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ABSTRACT 

We give a complete classification of all supersymmetric theories of free mass- 

less two-dimensional fermions. This, in particular, implies a classification of all 

free-fermion representations of super Kac-Moody algebras. We show that these 

cannot be used to construct new string theories with unbroken supersymmetry 

in Minkowski space-time, other than the torus-compactifications of the known 

ten-dimensional superstrings. Assuming anti-de-Sitter spacetime could restore 

conformal invariance, we show how one could construct a string theory whose 

low-lying excitations form a multiplet of gauged N = 8 supergravity. 
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Supersymmetric string theories1 have recently attracted a lot of attention2 

as candidates for a consistent unification of all interactions, including gravity.3J 

A central and still open problem is how to build realistic four-dimensional string 

theories. In so doing, one must respect world-sheet reparametrization invari- 

ance and ensure the presence of massless space-time fermions. Together, these 

requirements impose severe restrictions on the allowed vaccua of the theory of 

strings. 

In this paper we will examine the simplest possible proposal: Can a string 

theory in four flat dimensions be made consistent by adding only free fermions 

on the world-sheet, which carry all extra quantum numbers of the string? We 

must insist that these two-dimensionalfermions provide a (non-linear) realization 

of world-sheet supersymmetry, which seems to be necessary for eliminating the 

tachyon.’ Our results can be summarized as follows: 

First we will give a complete classification of supersymmetric theories of free 

massless two-dimensional fermions. We will show that one such theory can be 

constructed for each pair of semi-simple Lie groups G, H with H c G and G/H 

a symmetric space (this includes the case G = H). The symmetry group of these 

theories is H. This result is of mathematical interest in its own right since it 

implies a classification of all representations of super-Kac-Moody algebras4j5 by 

free two-dimensionalfermions. The theories we find include, but are more general 

than, the supersymmetric extension of the non-linear a-models on group mani- 

folds with Wess-Zumino term with coefficient one at their conformal fixed point.6 

Nevertheless, they are necessarily characterized by some symmetry group H and 

the corresponding super-Kac-Moody algebra. This then suffices to show that they 

cannot be used to reduce the critical dimension of Minkowski space-time in string 

theories, to less than ten, since they always lead to massive fermions, broken su- 

persymmetry at the Planck scale, and furthermore they might be inconsistent. 

The argument is due to Friedan, Qiu and Shenker,7 and is briefly reviewed in 

the second part of our paper. Thus, other than the known lo-dimensional super- 

strings, and their trivial torus-compactifications, no new string theories in flat 
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space-time can be constructed by using only free world-sheet fermions. These 

considerations do not in general apply, if one allows a negatively curved (anti-de- 

Sitter) spacetime. Whether reparametrization invariance can then be ensured is 

an open, highly non-trivial question, but assuming it can, we will show in the last 

(conjectural) part of this paper, how to construct a string theory whose low-lying 

spectrum is that of gauged N = 8, d = 4 supergravity. 

SUPERSYMMETRY 

Let us begin by considering N 

sions, whose Euclidean action is: 

AMONG FREE FERMIONS 

free Weyl-Majorana fermions in two dimen- 

where z = x+it, A = 1, .a., N and summation over repeated indices is implied. 

This action is invariant under: 

(with E an infinitesimal Grassman parameter) if and only if vABC is totally an- 

tisymmetric in its indices. We now prove a: 

Theorem: 

Transformation (2) is a supersymmetry if and only if the qABC are appro- 

priately normalized structure constants of a semi-simple Lie group G. 

Proof: 

Indeed, let us first note that the current, which generates local transforma- 

tions of type (2) can be written: 

where normal ordering is implied for operators multiplied at the same point. 

Now (2) is a real supersymmetry, if and only if the anticommutator of two such 

4 



currents gives the energy-momentum density up to a possible c-number anomaly: 

[?-F(Z), TV]+ = ~TB(z)~(z - u)) + c-number (4 

where: 

?-B(z) = ; t,bA@,bA 

This condition is equivalent to requiring that the commutator of two super- 

symmetry transformations be a translation, as it should. Its validity can most 

easily be examined by means of the operator-product expansion: 

Z-+W 

_ 2rlACD 77BCD tiA@) ?bBcw) _ tiAtw) ‘UJ +B(w) 
[ (z - w)2 (z - 4 1 (5) + 17ABEqCDE .tiAcw) ?bBcw) +c(w) +D(w) (z - 4 

+ regular terms 

where we have here used Wick’s theorem, and the free-fermion contraction: 

Since normal-ordered fermions anticommute, it follows immediately that the 

right-hand side of (5) agrees with (4) if and only if: 

rl ABE17CDE+,,ACE77DBE+rlADEllBCE=0 
(64 

and 77 ACDllBCD = ;gAB w 

The first condition is the Jacobi identity, implying that qABC are the structure 

constants of a Lie group G, while the second guarantees that G has no normal 
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abelian subgroup, which completes the proof. Note that the qABC are related to 

the conventionally normalized structure constants fABC according to: 

rl ABC= 1 
dm.fABC ; c(G) = fABCfABC/dim (G) 

with dim (G) the dimension of the Lie algebra of G. 

The fact that supersymmetry can be non-linearly realized among free fermions 

was noticed for the first time in Ref. 4. The new result obtained above is that 

the structure constants of semi-simple groups G, exhaust all possible supersym- 

metries among free fermions. In particular, the non-linear transformation among 

fermions in the adjoint and any other representation r of a group G’, proposed 

by di Vecchia et al. 4 is not in general a real supersymmetry. It can be modified 

into a real one if and only if r and adj G’ can be combined to form the adjoint 

of a larger semi-simple group G > G’. 

We will now consider the most general truncation of these free fermionic 

theories consistent with supersymmetry. Indeed, let us first recall that the algebra 

of the super-energy momentum tensor 

T(Z,e) = TF(Z) + eTB(Z) 

is the well-known superconformal (or Virasoro-Neveu-Schwarz-Ramond) algebra,8sg 

uniquely characterized by the anomaly, that is the coefficient of the leading pole 

in the operator product-expansion of, for instance, the bosonic parts: 

TB(z) TB(w) - 2(z:w)4 - 
=B(W) ~wTB(w) 

Z+W 

(z _ w)2 - + regular terms z _ w 

with c = i N = i dim (G) . 

In addition, one has the infinite-dimensional super-Kac-Moody algebra of the 
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supercurrents of G: 

JA(z, e) = &(G) q$ + eJA(z) with JA(z) = $ fABCq!$,$, 

likewise characterized by an anomaly that can be straight forwardly computed: 

ABC Jc(w) - + regular terms 
z-w 

with n=; c(G) . 

The free-fermion Hilbert space forms an irreducible representation of the 

(semidirect) product of these algebras, but a reducible in general representation 

of the superconformal algebra alone. Indeed, let us suppose that the fermions 

$A can be separated in two sets, the “real fermions” $J” (a = 1,. . . , n) and the 

“pseudofermions” q!~” (i = n + l, . . . , N = dim G), such that the latter always 

appear in pairs in the supersymmetry generator (3), i.e. 

fijk = fob = 0 

The pseudofermion number (-) Fpseudo is then multiplicatively conserved by su- 

persymmetry transformations, so that the Hilbert space can be consistently trun- 

cated to even pseudofermion parity: 

(-)Fpseudo = +1 . 

Conditions (7) imply that the real fermions transform in the adjoint of a 

subgroup H c G, such that G/H is a symmetric space. The truncated Hilbert 

space is then an irreducible representation of the semi-direct product of the su- 

perconformal algebra, and the super-Kac Moody algebra of H with anomalies 
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c = idim G, and K’ = &(G), as can be easily computed. Note that since the 

supercurrents Ji (z, e) , corresponding to G/H, have odd pseudofermion parity, 

they do not exist as operators in the truncated theory: the basic superfields are 

then the supercurrents of H. Thus the truncation has broken the G-invariance 

down to H. We have then proven a: 

Lemma: 

Given the free fermion supersymmetric theory (l), a new supersymmetric 

model can be constructed for any subgroup H, such that G/H is a symmetric 

space, by imposing even parity on all fermions other than those transforming in 

the adjoint of H. This truncation breaks the invariance from G to H. 

Note that for G/H = O(M + 1)/O(M) th e p seudofermions transform in the 

fundamental representation of O(M), and we recover the Wess-Zumino model 

on the group manifold of O(M) with unit Wess-Zumino coefficient.6 More gen- 

erally one should expect that in the truncated theory the pseudofermions can be 

effectively bosonized, but we won’t examine this here. 

As is well known, given a two-dimensional superconformal model, one can 

construct another local field theory, the spin-model, by introducing an extra (Ra- 

mond) sector in which the fermionic parts of all superfields are double-valued,7 

and then projecting onto even (“real”) fermion number. In a cylindric geom- 

etry, the Ramond sector corresponds to periodic boundary conditions9 for the 

fermionic parts of the superfields, so that in the models we are considering here, 

one has n =dim H fermionic zero modes in the Ramond sector. This is of crucial 

importance when one tries to construct consistent string theories, as we will now 

proceed to explain. 

APPLICATION TO SUPERSTRINGS 

Following the approach of Polyakov,” to write down a consistent string the- 
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ory, one starts with a two-dimensionalscale-invariant supersymmetric field theory 

and, to ensure world-sheet (super)-reparametrization invariance, couples it to the 

two-dimensional graviton and gravitino. These latter are auxiliary fields and do 

not propagate, provided the two-dimensional supergravity has vanishing trace 

(conformal) anomaly. In the simplest case of D free real superfields (Xp, @‘) 

with p = 1,2,..., D for instance, the anomaly cancellation condition is: 

-26+11+; D=O 

where the graviton and gravitino ghosts in the superconformal gauge contribute 

-26 and 11 respectively, and each free boson and Majorana fermion 1 and l/2. 

The solution is the well-known D = 10 supersymmetric string. The critical 

dimension does not change in the heterotic model, l1 whose beautiful construction 

is based on the observation that supersymmetry among only the left-moving 

modes is sufficient in order that the resulting string-theory be tachyon-free. Thus 

both the gravitino and the superpartners of the string coordinates are left Weyl- 

Majorana fermions. There now exists a potential two-dimensional gravitational 

anomaly,12F11 however, whose cancellation is equivalent to requiring that the trace 

(conformal) anomaly separately cancel among left and right-moving modes. This 

brings us back to condition (8) and the critical dimension D = 10. In what follows 

we will concentrate on left-right symmetric models, although our discussion can 

be easily taken over to the heterotic case. 

In order to reduce the critical dimension of the string theory let us now con- 

sider, in addition to the D string super-coordinates (Xp, $+), extra free world- 

sheet fermions,13 among which supersymmetry is (non-linearly) realized. Follow- 

ing our previous discussion, these fermions are then in the adjoint of a semi-simple 

Lie group G, whose dimension is fixed by the anomaly-cancellation condition: 

idimG= (15-i D) 

so that dim G = 18 in D = 4 dimensions, 12 in D = 6 and so on. 
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Next, we consider the spectrum of string excitations; in the covariant for- 

mulation, the mass-shell condition follows from the requirement of conformal 

invariance of physical states:7 

Lpatter + $host 
> 

I&s) = 0 (10) 

Here LEhost = 
f 

dz . z - 
27ri 

TkhoSt (z) with Tihost the energy-momentum tensor of 

all ghost-fields in the superconformal gauge, while Lratter is similarly defined 

for all remaining (non-ghost) fields. The contribution of LEhost in Eq. (10) 

is universal: it only depends on the ghost content, but not on the particular 

physical state, nor the specific details of the string theory. It can be computed 

by requiring all ghost-destruction operators to annihilate physical states, with 

the result Lihost = -l/2, -5/8 and - 1 for the Neveu-Schwarz, Ramond and 

non-supersymmetric (in the case of heterotic strings) sectors respectively.7,14 The 

contribution of Ltpatter on the other hand, equals the conformal weight of the 

field that creates the physical state out of the vacuum. This must include the 

field : eip“xp : of conformal weight +iP2, that injects momentum into the state 

in order to represent the Poincare’ algebra of bosonic zero modes, and, in the 

Ramond sector only, a spin-field7 0 of conformal weight hd, which represents the 

(D + dim H)-dimensional Clifford algebra of fermionic zero-modes:* 

The mass-shell condition for the lowest-lying states in the Ramond sector there- 

fore reads: 

+;P2+hg-; 
lowest 

Ramond state = > 
0 

Assuming that the spin-field is constructed out of the fermionic parts of the 

* Our convention for the signature of gp” is (- + ++), so that the invariant mass is -P2. 
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superfields alone, we can easily calculate he by noting that the energy-momentum 

tensor of the e = D + dim H free fermions can be written in the form: 

T(z) = -& : P(z).~*(z) : 

where J*(z) are the 0(1, ! - 1) currents and normal-ordering is with respect 

to the current-quanta. It is then straightforward to compute the commutator 

[ Lper, O] using the fact that 0 transforms in the lowest spinor representation 

of O(l,!. - l), with the result:15 

h = c(spinor) !? 
6 e-1 =16 (12) 

where c(spinor) is the Casimir of the spinor representation. Combining (11) and 

(12) we finally deduce that the condition for the existence of massless space-time 

fermions, and unbroken supersymmetry at the Plank scale reads: 

dim H = 10 - D (13) 

This, together with the anomaly-cancellation condition, Eq. (9), implies: 

dim G -= 
dim H 

3 

As can be shown by inspection, the only symmetric space satisfying this condition 

is: 

G = 1yc3 O(3)/lbD18 O(2) 
H 

which can be easily seen, by bosonization, to correspond to a trivial compact- 

ification of the ten-dimensional superstring on a (10 - D)-dimensional torus.’ 

Note, however that in the fermionic construction given here, the radii of the 

torus are automatically equal to one (in units where 2cr’ = 1 with Q’ the Regge 

slope). This then completes our demonstration that no new string theories with 

massless fermions in Minkowski space-time can be constructed by using only free 

world-sheet fermions in addition to the string supercoordinates. 
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These considerations do not, in general apply, if we allow the D-dimensional 

space-time to be negatively curved. The anomaly cancellation condition, Eq. (9), 

would then change into a set of functional equations that are only known to 

leading order in the a-model loop expansion,16 an expansion that is not valid 

when the space-time curvature is itself of order the Regge slope (Y. Even though 

we are, thus, unable to decide the issue of conformal invariance, let us for the 

moment assume that a solution with four-dimensional anti-de-sitter spacetime, 

and H = O(4) (and for instance G = O(5) or SU(4)) exists.+ We will then 

show, as a concluding remark, that the lowest lying string excitations have the 

correct quantum numbers to form the multiplet of N = 8 gauged supergravity.17 

Indeed, the lowest lying states in the left, Neveu-Schwarz sector consist of a 

vector, and six scalars in the adjoint of H = O(4). The lowest-lying left, Ramond 

state, on the other hand, is an 0(1,9) spinor. To find its transformation prop- 

erties under H N O(3) x O(3), note first, that one can take T+!$, v”“$J,” and $“$,” 

as the generators of the ten-dimensional Clifford algebra, where via and qja are 

the tensors that project a vector of O(3) or O(3) out, of the adjoint of H = O(4), 

and satisfy the orthonormality properties viavia = #a$a = bij and qia$a = 0. 

Thus a vector of 0 (1,9) b reaks into a direct sum of vectors of Lorentz = 0 (1, 3)) 

O(3) and O(3). C onsequently a spinor of 0(1,9) transforms as a (spinor, spinor, 

spinor) of 0(1, 3) X O(3) X O(3) or, equivalently a (spinor, fundamental) of 

0(1, 3) x H. 

Now the states of the closed string are obtained by taking the direct product, of 

the identical left and right sectors, and thus carry indices of the symmetry group 

Left X Hright - Consider for instance the massless vector bosons: as shown in Fig. 1 

these transform in the (1,6) @ (6, 1) @ (4,4) representation of O(4)left X 0(4)ri&t, 

which is precisely how the adjoint of O(8) (or 0(4, 4)) decomposes under these 

groups. The reader can likewise convince himself that all states have the correct 

t To lowest order in the a-model loop expansion, the anomaly cancellation condition gives the 
minimal equations of N = 2, D = 10 nonchiral supergravity. These admit no solution of 
the above type, so that higher order terms are crucial for stabilizing, if at all, this solution. 

12 



quantum numbers to form the multiplet of N = 8, D = 4 supergravity with 

an explicity gauged O(8) (or 0(4, 4)) y s mmetry. It is amusing to observe that, 

without any reference to strings, anti-de-Sitter space-time is anyway required for 

a consistent formulation of gauged supergravities. Note also that, in the heterotic 

version, the above construction would lead to an N = 4 gauged supergravity 

coupled to a Yang-Mills theory with a rank-22 group. 

A final comment: it would be interesting to further investigate the existence 

of such a string theory, in relation to the question of whether requiring an un- 

broken supersymmetry can guarantee the tree-level vanishing of the cosmological 

constant.18 
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Fig. 1 

Fig. 1: Schematic description of the construction of the massless vector bosons 

by taking the direct product of left and right moving states (as shown by the 

arrows). We explicitly indicate the Lorentz transformation properties as well as 

the representation of the states with respect to Hl,ft x Hright. 
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