CCT) = 1/𝑓

T
𝑯𝒐𝒍𝒅𝑻𝒊𝒎𝒆 𝑺𝒆𝒕𝒖𝒑𝑻𝒊𝒎𝒆

Clock

Data

Clock

Data

(b) Concurrent-flow

(c) Counter-flow

Input
Output

𝜹𝒕

𝝉𝒄𝒍𝒐𝒄𝒌 𝝉𝒅𝒂𝒕𝒂

(a) Example timing chart with a DFF

Clock
Input Output

Fig. 11. Frequency model illustration

and SFQ-NPU simulator. SFQ-NPU estimator takes device-
level, microarchitecture-level, architecture-level information as
inputs, and derives the frequency, power, and area of the target
NPU design. Based on the obtained frequency and power
information, the SFQ-NPU simulator reports the effective
performance and power consumption by simulating target
DNN applications. In the following sections, we explain the
implementation details of each engine.

A. SFQ-NPU estimator

To carefully consider the SFQ logic’s unique features
ranging from the device to architecture, our SFQ-NPU esti-
mator takes a strategy of three-layer abstraction: gate-level,
microarchitecture-level, and architecture-level estimation.

1) Gate-level estimation: The gate-level estimation layer
accurately provides the timing parameters (i.e., SetupTime,
HoldTime, and delay), the power information (i.e., static power
and access energy), and the area for all SFQ logic gates
and wire cells with the given device parameters (e.g., bias
voltage, critical current). The gate models are compatible with
two SFQ technologies; rapid single-flux-quantum (RSFQ) [3],
[13]–[15], and energy-efficient RSFQ (ERSFQ) [11]. RSFQ
is the most practical and proven technology in the successful
demonstrations, whereas ERSFQ is a promising technology
that completely excludes the static power dissipation. The only
difference is how to supply the DC bias current, i.e., RSFQ
uses the bias resistors; on the other hand, ERSFQ uses the
bias JJs.

For the RSFQ gates, we extract all gate parameters by run-
ning JSIM [29] simulations with RSFQ cell library for AIST
1.0µm fabrication process technology [9]. For example, the
access energy is derived by taking an average of the dynamic
energy for all the possible states. Besides, we calculate each
gate’s area based on its number of JJs.

On the other hand, we estimate gate parameters of ERSFQ
based on those of RSFQ gates due to the lack of fabrication
information (or cell library) about ERSFQ technology. Specif-
ically, the timing parameters and area of ERSFQ gates are
assumed to be the same as those of RSFQ because all their gate
structures are the same, except for the bias current supply line.
Meanwhile, we estimate the access energy and static power of
ERSFQ gates as twice as that of RSFQ and zero, respectively.
Note that the difference in both access energy and static power
originates from the JJ-based DC biasing scheme [11].

63

1 mm

4-bit MAC unit

On
-c

hi
p

clo
ck

 g
en

.
Sh

ift
 re

g.

Sh
ift

 re
g.

(a)

1 mm

2x2 PE-arrayed NPU

Ifm
ap

Bu
f.

NW unit
Psum Buf.

(b)

W
eig

ht
 B

uf
.

Reg.

PE

Ofmap Buf.

(c)

MAC unit

PE

PE

PE

Fig. 12. Model validation setup (a) Chip microphotograph of 4-bit MAC unit
(b) 4 K measurement setup (c) Layout of the 2× 2 PE-arrayed NPU

2) Microarchitecture-level estimation: This abstraction
layer estimates the frequency, static power, access energy, and
area of each microarchitectural unit designed in Section III
(i.e., NW units, PE, DAU, and on-chip buffers). For the accu-
rate estimation, the microarchitecture-level layer first generates
the intra-unit gate pair and the gate count information for each
unit based on the gate-level circuit structure model. The intra-
unit pair and the gate count are utilized to derive each unit’s
frequency and power/area, respectively.

f = 1/CCT = 1/(SetupTime + Max(HoldTime, δt)) (1)

With the gate-level pipelining nature considered, the
microarchitecture-level frequency model calculates the fre-
quency of all gate pairs in the target unit and takes the
minimum value as the unit’s frequency. Fig. 11 and Eq. (1)
illustrate the model to calculate the frequency of one gate
pair, where δt is the difference between the data and clock
propagation delay (i.e., τdata−τclock). Note that Eq. (1) is the
direct translation of the two timing constraints: 1) data should
arrive after the HoldTime and 2) the next clock pulse should
arrive after SetupTime elapsed from the data arrival.

To reflect the real-world SFQ circuit design practice, we
model both representative clocking schemes, concurrent-flow
clocking (Fig. 11(b)) and counter-flow clocking (Fig. 11(c)).
As explained in Section III-B, to achieve high frequency, we
apply the concurrent-flow clocking to all circuits without the
feedback loop. Also, we include the frequency-enhancing tech-
nique called clock skewing, which minimizes δt by adjusting
the length of data and clock line. On the other hand, we apply
the counter-flow clocking to the circuits with the feedback
loop, such as shift-register-based on-chip buffers.

Meanwhile, the microarchitecture-level power and area
models calculate the power information (i.e., static power and
access energy) and area of each unit based on the gate count
information and the gate parameters.

3) Architecture-level estimation: The architecture-level
layer reports the final estimation results regarding the area,
static power, access energy, and clock frequency of the target
NPU configuration. For the accurate prediction, this layer not
only integrates the microarchitecture-level estimations based

Model output Layout design Fabricated chip

(a) Frequency (b) Power consumption (c) Area

0

50

100

MAC
 un

it

SR
mem NPU

Fr
eq

ue
nc

y
(G

Hz
)

0

0.5

1

1.5

MAC
 un

it

SR
mem

NW un
it

NPU

St
at

ic
Po

w
er

 (m
W

)

0

5

10

15

MAC
 un

it

SR
mem

NW un
it

NPU

Ar
ea

 (m
m
2)

Fig. 13. Model validation result

on the unit counts but also considers the inter-unit gate
pair information. For instance, we calculate all the inter-unit
communication latency based on the interfacing gates’ timing
parameters and include them to derive the highest frequency
in NPU. Also, based on the estimated unit-to-unit distance, we
calculate the area of wire cells required to connect each unit
and include it to the final area estimation.

4) Model validation: We carefully validate our SFQ-NPU
estimator in terms of the frequency, power, and area by
comparing it with a fabricated 4-bit MAC unit (Fig. 12(a))
measured in the 4 K environment (Fig. 12(b)). Also, we com-
pare the model’s output with the post-layout characterizations
for 8-bit 8-entry shift-register-based memory (SRmem), 8-bit
NW unit, and a 4-bit 2 × 2 PE-arrayed NPU (Fig. 12(c)).
Note that our gate-level estimation is already validated in its
accuracy because it is based on the validated cell library, which
succeeded in fabricating real chips for many times.

First, we validate our microarchitecture-level estimation
with MAC unit, SRmem, and NW unit. Note that there is no
frequency result for a single NW unit because it only consists
of DFF-splitter pairs. As Fig. 13 shows, SFQ-NPU estimator
accurately predicts all the frequency, power, area for each unit
with the average error of 5.6%, 1.2%, and 1.3%, respectively.

Next, we also validate the architecture-level estimation with
the 4-bit 2 × 2 PE-arrayed NPU design (Fig. 12(c)). Even
though it is a small NPU prototype, the layout design is enough
to show the inter-unit connections’ impact on the frequency
due to the 2D-systolic network’s scalable structure. As shown
in Fig. 13’s NPU, our model well matches the frequency,
power, and area result of the post-layout simulation with the
error of 4.7%, 2.3%, and 9.5%, respectively.

B. SFQ-NPU simulator

For the given SFQ-based NPU design running DNN appli-
cations, SFQ-NPU simulator reports the effective performance
and power consumption based on the obtained frequency
and power information from the SFQ-NPU estimator. As the
first step for the simulation, SFQ-NPU simulator analyzes
all required weight mappings by taking the DNN description
file (i.e., ifmap window size, filter window size, the number
of filters, the number of strides) and architecture description
file as inputs. We use a batch of typical DNN input images
(224 × 224 × 3) as inputs. Next, for each weight mapping,

64

SFQ-NPU simulator

Preparation sim.

Buffer fill/drain

Weight mapping

Psum buf.

DA
U

Ofmap buf.

W
eig

ht
 b

uf
.

Ifm
ap

bu
f.

Of
f-c

hi
p

DR
AM

Of
f-c

hi
p

DR
AM

Computation sim.

Computation cycle

Stall analyzer

Access
trace

analyzer

DNN description
• Network size
• Batch size

Arch. description
• Array: Height,

Width
• Buf.: Size,

#chunk

Trace

Cycles

Performance Power

Power info.

Frequency

Memory info.
• Bandwidth

Fig. 14. SFQ-NPU simulator overview

the simulator runs the cycle-based simulation to calculate the
consumed cycles and the activated cycles for each hardware
unit. During the simulation, the simulator also models the
memory stall incurred by limited memory bandwidth by
taking memory bandwidth as its input. Finally, the SFQ-NPU
simulator aggregates the result of each mapping and reports the
performance numbers (e.g., latency, throughput, PE utilization)
and the power values (i.e., static power, dynamic power).

V. OPTIMIZING SFQ-BASED NPU DESIGN

In this section, with our simulation framework, we architect
an extreme-performance SFQ-based NPU by taking the best
advantage of SFQ technology. Similar to other devices, SFQ-
based NPUs have a large design space that cannot be easily
explored even with the modeling tool. Therefore, we start
from our baseline SFQ-based NPU architecture (Section III)
and identify the major performance bottlenecks to be resolved
(Section V-A). Next, we propose an optimal SFQ-based NPU
architecture, SuperNPU, which resolves the identified bottle-
necks with the architecture-level solutions (Section V-B).

In the following sections, we conduct performance analyses
by running six CNN workloads (i.e., AlexNet [33], FasterR-
CNN [34], GoogLeNet [35], MobileNet [36], ResNet 50 [37],
VGG16 [38]) with our simulation framework. As the input
fabrication process information, we take the currently avail-
able AIST 1.0 µm process to show the SFQ technology’s
performance potential conservatively1. Moreover, we assume
the memory bandwidth of 300 GB/s, which is the typical value
of HBM used by the recent TPUv2 [39].

A. Design implications for the SFQ-optimal NPU architecture

1) Baseline SFQ-based NPU setup: We first introduce
performance-side design implications by conducting analyses
with the baseline SFQ-based NPU design introduced in Sec-
tion III (hereinafter called Baseline). To show the implica-
tions, we start from Baseline following the TPU core’s [40]

1An i-line stepper with a wavelength of 365 nm (introduced to the market
in the mid-1990s) is used in the fabrication. The state-of-the-art steppers using
KrF or ArF excimer lasers would allow the fabrication of ultrafine Josephson
junctions and patterns.

0%

50%

100%

Ale
xN
et

Fa
ste
rRC
NN

Go
og
Le
Ne
t

Mo
bil
eN
et

Re
sN
et5
0
VG
G1
6

Cy
cle

 b
re

ak
do

w
n

(N
or

m
al

ize
d)

Workloads

Preparation Computation

Fig. 15. Baseline’s cycle breakdown nor-
malized for each CNN workload

PE
array

DD
A
U

Ifmap
buffer

Ofmap
buffer

Psum
buffer

Input data
Data path

❷

❶

Fig. 16. Example data path
of on-chip buffers

architectural specification for three reasons. First, we target the
server-side NPU due to the need for cryogenic cooling support.
Second, Baseline has a similar hardware structure with the
TPU core (i.e., weight-stationary dataflow and systolic-array
network). Third, its estimated area might be comparable to
the TPU core (< 330 mm2) if the SFQ circuits or JJs are
equivalently scaled to 28 nm as CMOS technology used in the
TPU design2. We summarize Baseline’s specification including
the architectural configurations in Table I.

As Table I shows, the peak performance of Baseline is
significantly high, 3366 TMAC/s, with the clock frequency
over 52 GHz. However, we find that the effective performance
of Baseline is only about 6.45 TMAC/s on average, which is
even lower than 0.2% of its peak performance (Fig. 17). In
the following subsections, we identify the performance bot-
tlenecks and set the design directions to resolve the identified
challenges.

2) Bottleneck 1. Huge data movement overhead: We first
emphasize the importance of reducing the overhead of data
movement among different on-chip buffers and within a sin-
gle buffer. Fig. 15 shows the Baseline’s cycle breakdown
normalized for each CNN workload. As the figure clearly
indicates, the Baseline’s performance is highly dominated by
the preparation step (above 90%), which moves data to the
appropriate location before starting computation. Based on this
analysis, we identify the huge data movement overhead as the
first performance bottleneck.

Fig. 16 shows the data movement overhead with the ex-
ample showing the data location right after the end of com-
putation for one weight mapping. First, the calculated partial
sums in the ofmap buffer should move to the psum buffer
when they need to be accumulated with the next computation
result (Fig. 16 ¶). In this case, the Baseline should consume
a huge amount of cycles corresponding to the sum of two
buffers’ length, 65,536 cycles (= 16 MB ÷ 256 B/cycle), due

2To the best of our knowledge, no study mentions the physical limit of
JJ scaling. On the other hand, there is the scaling rule that the frequency
increases in proportion to the reduction rate of JJ until 200 nm [41], and T-
flip-flop (TFF) has successfully demonstrated at up to 770 GHz with the
technology [42]. Moreover, there are several schemes to reduce the SFQ
cell size without the JJ scaling, such as the introduction of shunt-resistor-
free junctions [43], vertically-stacked junctions [44], multi-layer process
technology with high-inductance layers [45] and new materials.

65

1.E+02

1.E+04

1.E+06

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

GM
AC

/s

MAC/Byte (compute intensity)

AlexNet
FasterRCNN
GoogLeNet
MobileNet
ResNet50
VGG16

> 98%
Peak perf.

Roofline perf.
(average)

Fig. 17. Limited performance improvement in Baseline due to the low
computational intensity with a single batch

PE
array

Weights from
different filters

Under-
utilized

(a)

PE
array

Small number of
active columns

Under-
utilized

(b)

PE
array

Remaining
ifmap
channels

Under-
utilized

(c)

Fig. 18. On-chip buffer under-utilization in terms of (a) ofmap buffer’s length,
(b) ofmap buffer’s width, and (c) ifmap buffer’s length

to the shift-register-based memory implementation. Also, the
ifmap buffer suffers from a similar situation to move the data
from its tail to the head when the used ifmap data is required
for the next computation again (Fig. 16 ·). Therefore, we
conclude that we should minimize the wasteful length of the
data movement.

3) Bottleneck 2. Fast but idle computing units: Next, we
emphasize the importance of improving the computing unit’s
(i.e., PE array) utilization. Fig. 17 shows the Baseline’s
roofline plot, which represents the highest achievable per-
formance for a given computational intensity. In this work,
we define computational intensity as the number of MAC
operations executed with one weight data mapped on the PE.
Note that it includes the impact of input batch size on the
amount of data reuse.

With the roofline model, Fig. 17 shows the performance
and computational intensity of each workload with a single
input batch. Even though the Baseline’s computing units are
fast, they are mostly idle with the maximum PE utilization
(= roofline performance ÷ peak performance) below 2%
on average. The underutilization directly results from the
workloads’ low computational intensity and the relatively slow
memory access (vs. 52 GHz computation speed). Therefore,
we conclude that we should maximize the PE utilization by
increasing the computational intensity.

4) Bottleneck 3. Waste of on-chip buffer capacity: Lastly,
we highlight that it is crucial to resolve the on-chip buffer
underutilization issue. To increase the computational intensity,
it is required to increase the input batch size for DNN
workloads. However, it is highly difficult for the Baseline to
take larger batch sizes (i.e., more than one) without additional
off-chip memory access because the on-chip buffer can be
significantly underutilized.

MUX

D
A
U

DE
M

UX

DEMUX

PE array
(64 x 256)

Ifmap buffer
(64 x 384 KB)

Integrated
output buffer
(256 x 96 KB)

M
UX

to
PE array

to
ifmap buffer

to
off-chip
memory

M
U
L

ADD
8

regs
PE design

❸

❹

Ofmap
buffer
select

Psum
buffer
select

❷

❶

❶

Buffer
chunk

Fig. 19. SuperNPU overview

Fig. 18 shows the three scenarios to explain the buffer
underutilization problem, which happens even with a single
batch. First, even with the huge amount of empty space, the
ofmap buffer should flush the data when the next computation
is for the different set of output channels (Fig. 18(a)). Second,
we waste the ofmap buffer’s capacity when the number of
active PE columns is smaller than the ofmap buffer’s width
(Fig. 18(b)). Third, we cannot map the remaining ifmap
channels to the ifmap buffer because each buffer row is
dedicated to a given ifmap channel (Fig. 18(c)). Therefore,
we conclude that we should maximize the buffer utilization
by resolving all the mentioned cases.

B. SuperNPU: SFQ-optimal NPU architecture

The design implications for optimizing SFQ-based NPU are
summarized as follows. First, the optimal design should have
a short path for the on-chip buffer data movement. Next, the
optimal design should be able to take a large batch size without
additional off-chip memory access. Lastly, to achieve the goal,
the buffer underutilization problem also should be resolved.

Following all the implications, we design the optimal SFQ-
based NPU architecture, SuperNPU, as shown in Fig. 19.
First, SuperNPU has the optimized on-chip buffer architecture
where each on-chip buffer is divided into small chunks and
connected by the multiplexer and demultiplexer trees. Note
that SuperNPU does not have a separated psum buffer but
integrates it with the ofmap buffer. Next, the PE array width of
SuperNPU is reduced to 1/4, and the on-chip buffer capacity
becomes twice compared to the Baseline. Finally, each PE
in SuperNPU has eight registers, so a PE can hold eight
different weights simultaneously. In the following subsections,
we explain how each design choice resolves the identified
performance bottlenecks in detail.

1) Optimized on-chip buffer architecture: The optimized
on-chip buffer architecture meets the design implications as
follows. First, SuperNPU removes the unnecessary data move-
ment and increases the effective buffer capacity by integrating
the psum buffer and the ofmap buffer. For example, SuperNPU
does not have to move the calculated psum to other buffer

66

0

0.5

1

1.5

0

10

20

Ba
sel

ine

+Int
eg

rat
ion

+Divis
ion

 4

+Divis
ion

 16

+Divis
on

 64

+Divis
ion

 25
6

+Divis
ion

 10
24

+Divis
ion

 40
96

Ar
ea

(N
or

m
al

ize
d

to

ba
se

lin
e)

Pe
rfo

rm
an

ce
(N

or
m

al
ize

d
to

ba

se
lin

e)
Single batch performance Max batch performance Area

+Int
eg

rat
ion

(Di
vis

ion
 2)

Fig. 20. Performance impact and area overhead of the buffer optimizations

0

10

20

30

40

0

20

40

60

256, 24 MB
(Buffer opt.)

128, 38 MB 64, 46 MB 32, 50 MB 16, 51 MB Co
m

pu
ta

tio
na

l i
nt

en
sit

y
(N

or
m

al
ize

d
to

 B
as

el
in

e)

Pe
rfo

rm
an

ce
(N

or
m

al
ize

d
to

 B
as

el
in

e)

PE array width, on-chip buffer capacity

Max batch performance
(without added buffer)

Max batch performance
(with added buffer)

Computational intensity
(wiith added buffer)

Fig. 21. Performance and computational intensity with resource balancing

chunks. Instead, it just selects the buffer chunk with the
psum data as the psum buffer, and one of the empty buffer
chunks as the ofmap buffer (Fig. 19 ¶). Moreover, by indi-
vidually selecting the ofmap buffer and psum buffer through
the separated multiplexer/decoder, we can flexibly utilize the
integrated buffer. Fig. 20 shows the performance impact of
buffer integration. To match the capacity of input and output
buffer, we adjust each buffer’s capacity to 12 MB.

Next, by dividing each buffer to several small buffer chunks,
SuperNPU significantly reduces data movement overhead in
the on-chip buffer (Fig. 19 ·). Our simulation results (Fig. 20)
show the performance impact of dividing buffer with the vari-
ous degree of division. With the increasing division degree, the
single batch performance continuously increases and achieves
6.26 times higher performance compared to Baseline, from the
division degree of 64. Such performance improvement mainly
originates from the shortened buffer length, which correpond-
ingly reduces the data-shifting cycles. This result indicates
that the buffer division successfully resolves the performance
bottleneck resulting form data movement overhead.

The buffer division also mitigates the buffer underutilization
issues. For example, the NPU does not need to flush the
calculated data in ofmap buffer if there are remaining buffer
chunks to hold it, as shown in Fig. 19 ¸ (i.e., resolves
Fig. 18(a)). Moreover, divided ifmap buffer can hold many
input channels, corresponding to the PE array height multiplied
by the number of buffer chunks in maximum, as shown in
Fig. 19 ¹ (i.e., resolves Fig. 18(c)). Fig. 20 shows the impact
of improved buffer utilization on the performance with the
maximum batch size for each workload. The performance con-
tinuously increases and achieves 20 times higher performance
from the division degree of 64. Based on the result, we set
the buffer division degree as 64 because the performance is
saturated. Note that further division incurs the exponentially
increasing area overhead of multiplexer/decoder (Fig. 20).

0 10 20 30 40 50 60

1

2

4

8

16

32

Performance (Normalized to Baseline)

Nu
m

be
r o

f r
eg

ist
er

s
in

 P
E

PE array width 64 (with added buffer) PE array width 128 (with added buffer)

Fig. 22. Performance impact of number of registers in PE

2) Efficient resource balancing: Next, in SuperNPU, we
increase the on-chip buffer capacity by reducing the number
of PEs in the PE array. The insight for this design choice is
that there is more room to increase the computational intensity
by sacrificing the excessively-high peak performance. Note
that we cannot utilize the current peak performance without
increasing the computational intensity furthermore (Fig. 17).

When reducing the number of PEs, we do not reduce the
height of the PE array but its width, to simultaneously resolve
the remaining buffer underutilization issue. Even with the
optimized on-chip buffer architecture, we still cannot fully
utilize the output buffer due to the problem shown in Fig. 18b.
However, this underutilization issue naturally disappears with
the reduced PE array width because the width of the output
buffer correspondingly decreases. While reducing the PE array
width, we correspondingly divide the integrated output buffer
further (i.e., division degree from 64 to 256) to maintain the
length of each buffer chunk.

Fig. 21 shows the performance impact of resouce balancing
which increases the on-chip buffer capacity while reducing the
PE array width. In our analysis, we start from the design with
the optimized on-chip buffer (256, 24 MB (Buffer opt.)). Max
batch (without added buffer) indicates that the NPU with the
given PE array width and fixed 24 MB on-chip buffer (i.e.,
no additional capacity). On the other hand, Max batch (with
added buffer) has the increased buffer capacity corresponding
to the values shown in the graph. We derive each on-chip
buffer capacity based on the area occupancy of the PE array
and the on-chip buffers.

First, Max batch performance (without added buffer) in-
creases to around 30 times higher compared to Baseline,
even though the peak performance decreases. This result
indicates that the PE array width reduction itself increases the
computational intensity by improving the buffer utilization.
Next, with the increased buffer capacity, performance (Max
batch performance (with added buffer)) is further improved to
47 times and 42 times higher compared to Baseline in the PE-
array width of 128 and 64, respectively. Although the optimal
PE array width is 128 in this analysis, the design with the
PE array width of 64 has more room for the performance
improvement with a much higher computational intensity.
Therefore, we focus on these two NPU architectures in the
following subsection.

67

TABLE I
EVALUATION SETUP

TPU Baseline Buffer
opt.

Resource
opt.

Super-
NPU

PE array
width 256 256 256 64 64

PE array
height 256 256 256 256 256

Ifmap buf.

24 MB

8 MB 12 MB 24 MB 24 MB
Ofmap buf. 8 MB 12 MB 24 MB 24 MBPsum buf. 8 MB
Weight buf. 64 KB 64 KB 16 KB 128 KB
regs in PE 1 1 1 1 8
Frequency

(GHz) 0.7 52.6 52.6 52.6 52.6

Peak perf.
(TMAC/s) 45 3366 3366 842 842

Area (mm2)
(28nm) <330 ∼283 ∼285 ∼298 ∼299

3) Increasing the number of registers in PE: Finally, to
further improve the performance, we increase the number of
weight registers in PE. With the larger number of weight
registers in each PE, SuperNPU increases the PE utilization
by filling several PE pipeline stages with a single ifmap data.
For example, if each PE holds four different weights from
different weight filters, PE can compute four different MAC
operations with one ifmap pixel.

Fig. 22 shows the performance impact of the number of
registers in PE on two chosen designs (128-width and 64-
width PE arrays). First, the PE array width of 128 (with added
buffer) cannot improve its performance further due to its lower
computational intensity, i.e., performance is bounded by the
relatively slow memory access. On the other hand, in the
PE array width of 64, we get much higher performance im-
provement thanks to its high computational intensity (Fig. 21).
Based on this performance analysis, we take the PE array
width of 64, the on-chip buffer capacity of 46 MB, and eight
registers per PE in SuperNPU.

VI. EVALUATION

In this section, we show the system-level performance and
power efficiency of SuperNPU by pointing out the impact of
each optimization scheme step by step. We first introduce our
evaluation methodology (Section VI-A). Next, we evaluate
SuperNPU in terms of the performance (Section VI-B) and
performance per Watt (Section VI-C).

A. Evaluation methodology

1) Evaluation setup: We evaluate SuperNPU by comparing
it with the TPU core [40], one of the most representative
server-side DNN accelerators. To estimate the TPU core’s
performance, we use SCALE-SIM [32], systolic-array-based
cycle-accurate DNN accelerator simulator, with the hardware
specification summarized in Table I. For the TPU’s power
consumption, we take 40 W as its average value based on
[40]. Also, we set the memory bandwidth of TPU core as
300 GB/s following TPUv2 board specification [39].

TABLE II
WORKLOAD SETUP (BATCH SIZE)

TPU Baseline Buffer
opt.

Resource
opt.

Super-
NPU

AlexNet 22 1 15 30 30
FasterRCNN 20 1 3 30 30
GoogLeNet 20 1 3 30 30
MobileNet 20 1 3 30 30
ResNet50 20 1 3 30 30
VGG16 3 1 1 7 7

0

20

40

Ale
xN

et

Fa
ste

rRC
NN

Go
og

Le
Ne

t

Mob
ileN

et

Re
sN

et5
0

VG
G1

6

Av
era

ge

Pe
rfo

rm
an

ce

(N
or

m
al

ize
d

to
 T

PU
)

Workloads

TPU
Baseline
Buffer opt.
Resource opt.
SuperNPU

Fig. 23. Performance evaluation

In our performance evaluation, we explicitly show the per-
formance impact of each optimization step by accumulatively
evaluating three intermediate SFQ-based NPU architecture de-
signs: architecture introduced in Section V-A (Baseline), with
optimized on-chip buffer (Buffer opt.), and with reduced PE
array and larger buffer capacity (Resource opt.). We also set
the memory bandwidth for SFQ-based NPU designs as same
as the TPU core, 300 GB/s. As the fabrication technology,
we take AIST 1.0 µm process as same as in Section V. We
summarize the setup for each architecture in Table I.

For the evaluation, we use six representative CNN work-
loads that have various application characteristics (e.g., com-
putational intensity, layer configurations). We set each work-
load’s batch size as the maximum value, which can be held
by a given on-chip buffer capacity without additional off-chip
memory access. For example, for TPU, we set the batch size
of AlexNet as 22 because its largest layer’s (second layer)
input/output data size is 1.05 MB, where 22 input batches
can be held within 24 MB in maximum. Our batch setup is
conservative because there is room to increase the batch size
while improving performance. We summarize each workload’s
batch size setup for all NPU designs in Table II.

B. Performance evaluation

Fig. 23 shows the speed-up of SFQ-based NPU designs.
The speed-up is calculated by the throughput (i.e., TMAC/s)
normalized to that of the TPU. In our performance evaluation,
SuperNPU achieves the significant speed-up (23 times) as
three architectural optimizations are applied one by one.

The baseline SFQ-based NPU design (Baseline) shows
the poor performance, only 40% of TPU’s performance on
average. The low performance mainly results from the data
movement overhead between the on-chip buffers, idle PEs,
and low on-chip buffer utilization, as identified in Section V-A.

68

Note that we cannot put even one more input image without
off-chip memory overhead in Baseline (Table I).

With the optimized buffer architecture, Buffer opt. achieves
the speed-up of 7.7 times on average by resolving the per-
formance bottlenecks in Baseline. The divided and integrated
on-chip buffers significantly improve the performance of all
workloads by removing the wasteful on-chip buffer data move-
ment. Furthermore, by mitigating the buffer underutilization
(Fig. 18(a), (c)), most workloads can take benefit of larger
batch size (15 in AlexNet and 3 for others except for VGG16).

In Resource opt., average speed-up reaches 17.3 times,
mainly thanks to the much higher computational intensity in
all workloads. For example, FasterRCNN, GoogLeNet, and
MobileNet show the drastically increasing performance in this
optimization step with the 10 times larger batch size compared
to Buffer opt. Among them, MobileNet shows the highest
speed-up (around 40 times) because of its small number of
weight filters, usually lower than 64. Note that even with the
reduced PE array width, there is no performance degradation
in layers consisting of few weight filters. On the other hand,
the performance of AlexNet is reduced in Resource opt. due to
the reduced peak performance. This is the exact opposite case
compared to MobileNet. However, the performance degrada-
tion is almost mitigated by the doubled batch size in AlexNet.

Finally, with the increased number of registers in PE,
SuperNPU boosts all workloads over 10 times, 23 times on
average, and 42 times in MobileNet. In the previous step, the
layers consisting of less than 64 filters suffer from performance
degradation corresponding to the reduced PE array width.
However, in SuperNPU, we mitigate performance degradation
by increasing the number of weights in PE (i.e., improving
the PE pipeline utilization). For example, in AlexNet, we
compensate the performance reduction in Resource opt. by
filling the PE pipeline several times with the single input
data. As a result, SuperNPU not only successfully shows
the performance potential of SFQ-based NPU design but also
clearly indicates the importance of optimizing SFQ processors
in the right direction.

C. Power-efficiency evaluation

We evaluate SuperNPU’s power-efficiency for two differ-
ent SFQ device technologies, RSFQ [3], and ERSFQ tech-
nology [11]. Table III shows the power consumption and
performance per Watt (i.e., power-efficiency) for SuperNPUs
and TPU core. Power-efficiency values are normalized to that
of TPU core, which dissipates 40 W in its operation [40].
Also, to include the cooling cost for the 4 K, we set the
cooling cost as the 400 times of NPU’s power consumption
following [46]. In our power-efficiency evaluation, SuperNPU
shows 490 times higher power-efficiency provided the free
cooling, with ERSFQ technology.

With RSFQ device technology, SuperNPU consumes 964 W,
which is infeasible power consumption, due to its huge static
power dissipation. Even though its low switching energy,
RSFQ technology requires to supply DC-biased current (i.e.,

TABLE III
POWER-EFFICIENCY EVALUATION

Power (W) Performance/W
(Normalized to TPU)

TPU 40 1

RSFQ-SuperNPU
(w/o cooling cost)

964 0.95

RSFQ-SuperNPU
(w/ cooling cost)

3.8x105 0.002

ERSFQ-SuperNPU
(w/o cooling cost)

1.9 490

ERSFQ-SuperNPU
(w/ cooling cost)

751 1.23

DC-biased voltage with bias resistor) for each JJ for the op-
eration (2.5 mV and 70 µA, respectively). Recently, although
several device-level optimizations are proposed to reduce the
static power, 960 W is too high to make this technology
feasible. As Table III shows, the power efficiency of RSFQ-
SuperNPU is not much lower than TPU (95%) thanks to the 23
times of speed-up. However, with the cooling cost included,
the normalized power efficiency value becomes 0.002.

On the other hand, ERSFQ-SuperNPU consumes only
1.9 W because there is no static power consumption in ERSFQ
technology [4], [11]. As ERSFQ provides the bias current
using JJ with inductors (i.e., bias resistors are replaced to bias
JJ), it does not consume static power, but the number of JJs
increases (i.e., twice higher dynamic energy per switching).
However, thanks to the significantly low switching energy
of JJs, ERSFQ-SuperNPU achieves 490 times higher power
efficiency compared to the TPU with free cooling provided.
Even including the 400 times of cooling cost, ERSFQ-
SuperNPU attains 1.23 times higher power efficiency. That is,
with ERSFQ-SuperNPU, architects can increase the server-
side NPU’s performance to 23 times with 490 times higher
power-efficiency with assuming free cooling.

VII. RELATED WORK

Exploiting emerging devices is a critical challenge to design
next-generation computer systems. Many researchers have so
far been proposed and discussed such novel architectures.
In this section, we discuss prior work from the viewpoint
of neural network (NN) acceleration and superconducting
computing to clarify the novelty of this paper.

A lot of researchers have proposed NN accelerators
for power-efficient processing [47]–[51]. A representative
approach exploiting an emerging device is to implement
memristor-based dot-product operations [52]–[54]. Another
direction is to introduce PIM (Processor-In-Memory) and die-
stacking technologies [53], [55]–[57]. A more challenging
attempt is to apply nanophotonic technology [58]–[62], or
superconducting SQUIDs [63], [64] to NN operations. Unlike
previous researches, this paper focuses on SFQ circuits and
achieves better performance in both the computing power and
energy efficiency than the conventional CMOS designs even
with the cooling penalty.

69

Prior researches regarding SFQ demonstrated its signifi-
cant potential from the viewpoint of circuit implementation.
Regardless of its high-speed operations, unfortunately, their
throughput was quite low due to the simple but bit-serial
designs [65], [66]. Although a recent design successfully
demonstrated high-throughout bit-parallel multiplier [5], [67],
it is still not clear whether or not the SFQ technology
can realize at the system level. Swamit et al. proposed an
accelerator for SHA-256 for low latency operations [26].
Tzimpragos et al. introduced an interesting idea that attempts
to apply the concept of the delay-based logic (race logic) [68]
to SFQ [69]. Another relating proposal is to use not SFQ
but AQFP [70] for stochastic computing [71]. Our target is
to explore and optimize the architecture of the SFQ-based
NPU and to clarify the system-wide potential. To achieve this
goal, we have developed a simulation framework, including
power/frequency/area models validated based on physical chip
fabrication or post-layout characterizations. Also, we have
deeply evaluated and presented the significant potential of SFQ
devices at the architectural level.

VIII. CONCLUSION

Superconductor SFQ technology is a highly promising
solution in post-Moore’s era. However, SFQ computing has
not yet been realized because of the lack of understanding
of SFQ technologies’ potentials and limitations. This paper
resolves the challenge as follows. First, we implement and
validate an SFQ-based NPU modeling framework. Next, by
using the tool, we identify critical challenges in architecting an
SFQ-based NPU. Finally, we present SuperNPU, our example
SFQ-based NPU architecture, which effectively addresses the
challenges at the architectural level. Our evaluation shows that
the proposed design outperforms a conventional state-of-the-
art NPU by 23 times with comparable power efficiency even
including the extremely expensive cooling costs. We believe
that our design methodology can also be applied to architect
other SFQ-based architectural units.

ACKNOWLEDGMENTS

This work was supported by JST-Mirai Program Grant
Number JPMJMI18E1, JSPS KAKENHI Grant Numbers
JP19H01105, JP18H05211, JP18J21274. The circuit is de-
signed with the support by VDEC of the University of
Tokyo in collaboration with Cadence Design Systems, Inc.,
and fabricated in the CRAVITY of AIST. We also appreci-
ate the support from National Research Foundation of Ko-
rea (NRF) grant funded by the Korean Government (NRF-
2019R1A5A1027055, NRF-2020M3H6A1084857).

REFERENCES

[1] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectrum,
vol. 34, no. 6, pp. 52–59, 1997.

[2] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous, and
A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very small
physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,
pp. 256–268, 1974.

[3] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: a new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Transactions on Applied Superconductivity, vol. 1, no. 1,
pp. 3–28, March 1991.

[4] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp.
760–769, 2011.

[5] I. Nagaoka, M. Tanaka, K. Inoue, and A. Fujimaki, “A 48GHz 5.6mW
gate-level-pipelined multiplier using single-flux quantum logic,” in 2019
IEEE International Solid- State Circuits Conference - (ISSCC), 2019, pp.
460–462.

[6] I. Nagaoka, M. Tanaka, K. Sano, T. Yamashita, A. Fujimaki, and K. In-
oue, “Demonstration of an energy-efficient, gate-level-pipelined 100
TOPS/W arithmetic logic unit based on low-voltage rapid single-flux-
quantum logic,” in 2019 IEEE International Superconductive Electronics
Conference (ISEC), 2019, pp. 1–3.

[7] G. Pasandi, A. Shafaei, and M. Pedram, “SFQmap: A Technology
Mapping Tool for Single Flux Quantum Logic Circuits,” arXiv e-prints,
p. arXiv:1901.00894, Jan. 2019.

[8] M. Pedram and Y. Wang, “Design automation methodology and tools
for superconductive electronics,” in 2018 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2018, pp. 1–6.

[9] S. Nagasawa, K. Hinode, T. Satoh, M. Hidaka, H. Akaike, A. Fujimaki,
N. Yoshikawa, K. Takagi, and N. Takagi, “Nb 9-layer fabrication process
for superconducting large-scale SFQ circuits and its process evaluation,”
IEICE Transactions on Electronics, vol. E97.C, no. 3, pp. 132–140,
2014.

[10] K. Nakajima, Y. Onodera, and Y. Ogawa, “Logic design of Josephson
network,” Journal of Applied Physics, vol. 47, no. 4, pp. 1620–1627,
1976. [Online]. Available: https://doi.org/10.1063/1.322782

[11] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, “Zero static power
dissipation biasing of RSFQ circuits,” IEEE Transactions on Applied
Superconductivity, vol. 21, no. 3, pp. 776–779, June 2011.

[12] M. H. Volkmann, A. Sahu, C. J. Fourie, and O. A. Mukhanov,
“Implementation of energy efficient single flux quantum digital
circuits with sub-aJ/bit operation,” Superconductor Science and
Technology, vol. 26, no. 1, p. 015002, 2013. [Online]. Available:
http://stacks.iop.org/0953-2048/26/i=1/a=015002

[13] Y. Yamanashi, T. Nishigai, and N. Yoshikawa, “Study of LR-loading
technique for low-power single flux quantum circuits,” IEEE Transac-
tions on Applied Superconductivity, vol. 17, no. 2, pp. 150–153, June
2007.

[14] N. Yoshikawa and Y. Kato, “Reduction of power consumption of
RSFQ circuits by inductance-load biasing,” Superconductor Science
and Technology, vol. 12, no. 11, pp. 918–920, nov 1999. [Online].
Available: https://doi.org/10.1088%2F0953-2048%2F12%2F11%2F367

[15] M. Tanaka, M. Ito, A. Kitayama, T. Kouketsu, and A. Fujimaki,
“18-GHz, 4.0-aJ/bit operation of ultra-low-energy rapid single-flux-
quantum shift registers,” Japanese Journal of Applied Physics, vol. 51,
p. 053102, may 2012. [Online]. Available: https://doi.org/10.1143%
2Fjjap.51.053102

[16] M. Dorojevets, P. Bunyk, and D. Zinoviev, “Flux chip: Design of a 20-
GHz 16-bit ultrapipelined rsfq processor prototype based on 1.75-/spl
mu/m lts technology,” IEEE Transactions on Applied Superconductivity,
vol. 11, no. 1, pp. 326–332, 2001.

[17] M. Dorojevets, Z. Chen, C. L. Ayala, and A. K. Kasperek, “Towards
32-bit energy-efficient superconductor RQL processors: The cell-level
design and analysis of key processing and on-chip storage units,” IEEE
Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1–8, 2015.

[18] M. Bhushan, P. Bunyk, M. Cuthbert, E. P. DeBenedictis, M. Frank, and
T. Humble, “Cryogenic electronics and quantum information process-
ing,” 6 2019.

[19] G.-M. Tang, P.-Y. Qu, X.-C. Ye, and D.-R. Fan, “Logic design of a 16-
bit bit-slice arithmetic logic unit for 32-/64-bit RSFQ microprocessors,”
IEEE Transactions on Applied Superconductivity, vol. PP, pp. 1–1, 01
2018.

70

[20] Y. Yamanashi, T. Kainuma, N. Yoshikawa, I. Kataeva, H. Akaike,
A. Fujimaki, M. Tanaka, N. Takagi, S. Nagasawa, and M. Hidaka,
“100 GHz demonstrations based on the single-flux-quantum cell library
for the 10 kA/cm2 Nb multi-layer process,” IEICE Transactions on
Electronics, vol. 93, no. 4, pp. 440–444, apr 2010. [Online]. Available:
https://ci.nii.ac.jp/naid/120006382470/

[21] K. Ishida, M. Tanaka, T. Ono, and K. Inoue, “Single-flux-quantum cache
memory architecture,” in 2016 International SoC Design Conference
(ISOCC), 2016, pp. 105–106.

[22] S. Tahara, I. Ishida, Y. Ajisawa, and Y. Wada, “Experimental vortex
transitional nondestructive read-out Josephson memory cell,” Journal of
Applied Physics, vol. 65, no. 2, pp. 851–856, Jan. 1989.

[23] G. Konno, Y. Yamanashi, and N. Yoshikawa, “Fully functional operation
of low-power 64-kb Josephson-CMOS hybrid memories,” IEEE Trans-
actions on Applied Superconductivity, vol. 27, no. 4, pp. 1–7, 2017.

[24] M. Tanaka, M. Suzuki, G. Konno, Y. Ito, A. Fujimaki, and N. Yoshikawa,
“Josephson-CMOS hybrid memory with nanocryotrons,” IEEE Transac-
tions on Applied Superconductivity, vol. 27, no. 4, pp. 1–4, 2017.

[25] I. M. Dayton, T. Sage, E. C. Gingrich, M. G. Loving, T. F. Ambrose,
N. P. Siwak, S. Keebaugh, C. Kirby, D. L. Miller, A. Y. Herr, Q. P. Herr,
and O. Naaman, “Experimental demonstration of a Josephson magnetic
memory cell with a programmable π-junction,” IEEE Magnetics Letters,
vol. 9, pp. 1–5, 2018.

[26] S. S. Tannu, P. Das, M. L. Lewis, R. Krick, D. M. Carmean, and M. K.
Qureshi, “A case for superconducting accelerators,” in Proceedings of
the 16th ACM International Conference on Computing Frontiers, ser. CF
’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 67–75. [Online]. Available: https://doi.org/10.1145/3310273.3321561

[27] M. Tanaka, T. Kawamoto, Y. Yamanashi, Y. Kamiya, A. Akimoto,
K. Fujiwara, A. Fujimaki, N. Yoshikawa, H. Terai, and S. Yorozu,
“Design of a pipelined 8-bit-serial single-flux-quantum microprocessor
with multiple ALUs,” Superconductor Science and Technology, vol. 19,
no. 5, p. S344, 2006.

[28] M. Tanaka, Y. Yamanashi, N. Irie, H. Park, S. Iwasaki, K. Takagi,
K. Taketomi, A. Fujimaki, N. Yoshikawa, H. Terai et al., “Design
and implementation of a pipelined 8 bit-serial single-flux-quantum
microprocessor with cache memories,” Superconductor Science and
Technology, vol. 20, no. 11, pp. S305–S309, 2007.

[29] E. Fang and T. V. Duzer, “A Josephson integrated circuit
simulator (JSIM) for superconductive electronics application,”
Extended Abstracts of 1989 International Superconductivity
Electronics Conference, pp. 407–410, 1989. [Online]. Available:
https://ci.nii.ac.jp/naid/10008998489/

[30] K. Takagi, M. Tanaka, S. Iwasaki, R. Kasagi, I. Kataeva, S. Nagasawa,
T. Satoh, H. Akaike, and A. Fujimaki, “SFQ propagation properties
in passive transmission lines based on a 10-Nb-layer structure,” IEEE
Transactions on Applied Superconductivity, vol. 19, no. 3, pp. 617–620,
2009.

[31] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA),
2016, pp. 367–379.

[32] A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Krishna,
“SCALE-Sim: Systolic CNN Accelerator Simulator,” arXiv e-prints, p.
arXiv:1811.02883, Oct. 2018.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 1097–1105.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” arXiv e-prints,
p. arXiv:1506.01497, Jun. 2015.

[35] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
arXiv e-prints, p. arXiv:1409.4842, Sep. 2014.

[36] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications,” arXiv e-prints, p.
arXiv:1704.04861, Apr. 2017.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[38] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv 1409.1556, 09 2014.

[39] “Hot Chips 2017: A Closer Look At Google’s TPU v2,” https://www.
tomshardware.com/news/tpu-v2-google-machine-learning,35370.html.

[40] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt,
J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, D. Killebrew,
A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony,
K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie,
M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross, A. Salek,
E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H.
Yoon, “In-datacenter performance analysis of a tensor processing
unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, ser. ISCA ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1–12. [Online].
Available: https://doi.org/10.1145/3079856.3080246

[41] A. M. Kadin, C. A. Mancini, M. J. Feldman, and D. K. Brock, “Can
RSFQ logic circuits be scaled to deep submicron junctions?” Applied
Superconductivity, IEEE Transactions on, vol. 11, no. 1, pp. 1050–1055,
2001.

[42] W. Chen, A. Rylyakov, V. Patel, J. Lukens, and K. Likharev, “Rapid
single flux quantum t-flip flop operating up to 770 GHz,” Applied
Superconductivity, IEEE Transactions on, vol. 9, pp. 3212 – 3215, 07
1999.

[43] R. Kanada, Y. Nagai, H. Akaike, and A. Fujimaki, “Self-Shunted NbN
Junctions With NbNx/AlN Bilayered Barriers for 4 K Operation,”
IEEE Transactions on Applied Superconductivity, vol. 19, no. 3, pp.
249–252, Jun. 2009.

[44] M. A. Castellanos-Beltran, D. I. Olaya, A. J. Sirois, P. D. Dresselhaus,
S. P. Benz, and P. F. Hopkins, “Stacked Josephson junctions as induc-
tors for single flux quantum circuits,” IEEE Transactions on Applied
Superconductivity, vol. 29, no. 5, pp. 1–5, 2019.

[45] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, A. Wynn, D. E. Oates,
L. M. Johnson, and M. A. Gouker, “Advanced fabrication processes for
superconducting very large-scale integrated circuits,” IEEE Transactions
on Applied Superconductivity, vol. 26, no. 3, pp. 1–10, 2016.

[46] D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient
superconducting computing—power budgets and requirements,” IEEE
Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 1 701 610–
1 701 610, 2013.

[47] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 609–622.

[48] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” ACM SIGARCH Computer Architecture News, vol. 44,
no. 3, pp. 1–13, 2016.

[49] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243–254, 2016.

[50] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in 2016
ACM/IEEE 43rd Annual International Symposium on Computer Archi-
tecture (ISCA). IEEE, 2016, pp. 267–278.

[51] R. LiKamWa, Y. Hou, J. Gao, M. Polansky, and L. Zhong, “Redeye:
analog convnet image sensor architecture for continuous mobile vision,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 255–
266, 2016.

[52] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P.
Strachan, M. Hu, R. S. Williams, and V. Srikumar, “ISAAC: A
convolutional neural network accelerator with in-Situ analog arithmetic
in crossbars,” SIGARCH Comput. Archit. News, vol. 44, no. 3, p. 14–26,
Jun. 2016. [Online]. Available: https://doi.org/10.1145/3007787.3001139

[53] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “PRIME: A novel processing-in-memory architecture for neural

71

network computation in ReRAM-based main memory,” in Proceedings
of the 43rd International Symposium on Computer Architecture,
ser. ISCA ’16. IEEE Press, 2016, p. 27–39. [Online]. Available:
https://doi.org/10.1109/ISCA.2016.13

[54] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S.
Williams, P. Faraboschi, W.-m. W. Hwu, J. P. Strachan, K. Roy, and
D. S. Milojicic, “PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in Proceedings
of the 24th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
715–731. [Online]. Available: https://doi.org/10.1145/3297858.3304049

[55] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
Memory for energy-efficient neural network training: A heterogeneous
approach,” in Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-51. IEEE Press, 2018,
p. 655–668. [Online]. Available: https://doi.org/10.1109/MICRO.2018.
00059

[56] P. Wang, Y. Ji, C. Hong, Y. Lyu, D. Wang, and Y. Xie, “SNrram: An ef-
ficient sparse neural network computation architecture based on resistive
random-access memory,” in Proceedings of the 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), 2018, pp. 1–6.

[57] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture
with High-Density 3D memory,” SIGARCH Comput. Archit. News,
vol. 44, no. 3, p. 380–392, Jun. 2016. [Online]. Available:
https://doi.org/10.1145/3007787.3001178

[58] M. Gruber, J. Jahns, and S. Sinzinger, “Planar-integrated optical vector-
matrix multiplier,” Appl. Opt., vol. 39, no. 29, pp. 5367–5373, Oct 2000.
[Online]. Available: http://ao.osa.org/abstract.cfm?URI=ao-39-29-5367

[59] K. Shiflett, D. Wright, A. Karanth, and A. Louri, “PIXEL: Photonic neu-
ral network accelerator,” in Proceedings of the 26th IEEE International
Symposium on High-Performance Computer Architecture, ser. HPCA
’20, Feb. 2020.

[60] K. Kitayama, M. Notomi, M. Naruse, K. Inoue, S. Kawakami, and
A. Uchida, “Novel frontier of photonics for data processing–photonic
accelerator,” APL Photonics, vol. 4, no. 9, p. 090901, 2019. [Online].
Available: https://doi.org/10.1063/1.5108912

[61] A. N. Tait, T. F. de Lima, E. Zhou, A. X. Wu, M. A. Nahmias,
B. J. Shastri, and P. R. Prucnal, “Neuromorphic photonic networks
using silicon photonic weight banks,” Scientific Reports, vol. 7,
no. 1, Aug 2017. [Online]. Available: http://dx.doi.org/10.1038/
s41598-017-07754-z

[62] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones,
M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund et al., “Deep
learning with coherent nanophotonic circuits,” Nature Photonics, 2017.

[63] F. Chiarello, P. Carelli, M. G. Castellano, and G. Torrioli, “Artificial
neural network based on SQUIDs: demonstration of network training
and operation,” Superconductor Science and Technology, vol. 26, no. 12,
p. 125009, oct 2013.

[64] M. Altay Karamuftuoglu and A. Bozbey, “Single Flux Quantum Based
Ultrahigh Speed Spiking Neuron,” arXiv e-prints, p. arXiv:1812.10354,
Dec. 2018.

[65] Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie,
N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto, “Design and
implementation of a pipelined bit-serial SFQ microprocessor, CORE
1β,” IEEE Transactions on Applied Superconductivity, vol. 17, no. 2,
pp. 474–477, 2007.

[66] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki,
“Design and demonstration of an 8-bit bit-serial RSFQ microprocessor:
CORE e4,” IEEE Transactions on Applied Superconductivity, vol. 26,
no. 5, pp. 1–5, 2016.

[67] K. Ishida, M. Tanaka, I. Nagaoka, T. Ono, S. Kawakami, T. Tanimoto,
A. Fujimaki, and K. Inoue, “32 GHz 6.5 mW gate-level-pipelined 4-
bit processor using superconductor single-flux-quantum logic,” in 2020
IEEE Symposium on VLSI Circuits, 2020, pp. 1–2.

[68] A. Madhavan, T. Sherwood, and D. Strukov, “Race logic: A hardware
acceleration for dynamic programming algorithms,” SIGARCH Comput.
Archit. News, vol. 42, no. 3, p. 517–528, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2678373.2665747

[69] G. Tzimpragos, D. Vasudevan, N. Tsiskaridze, G. Michelogiannakis,
A. Madhavan, J. Volk, J. Shalf, and T. Sherwood, “A computational
temporal logic for superconducting accelerators,” in Proceedings
of the 24th International Conference on Architectural Support for

Programming Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
435–448. [Online]. Available: https://doi.org/10.1145/3373376.3378517

[70] K. Loe and E. Goto, “Analysis of flux input and output josephson pair
device,” IEEE Transactions on Magnetics, vol. 21, no. 2, pp. 884–887,
1985.

[71] R. Cai, A. Ren, O. Chen, N. Liu, C. Ding, X. Qian, J. Han,
W. Luo, N. Yoshikawa, and Y. Wang, “A stochastic-computing based
deep learning framework using adiabatic quantum-flux-parametron
superconducting technology,” in Proceedings of the 46th International
Symposium on Computer Architecture, ser. ISCA ’19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 567–578.
[Online]. Available: https://doi.org/10.1145/3307650.3322270

72

