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1. Prelude

This is the first piece of a series of notes on supersymmetry. We intend to present

the very basics of supersymmetry that is needed to explore more advanced topics. This

includes the construction and representations of super-Poincaré algebra in 4 dimensions,

the superspace formulation of N = 1 supersymmetric theories, the Wess-Zumino model,

and the super gauge theory. To fully show the power of superspace formulation, we also

introduce the path integral quantization of N = 1 theories, super-Feynman rules for

supergraphs. Finally we use these result to derive the perturbative nonrenormalization

theorem for superpotential.

Derivations are made quite explicit, and some mid-steps are kept so that the results

can be reproduced easily. However, this does not mean every single detail is presented

since that would obviously affect the main line of development.

There are already a world of introductory books, reviews, lecture notes on supersym-

metry. In preparing this note, we find those ones listed in [1–6] quite useful.

For any text on supersymmetry, notation is a big issue. In this note and succeeding

ones, we mainly follow the convention of Wess & Bagger [1], since the book is quite stan-

dard and its notations are widely used. In particular, we use mostly plus (−,+,+,+) met-

ric for Minkowski spacetime. For spinorial index summation, we use northwest-southeast

rule for undotted indices and southwest-northeast rule for dotted indices. More details

of our conventions and some useful relations are listed in the appendix.

2. Supersymmetry Algebras

Supersymmetry algebra is almost the unique nontrivial extension of the relativistic

spacetime symmetry algebra, mixing with internal symmetries. The algebra, by defini-

tion, has a Z2 graded structure. According to this structure, all generators are classified

into two categories, which we will call bosonic and fermionic, respectively. If we collec-

tively denote bosonic generators by B and fermionic generators by F , then the Z2 graded

structure manifests itself through the following brackets,

[B,B] ∼ B, [B,F ] ∼ F, {F, F} ∼ B, (1)

where the square bracket is antisymmetric with its two arguments, while the curly bracket

is symmetric. In practice we always assume these brackets are realized as commutators
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or anticommutators. That is, we have

[B1, B2] = B1B2 −B2B1, {F1, F2} = F1F2 + F2F1. (2)

Therefore the super-Jacobi’s identity follows trivially. By super-Jacobi’s identity we refer

to a natural extension of ordinary Jacobi’s identity with the graded structure (1). More

explicitly, the identity reads,

0 = [[B1, B2], B3] + [[B3, B1], B2] + [[B2, B3], B1],

0 = [[F,B1], B2] + [[B2, F ], B1] + [[B1, B2], F ],

0 = [{F1, F2}, B] + {[B,F1], F2} − {[F2, B], F1},
0 = [{F1, F2}, F3] + [{F3, F1}, F2] + [{F2, F3}, F1].

(3)

Attention must be paid when using the identity with two odd generators since there is

an “extra” minus sign before the last term in the third line.

We are going to find the most general supersymmetry algebra including the Poincaré

algebra as a subalgebra in 4 dimensions. One can also consider supersymmetric extension

in other spacetime dimensions and with other spacetime symmetries, e.g., conformal

symmetry and (anti-)de Sitter symmetry. However, we will restrict ourselves within

Poincaré algebra in 4 dimensions in the current note, and leave possible extensions to the

future.

To begin with, we write down all commutators of Poincaré symmetry,

[Pm, Pn] = 0,

[Jmn, P`] =− i(ηn`Pm − ηm`Pn),

[Jmn, Jpq] =− i(ηmqJnp − ηmpJnq − ηnqJmp + ηnpJmq).

(4)

The super algebra to be determined should include these generators, together with some

fermionic generators, which we denoted by QM , as well as some bosonic (and thus inter-

nal, according to Coleman-Mandula theorem) generators, denoted by T a. The task is to

find all commutation relations among these generators.

Firstly, according to Coleman-Mandula theorem, T a must be internal, and thus be

closed within themselves. Without loss of generality, we assume they are Hermitian, so

that

[Jmn, Ta] = [Pm, T
a] = 0, [T a, T b] = ifabcT

c. (5)

Secondly, the Z2 graded structure of the superalgebra requires that the commutator

between one fermionic generator and one bosonic generator to be of the following form:

[Jmn, Q
M ] = (bmn)MNQ

N ,

[Pm, Q
M ] = (bm)MNQ

N ,

[T a, QM ] = (ta)MNQ
N .
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This shows that Q’s form finite dimensional representations of Lorentz group, translation

group, and the internal group, with representation matrices bmn, bm, and ta, respectively.

One may apply Jacobi’s identities of (Q, J, J), (Q,P, P ), and (Q,T, T ) to see this point

more clearly.

As a finite dimensional representation of Lorentz algebra, the fermionic generators Q’s

always have the form QA
α1···α2p;β̇1···β̇2q

. Here the undotted and dotted labels correspond to

left-chiral and right-chiral components in the Lorentz algebra so(3, 1) ∼= su(2)L + su(2)R,

respectively, with p, q = 0, 1
2 , 1,

3
2 , · · · , and A is the index other than Lorentz indices.

Now, the anticommutator between the highest weight components of both Q and its

complex conjugation Q∗ must be a bosonic operator in representation (p + q, p + q).

However, it is only Pm, among all bosonic generators, is in this form, namely ( 1
2 ,

1
2 ), so

we conclude that p + q = 1
2 . Therefore Q must be a spinorial generator in irrep ( 1

2 , 0)

or (0, 1
2 ). We fix Q to be in ( 1

2 , 0) without loss of generality, and write it as QAα . Then

Q∗ must be in (0, 1
2 ), which we denote as Qα̇A. Then, we have,

[Jmn, Q
A
α ] =− i(σmn)α

βQAβ ,

[Jmn, Q
α̇
A] =− i(σ̄mn)α̇β̇Q

β̇
A.

(6)

It then follows immediately that {Q,Q}, which carries ( 1
2 ,

1
2 ) representation of Lorentz

group, must be of the form

{QAα , Qβ̇B} = 2XA
B(σm)αβ̇Pm.

The factor 2 is conventional. Now taking the Hermite conjugation reveals that XA
B is

hermitian. Together with the fact that {Q,Q} is positive definite, we see that XA
B can

always be diagonalized to identity δAB by a linear redefinition of QAα and Qβ̇B . Thus we

have,

{QAα , Qβ̇B} = 2δAB(σm)αβ̇Pm. (7)

The commutators [T,Q] and [T,Q] are also easy to determine. The A,B-indices in QAα
and Qβ̇B are actually labels for representation matrices of internal symmetry generated

by T a, namely,

[T a, QAα ] = (ta)ABQ
B
α , [T a, Qβ̇A] = (ta∗)A

BQβ̇B . (8)

Applying (T,Q,Q) identity, it is easy to see (ta)AB = (ta∗)B
A, i.e., the matrix ta is

Hermitian.

Next we consider [P,Q] commutators. Lorentz invariance requires that,

[Pm, Q
A
α ] = bAB(σm)αβ̇Q

β̇
B ,

[Pm, Q
α̇
A] = (b∗)AB(σ̄m)α̇βQBβ .
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To see what the coefficient bAB can be, we apply Jacobi’s identity of (P, P,Q), which

implies,

bAB(b∗)BC(σmn)α
βQCβ = 0, (9)

which shows that bb∗ = 0. To find further conditions on b, consider the (P,Q,Q) identity,

in which we need {Q,Q} bracket. Though lack of a explicit form, Lorentz structure

requires that

{QAα , QBβ } = εαβZ
AB + Y AB(σmn)α

βεβγJmn.

Then, (P`, Q
A
α , Q

B
β ) identity gives,

0 =− iY AB(σmnε)αβ(ηm`Pn − ηn`Pm)

+ 2bBA(σ`)ββ̇(σmε)α
β̇Pm − 2bAB(σ`)αα̇(σmε)β

α̇Pm,

which, after contracted with εαβ , gives bAB = bBA. Thus, bb∗ = 0 implies that bb† = 0,

and so b = 0. That is,

[Pm, Q
A
α ] = [Pm, Qβ̇A] = 0, (10)

Substituting this back to the (P,Q,Q) identity further implies Y AB = 0. So we have

{QAα , QBβ } = εαβZ
AB . Here ZAB are some bosonic generators carrying no Lorentz indices,

and thus must be internal, can be expressible in terms of T a. So we write,

ZAB = aABa T a. (11)

Furthermore, the (T,Q,Q) identity gives [T,Z] ∼ Z, meaning that ZAB form an invariant

subalgebra of internal symmetry; the (Q,Q,Q) identity gives [Z,Q] = 0, and thus [Z,Z] ∼
[{Q,Q}, Z] = 0. So the invariant algebra formed by ZAB is Abelian. Thus we have,

[ZAB , everything] = 0. (12)

Thus ZAB are called central charges of the super-algebra. Substituting this back to

(T,Q,Q) identity, we get,

(ta)ABa
BC
b = −aABb (ta∗)B

C . (13)

That means the coefficients aABa intertwine the representation ta with its conjugation

ta∗. Thus the central charges can exist only for groups admitting such an intertwining

relation. Up to now, all the (anti-)commutators of super-algebra have been nearly deter-

mined. However, the structure of the internal symmetry generated by T a can be further

restricted. In fact, it can be shown that, for N species of fermionic generators QAα , the

internal symmetry group is U(N) if there is no central charges, and Sp(N), if there is

one central charges. See Chapter 2 of [3] for a general discussion. We will also briefly

mention this again in next section.
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In summary, we list the super extension of 4 dimensional Poincaré algebra, which we

will refer to as super-Poincaré algebra, as follows,

{QAα , Qβ̇B} = 2δAB(σm)αβ̇Pm,

{QAα , QBβ } = εαβZ
AB ,

{Qα̇A, Qβ̇B} =− εα̇β̇Z
†
AB ,

[Pm, Q
A
α ] = [Pm, Qα̇A] = 0,

[Jmn, Q
A
α ] =− i(σmn)α

βQAβ ,

[Jmn, Q
α̇
A] =− i(σ̄mn)α̇β̇Q

β̇
A,

[T a, QAα ] = (ta)ABQ
B
α ,

[T a, Qβ̇A] = (ta∗)A
BQβ̇B ,

[Pm, T
a] = [Jmn, T

a] = 0,

[T a, T b] = ifabcT
c,

[ZAB , everything] = 0,

(14)

together with the the Poincaré algebra (4).

3. Representations of Supersymmetry Algebras

In this section we discuss the unitary representation of super-Poincaré algebra on

Hilbert space. The strategy is the same with the ordinary Poincaré group, namely the

method of induced representation. For this purpose, we need the Casimir operators of

super-Poincaré group.

Casimir operators of super-Poincaré algebra. Casimir operators commute with

all symmetry generators, so their eigenvalues are same for states in an irreducible rep-

resentation. Hence they are useful to classify irreducible representations. Recall that

Poincaré algebra has two Casimir operators, the momentum squared, P 2 = PmP
m, and

the square of Pauli-Lubański operator, namely W 2 = WmW
m with Wm = 1

2 εmnpqP
nJpq.

The eigenvalues of these two Casimir operators of an irrep define its mass m2 and spin

J2 (helicity s2 for massless states).

In super-Poincaré algebra, it is easy to see that P 2 is still a Casimir operator, while

W 2 no longer is, because one can show that [W 2, Q] 6= 0. This implies that, within an

irrep of super-Poincaré algebra, each state will have the same mass, but their spin can

be different. In fact, in the case of N = 1 algebra, the second Casimir operator is given
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by C2, defined via,

C2 = 1
2 CmnC

mn,

Cmn = CmPn − CnPm,

Cm = Wm + 1
4 Q

α(σm)αβ̇Q
β̇ .

(15)

Here we check that C2 does commute with susy generators Q and Q.

Induced representation. According to the method of induced representation, we con-

sider two categories of representations, with mass m = 0 and m > 0, and choose a rep-

resentative momentum vector for each of them. The tachyonic case m < 0 is impossible

because it contradicts with the semi-positive definiteness of {Q,Q}. For massless case,

we choose qm = (E, 0, 0, E), and for massive case, we choose qm = (m, 0, 0, 0). The next

step is to find the little group in each case, i.e., the subgroup of the superPoincaré that

leaves the representative momentum intact. Finally, one find irreducible representations

for little group, which are also required to be finite dimensional, and boost them by

momentum operators to representations of whole super-Poincaré. Below we study the

massless and massive cases, with the procedure outlined here, respectively.

3.1 Massless supermultiplets

As mentioned above, for massless states we choose the representative momentum to

be qm = (E, 0, 0, E). In non-susy case, the little group is given by an ISO(2) subgroup

of Lorentz group SO(3, 1), i.e., the subgroup generated by {B1, B2, J}, defined via,

B1 = J10 − J13, B2 = J20 − J23, J = J12, (16)

which satisfies the commutation relations,

[B1, B2] = 0, [J,B1] = iB2, [J,B2] = −iB1. (17)

Clearly this is isomorphic to Galilean group in 2 dimensions. Since we are looking for

finite dimensional representations of the little group, the two translations B1,2 should be

represented trivially, with B1,2|q〉 = 0. Then, we can choose the eigenvalue λ of the only

remaining generator L to label a representation, L|q, λ〉 = λ|q, λ〉, where λ is real number

and is called the helicity of the state. We note that λ must be integer or half-integer

as in non-susy case, due to the double connectness of Lorentz group. In writing these

equations we keep other possible labels of states implicit.

Now let’s study the action of susy generators Q and Q on the state |q, λ〉. We act

{Q,Q} on state |q, λ〉,

{QAα , Qβ̇B}|q, λ〉 = 2δAB

(
2E 0

0 0

)
|q, λ〉.

7
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This implies that 0 = 〈q, λ|{QA2 , QA2̇ }|q, λ〉 =
∣∣QA2 |q, λ〉∣∣2 +

∣∣QA
2̇
|q, λ〉

∣∣2, thus QA2 |q, λ〉 =

QA
2̇
|q, λ〉 = 0.

Next, consider the action of {Q,Q},

{QAα , QBβ }|q, λ〉 = εαβZ
AB |q, λ〉,

which must vanish, since the nonvanishing of εαβ requires one of two indices takes value 2,

so the left side must contain a Q2 generator that makes the expression vanish. As a result,

we have ZAB |q, λ〉 = 0, namely, central charges vanish for massless supermultiplets.

The remaining generators of the little group that have nontrivial action on |q, λ〉
include QA1 , Q1̇A, and J . They form the following brackets,

{QA1 , Q1̇B} = 4EδAB , {QA1 , QB1 } = {Q1̇A, Q1̇B} = 0,

[J,QA1 ] = − 1
2 Q

A
1 , [J,Q1̇A] = + 1

2 Q1̇A.
(18)

The first line tells us that the normalized operators aA = 1√
2E
QA1 and a†A = 1√

2E
Q1̇A

generate a Clifford algebra. The second line shows that the action of rasing operator a†A
or lowering operator aA increases or decreases the helicity of the state by 1/2. There-

fore, the supermultiplet can be built by firstly defining the Clifford vacuum |Ω(q, λ)〉 by

aA|Ω(q, λ)〉 = 0 for A = 1, · · · , N , and then acting raising operators on it. Since the

raising operators are all anticommute, this procedure must be terminated at some state.

To see this in more detail we first consider the simple example of N = 1. It’s easy

to see that N = 1 massless supermultiplet consists of two states only, namely, |Ω(q, λ)〉
and a†|Ω(q, λ)〉. They have helicities λ and λ + 1/2, respectively. However, in order to

correctly represent massless particles with two states of opposite helicities, we need to

add another massless supermultiplet containing helicities −λ− 1/2 and −λ states. As a

result, the union of these two supermultiplets describes a complex scalar and a massless

Marojana fermion, each of which has two states.

Then consider the general case of N susy generators. Now the Clifford algebra (18)

admits an U(N) automorphism, given by the transformation,

QA1 → UABQ
B
1 , Q1̇A → Q1̇B(U†)BA, U ∈ U(N). (19)

Thus theN copies of raising operators form the fundamental representation of U(N) while

N lowering operators form the corresponding conjugate representation. When acting the

raising operators to the Clifford vacuum of helicity λ, we will get
(
N
n

)
states of helicity

λ + n
2 . The procedure is terminated at a single state of helicity λ + 1

2 N . Then we get
N∑
n=0

(
N
n

)
= 2N states in total, i.e., the supermultiplet obtained in this way has dimension

2N . However, as discussed for the example of N = 1, an additional supermultiplet

with opposite helicity contents is usually needed to form a complete representation for

8
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massless particles. The only exception to this helicity doubling rule is the self-conjugate

supermultiplet, where states come in pairs with opposite helicities.

As an explicit example, an N = 2 massless supermultiplet consists of following 4

states,

|Ω(q, λ)〉, a†A|Ω(q, λ)〉, 1√
2
a†1a
†
2|Ω(q, λ)〉.

They have helicities λ, λ + 1/2, and λ + 1, and are SU(2) singlet, doublet, and singlet,

respectively. The supermultiplet is self conjugate when λ = −1/2, in which case no ad-

ditional supermultiplet is needed. When λ 6= −1/2, we still need another supermultiplet

to complete the representation for massless particles.

Now it is easy to see that if we require a rigid susy theory, then we can have at

most N = 4, for a supermultiplet of N > 4 must involve state of helicity> 1. The

only known consistent theory of spin-3/2 and spin-2 is supergravity, which needs local

susy rather than rigid susy. Similarly, we would exclude massless susy theories with

N > 8 because such theories must involves massless particle with spin> 2, and it seems

impossible to introduce consistent interactions for such high spin massless particle in 4

dimensional relativistic quantum field theory [7,8]. For this reason we call N = 4 theory

the maximally extended Yang-Mills theory and N = 8 theory the maximally extended

supergravity.

3.2 Massive supermultiplets

For massive states we take the representative momentum to be qm = (m, 0, 0, 0).

Then the little group, besides the internal and fermionic parts, is an SO(3) subgroup of

the Lorentz group, generated by Ji = 1
2 εijkJ

jk with i, j, k = 1, 2, 3. Thus a state can be

labeled by the eigenvalues of Pm, J2 = JiJi, and J3, which we write as |q, j, j3〉. Then

we may examine the action of {Q,Q} and {Q,Q}, as did for massless case. Now we

distinguish two cases with and without central charges.

Without central charges. In this case we have {Q,Q} = {Q,Q} = 0, and the action

of {Q,Q} on state |q, j, j3〉 is given by

{QAα , Qβ̇B}|q, j, j3〉 = 2δAB

(
m 0

0 m

)
|q, j, j3〉. (20)

Thus we find the normalized operators aAα = 1√
2
QAα and a†αA = 1√

2
Qα̇A still form a

Clifford algebra,

{QAα , Qβ̇B} = 2mδABδαβ̇ , {Q
A
α , Q

B
β } = {Qα̇A, Qβ̇B} = 0. (21)

This time we have 2N raising and 2N lowering operators, 2 times many as massless

case. To see the supermultiplet formed in this case, we firstly consider the N = 1 case.

9
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The Clifford vacuum |Ω(q, j, j3)〉 with quantum numbers indicated is defined through

aα|Ω(q, j, j3)〉 = 0. Then a massive supermultiplet can be formed to be

|Ω(q, j, j3)〉, a†1|Ω(q, j, j3)〉, a†1|Ω(q, j, j3)〉, 1√
2
a†1a
†
2|Ω(q, j, j3)〉. (22)

Recall that QAα belongs to ( 1
2 , 0) and Qα̇A belongs to (0, 1

2 ), so both of them are spinor

under little group SO(3). Then, the spin of above states can be found by usual sum-

mation rule of angular momentum. More explicitly, suppose j 6= 0, then two states of

a†A|Ω(q, j, j3)〉 have spin j ± 1/2, and 1√
2
a†1a
†
2|Ω(q, j, j3)〉 has spin j, since here a1 and a2

anticommute. On the other hand, when j = 0, both of a†A|Ω(q, j, j3)〉 have spin 1/2.

When there are N > 1 copies of susy generators, the Clifford algebra (22) has an

obvious automorphism SU(2) ⊗ U(N) where SU(2) is simply the space rotation and

operates on spinorial indices, and U(N) operates on indices A. But this is not the largest

group. Actually, the algebra (22) is invariant under a larger group SO(4N), which

contains SU(2) ⊗ U(N) as a subgroup. To make this manifest, we redefine the raising

and lowering operators as,

ΓA = 1√
2

(
aA1 + a†1A

)
, ΓN+A = 1√

2

(
aA2 + a†2A

)
,

Γ2N+A = i√
2

(
aA1 − a

†
1A

)
, Γ3N+A = i√

2

(
aA2 − a

†
2A

)
,

(23)

with 1 and 2 spinorial indices and A = 1, · · · , N . Then the 4N Hermitian operators Γr

form the following bracket,

{Γr,Γs} = δrs, (r, s = 1, · · · , 4N) (24)

which is clearly SO(4N) invariant. Now we can still define the Clifford vacuum via

aAα |Ω(m, j, j3)〉 = 0 for all α and all A. Then, acting raising operators a†αA on Clif-

ford vacuum, we will finally get 22N states, forming a spinor representation of SO(4N).

This representation can be decomposed into two irreducible representations of dimension

22N−1, corresponding to bosonic and fermionic parts.

Besides SU(2)⊗U(N) mentioned above, the automorphism group SO(4N) also con-

tains another subgroup SU(2)⊗USp(2N). This subgroup is important in that states of

the same spin form an irreducible representation of USp(2N).

With central charges. When central charges are present, we can write super-brackets

acting on a state |q, j, j3〉 associated with representative momentum qm = (m, 0, 0, 0) as,

{QAα , Qβ̇B} = 2mδABδαβ̇ , {Q
A
α , Q

B
β } = εαβZ

AB , {Qα̇A, Qβ̇B} = −εα̇β̇Z
†
AB (25)

Note that according to convention of [1], ZAB = −ZAB . The central charge ZAB is

antisymmetric with its two indices and commutes with everything. So we are free to

10
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bring it to the following standard form Z̃AB = UABU
C
DZ

CD, by unitary rotations

U ∈ U(N),

Z̃ = diag
(
Z1ε, · · · , ZN/2ε

)
, (N even)

Z̃ = diag
(
Z1ε, · · · , ZN/2−1ε, 0

)
, (N odd)

(26)

where Zi’s are numbers and ε = iτ2 is 2 × 2 antisymmetric matrix with ε12 = 1. Now,

we perform the same unitary rotation Q̃Aα = UABQ
B
α on susy generators Q and similarly

on Q, and decompose the indices A = (a, I) with a = 1, 2 and I = 1, · · · , N/2. Then the

brackets (25) can be rewritten as,

{Q̃aIα , Q̃β̇bJ} = 2Mδabδ
I
Jδαβ̇ ,

{Q̃aIα , Q̃bJβ } = εαβε
abδIJZJ ,

{Q̃α̇aI , Q̃βbJ} =− εα̇β̇εabδIJZJ ,

(27)

To further simplify these anticommutators, we define new operators aIα and bIα, as follows,

aIα = 1√
2

(
Q̃1I
α + εαβ̇Q̃

2I
β̇

)
,

bIα = 1√
2

(
Q̃1I
α − εαβ̇Q̃

2I
β̇

)
.

(28)

Then, the anticommutators read,

{aIα, aJβ} = {bIα, bJβ} = {aIα, bJβ} = 0,

{aIα, a
J†
β } = δαβδ

IJ(2m+ ZJ),

{bIα, b
J†
β } = δαβδ

IJ(2m− ZJ).

(29)

Now this is again a Clifford algebra with N raising and lowering operators when ZI < 2m,

and the supermultiplet can be formed in a similar way as described before, and it has

dimension 22N . However, once some ZI ’s are equal to 2m, the corresponding {b, b†}
brackets vanish, and the dimension of the Clifford algebra decreases. In particular, if

ZI = 2m for all I = 1, · · · , N/2, all b’s should be removed from the Clifford algebra,

and the remaining a’s can generate a supermultiplet of dimension 2N , which is the same

with the corresponding massless supermultiplet. Such supermultiplet is usually called

short multiplet, and it describes the so-called BPS saturated states. The Clifford algebra

(29) still admits the automorphism group USp(2N) provided al ZI < 2m. Once a

central charge saturates the BPS bound, the automorphism group becomes USp(N), or

USp(N + 1) for N odd.
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4. N = 1 Superspace and Superfields

4.1 Superspace

Superspace formulation is a convenient way to realize both Poincaré and supersym-

metry transformation as coordinate transformations. In this way the supersymmetry are

kept manifest during every step of derivations. Thus it is very useful when quantizing

a supersymmetric theory. One can make an analogy with the covariant formulation of

special relativity. The superspace language to a supersymmetric theory, comparing with

the components field description, is what the covariant formulation of special relativity,

e.g., xµ, Aµ, comparing with the components description, e.g., (t, ~x) or (φ, ~A).

For N = 1 supersymmetry, superspace formulation is an elegant way to derive all

renormalizable, and some imporantant non-renormalizable theories. The path integral

quantization based on superspace formulation is also useful when deriving important

N = 1 nonrenormalization theorems. Although these theorem can also be derived more

elegantly by applying holomorphy arguments, the diagrammatic proof by using super-

space Feynman rules is conceptually more straightforward.

A formal construction of superspace formulation is to make use of coset construction,

realizing the superspace as a coset space. In general, for a group G with a subgroup H,

the coset space G/H consists of equivalent classes of the identification ∼, with

g1 ∼ g2 iff g−1
2 g1 ∈ H.

A quite remarkable fact is that the 4 dimensional spacetime itself, can already be identified

as a coset, namely Poincaré/Lorentz. This identification means not only the correct

dimensionality, but also the correct transformation rules of coset coordinates under a

general Poincaré transformation. That is, the Lorentz subgroup is realized linearly in a

vector representation while the remaining translations are realized nonlinearly.

With this prototypical example in mind, it is easy to guess that a natural realization

of superspace is the coset SuperPoincaré/Lorentz. This is indeed the case. Now we

elaborate this idea. A general element g0 ∈SuperPoincaré can be written as

g0 = exp
(
− iamPm + iξαQα + iξα̇Q

α̇
)

exp
(

1
2 iωmnJmn

)
. (30)

Then we can choose the representative element in each equivalent class to be the one

with ωmn = 0. The points in coset space can now be parameterized by the coordinates

zM = (xm, θα, θ̄α̇) and be written as exp(iz · K). Here we define the superspace inner

product as z ·K = −xmPm + θαQα + θ̄α̇Q
α̇, with KM = (Pm, Qα, Q

α̇).

SUSY transformations of super-coordinates. According to the spirit of coset con-

struction, the superPoincaré transformation of superspace coordinates are determined by

12
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the left group action. Thus we consider the action of g0 on the point ez·K from left,

g0e
iz·K = eiz′·Keiω′mnJmn/2. (31)

Note that the coset point eiz·K will be shifted away from our chosen parameterization,

and develop a Jmn term, after the left g0 action, as shown above. Then, the coordinate

transformation for small group action can be found from this equation by applying the

Hausdorff’s formula eAeB = eA+B+ 1
2 [A,B]+···,

g0e
iz·K ' exp

{
− i(a+ x)mPm + i(ξ + θ)Q+ i(ξ + θ̄)Q+ 1

2 iωmnJmn

− 1
2

(
ξαθ̄β̇ + ξβ̇θα

)
{Qα, Qβ̇}+ 1

4 ω
mnx`[Jmn, P`]

− 1
2 ω

mnθα[Jmn, Qα]− 1
2 ω

mnθα̇[Jmn, Q
α̇]
}

= exp
{
− i
(
xm + am + iθσmξ − iξσmθ̄ + 1

2 ω
mnxn

)
Pm + 1

2 iωmnJmn

+ i
(
θα + ξα − i

2ω
mnθβ(σmn)β

α
)
Qα

+ i
(
θ̄α̇ + ξα̇ − i

2ω
mnθ̄β̇(σmn)β̇ α̇

)
Qα̇
}

(32)

In above derivation we use the relation such as [ξQ, θ̄Q] = ξαθ̄β̇{Qα, Qβ̇}, as well as the

shorthand notation ξσmθ̄ = ξα(σm)αβ̇ θ̄
β̇ . Then we get the infinitesimal transformation

rules of super-coordinates,

xm → xm + am + iθσmξ − iξσmθ̄ + 1
2 ω

mnxn,

θα → θα + ξα − i
2ω

mnθβ(σmn)β
α,

θ̄α̇ → θ̄α̇ + ξα̇ − i
2ω

mnθ̄β(σmn)β̇ α̇.

(33)

It is worth noting that the transformation rule above becomes exact even for finite pa-

rameters (am, ξα, ξα̇) if we turn off the rotation by setting ωmn = 0, because all higher

order commutators vanish in the Hausdorff’s formula quoted above.

As expected, the Lorentz rotation acts linearly on all coset coordinates, while space-

time translation and supersymmetry transformation are nonlinearly realized as super-

translations. A special point is that supersymmetry also leaves a footstep on commuting

coordinate xm, due to the nonvanishing bracket {Qα, Qβ̇}. This can be understood as

a sort of “noncommuting coordinates”, and it will distort the geometry structure of the

superspace from the trivial one.

Geometric structure. As a coset space, the N = 1 superspace has certain geomet-

ric structure, described by its vielbein and spin connection. When speaking of these

geometric structures, we should distinguish the ”general curved” indices for coset coor-

dinates from the “local flat” indices. We use (·)M = (·)(m,µ,µ̇) as “curved” indices and

13
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(·)A = (·)(a,α,α̇) as “flat” indices. Then, in the coset construction, the vielbein 1-form

EA and spin connection 1-form Ωmn are defined as components of the Maurer-Cartan

1-form −ie−iz·Kdeiz·K , via,

− ie−iz·Kdeiz·K = EAKA + 1
2 ΩmnJmn. (34)

To find these components, we use the formula

deX = eX
∞∑
n=0

(−1)n

(n+ 1)!
adnX

(
dX
)
,

where adX(Y ) ≡ [X,Y ]. Then, taking X = −ixmPm + θQ+ θ̄Q, we have

− ieixmPm−iθQ−iθ̄Qde−ixmPm+iθQ+iθ̄Q

= −dxmPm − i

∞∑
n=0

(−1)n

(n+ 1)!
adn

(−iθQ−iθ̄Q)

(
idθQ+ idθ̄Q

)
=
[
− dxa + iθσa(dθ̄)− i(dθ)σaθ̄

]
Pa + (dθ)Q+ (dθ̄)Q. (35)

From this 1-form we see that the spin connection vanishes, and the components of vielbein

can be read off from EA = dzMEM
A, and be written as

EM
A =

ema em
α emα̇

eµ
a eµ

α eµα̇
eµ̇a eµ̇α eµ̇α̇

 =

 δm
a 0 0

−i(σa)µν̇ θ̄
ν̇ δµ

α 0

−iθρ(σa)ρν̇ε
ν̇µ̇ 0 δµ̇α̇

 . (36)

We can also define the inverse vielbein EA
M as usual, through either EM

AEA
N = δM

N

or EA
MEM

B = δA
B . Explicitly, we have

EA
M =

eam ea
µ eaµ̇

eα
m eα

µ eαµ̇
eα̇m eα̇µ eα̇µ̇

 =

 δa
m 0 0

i(σm)αβ̇ θ̄
β̇ δα

µ 0

iθγ(σm)γβ̇ε
β̇α̇ 0 δα̇µ̇

 . (37)

With the veirbein and spin connection known, we can find further geometric objects on

superspace. A very important one is the covariant derivative, defined through DA =

EA
M (∂M + 1

2 ωM
mnJmn). Note that ωM

mn = 0, then it is easy to find,

Da = ∂a,

Dα =
∂

∂θα
+ i(σm)αβ̇ θ̄

β̇∂m,

Dα̇ =
∂

∂θ̄α̇
+ iθγ(σm)γβ̇ε

β̇α̇∂m.

(38)

14
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In practice, it is also convenient to define a antichiral covariant derivative with lower

index, namely,

Dα̇ ≡ εα̇β̇Dβ̇ = − ∂

∂θ̄α̇
− iθβ(σm)βα̇∂m, (39)

where ∂/∂θ̄α̇ = (∂/∂θ̄β̇)εβ̇α̇. We define Dα̇ with an extra minus sign to match the

convention of Wess & Bagger [1].

With this expression, we can easily prove following useful supercommutators,

[∂m,Dα] = [∂m,Dα̇] = 0,

{Dα,Dβ} = {Dα̇,Dβ̇} = 0,

{Dα,Dβ̇} = −2i(σm)αβ̇∂m.

(40)

As an example, we prove the last one for an arbitrary functions f on superspace,

{Dα,Dβ̇}f =
(
∂α + i(σm)αα̇θ̄

α̇∂m
)(
− ∂β̇ − iθβ(σn)ββ̇∂n

)
f

+
(
− ∂β̇ − iθβ(σn)ββ̇∂n

)(
∂α + i(σm)αα̇θ̄

α̇∂m
)
f

=−
(
∂α∂β̇ + ∂β̇∂α

)
f + (σm)αα̇(σn)ββ̇

(
θ̄α̇θβ + θβ θ̄α̇

)
∂m∂nf

− 2i(σm)αβ̇∂mf − i(σm)αα̇θ̄
α̇∂m∂β̇f + iθβ(σm)ββ̇∂m∂αf

− iθβ(σm)ββ̇∂α∂mf + i(σm)αα̇θ̄
α̇∂β̇∂mf

= − 2i(σm)αβ̇∂mf.

From (40) we see that the commutation relations of these covariant derivatives agree with

the SUSY algebra, with the identification of Pm = −i∂m.

4.2 Superfields

Superfields are functions defined on the superspace. The SUSY transformations of

the supercoordinates induce a corresponding SUSY transformation on superfields. The

simplest superfield is the scalar superfield φ(z), which by definition is invariant under

such a SUSY transformation, namely,

φ′(z) = φ(z′), (41)

where the induced SUSY transformation on φ has been defined in the passive way, which

is contrary to the conventions for x-space fields. This convention actually derives from

the SUSY transformations for component fields which has become the standard one in

SUSY community. With this convention, the infinitesimal SUSY transformation on a

scalar superfield φ(z) is given by

δφ(z) ≡ φ′(z)− φ(z) = φ(z′)− φ(z) = δzM∂Mφ(z). (42)
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From discussion above we know that the coordinate variation δzM is further induced by

the left action of a small superPoincaré group element δgI = (am, ξα, ξα̇, ω
mn). Thus

we may further write δzM∂M = δgIfI
M∂M ≡ δgIXI . By definition, XI = fI

M∂M is

nothing but the Killing vector associated with SUSY transformations on the superspace.

Then from (33) we find that

fI
M =


δm

` 0 0

−i(σ`)αβ̇θ
β̇ δα

β 0

−iθγ(σ`)γβ̇ε
β̇α̇ 0 δα̇β̇

1
2 (xmδ

`
n − xnδ`m) −iθβ(σmn)β

α −iθ̄β̇(σ̄mn)β̇ α̇

 . (43)

Therefore, the Killing vector XI = fI
M∂M = (Xm, Xα, X

α̇, Xmn) is given by

Xm = ∂m,

Xα =
∂

∂θα
− i(σm)αβ̇ θ̄

β̇∂m,

X α̇ =
∂

∂θ̄α̇
− iθγ(σm)γβ̇ε

β̇α̇∂m,

Xmn = 1
2 (xm∂n − xn∂m)− iθβ(σmn)β

α ∂

∂θα
− iθ̄β̇(σ̄mn)β̇ α̇

∂

∂θ̄α̇
.

(44)

As always, the index of Killing vector X α̇ can be lowered according to Xα̇ = εα̇β̇X
β̇ .

Then, all the Killing vectors XI also form a closed algebra. In particular, we have

[Xm, Xα] = [Xm, X β̇ ] = 0,

{Xα, Xβ} = {X α̇, X β̇} = 0,

{Xα, X β̇} = 2i(σm)αβ̇Xm.

(45)

Note that there is an overall sign difference on the right hand side of these commutators,

comparing with original susy algebra. This is due to our passive interpretation of susy

action. On the other hand, had we define the group action on the coset space by right

action (rather than left action), the Killing vectors would be given exactly by the covariant

derivatives introduced in (38).

It is illuminating to display the susy transformation of a scalar field in component

form at this stage. By expanding into components, a scalar superfield φ(z) can be written

as,

F (xµ, θα, θα̇) = f(x) + θφ(x) + θ̄χ̄(x) + θ2m(x) + θ̄2n(x) + θσmθ̄vm(x)

+ θ2θ̄λ̄(x) + θ̄2θψ(x) + θ2θ̄2d(x).
(46)

Thus, the SUSY transformation on component fields, defined by δF (z) = δf(x) +

θαδχα(x) + · · · , can be worked out by acting on each component field the operator
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X = ξαXα + ξα̇X
α̇ = ξα∂α + ξα̇∂

α̇ − iξσmθ̄∂m + iθσmξ∂m.

Xf =− i
(
ξσmθ̄ − θσmξ

)
∂mf,

Xθφ = ξφ− i(ξσmθ̄)(θ∂mφ) + i(θσmξ)(θ∂mφ)

= ξφ− i
2 (θσmθ̄)(ξσnσ̄m∂nφ) + i

2 θ
2
[
(∂mφ)σmξ

]
,

Xθ̄χ̄ = ξχ̄− i(ξσmθ̄)(θ̄∂mχ̄) + i(θσmξ)(θ̄∂mχ̄),

= ξχ̄+ i
2 θ̄

2(ξσm∂mχ̄) + i
2 (θσmθ̄)

[
(∂mχ̄)σ̄nσ

mξ
]
,

Xθ2m = 2ξθm− i(ξσmθ̄)(θ2∂mm),

Xθ̄2n = 2ξθ̄n+ i(θσmξ)(θ̄2∂mn),

X(θσmθ̄)vm = (ξσmθ̄ − θσmξ)vm − i
(
ξσnθ̄ − θσnξ

)
(θσmθ̄)∂nvm

= (ξσmθ̄ − θσmξ)vm − i
2 θ

2θα(σm)αα̇ξ
β(σn)ββ̇ε

α̇β̇∂nvm

+ i
2 θ

2εβα(σn)ββ̇ξ
β̇(σm)αα̇θ̄

α̇∂nvm,

Xθ2θ̄λ̄ = 2(ξθ)(θ̄λ̄) + θ2(ξλ̄)− i(ξσmθ̄)θ2(θ̄∂mλ̄)

= (θσmθ̄)(λ̄σ̄mξ) + θ2(ξλ̄) + i
2 θ

2θ̄2(ξσm∂mλ̄),

Xθ̄2θψ = θ̄2(ξψ) + 2(ξθ̄)(θψ) + i(θσmξ)θ̄2(θ∂mψ),

= θ̄2(ξψ) + (θσmθ̄)(ξσ̄mψ) + i
2 θ

2θ̄2
[
(∂mψ)σmξ

]
,

Xθ2θ̄2d = 2θ̄2(ξθ)d+ 2θ2(ξθ̄)d.

In deriving these results one may find the relation (σm)αα̇(σ̄n)β̇β = −2δα
βδα̇

β̇ useful.

Specifically, one can use it to derive more relations that can be put directly into use, such

as,

(ξσmθ̄)(θ∂mφ) = 1
2 (θσmθ̄)(ξσnσ̄m∂nφ),

(θφ)(θ̄χ̄) = 1
2 (θσmθ̄)(χ̄σ̄mφ),

Finally, we get

δf = ξφ+ ξχ̄,

δφα = 2ξαm− εαβ(σm)ββ̇ξ
β̇
(
vm − i∂mf

)
,

δχ̄α̇ = 2ξα̇n+ ξα(σm)αα̇
(
vm − i∂mf

)
,

δm = ξλ̄+ i
2

[
(∂mφ)σmξ

]
,

δn = ξψ + i
2 ξσ

m∂mχ̄,

δvm = λ̄σ̄mξ + ξσ̄mψ − i
2 ξσ

nσ̄m∂nφ+ i
2 (∂mχ̄)σ̄nσ

mξ,

δλ̄α̇ = 2ξα̇d− iξα(σm)αα̇∂mm+ i
2 ε
βα(σn)ββ̇ξ

β̇(σm)αα̇∂nvm,

δψα = 2ξαd+ iεαβ(σm)ββ̇ξ
β̇∂mm+ i

2 ξ
γ(σn)γβ̇(σ̄m)β̇α∂nvm,

δd = i
2

[
ξσm∂mλ̄+ (∂mψ)σmξ

]
.

(47)
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We see that a scalar superfield contains x-space fields of spin-0, 1/2 and 1. It is simply

the “general scalar supermultiplet” in the language of tensor calculus of rigid susy. We

know that this supermultiplet is “reducible”, in the sense that a subset of its components

transform into themselves without on-shell condition. Therefore it may be possible to

constrain some of components in this supermultiplet to zero in a susy-invariant way.

In superspace formulation, these constraint can be put into an elegant form by acting

covariant derivative DM on the superfield φ. Here it is worth noting that the covariant

derivative DM is really “covariant” because they supercommute with all Killing vectors,

namely, [DM , XI ] = 0. More explicitly, we have,

{Dα, Xβ} = {Dα̇, X β̇} = {Dα, X β̇} = {Dα̇, Xβ} = 0. (48)

They can be proved directly from the definitions (38) and (44).

Now with a scalar superfield and covariant derivative in hand, we can construct new

superfields. Rather than taking products of fields and covariant derivatives, we are ac-

tually more interested in applying constraint on a given superfield such as the general

scalar superfield F studied above. This is because unconstrained superfields like F are

usually reducible, in the sense that a subset of all component fields may transform within

this subset closely. Therefore, we expect that appropriate constraint could help to pick

up irreducible part from a general superfield. The constraint should of course be susy

invariant, and be such that no x-space constraint is generated (in form of differential

equations).

The general scalar superfield F , as we shall see, is a typical reducible superfield. How-

ever, it is not completely reducible, i.e., it can not be written as a “direct sum” of several

irreducible superfields. Nevertheless, we will see that the most general renormalizable

N = 1 susy theories in 4 dimensions can be constructed starting from two distinct ways

of constraining the superfield F . The first one is given by the chiral constraint Dα̇F = 0

and the second one is the reality constraint F † = F . The resulted superfields are called

chiral superfield and vector superfield, respectively. In what follows we study these two

types of constraints in turn.

5. N = 1 Chiral Theory

The super space formulation is an elegant and powerful tool to construct N = 1 rigid

susy theories, in both of their classical and quantum forms. The classical action can

be built as superspace integral over susy-invariant superfields and the supersymmetry is

manifest during all derivations. When performing superspace integral, it is important to

distinguish between chiral and unchiral superfields. This is because, the chiral superfields

are constrained by chiral condition, thus its integral over the whole superspace yields zero

result. Therefore, in building an action functional for susy theories, we should study two
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distinct possibilities. One is an integral of unchiral superfield F over the whole superspace,

namely
∫

dz F (z), with z = (x, θ, θ̄) and dz = d4xd2θd2θ̄, and the other is an integral of

chiral superfield Φ over a part of superspace only, namely
∫

d4xd2θΦ(z) + h.c..

5.1 Chiral superfields

The chiral superfield, by definition, is a scalar superfield Φ satisfying the chiral con-

straint DαΦ = 0. To find the component form of the chiral superfield Φ, we note that

the constraint is solved by Φ = Φ(y−, θ) where ym− = xm + iθσmθ̄. That is, Φ can has

arbitrary dependence on ym− and θα but is independent of θ̄α̇. This can be seen easily

from the fact that Dα̇y
m
− = 0 and Dα̇θ

α = 0. Then, we may immediately write,

Φ = A(y−) +
√

2θψ(y−) + θ2F (y−)

= A(x) + iθσmθ̄∂mA(x) + 1
4 θ

2θ̄2�A(x)

+
√

2θψ(x)− i√
2
θ2
(
∂mψ(x)

)
σmθ̄ + θ2F (x).

(49)

Similarly, we may consider the conjugate field Φ†, which satisfies the constraint DαΦ† = 0,

which can be solved by Φ† = Φ†(y+, θ̄) with ym+ = xm − iθσmθ̄. Then we find

Φ† = A∗(y+) +
√

2θ̄ψ̄(y+) + θ̄2F ∗(y+)

= A∗(x)− iθσmθ̄∂mA
∗(x) + 1

4 θ
2θ̄2�A∗(x)

+
√

2θ̄ψ̄(x) + i√
2
θ̄2θσm∂mψ̄(x) + θ̄2F ∗(x).

(50)

To find the susy transformations of component fields (A,ψ, F ), it is useful to reexpress

Killing vectors Xα and X α̇ in terms of new coordinates (y−, θ, θ̄) as

Xα =
∂

∂θα
, X α̇ = − ∂

∂θ̄α̇
+ 2iθα(σm)αα̇

∂

∂ym
. (51)

Then, we have X = ξαXα + ξα̇X
α̇ = ξα∂α + ξα̇∂

α̇ + 2iθσmξ(∂/∂ym), and thus,

XA(y−) = 2iθσmξ∂mA(y−),

Xθψ(y−) = ξψ(y−)− iθ2
(
∂mψ(y−)

)
σmξ,

Xθ2F (y−) = 2ξθF (y−).

The susy transformation of component fields then follows directly, as

δA =
√

2ξψ,

δψα =
√

2i(σm)αα̇ξ
α̇∂mA+

√
2ξαF,

δF =−
√

2i(∂mψ)σmξ.

(52)
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The chiral superfield contains components of spin-0 and 1/2. It can be used to construct

Wess-Zumino model. We will discuss this model and its possible extensions in next

section.

5.2 Wess-Zumino model

The Wess-Zumino model may be the simplest rigid susy theory in 4 dimensions. In

superspace formulation, it can be constructed with a single chiral superfield Φ satisfy-

ing Dα̇Φ = 0 together with its complex conjugation. We firstly write down its action

functional in superspace,

S =

∫
d4xd2θd2θ̄Φ†Φ +

∫
d4x

[
d2θ

(
λΦ +

m

2
Φ2 +

g

3
Φ3
)

+ h.c.

]
. (53)

To find the component form of this action, we should work out the θ2θ̄2-component of

Φ†Φ as well as the θ2-component of Φ2 and Φ3. From (49) and (50), we see that

Φ†Φ|θ2θ̄2 = 1
4

[
A∗�A+ (�A∗)A− 2(∂mA

∗)(∂mA)
]

+ F ∗F − i
2

(
ψσm∂mψ̄ + ψ̄σ̄m∂mψ

)
,

Φ2|θ2 = 2AF − ψψ,
Φ3|θ2 = 3A2F − 3Aψψ.

Thus we get the Lagrangian in x-space to be

L = A∗�A+ F ∗F − iψσm∂mψ̄

+
[
λF +m

(
AF − 1

2 ψψ
)

+ gA
(
AF − ψψ

)
+ h.c.

]
.

(54)

Clearly, the Lagrangian contains two complex scalar A and F and a Weyl spinor ψ.

Among them, A and ψ have canonical kinetic terms, while F is an auxiliary field without

a kinetic term. Therefore, the model has (2 + 2) off-shell bosonic degrees of freedom and

4 off-shell fermionic degrees of freedom. After applying equations of motion, we see that

the numbers of both bosonic and fermionic states are 2. In fact, the equations of motion

corresponding to F and F ∗ read,

F ∗ + λ+mA+ gA2 = 0, F + λ+mA∗ + gA∗2 = 0. (55)

Substituting them back into the Lagrangian (54), we get

L = A∗�A− iψσm∂mψ̄ − 1
2 m(ψψ + ψ̄ψ̄)

− VF (A,A∗)− g
(
Aψψ +A∗ψ̄ψ̄

)
, (56)

where the scalar potential,

VF (A,A∗) = F ∗F = |λ+mA+ gA2|2, (57)

is nonnegative, with the global minimum VF = 0 reached by F = 0.
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5.3 General chiral theories

Now we consider the effective action expressed in terms of some chiral superfields ΦI

and Φ†I only. In this case the most general renormalizable Lagrangian can be easily

found on dimensional ground, and gives simply the Wess-Zumino model,

L =

∫
d2θd2θ̄Φ†IΦI + 2Re

∫
d2θ

(
λIΦ

I +
1

2
mIJΦIΦJ +

1

3
gIJKΦIΦJΦK

)
. (58)

Now, as a first step of generalization without restriction of renormalizability, we can

write down the following Lagrangian, which is actually the most general non-derivative

Lagrangian of chiral superfields,

L = LK + LW =

∫
d2θd2θ̄K(Φ,Φ†) + 2 Re

∫
d2θW(Φ), (59)

where K(Φ,Φ†) is an arbitrary function of both ΦI and Φ†I but not their derivatives,

and is called Kähler potential, W(Φ) is an arbitrary function of ΦI without derivatives,

and is called superpotential.

Nonlinear σ model. We consider the Kähler potential K first. It is a natural extension

of the quadratic term Φ†Φ, which provides correct kinetic term for each component

field except for auxiliary one. In fact, the quadratic term is the lowest order among all

nontrivial terms.

A quick observation is that the corresponding action is invariant under the following

transformation,

K(Φ,Φ†)→ K(Φ,Φ†) + 2 Re f(Φ), (60)

where f(Φ) is an arbitrary function of Φ. This is obvious because f(Φ) is also chiral, and

thus its θ2θ̄2-term is a total derivative.

Now we consider the component form of the Kähler potential term. Recall that a

left-chiral superfield Φ has the following component:

ΦI = AI(x) + iθσmθ̄∂mA
I(x) + 1

4 θ
2θ̄2�AI(x)

+
√

2θψI(x)− i√
2
θ2
(
∂mψ

I(x)
)
σmθ̄ + θ2F I(x).

(61)

Then, the Kähler potential term can be expanded at the point (A,A∗) as,

LK =
[
(∂IK)|Φ̃

I + (∂ ĪK)|Φ̃
†Ī + (∂I∂J̄K)|Φ̃

IΦ̃†J̄

+ 1
2 (∂I∂J∂KK)|Φ̃

IΦ̃J Φ̃†K + 1
2 (∂I∂J̄∂KK)|Φ̃

IΦ̃†J̄ Φ̃†K

+ 1
4 (∂I∂J∂K∂LK)|Φ̃

IΦ̃J Φ̃†KΦ̃†L
]
θ2θ̄2

.
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where Φ̃I = ΦI − AI , and the subscript “ | ” in (∂IK)| and similar expressions means

taking values at (A,A∗). Using

Φ̃IΦ̃†J |θ2θ̄2 =− 1
2 (∂mA

I)(∂mA∗J̄) + F IF ∗J̄

− i
2

[
ψIσm∂mψ

J̄ − (∂mψ
I)σmψJ̄

]
,

Φ̃IΦ̃J Φ̃†K |θ2θ̄2 = i
2

[
(∂mA

I)ψJσmψK + (∂mA
J)ψiσmψK

]
− ψIψJF ∗K ,

Φ̃IΦ̃J Φ̃†KΦ̃†L|θ2θ̄2 = (ψIψJ)(ψKψL),

On the other hand, we may view ΦI and Φ†Ī as complex maps from spacetime manifold

to a complex manifold with coordinates (AI , A∗Ī). From this viewpoint, we add bars

for anti-holomorphic indices, and use the notation ∂I = ∂/∂AI , ∂ Ī = ∂/∂A∗Ī . Then

K(A,A∗) provides a Kähler metric on the target space by

gIJ̄ = ∂I∂J̄K(A,A∗). (62)

Then we have,

(∂I∂J∂KK)| = ∂IgJK = gKKΓKIJ ,

(∂I∂J∂K∂LK)| = ∂I∂LgJK = RJKIL + ΓKIJgKĪΓ
Ī
KL

.

Thus the Kähler potential in the Lagrangian has the following component form,

LK = gIJ̄

[
− (∂mA

I)(∂mA
∗J̄) + F IF ∗J̄ − i

2

(
ψIσm(Dmψ)J̄ − (Dmψ)IσmψJ̄

)]
− 1

2
gKK

(
ΓKIJψ

IψJF ∗K + ΓKĪJ̄ψ
ĪψJ̄FK

)
+

1

4

(
∂I∂LgJK

)
(ψIψJ)(ψKψL),

(63)

where (Dmψ)I = ∂mψ
I + ΓIJK(∂mA

J)ψK , (Dmψ)Ī = ∂mψ
Ī + ΓĪ

J̄K
(∂mA

∗J̄)ψK .

Then we consider the superpotential W(Φ). To find the corresponding component

form, we also expand it around AI , which leads to,

LW = 2 Re
[
(∂IW)|F

I − 1
2 (∂I∂JW)ψIψJ

]
. (64)

Then, combining (63) and (64), we can again solve the auxiliary field F I from its equation

of motion to be,

F I = −gIJ̄(∂J̄W†)| + 1
2 ΓIJKψ

JψK . (65)

Substitute this solution back into the Lagrangian (63) and (64), we get,

L =− gIJ̄
[
(∂mA

I)(∂mA
∗J̄) +

i

2

(
ψIσm(Dmψ)J̄ − (Dmψ)IσmψJ̄

)]
+

1

4
RJKIL(ψIψJ)(ψKψL)− gIJ̄(∂IW)|(∂J̄W†)|

− 1

2
(DIDJW)|ψ

IψJ − 1

2
(DĪDJ̄W)|ψ

ĪψJ̄ .

(66)
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6. N = 1 Gauge Theories

6.1 Vector superfields

The vector superfield V is actually a “real” general scalar superfield, satisfying the re-

ality condition V † = V . From the discussion above we see that a general scalar superfield

contains a complex vector component. The reality condition here constrains this vector

field to be real also. Thus the vector superfield V may be used to construct gauge theo-

ries. Therefore, we need to introduce gauge transformation for vector component which

should be consistent with supersymmetry. Meanwhile, the independent components in

V are much more than needed. As we will show now, these two problems can be solved

together in an elegant way by introducing super gauge transformation.

To this end, we note that the sum of a chiral superfield with its complex conjugate is

a vector superfield. Now let iΛ be a chiral superfield, in which the factor i is conventional.

Then, the super gauge transformation for the vector superfield V is defined to be

V → V + i(Λ− Λ†). (67)

To see the effect of this transformation, we goes to the component field representation.

For V , we write,

V = C(x) + iθχ(x)− iθ̄χ̄(x) + i
2 θ

2
[
M(x) + iN(x)

]
− i

2 θ̄
2
[
M∗(x)− iN∗(x)

]
− θσmθ̄vm(x) + iθ2θ̄

[
λ̄(x) + i

2 σ̄
m∂mχ(x)

]
− iθ̄2θ

[
λ(x) + i

2σ
m∂mχ̄(x)

]
+ 1

4 θ
2θ̄2
[
D(x) + 1

2 �C(x)
]
.

(68)

The reality condition requires that C(x),M(x), N(x), D(x) and vm(x) to be real field.

This parametrization for V is specially chosen so that λ(x) and D(x) are gauge invariant,

as will be seen. For the gauge parameter superfield iΛ, we can write it as iΛ = A(y−) +√
2θψ(y−) + θ2F (y−) as always. Then, clearly we have

i(Λ− Λ†) = A+A∗ +
√

2(θψ + θ̄ψ) + θ2F + θ̄2F ∗ + iθσmθ̄∂m(A−A∗)
+ i√

2
θ2θ̄σ̄m∂mψ + i√

2
θ̄2θσm∂mψ̄ + 1

4 θ
2θ̄2�(A+A∗). (69)

Then the gauge transformation (67) can be rewritten in component form, as

C → C +A+A∗, vm → vm − i∂m(A−A∗),
χα → χα −

√
2iψα, λα → λα,

M + iN → M + iN − 2iF, D → D.

(70)

We see that the vector component vm has the correct gauge transformation as required.

The two higher components λα and D are indeed gauge invariant, while the three lower

components C, χα, and MiN , can be gauged away completely. Therefore we can choose
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a gauge by using the degrees of freedom from ReA,ψα, F , such that V has the following

form:

VWZ = −θσmθ̄vm(x) + iθ2θ̄λ̄(x)− iθ̄2θλ(x) + 1
2 θ

2θ̄2D(x). (71)

This is the so-called Wess-Zumino gauge. Note that the gauge freedom in vector field vm
is not fixed, which corresponds to the freedom in ImA.

A gauge invariant superfield Wα can be constructed from V via

Wα = − 1
4 D2DαV. (72)

It complex conjugate W α̇ = − 1
4 D2Dα̇V is of course also gauge invariant. Indeed, the

gauge transformation of Wα is given by

δWα = − i
4 D2DαΛ = i

4 Dα̇{Dα,Dα̇}Λ = 1
2 (σm)αα̇∂mDα̇Λ = 0. (73)

The component form of Wα can be found directly from its definition. Since it is gauge

invariant, we can begin with VWZ in Wess-Zumino gauge. The calculation gets simpler in

(y−, θ, θ̄) or y+, θ, θ̄ coordinates. Thus it is useful to keep in mind the covariant derivatives

in these coordinates, given by,
Dα =

∂

∂θα
+ 2i(σm)αα̇θ̄

α̇ ∂

∂ym−
,

Dα̇ =− ∂

∂θ̄α̇
,

in (y−, θ, θ̄) coordinates (74)

and, 
Dα =

∂

∂θα
,

Dα̇ =− ∂

∂θ̄α̇
− 2iθα(σm)αα̇

∂

∂ym+
,

in (y+, θ, θ̄) coordinates (75)

So, begin with (71), we firstly go into (y+, θ, θ̄) coordinates to simplify Dα, then to

(y−, θ, θ̄) to simplify D2,

VWZ =− θσmθ̄vm(y+) + iθ2θ̄λ̄(y+)− iθ̄2θλ(y+)

+ 1
2 θ

2θ̄2
[
D(y+) + i∂mv

m(y+)
]

⇒ DαVWZ =− (σm)αα̇θ̄
α̇vm(y+) + 2iθα

(
θ̄λ̄(y+)

)
− iθ̄2λα(y+)

+ θαθ̄
2
[
D(y+) + ∂mv

m(y+)
]

=− (σm)αα̇θ̄
α̇
[
vm(y−)− 2iθσnθ̄∂nvm(y−)

]
+ 2iθα

[
θ̄λ̄(y−)− 2i(θσnθ̄)θ̄∂nλ̄(y−)

]
− iθ̄2λα(y−) + θαθ̄

2
[
D(y−) + ∂mv

m(y−)
]
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⇒Wα = i(σm)αα̇(θσnε)α̇∂nvm(y−) + 1
2 θ

2(σn)αα̇∂nλ̄
α̇(y−)

− iλα(y−) + θα
[
D(y−) + i∂mv

m(y−)
]

Then, using the relation,

(σn)αα̇(σm)ββ̇ − (σm)αα̇(σn)ββ̇ = 2(σnmε)αβεα̇β̇ + 2(εσ̄nm)α̇β̇εαβ ,

(σn)αα̇(σm)ββ̇ + (σm)αα̇(σn)ββ̇ =− ηnmεαβεα̇β̇ + 4(σ`nε)αβ(εσ̄`m)α̇β̇ ,

we finally reach the following expression for Wα, and similarly for W α̇,

Wα =− iλα(y−) + θαD(y−)− i(σmnθ)αvmn(y−) + θ2(σm)αα̇∂mλ̄
α̇(y−),

W α̇ = iλ̄α̇(y+) + θ̄α̇D(y+) + i(σ̄mnθ̄)α̇vmn(y+) + θ̄2(σ̄m)α̇α∂mλα(y+),
(76)

where vmn = ∂mvn − ∂nvm is the ordinary field strength. Note that Wα and W α̇, are

spinorial superfield and are chiral (antichiral), namely, Dα̇Wα = 0, DαW α̇ = 0, as are

obvious from their definition. However, Wα and W α̇ are not the most general spinorial

(anti)chiral superfield, i.e., they satisfy certain constraint. The constraint is actually from

the reality condition for V † = V , which implies that

DαWα = Dα̇W
α̇. (77)

A proof for this relation is straightforward,

DαWα = 1
4

(
{Dα,Dα̇} −Dα̇Dα

)(
{Dα̇,Dα} −DαDα̇

)
V

= 1
4 Dα̇D2Dα̇V = Dα̇W

α̇.

In fact, one may begin directly with a constraint chiral spinorial superfield Wα and

to find its component form (76). The strategy we present here, however, is to firstly

solve the constraint (77) by an unconstrained vector superfield V through (72). The

unconstrained solution V , then, is said to be the prepotential. This is fully in parallel

with the case of ordinary Maxwell theory, where one can begin with either the vector

potential Am subjected to gauge transformation, or the field strength Fmn subjected to

Bianchi identity. Indeed, the superfield Wα can be thought as a susy generalization of

field strength. In next section we will study how to use it to construct super Abelian

gauge theory as well as its non-Abelian generalization.

6.2 Super-Maxwell theory

Before studying the general case of non-Abelian gauge theory, we firstly take the

Abelian gauge theory as a warming-up exercise, which we refer to as super-Maxwell

theory.
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As we learned in last section, an susy invariant action functional for gauge field can

be built from the super field strength Wα defined in (72). In fact, a proper action is given

by

S =

∫
d4x
[
d2θ

1

4
WαWα + h.c.

]
. (78)

To find the component form, we evaluate θ2-component of WαWα as follows,

WαWα|θ2 = −2iλσm∂mλ̄− 1
2 vmnv

mn + i
2 vmnṽ

mn +D2,

where ṽmn = 1
2 εmnpqv

pq is the dual field strength. The term vmnṽ
mn has no effect

in Abelian gauge theory since it is a total derivative while the Abelian gauge theory is

topologically trivial. Thus the component form of the Lagrangian is

L = − 1

4
vmnv

mn +
1

2
D2 − iλσm∂mλ̄. (79)

Therefore a pure (without matter field) supersymmetric Abelian gauge theory contains

a free vector boson vm (photon) together with its susy partner λ (photino), which is a

free, massless and U(1)-neutral Majorana fermion. The counting of degrees of freedom

goes as #boson= 1 + 3 and #fermion= 4 for off-shell states, and #boson=#fermion= 2

for on-shell states. We note that when counting off-shell states, the gauge freedom in

photon should be excluded because the theorem of equal bosonic and fermionic states is

established for gauge invariant states.

Here we briefly touch on the susy theory for a massive vector field. The theory is

clearly not gauge invariant. Thus the mass term m2V 2 should be built from the original

form of V in (68). The θ2θ̄2-component of V 2 then involves not only vm, λ, and D, but

also M , N , C, and χ. This is easy to be understood since an extra polarization state for

massive vector particle needs corresponding susy counterpart.

Now we study the matter couplings of the super Maxwell theory. By matter we mean

some chiral superfields Φi. If these fields are charged under local U(1) gauge symmetry

with U(1) charge ti, their gauge transformation should be given by

Φi → e−itiΛΦi, Φ†i → eitiΛ
†
Φ†i . (80)

Clearly the original bilinear form Φ†Φ in Wess-Zumino model is not gauge invariant.

Recall that the vector superfield V transforms under local U(1) according to (67), then

a gauge invariant bilinear constructed from Φi and its complex conjugation is given by

Φ†ie
tiV Φi. Then, a general renormalizable U(1) gauge theory has the following action,

S =

∫
d4xd2θd2θ̄Φ†ie

tiV Φi +

∫
d4x
[
d2θ

1

4
WαWα + h.c.

]
+

∫
d4x
[
d2θ
( 1

2
mijΦiΦj +

1

3
gijkΦiΦjΦk

)
+ h.c.

]
. (81)
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The couplings mij and gijk should vanish for those terms with ti+tj 6= 0 or ti+tj+tk 6= 0,

respectively. The integrand in the second line of this action is conventionally referred to

as superpotential. To find the component form of the gauge invariant kinetic term for

matter fields, we can evaluate V in Wess-Zumino gauge. Then,

Φ†etV Φ|θ2θ̄2 = F ∗F +A∗�A− iψ̄σ̄m∂mψ

+ tvm
(

1
2 ψ̄σ̄

mψ + i
2A
∗∂mA− i

2A∂
mA∗

)
− i√

2
t
(
Aλ̄ψ̄ −A∗λψ

)
+ 1

2

(
tD − 1

2 t
2vmv

m
)
A∗A. (82)

SQED. As an prototypical example, we write down the Lagrangian of super quantum

electrodynamics (SQED) in its superfield form. By construction, SQED is a U(1) gauge

theory with two chiral superfield Φ± with charge ±1. The gauge transformation of them

are given by Φ± → e∓ieΛΦ± which we rescale by the gauge coupling e. Then, the action

reads,

S =

∫
d4x
(

d2θ
1

4
WαWα + h.c.

)
+

∫
d4xd2θd2θ̄Φ†±e

±eV Φ±

+m

∫
d4x
(
d2θΦ+Φ− + d2θ̄Φ†+Φ†−

)
. (83)

Therefore, SQED contains a massless photon, which is a vector gauge particle, a photino,

the susy counterpart of photon, which is a massless Majorana fermion without U(1)

charge. Furthermore, SQED contains two complex scalar fields (selectron) with U(1)

charges ±1, as well as two Weyl spinors (electron and positron) with charges ±1 also.

They can be gathered into a single Dirac spinor. Of course, electron (positron) and

selectron have equal mass.

6.3 Non-Abelian gauge theories

Now we come to the non-Abelian theory with gauge group G with the corresponding

algebra given by [T a, T b] = itabcT c. The generators T a are chosen to be Hermitian

and are normalized as tr (TaTb) = kδab with k > 0. The gauge transformation in this

case is most straightforward for matter fields, which is simply given by Φ → e−iΛΦ and

Φ† → Φ†eiΛ†
, where Λ = ΛaT a. Then, in order that Φ†e2V Φ remains gauge invariant,

we see that the gauge transformation for the vector superfield V = V aT a should be

generalized to,

e2V → e−iΛ†
e2V eiΛ. (84)

Here we write e2V rather than eV to recover the correct field normalization in the La-

grangian. After expanding this transformation rule we see that at the leading order,

V → V + i
2 (Λ−Λ†)+ · · · , thus one can still use Wess-Zumino gauge in non-Abelian case.

The full expression for this transformation rule at the linear order in Λ reads,

V → V + i adV (Λ + Λ†) + i adV
[

coth
(
adV

)
(Λ− Λ)†

]
+O(Λ2). (85)
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The gauge covariant super field strength can be defined as,

Wα = − 1

8
D2
(
e−2V Dαe

2V
)
, (86)

Then Wα transforms under local G as,

Wα →− 1
8 D2

[
e−iΛe−2V eiΛ†

Dα

(
e−iΛ†

e2V eiΛ
)]

= e−iΛWαe
iΛ − 1

8 e
−iΛD2Dαe

iΛ

= e−iΛWαe
iΛ. (87)

As claimed, Wα is gauge covariant. The component form of Wα can also be easily found

in Wess-Zumino gauge in which V 3
WZ = 0. Then we have,

e2VWZ = 1− 2θσmθ̄vm(y+) + 2iθ2θ̄λ̄(y+)− 2iθ̄2θλ(y+)

+ θ2θ̄2
[
D(y+) + i∂mv

m(y+)− vm(y+)vm(y+)
]
, (88)

and finally we find that,

Wα =− iλα(y−) + θαD(y−)− i(σmnθ)αvmn(y−)

+ θ2(σm)αα̇∇mλ̄α̇(y−),

W α̇ = iλ̄α̇(y+) + θ̄α̇D(y+) + i(σ̄mnθ̄)α̇vmn(y+)

+ θ̄2(σ̄m)α̇α∇mλα(y+),

(89)

where vmn = ∂mvn−∂nvm+i[vm, vn] is the non-Abelian field strength, ṽmn = 1
2 εmnpqv

pq

is the dual field strength, and ∇mλ̄α̇ = ∂mλ̄
α̇+i[vm, λ̄

α̇] is the gauge covariant derivative

for λ̄α̇. With these expressions, we can evaluate the bilinear term WαWα as we did for

Abelian theory,

WαWα|θ2 = −2iλσm∂mλ̄− 1
2 vmnv

mn + i
2 vmnṽ

mn +D2,

The topological term vmnṽ
mn could be important for non-Abelian gauge group. To

keep track of this term in the action, we introduce a complex coefficient τ , defined to be

τ =
θYM

2π
+

4πi

g2
, (90)

where g is the gauge coupling and θYM is the topological angle. Then, a well-defined

action can be written as

S =
τ

16πik

∫
d4xd2θ trWαWα + h.c.. (91)
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The definition for τ and the choice of imaginary part in the action is conventional in

literature, and k is arises from normalization of generators through tr (TaTb) = kδab.

Then, we find the component form of the Lagrangian to be

L =
1

k
tr

[
− 1

4g2
vmnv

mn +
1

2g2
D2 − i

g2
λσm∂mλ̄+

θYM

32π2
vmnṽ

mn

]
. (92)

To include matter superfield is also straightforward. For a chiral superfield Φi lying in

some representation of G with matrix T aij , the kinetic term is given by Φ†i (e
2V )ijΦj . In

components, we get,

Φ†e2V Φ|θ2θ̄2 = 1
4

[
A∗�A+ (�A∗)A

]
− 1

2 (∂mA
∗)(∂mA)

+ iA∗vm∂
mA− i(∂mA

∗)vmA+A∗
(
D − vmvm

)
A

− i
2

[
ψ̄σ̄m∂mψ − (∂mψ̄)σ̄mψ

]
+ ψ̄σ̄mvmψ + F ∗F

+
√

2i
(
A∗λψ − ψ̄λ̄A

)
. (93)

Then, upon integration by parts, we get the Lagrangian for matter field as

L =− (∇mA)†(∇mA)− iψ̄σ̄m∇mψ + F ∗F

+A∗DA+
√

2i(A∗λψ − ψ̄λ̄A),
(94)

where ∇mA = (∂m + ivm)A and ∇mψ = (∂m + ivm)ψ, and v should be understood as

matrix under the representation to which the matter fields belong. Now, combining the

Lagrangian for gauge fields (92) and for matter fields (94), we see that the auxiliary field

D, when substituted by its field equation Da = −g2A∗T aA, generates additional term in

the scalar potential, given by

VD(A,A∗) =
1

2g2
DaDa =

g2

2
(A∗T aA)2, (95)

which, just like VF in (57), also contributes a nonnegative term to the scalar potential,

as required by supersymmetry.

7. Path Integral Quantization

7.1 Superspace path integral

Now we introduce path integral quantization in superspace formalism. The basic

idea is the same with the ordinary path integral formulation. We begin with the action

functional, which is an integral over the whole superspace for nonchiral fields and a part

of the superspace for chiral fields. In general, we may write

S =

∫
d4xd2θd2θ̄L [V,Φ,Φ†] +

(∫
d4xd2θL [Φ] + h.c.

)
, (96)
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where Φ is a chiral superfield and V is a vector superfield. The most general renormal-

izable N = 1 rigid susy theories can be expressed solely in terms of Φ, Φ†, and V .

To find a corresponding quantum theory for this classical action, we should define

the partition function Z[J ], from which we can find the generating functional G[J ] for

connected Green’s functions, as well as the 1PI effective action Γ[φcl]. All these quantities

can be defined as usual. In particular, we can still write down a perturbative expansion

for Z[J ]. Suppose the action S can be decomposed into a free part and an interacting

part, S = Sfree + Sint., then,

Z[J ] = Z[0]

∫
DΦDΦ†DV exp

[
iS + iV · JV + i(Φ · JΦ + h.c)

]
= exp

(
iSint

[ δ

iδJV
,
δ

iδJΦ
,

δ

iδJΦ†

])
Zfree[J ], (97)

where V · JV =
∫

d4xd2θd2θ̄ V JV , Φ · JΦ =
∫

d4xd2θΦJΦ, and,

Zfree[J ] = Z[0] exp

(
− i

2

∫
dz1dz2Ji(z1)Gij(z1, z2)Jj(z2)

)
, (98)

with i, j = V,Φ,Φ†. The two-point Green’s function Gij(z1, z2) can be found by inverting

the coefficient (matrix) of the quadratic term in the free action. Now we are going to

find them for both chiral and vector superfields. We first consider the chiral superfield,

in the context of Wess-Zumino model.

Wess-Zumino model. We recall that the free action, including the source term, for a

chiral field Φ is given by

Sfree =

∫
dzΦ†Φ +

∫
d4x

[
d2θ

(
JΦ +

m

2
Φ2
)

+ d2θ̄
(

Φ†J† +
m

2
(Φ†)2

)]
. (99)

The situation is complicated by the the chiral integration d2θ because in order to carry

out the path integral, we want that the action integral is performed over the whole

superspace. The trick to convert the chiral integral to the whole superspace integral is

to make use of the projector P±, defined by

P+ =
D2D2

16�
, P− =

D2D2

16�
. (100)

Clearly for a general superfield F , P+F is chiral and P−F is antichiral. Moreover it is

easy to see that P+Φ = Φ and P+J = J because both Φ and J are chiral. Then, with

the relation
∫

d2θ = − 1
4 D2, we rewrite the free action of Wess-Zumino multiplet as

Sfree =

∫
dzΦ†Φ +

[ ∫
d4xd2θ

(
ΦP+J +

m

2
ΦP+Φ

)
+ h.c.

]
=

∫
dz

[
Φ†Φ−

(
J

D2

4�
Φ + J†

D2

4�
Φ†
)
− m

2

(
Φ

D2

4�
Φ + Φ†

D2

4�
Φ†
)]
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=

∫
dz

[
1

2
(Φ,Φ†)

(
− mD2

4� 1

1 − mD2

4�

)(
Φ

Φ†

)
− (Φ,Φ†)

(
D2

4� J

D2

4� J
†

)]
. (101)

Then, we find the free part of the generating functional Wfree[J ] = −i logZfree[J ] to be

Wfree[J ] =− 1

2

∫
dz
(

D2

4� J,
D2

4� J
†)(− mD2

4� 1

1 − mD2

4�

)−1( D2

4� J

D2

4� J
†

)

=− 1

2

∫
dz
(

D2

4� J,
D2

4� J
†)( mD2

4(�−m2) 1 + m2D2D2

16�(�−m2)

1 + m2D2D2

16�(�−m2)
mD2

4(�−m2)

)(
D2

4� J

D2

4� J
†

)

=− 1

2

∫
dz
(
J, J†

)( mD2

4�(�−m2)
1

�−m2

1
�−m2

mD2

4�(�−m2)

)(
J

J†

)
. (102)

In deriving this result we have repeatedly used the definition of projectors P± as well as

the relations such as P+J = J . We also note that one is allowed to perform integration

by parts within super-integral with either spacetime or covariant super derivatives. For

instance, we have
∫

dz FDαG = −
∫

dz GDαF for arbitrary superfields F and G.

Now we obtained the needed 2-point functions, or propagators, to be

〈Φ(z1)Φ†(z2)〉 =
i

16

D2
1D2

1

�−m2
δ(z1 − z2), 〈Φ(z1)Φ(z2)〉 =

i

4

mD2
1

�−m2
δ(z1 − z2). (103)

To find the Feynman rules for vertices, we consider an example of 3-point vertex Φ3, for

which we need to compute,

exp

(
iSint.

[ δ

iδJ
,
δ

iδJ†

])
Zfree[J ]

⊃ ig

3

∫
d4xd2θz

[ δ

iδJ(z)

]3
iJ(z1)iJ(z2)iJ(z3)

= 2ig

∫
d4xd2θz

( −D2
z

4

)3

δ(z − z1)δ(z − z2)δ(z − z3)

= 2ig

∫
dz
( −D2

z

4

)2

δ(z − z1)δ(z − z2)δ(z − z3).

As can be seen clearly, each action of the functional derivative δ/δJ(z) on J(zi) yields

a factor of (−D2/4)δ(z − zi). However, at the end of the calculation, one of the three

factors is used to convert the chiral super-integral to an integral over whole superspace.

Therefore, when evaluating super-Feynman diagrams, one should assign each n-point

chiral vertex with (n−1) factors of −D2/4. Furthermore, when computing 1PI diagrams,

the external legs should be amputated, namely, we multiply the inverse propagator to

each external leg, and take an integration. Thus one more −D2/4 is used to extend this

integral to the whole superspace. As a result, when computing 1PI diagrams, one should

assign each vertex connecting I internal lines (I − 1) factors of −D2/4.

31



Notes by Zhong-Zhi Xianyu Begin on 2013/07/22, last updated on 2015/03/11

To get the momentum space super-Feynman rules, we need to convert all results

above into momentum space. This is straightforward as it goes exactly the same with

the ordinary field theories. We only make a nearly trivial remark that only the commut-

ing coordinates xm need Fourier transformations. Then, after going through a standard

procedure, we reach the following super-Feynman rules for Wess-Zumino model in mo-

mentum space.

1. The propagators are given by(
〈Φ(z1)Φ(z2)〉 〈Φ(z1)Φ†(z2)〉
〈Φ†(z1)Φ(z2)〉 〈Φ†(z1)Φ†(z2)〉

)
=

−i

p2 +m2

(
− D2

4p2 1

1 − D2

4p2

)
δ4(θ1 − θ2).

2. For each chiral, or antichiral vertex to which I internal lines are attached, an integral

of 2ig
∫

d4θ and (I − 1) factors of −D2/4, or −D2/4, are assigned, respectively.

3. For each independent loop an integral
∫

d4k
(2π)4 is associated.

4. Usual combinatoric factors are understood.

Super Yang-Mills theory. To derive the superspace Feynman rules for super Yang-

Mills theory, we take the topological angle θYM = 0 since it does not affect perturbation

theory. We further rescale the vector superfield1 according to V → gV so that the

coefficient before the quadratic term in V does not contain g. Then, expanding the

action, we get,

S =
1

2g2k
Re

∫
d4xd2θ trWαWα

=− 1

32g2k
Re

∫
d4xd2θd2θ̄ tr

(
e−2gV Dαe2gV

)
D2
(
e−2gV Dαe

2gV
)

=
1

8

∫
d4xd2θd2θ̄

[
V aDαD2DαV

a +O(V 3)
]
. (104)

The higher order terms are irrelevant, thus we do not bother to write all them down.

However, note that the action is gauge invariant, which allows us to perform calculation

in Wess-Zumino gauge. Moreover, we know that in Wess-Zumino gauge, VWZ begins from

the θAθβ̇ term. Therefore the expansion above will be terminated at finite order.

To quantize the theory, we need a gauge fixing term and corresponding ghost term.

The gauge fixing is given by

− α

8

∫
dz (D2V a)(D2V a), (105)

1The original definition for V is said to be in holomorphic normalization, and the new convention taken

here is said to be canonical normalization. Note that such a field rescaling leaves nontrivial footprint

in the path integral measure, and gives rise to what is called a holomorphic anomaly. This anomaly

implies that the gauge coupling constants defined in holomorphic and canonical normalization will run

differently.
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with α the gauge fixing parameter. Then the quadratic term of the prepotential is given

by

Sfree =
1

8

∫
dz
[
V aDαD2DαV

a − α(D2V a)(D2V a)
]
. (106)

7.2 Nonrenormalization theorems

A great thing about susy theories is that certain quantities do not receive radiative

correction, or, they are not renormalized by quantum effect. Such statement in susy the-

ories are collectively called nonrenormalization theorems. Now, with the super-Feynman

rules derived above, we prove a nonrenormalization theorem for superpotential of chiral

superfields.

Theorem. The 1PI effective action Γ[Φ,Φ†] of the Wess-Zumino model (53) can be

represented as a single integral over the whole anticommuting variables, namely,

Γ[Φ,Φ†] =
∑
n

∫
d4x1 · · · d4xn

∫
d2θd2θ̄ G(x1, · · · , xn)

×
n∏
k=1

F
(n)
k [Φ(xk, θ, θ̄),Φ

†(xk, θ, θ̄)],

(107)

where Gn(x1, · · · , xn)’s are translational invariant functions, and F
(n)
k [Φ,Φ†]’s are local

functionals of chiral superfield and its complex conjugate, namely, it contains at most a

polynomial of derivatives of superfields.

Proof. To prove this theorem, let us consider an arbitrary loop with n vertices in

an arbitrary 1PI diagram. According to the super-Feynman rules for the Wess-Zumino

model, the part expressed in spinorial coordinate has the following structure,∫
d4θ1 · · · d4θn (D2

1)`1(D2
1)k1δ4(θ1 − θ2)

× (D2
2)`2(D2

2)k2δ4(θ2 − θ3) · · · (D2
n)`n(D2

n)knδ4(θn − θ1)

where `i and ki (i = 1, · · · , n) take values of 0 or 1, and the corresponding derivative

factors arise from the vertices, while the δ-functions δ4(θi − θj) come from propagators.

The derivatives D2
i and D2

i can always be adjust to the order shown above by using

the relations D2D2D2 = 16�D2 and D2D2D2 = 16�D2. Now, the θ-integration can be

performed one by one, in the following way,∫
d4θ1 · · · d4θn (D2

1)`1(D2
1)k1δ4(θ1 − θ2)

× (D2
2)`2(D2

2)k2δ4(θ2 − θ3) · · · (D2
n)`n(D2

n)knδ4(θn − θ1)
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∼
∫

d4θ2 · · · d4θn (D2
2)`

′
2(D2

2)k
′
2δ4(θ2 − θ3)

× · · · × (D2
n)`n(D2

n)knδ4(θn − θ1)
∣∣
(θ1,θ̄1)=(θ2,θ̄2)

∼
∫

d4θn (D2
2)`

′
n(D2

2)k
′
nδ4(θn − θ1)

∣∣
(θ1,θ̄1)=(θn,θ̄n)

.

This final expression vanishes unless `′n = k′n = 1, in which case the above expression

yields a single factor 16
∫

d4θn. Thus we see that for an arbitrary loop in a 1PI diagram,

the spinorial structure can be represented by a single integral d4θ. Now we repeat this

process to all loops in a 1PI diagram and to all 1PI diagrams, we see finally that the

1PI effective action itself can be represented as a single integral over the whole spinorial

coordinates
∫

d4θ. QED.

Now we observe that the superpotential,
∫

d2θ( 1
2 mΦ2 + 1

3 gΦ3) + h.c., cannot be

represented as a whole-superspace integral
∫

d4θ. Therefore, we immediately reach the

corollary that the superpotential does not renormalize.

Another important corollary is that a field configuration preserving supersymmetry

at the classical level does not receive perturbative quantum corrections, i.e., perturbative

quantum effects do not break supersymmetry. To see this, we only need to note that the

effective potential is the x-space independent part of the action, which must vanishes for

a supersymmetric configuration. Now, recall that the classical potential is given by V =

|F |2+ 1
2g2D

2, then V = 0 implies that auxiliary fields F and D vanish. On the other hand,

the quantum correction to the effective potential, according to the nonrenormalization

theorem above, must have the form,∫
d4xd4θ F (Vcl.,Φcl.,Φ

†
cl.),

where the subscript “cl.” means the classical configuration. However, all these field

configuration cannot have θ-dependence, since their spinorial component must vanish

as required by Poincaré symmetry, and their auxiliary components also must vanish as

discussed above. Then we immediately see that perturbative quantum correction must

vanish for such field configurations.

One may be wondering if the nonrenormalization theorem would imply that the super

Yang-Mills action (91) does not renormalize, since it is also a chiral integration. However,

this is not true since the action contains derivatives, which can be used to convert the

action to an integral over the whole superspace, as we did in (104). As a result, the

vector superfield does receive wave function renormalization.

A. Notations and Useful Relations

σm = (σ0, σi), σ̄m = (σ0,−σi). (108)

34



Notes by Zhong-Zhi Xianyu Begin on 2013/07/22, last updated on 2015/03/11

σ0 =

(
−1 0

0 −1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0

0 −1

)
. (109)

(σmn)α
β = 1

4

[
(σm)αα̇(σ̄n)α̇β − (σn)αα̇(σ̄m)α̇β

]
,

(σ̄mn)α̇β̇ = 1
4

[
(σ̄m)α̇α(σn)αβ̇ − (σ̄n)α̇α(σm)αβ̇

]
.

(110)

γm =

(
0 iσm

iσ̄m 0

)
. (111)

(σm)αα̇(σ̄m)β̇β = −2δβαδ
β̇
α̇, (σm)αα̇(σm)ββ̇ = −2εαβεα̇β̇ . (112)

(σmnσmn)α
β = − 1

2 δ
β
α, (σmn)α

β(σ̄mn)α̇β̇ = 0. (113)

[σmn, σpq] = 1
4

(
ηmpσnq − ηmqσnp − ηnpσmq + ηnqσmp

)
,

[σ̄mn, σ̄pq] = 1
4

(
ηmpσ̄nq − ηmqσ̄np − ηnpσ̄mq + ηnqσ̄mp

)
.

(114)

Thus we see that 4iσmn and 4iσ̄mn are left-spinor and right-spinor representations of

Lorentz generators Jmn, respectively.

B. Complex Geometry

In this appendix we review some basics of complex geometry relevant to main text,

following [9]. We begin with the most crucial concept in complex analysis, namely a

holomorphic (analytic) map. A complex valued function f : Cm → C is said to be

holomorphic, if f = f1 + if2 satisfies the Cauchy-Riemann relations for each zµ = xµ +

iyµ (1 ≤ µ ≤ m),
∂f1

∂xµ
=

∂f2

∂yµ
,

∂f2

∂xµ
= − ∂f1

∂yµ
. (115)

Similarly, a map (f1, · · · , fn) : Cm → Cn is holomorphic if each fλ (1 ≤ λ ≤ n) is

holomorphic.

Complex manifold. The complex manifold is defined to be a topological space M,

endowed with a set of pairs {Ui, ϕi}, such that {Ui} is an open cover of M, and ϕi is

a homeomorphism from Ui to an open neighbourhood of Cm, such that, for any Ui and

Uj with Ui ∩ Uj 6= ∅, the map ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is holomorphic.

Then, M has complex dimension m, denoted as dimCM = m. As a manifold, it’s real

dimension is 2m. From definition, M is also a differentiable manifold, ensured by its

analytic property.

One can define the holomorphic map f :M→N between two complex manifoldsM
and N with dimCM = m and dimCN = n, by requiring the corresponding map between
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two local charts, as two open neighbourhoods in Cm and Cn, to be holomorphic. Then,

a holomorphic function ofM is a holomorphic map f :M→ C. The set of holomorphic

function onM is denoted by O(M). It can be proved that any holomorphic function on

a compact complex manifold is a constant.

On a given point p onM covered by local coordinate patch zµ = xµ+iyµ, the tangent

space TpM is spanned by 2m vectors {∂/∂xµ, ∂/∂yµ;µ = 1, · · · ,m}. Now, let’s define

a complexified tangent space TpMC, spanned, with complex coefficients, by 2m vectors

∂/∂zµ = 1
2 (∂/∂xµ + i∂/∂yµ) and ∂/∂z̄µ = 1

2 (∂/∂xµ − i∂/∂yµ). We can similarly define

the complexified cotangent space as a complex vector space spanned by dzµ = dxµ+i dyµ

and dz̄µ = dxµ − i dyµ. These two basis are dual to each other, namely,〈
dzµ,

∂

∂zν

〉
=
〈

dz̄µ,
∂

∂z̄ν

〉
= δµν ,〈

dzµ,
∂

∂z̄ν

〉
=
〈

dz̄µ,
∂

∂zν

〉
= 0.

(116)

The almost complex structure J is a real (1, 1)-tensor field which is a linear map

Jp : TpM → TpM at a given point p ∈ M, and acts as Jp(∂/∂x
µ) = ∂/∂yµ and

Jp(∂/∂y
µ) = −∂/∂xµ. This tensor can be extended to TpMC, with the action Jp(∂/∂z) =

i∂/∂zµ and Jp(∂/∂z̄) = −i∂/∂z̄. Thus in this basis, we have,

Jp = i dzµ ⊗ ∂

∂zµ
− i dz̄µ ⊗ ∂

∂z̄µ
. (117)

So we can define a projector P± = 1
2 (I∓iJp), such that TpMC decomposes into two linear

spaces, namely TpM± = {P±Z;Z ∈ TpMC}. Clearly, we have TpM+ = span{∂/∂zµ}
and TpM− = span{∂/∂z̄µ}. Elements in these two subspaces are called holomorphic and

anti-holomorphic vectors, respectively.

Hermitian manifold. Now, let M be a complex manifold of dimCM = m, and with

a Riemannian metric g as a differentiable manifold. We can extend g, ∀Z = X+iY, W =

U + iV ∈ TpMC, as,

gp(Z,W ) = gp(X,U)− gp(Y, V ) + i
(
gp(X,V ) + gp(Y, U)

)
.

If g satisfies gp(JpX,JpY ) = gp(X,Y ) at each point p ∈ M, it is said to be a Hermi-

tian metric, and the pair (M, g) is a Hermitian manifold. Any complex manifold with

Riemannian metric allows a Hermitian metric. In fact, with a given Riemannian met-

ric g and almost complex structure J , it is easy to show that the metric ĝ defined via

ĝp(X,Y ) = 1
2

[
gp(X,Y ) + gp(JpX, JpY )

]
is a Hermitian metric.

With an Hermitian metric, a vector X at p ∈M is orthogonal to JpX. Furthermore,

in the basis {∂/∂zµ, ∂/∂z̄µ} of TpMC, we define the component of Hermitian metric g

as, gµν = g(∂µ, ∂µ), gµ̄ν̄ = g(∂µ, ∂ν), gµν̄ = g(∂µ, ∂ν) etc, then it’s easy to show that
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gµν = gµ̄ν̄ = 0. Thus g has the following form,

g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν . (118)

One can introduce a covariant derivative compatible with the Hermitian metric g, on

a Hermitian manifold, the corresponding connection, called Hermitian connection, has

the components Γλµν = gλλ̄∂µgνλ̄, Γλ̄µ̄ν̄ = gλ̄λ∂µ̄gλν̄ , and all others with mixed indices

vanish. This follows from the metric compatibility 0 = ∇κgµν̄ = ∂kgµν̄ − Γλκµgλν̄ and

0 = ∇κ̄gµν̄ = ∂κ̄gµν̄ − Γλ̄κ̄ν̄gµλ̄. By direct calculation, one can show that the almost

complex structure J satisfies ∇µJ = ∇µ̄J = 0.

From Hermitian connection, we can introduce torsion T and curvature R of a Hermi-

tian manifold, defined via,

T (X,Y ) = ∇XY −∇YX − [X,Y ],

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.
(119)

The only nonvanishing components of T are Tλµν and T λ̄µ̄ν̄ = (Tλµν)∗, with,

Tλµν = Γλµν − Γλνµ = gλ̄λ(∂µgνλ̄ − ∂νgµλ̄), (120)

and the only nonvanishing components of R are Rκλµ̄ν = −Rκλνµ̄ and Rκ̄λ̄µν̄ = −Rκ̄λ̄ν̄µ,

with Rκ̄λ̄µν̄ = (Rκλµ̄ν)∗, and,

Rκλµ̄ν = ∂µ̄Γκνλ = ∂µ̄(gλ̄κ∂νgλλ̄). (121)

Given a Hermitian manifold (M, g), the tensor field Ω defined via Ωp(X,Y ) =

gp(JpX,Y ), ∀X,Y ∈ TpM and ∀p ∈ M is antisymmetric with its two arguments, and

thus is a two-form, called the Kähler form of the Hermitian metric g. It has the ex-

pression Ω = igµν̄dzµ ∧ dz̄ν and thus is a real form, Ω = Ω. Furthermore, it is also

invariant under the action of J , namely Ω(JX, JY ) = Ω(X,Y ). It can be proved that

Ω ∧ · · · ∧ Ω︸ ︷︷ ︸
m times

is a nowhere vanishing 2m-form where m = dimCM, and can be used as a

volume element. So, a complex manifold is orientable.

Kähler Manifold. If the Kähler form Ω of a Hermitian metric g on a Hermitian

manifold (M, g) is closed, dΩ = 0, then g is called a Kähler metric, and (M, g) is called

a Kähler manifold. Not all complex manifold admits a Kähler metric. It can be proved

that an Hermitian manifold (M, g) is a Kähler manifold if and only if the almost complex

structure J satisfies ∇µJ = 0 where ∇µ is the covariant derivative with (torsion free)

Levi-Civita connection.

The condition dΩ = 0 can be written in (z, z̄) basis as (∂+∂)igµν̄dzµ ∧dz̄ν = 0, from

which one can deduce,

∂gµν̄
∂zλ

=
∂gλν̄
∂zµ

,
∂gµν̄
∂z̄λ

=
∂gµλ̄
∂z̄ν

. (122)
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Obviously, if the Hermitian metric g is given locally (on a coordinate patch U) by gµν̄ =

∂µ∂ν̄K with K a function on U , it will naturally satisfy the condition above, and thus is

a Kähler metric. Conversely, any Kähler metric can be locally written in this form. The

function K is called Kähler potential.

It can be proved that any complex submanifold of a Kähler manifold is again a Kähler

manifold.

From the condition (122) we see that Kähler metric is torsion free.
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