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ABSTRACT: 

 

Image matching of aerial or satellite images and Airborne Laser Scanning (ALS) are the two main techniques for the acquisition of 

geospatial information (3D point clouds), used for mapping and 3D modelling of large surface areas. While ALS point cloud 

classification is a widely investigated topic, there are fewer studies related to the image-derived point clouds, even less for point 

clouds derived from stereo satellite imagery. Therefore, the main focus of this contribution is a comparative analysis and evaluation 

of a supervised machine learning classification method that exploits the full 3D content of point clouds generated by dense image 

matching of tri-stereo Very High Resolution (VHR) satellite imagery. The images were collected with two different sensors (Pléiades 

and WorldView-3) at different timestamps for a study area covering a surface of 24 km2, located in Waldviertel, Lower Austria. In 

particular, we evaluate the performance and precision of the classifier by analysing the variation of the results obtained after multiple 

scenarios using different training and test data sets. The temporal difference of the two Pléiades acquisitions (7 days) allowed us to 

calculate the repeatability of the adopted machine learning algorithm for the classification. Additionally, we investigate how the 

different acquisition geometries (ground sample distance, viewing and convergence angles) influence the performance of classifying 

the satellite image-derived point clouds into five object classes: ground, trees, roads, buildings, and vehicles. Our experimental 

results indicate that, in overall the classifier performs very similar in all situations, with values for the F1-score between 0.63 and 

0.65 and overall accuracies beyond 93%. As a measure of repeatability, stable classes such as buildings and roads show a variation 

below 3% for the F1-score between the two Pléiades acquisitions, proving the stability of the model. 
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1. INTRODUCTION 

Point cloud classification, i.e. semantic segmentation of point 

clouds, has always been an essential and challenging task with 

applications in 3D city modelling, urban planning, monitoring, 

autonomous-driving, virtual/augmented reality, and robotics. 

The two important sources for 3D point cloud acquisition over 

large areas are image matching of aerial or satellite images and 

Airborne Laser Scanning (Wehr et al., 1999; Remondino et al., 

2014). For more than thirty years, the interest of the scientific 

community has turned to the great potential of stereo satellite 

imagery for providing 3D geospatial information over large 

areas in a timely and cost-effective manner (D’Angelo et al., 

2008). Therefore, due to the new dense matching techniques 

and their improved spatial resolution, satellite imagery is 

becoming an important data source for image-derived 3D point 

clouds (Xie et al., 2019). Moreover, VHR optical satellite 

sensors are able to collect not only stereo but tri-stereo images 

of the same area during a single flight path, from different 

viewing angles (along-track): forward (F), close to nadir (N) 

and backward (B). This ability has many advantages with regard 

to point cloud completeness and Digital Surface Model (DSM) 

derivation (Panagiotakis et al., 2018, Piermattei et al., 2018).  

For understanding the 3D scenes generated by image matching 

and to make use of them, classification plays a key role. In our 

case, by classification we refer to the assignment of semantic 

labels to points, on a per-point basis (Otepka et al., 2013). For 

this purpose, many different classification algorithms are 

available and there has been much progress in machine learning 

in the recent years (Grilli et al., 2017). Due to the existence of 

noise, occlusions and different objects types with various sizes 

and shapes, the classification of 3D point clouds is a 

challenging task. 

Most of the previous studies on classification of 3D point 

clouds generated by image matching use rasterization or 

voxelisation, which reduces their full 3D content. For example, 

Gerke et al. (2013) converted the point clouds into a voxel 

representation and segmented them by adopting a ‘Random 

trees’ machine learning technique and a supervised method 

(Markov-Random-Field). Finally, point clouds derived from 

image matching of airborne oblique images over two urban 

areas were classified into the following classes: façade, roof, 

rubble, sealed ground, and trees. Modiri et al. (2015) propose a 

region-growing technique to classify buildings and vegetation 

from stereo UltraCam-X matched point clouds, by using colour 

information and vegetation index. In contrast, in their approach 

Tran et al. (2018) analyse the results of two supervised 

classification algorithms on original 3D point clouds derived 

from high-resolution aerial images over an urban area with 

Ground Sample Distance (GSD) of 6 cm. 

Benchmarking datasets containing reference data are of great 

importance in evaluation tasks, being also used as training data 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2020, 2020 
XXIV ISPRS Congress (2020 edition)

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2020-525-2020 | © Authors 2020. CC BY 4.0 License.

 
525

mailto:ana-maria.loghin
mailto:Norbert.Pfeifer
mailto:Johannes.Otepka@geo.tuwien.ac.at


 

in classification problems. Well known available benchmarks 

for 3D point cloud semantic segmentation are the following: the 

Oakland 3D point cloud dataset, which contains laser data 

collected from a moving platform in an urban environment 

(Munoz et al., 2009); the Sydney Urban Objects data set (Deuge 

et al., 2013) and IQmulus & TerraMobilita Contest (Vallet et 

al., 2015) use mobile laser scanning for the 3D point cloud 

acquisition in dense urban environments; the ISPRS benchmark 

on urban object classification and 3D building reconstruction 

(Rottensteiner et al., 2012), and Semantic3D.Net: a new large-

scale point cloud classification benchmark for natural and urban 

scenes (Hakel et al., 2017). 

However, there is a small amount of work exploring the 

semantic segmentation of satellite image-derived point clouds. 

In their investigation, Leotta et al. (2019) develop an end-to-end 

system for segmenting buildings and bridges from terrain, by 

using point clouds derived from WorldView-3 multi-view 

satellite imagery. A reason for the reduced research in this 

direction would be the low 3D quality of the obtained point 

clouds, caused generally by the smoothing effects of the used 

dense image matching algorithm, as well as the 3D 

reconstruction difficulties encountered in the occluded, non-

textured areas, water surfaces and repetitive patterns. 

Our aim is to understand the quality of satellite image derived 

point clouds for semantic segmentation. We chose classes of 

decreasing occurance probability. Therefore, we apply a 

supervised machine learning algorithm using decision trees, for 

classifying tri-stereo satellite image-derived 3D point clouds 

into ground, trees, roads, buildings, and vehicles. The VHR 

sensors that we use are Pléiades and WorldView-3 with GSD of 

0.70 m and 0.30 m, respectively. Our study is, to the best of our 

knowledge, the first to assess the performance of a supervised 

machine learning algorithm for classification of 3D point clouds 

derived from Pléiades and WorldView-3 tri-stereo VHR 

satellite imagery. Specifically, our research investigation has as 

main purpose finding the answers to the following questions:  

(1) How repeatable is the process from acquisition to 

classification result? 

(2) What is the impact of acquisition geometry and GSD on the 

classification result? 

With three acquisitions over the same area indicative answers 

will be given. 

The rest of this paper is organised as follows: first, we describe 

the study site and the tri-stereo satellite image datasets (Section 

2). Next, we present the photogrammetric workflow for 3D 

reconstruction from tri-stereo scenes and the machine learning 

approach for point cloud classification (Section 3). Our results 

are presented in Section 4 and finally we conclude and 

summarize this paper in Section 5. 

 

 

2. STUDY AREA AND IMAGE DATASETS 

The study area for our investigations is located in Waldlviertel, 

a hilly region in Lower Austria (48o 30’ 30”N; 15o 08’ 34”E; 

WGS84), with elevations ranging from 537 to 846 m above sea 

level (Figure 1). On 13 June 2017 the territory was captured 

with the Pléiades-1B sensor, in a tri-stereo mode, covering  a 

surface on the ground of 159 km2. A week later, on 20 June 

2017 the same platform acquired 383 km2, having an overlap of 

45 km2 with the first dataset. The baseline to height ratios (B/H) 

are of 0.24 and 0.25 for the two acquisitions, corresponding to 

Forward-Backward (FB) image combination. For analysing the 

impact of a different GSD and on the performance of the 

classifier, we tasked a new tri-stereo WorldView-3 dataset in 

the same area. The tri-stereo images were acquired on 8 April 

2018. 

 
Figure 1. Study area (a) Acquisition geometries of Pléiades 

(blue) and WorldView-3 sensors (orange) in Google Earth; (b) 

acquisition footprints with marked common study area (yellow) 

overlaid on Open Street Map (OSM) 

 

All images were delivered as pan-sharpened with four bands 

(Red, Green, Blue and Near-infrared). Depending on the 

different viewing angles, the spatial resolutions are varying 

between 0.70 - 0.71 m and 0.31 – 0.32 m for Pléiades and 

WorldView-3 images, respectively. For each image, the 

Rational Polynomial Coefficients (RPCs), allowing the 

conversion between image and object space, were provided by 

the supplier. Detailed information regarding the acquisition 

properties for all the tri-stereo datasets are shown in Table 1. 

The acquisition geometries of both Pléiades tri-stereo datasets 

are very similar w.r.t the values for the B/H ratio and 

convergence angles on the ground. In contrast, the WorldView-

3 acquisition shows values approximately two times larger. 

Sensor type & 

acq. date 
View 

GSD 

(m) 

Viewing 

Angles (o) 
B / H 

Ratio 

Convergence 

Angle (o) 
Across Along 

Pléiades 

13-06-2017 

F 0.71 3.15 -5.66 0.13 7.5 (FN) 

N 0.70 3.37 0.46 0.11 6.3 (NB) 

B 0.71 3.62 5.19 0.24 13.8 (FB) 

Pléiades 

20-06-2017 

F 0.71 3.14 -5.49 0.13 7.5 (FN) 

N 0.70 1.45 0.06 0.12 6.4 (NB) 

B 0.71 0.07 6.09 0.25 13.9 (FB) 

WorldView-3 

08-04-2018 

F 0.32 7.70 -11.0 0.22 12.7 (FN) 

N 0.31 7.23 -0.62 0.22 12.8 (NB) 

B 0.32 6.72 12.20 0.45 25.5 (FB) 

Table 1. Acquisition properties for the satellite images 

For a comparative analysis in the further investigations, we 

considered the overlapping area of the three datasets, an area of 

24 km2, as highlighted in Figure 1. The rural region is 

characterized by forests and open areas. In the south more 

villages are found. 

 

 

3. METHODOLOGY AND PROCESSING WORKFLOW 

3.1 Satellite image processing and 3D reconstruction 

The tri-stereo Pléiades images were provided as primary 

product, corrected only from sensor distortion, whereas the 

WorldView-3 images were delivered at an OR2A processing 

level, with relative radiometrically-corrected image pixels. 

Hence, as a pre-processing step, an optical radiometric 

calibration of the images is required before we make any 

comparison between them. Depending on the season, the 

atmospheric conditions, the sun’s azimuth and elevation, the 

energy that satellite sensors record is different from the actual 

energy emitted or reflected from a surface on the ground. Since 

the value recorded in each pixel includes not only the reflected 

radiation from the surface but also the radiation scattered and 
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emitted by the atmosphere, the pixel values, i.e. Digital 

Numbers (DN), need to be corrected. For the Pléiades images 

we use the open source software Orfeo ToolBox (OTB 

Development Team, 2019) to perform the radiometric 

calibration. In this step, the pixels were corrected by the 

influence of the parameters like: sensor gain, spectral response, 

solar illumination, atmospheric pressure, optical thickness of 

the atmosphere, ozone and water vapour amount, and 

composition and amount of aerosol gasses. Since the OTB 

software does not support the WorldView-3 sensor, we 

computed the absolute radiometric calibration for each image 

(and independently for each band), by using the equations and 

parameters found in the technical sensor description (Kuester, 

2016). This comprises two steps: (1) conversion from DN (raw 

data from the sensor) to top-of-atmosphere spectral radiance 

and (2) conversion from top-of-atmosphere spectral radiance to 

top-of-atmosphere reflectance. Optical radiometric calibration is 

important in training the classifier without dependence to the 

atmospheric conditions at the acquisition time, making it valid 

for a wider range of applications and not particular to one study 

case only. The optical calibration of the images is definitely 

required when investigating the transferability performance of 

the classifier across different acquisition times. We check the 

cross-time performance by applying the classifier trained on 

Pleiades 1st acquisition to the Pleiades 2nd acquisition.  

The VHR satellite imagery from each tri-stereo acquisition are 

overlapping, a fact that makes the extraction of 3D information 

possible by applying photogrammetric techniques. The 

workflow for 3D point cloud derivation from the Pléiades and 

WorldView-3 imagery was performed in the Trimble Inpho 

software and comprises the following main steps:  

(1) image with metadata information (RPCs) and Ground 

Control Point (GCP) import;  

(2) GCP measurement in image space; 

(3) orientation refinement based on GCPs and Tie Points (TPs); 

(4) dense image matching for 3D reconstruction. 

For improving the image orientation provided through the RPCs 

(to obtain a sub-meter accuracy), GCPs with known 3D 

coordinates are needed. Thus, in total, we employed 43, 73, and 

36 GCPs for Pléiades first, second, and WorldView-3 

acquisition, respectively. The points were measured by means 

of Real Time Kinematic (RTK) GPS with high accuracy of 

approx. 1 cm. During satellite triangulation Tie Points (TPs) 

were automatically extracted in all images, and they were 

further used together with the GCPs in a bundle block 

adjustment, to refine the initial values of the RPCs. From the 

resulting statistics, we considered the points with image 

residuals greater than one pixel as blunders, filtered them out 

and performed the refinement again.  

The automatic computation and extraction of 3D information 

from the tri-stereo satellite imagery is possible through dense 

image matching. In our case, the algorithm finds the 

corresponding pixels between the images collected from the 

three different viewing points: forward, nadir and backward. 

For this purpose, Match T-DSM module of the Trimble Inpho 

software was used. During processing, ten pyramid levels are 

generated: the higher seven levels adopt a Feature Based 

Matching (FBM) while the lower three ones use a Cost Based 

Matching (CBM) strategy. 

The ground coordinates of the corresponding image pixels 

(retrieved from image matching) are computed by applying 

forward spatial intersections by means of a least squares 

approach. This results in a “cloud” containing 3D points 

regularly distributed on the ground surface. 

 

3.2 Manual labelling 

To obtain training and testing data the three point clouds of the 

entire study area were manually classified using the application 

TerraScan from Terrasolid software. With its versatile 

visualisation options, the application allowed the manually 

labelling of the 3D point clouds into ground, trees, roads, 

buildings, and vehicles. Additionally, the corresponding 

orthophotos for each data acquisition were used in the thorough 

visual analysis. 

 

3.3 Supervised classification 

Once the satellite image-derived 3D point clouds are generated, 

we apply a tree based classification algorithm using machine 

learning for labelling the points into the five following classes: 

ground, trees, roads, buildings, and vehicles. In our case, the 

class ground comprises not only the bare-soil but also the 

covered ground, such as the agricultural- or grass-lands and all 

points not being included in the other classes. 

The classification model comprises the following three main 

steps (Figure 2): (1) feature extraction, (2) training and (3) 

application of the trained model. 

 
Figure 2. Overview of the general workflow 

 

In a first step, additional geometric features were computed for 

each 3D point in the matched cloud. For this, in the spatial 

query of a point neighbourhood, we considered an infinite 

cylinder with 7 m search radius. The computed features include 

the normal vector components, features derived from the 

structure tensor, vertical point distribution, and surface 

roughness. These additional attributes describe the point 

distribution and are required for the separability of classes. 

Based on structure tensor eigenvalues, features like linearity, 

planarity or omnivariance could be computed. The first two 

have values between zero for non-linear/non-planar objects and 

one for linear/planar point distributions, respectively. The 

omnivariance feature gives information about the volumetric 

distribution of points. Features like EchoRatio, ZRange and 

ZRank describe the vertical point distribution, the maximum 

height difference between neighbouring points, and the rank of 

the point corresponding to its height, respectively. In addition to 

the hand-crafted 3D geometric features, the RGB colour 

information in each point was used for training the classifier. 

For the model learning process we used a total of 17 features: 

Red, Green, Blue, EchoNumber, Number of echos, Amplitude, 

Normal X, Normal Y, Normal Z, Normal sigma0, linearity, 

planarity, omnivariance, EchoRatio, NormalizedZ, dZRange, 

and dZRank (Bachhofner et al., 2020; Waldhauser et al., 2014). 

Like all supervised classification methods, the adopted decision 

tree requires training data, which are used by the machine 
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learning algorithm to build the classification model. In 

particular, we use the approach described in Waldhauser et al. 

(2014), where they apply CART for classifying point clouds 

from airborne laser scanning. In the training phase, the 

following information is required: (i) list of classes, (ii) hand-

crafted 3D geometric and colour features and (iii) reference 

labelled dataset as training data. The classification tree seeks to 

partition the entire feature space of a data set, one variable at a 

time, by selecting a variable and an appropriate splitting value 

(Waldhauser et al., 2014). The decision tree is trained with the 

following hyperparameters: 0.00001 complexity factor, 

minimum 20 observations existent in a node (for splitting), at 

least 7 observations for each leaf node, a maximum depth of 30 

for the tree, 5 competitor splits, and 5 surrogate splits 

(Bachhofner et al., 2020). Finally, to estimate how accurately 

our predictive model is, we test it on the validation dataset, 

containing labelled points. 

 

3.4 Experiment design 

The experiment is designed to characterize the repeatability of 

the semantic segmentation for satellite derived 3D point clouds. 

Thus the same area is studied, and also the same areas are used 

for training the classifier and testing the model. The setup of the 

experiment is to compare the classification results over the same 

areas for the different acquisitions. 

For evaluating the precision and performance of the classifier, 

the variation of the results for three scenarios is analysed. For 

this, firstly we split the point clouds generated by image 

matching into five line-patches each with the size of 0.4 x 7 km 

and repetitively train and validate a new model by employing 

distinct combinations for the test and training data, like shown 

in Figure 3. Therefore, our model is trained on 40% of the data, 

while 60% is being used for validation. To obtain more stable 

and robust results, the experiments were repeated 5 times for 

each scenario and data acquisition and classification metrics are 

associated with standard deviations. 

 

Figure 3. Overview of the different scenarios with the selections 

for the training and test data 

The processing workflow for geometric features computation 

and classification is performed using the Opals (Orientation and 

Processing of Airborne Laser Scanning Data) software (Pfeifer 

et al., 2014). The approach for classification utilises CART 

(Classification and Regression Trees) modelling as 

implemented in the software package R (Therneau et al., 2019). 

The same processing chain (comprising the 3D point cloud 

extraction from the satellite imagery and the machine learning 

supervised classification algorithm) was applied independently 

in each scenario and for each of the three datasets: Pléiades 

first, second and WorldView-3 acquisitions. 

As mentioned above, we chose classes that have different 

occurrences. In such situations, the overall accuracy measure 

alone is inappropriate, since the big number of examples from 

the majority classes overwhelms the number of examples in the 

minority classes. Therefore, to counter class imbalance we 

employ metrics such as (average) Precision, (average) Recall, 

and F1-score for evaluating the prediction performance of the 

classifier. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Reference data 

The distributions of the number of points per class in each 

scenario and for each image acquisition are given in Table 2 as 

percentage values. The number of instances included in classes 

Buildings, Roads and Vehicles is far less than the ones included 

in Ground and Trees. 

The distribution of the classes is similar between the 

acquisitions and also between the scenarios. The largest 

variation in absolute numbers is found between the two Pléiades 

point clouds on the one hand and the WorldView 3 point cloud 

on the other hand for the classes ground and trees. For the 

classes, roads and buildings the variation between the scenarios 

is larger than the variation caused by acquisition time. 

 

Class 

Percentage of points / Class 

Pléiades 

(1st acq.) 

Pléiades 

(2nd acq.) 
WorldView-3 

Train. Test Train. Test Train. Test 

Scenario 1 
Ground 52.748 60.257 52.887 60.376 66.474 71.664 

Trees 45.351 38.119 45.250 38.064 31.682 26.708 

Roads 1.641 1.430 1.610 1.366 1.544 1.423 

Buildings 0.257 0.189 0.250 0.191 0.297 0.203 

Vehicles 0.003 0.004 0.002 0.002 0.002 0.002 

Scenario 2 

Ground 57.611 57.136 57.726 57.272 71.367 68.445 

Trees 40.569 41.194 40.516 41.106 26.854 29.889 

Roads 1.542 1.492 1.479 1.449 1.482 1.462 

Buildings 0.276 0.174 0.279 0.169 0.295 0.201 

Vehicles 0.003 0.004 0.001 0.003 0.001 0.003 

Scenario 3 
Ground 58.007 56.868 58.166 56.975 69.159 69.971 

Trees 40.576 41.185 40.492 41.119 29.393 28.137 

Roads 1.232 1.704 1.163 1.665 1.248 1.622 

Buildings 0.179 0.241 0.176 0.241 0.199 0.268 

Vehicles 0.006 0.002 0.003 0.001 0.002 0.002 

Table 2. Class distribution for each scenario and image 

acquisition (values given in percentages) 

 

4.2 3D point cloud reconstruction from Pléiades and 

WorldView-3 tri-stereo satellite imagery 

For each tri-stereo acquisition, the bundle adjustment was 

performed by employing all three images together with their 

RPCs, the RTK GCPs and the automatically extracted TPs. For 

the transformation in image space, the software estimated a 

correction model that contains two shifts (in X and Y) and a 

scale in Y-direction. An additional shift in X-direction was 

computed only for the Pléiades-second acquisition. The final 

standard deviations of the bundle block adjustment were at sub-

pixel level, 0.54, 0.57 and 0.46 pixels for Pléiades first, second 

and WorldView-3 acquisitions, respectively. Through forward 

intersections, the three-dimensional positions of the points in 

object space (i.e. X, Y, Z) are determined. 

The photogrammetric point clouds obtained from the tri-stereo 

satellite image matching contain not only the 3D coordinates, 

but also the reflectance information from the three spectral 

bands (Red, Green and Blue). In las file format and with a 

regular distribution (one point per each image pixel) the 

resulting point clouds have densities of 4 points/m2 for Pléiades 
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and 12 points/m2 for WorldView-3. They describe the terrain 

surface (bare soil, agricultural-, grass-lands) and the upper 

surface of the objects on it (vegetation and individual structures 

such as buildings, bridges). The resulted 3D point clouds are 

characterized by a poor geometry with smoothing effects in 

areas with a rapid change elevation (especially met at buildings 

roofs edges that look bevelled) and missing elevation 

information for small individual objects. In contrast to Pléiades, 

the WorldView-3 point cloud shows a better preservation of 

information and object details on the terrain surface (Figure 4). 

 
Figure 4. Comparative examples of Pléiades (left) and 

WorldView-3 (right) point clouds for buildings (first row), 

roads (second row) and trees (third row) 

This can be explained by the better spatial resolution (0.31 m 

GSD) and the acquisition geometry with higher values for the 

viewing angles and a larger convergence angle on the ground 

(25). All these factors allow a better 3D reconstruction 

resulting in a denser point cloud with reduced smoothing effect 

compared with Pléiades point clouds.  

The total number of 3D points per scenario is around 54 mil. for 

Pléiades first and second acquisition, while for World View-3 is 

approximately 3 times higher (of 151 mil.). 

 

4.3 Supervised classification and its repeatability for point 

clouds derived from Pléiades and WorldView-3 tri-stereo 

imagery 

During classification, an object class label is assigned to each 

point, resulting in a 3D labelled point cloud. From a visual 

inspection, Figure 5 depicts a build-up area with the reference 

and classification results from all three acquisitions. Overall, the 

classifier identifies ground, trees, roads, and buildings classes. 

The only exemption are points belonging to vehicles, which 

were incorrectly classified as ground or trees. From a 

comparative point of view, no significant differences between 

the results for the two Pléiades acquisitions can be observed. In 

contrast, for WorldView-3 we can see some distinctions. For 

instance, as shown in the marked area A in Figure 5, in the 

WorldView-3 acquisition points are correctly classified as road, 

whereas in the Pléiades data they are wrongly labelled as 

ground. This is mainly because of the low Pléiades color 

contrast in this area. Road points have very similar geometric 

features with ground points and only color information is the 

distinctive attribute used for classification. Another notable 

difference appears in the marked area B in Figure 5. Whereas in 

the Pléiades acquisitions points are correctly identified as trees, 

in the World View-3 data only few of them are classified as 

trees and the rest as ground. 

 
Figure 5. Top detail-view of Kleinschönau village (a) Pleiades and WorldView-3 ortho-rectified images; (b) the reference labelled 

3D point cloud generated by image matching; (c) the classification result 
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This situation is caused by the different acquisition times: the 

two Pleiades in June 2017 (leaf-on conditions) and the 

WorldView-3 in April next year (leaf-off conditions). The 

leafless appearance in the WorldView-3 images caused 

difficulties in the 3D reconstruction, resulting in a point cloud 

with no or reduced elevation information. Hence, the points 

were misclassified as ground. 

The confusion matrices are built for each scenario and iteration 

of the datasets and the achieved average results are shown in 

Table 3. In all tests, we achieve very high values for the 

accuracy (between 93.45% and 95.81%), but this alone is not a 

reliable performance metric to use, because of the imbalanced 

dataset.  

Evaluation Metrics (%) 
Pléiades 

(1st acq.) 

Pléiades 

(2nd acq.) 
WV-3 

Average 

Accuracy 

Scenario 1 94.58 94.51 95.81 

Scenario 2 94.82 95.02 95.54 

Scenario 3 93.45 94.12 95.50 

Average 

Precision 

Scenario 1 60.17 60.11 59.74 

Scenario 2 62.21 62.81 60.18 

Scenario 3 60.04 59.53 57.47 

Average 

Recall 

Scenario 1 68.84 67.15 68.23 

Scenario 2 65.58 65.81 67.03 

Scenario 3 66.78 68.12 69.28 

Average 

F1 score  

Scenario 1 64.18 63.54 63.72 

Scenario 2 63.75 64.35 63.39 

Scenario 3 63.05 63.53 63.03 

Table 3. Comparison of evaluation metrics for all scenarios. In 

bold are the highest and the lowest values 

Overall, the results are very consistent for the shown metrics, 

which integrate over the results of all the classes, independent 

of sensor and acquisition date. For the Pleiades data the results 

suggest that the scenarios, i.e. the choice of test data region, has 

more impact than the acquisition date. The WorldView results 

deviate stronger from the Pleiades data. At this stage it cannot 

be concluded if this is an effect of GSD, geometric accuracy, or 

acquisition time. 

The qualitative results show that WorldView-3 classification 

metrics vary when compared with the two Pléiades acquisitions. 

For instance, the highest accuracy (95.81%) and average recall 

(69.28%) are reached in scenarios 1 and 3, respectively. Even 

higher variations between WorldView-3 and Pléiades can be 

observed at the individual class level (Figure 6). For the ground 

and road class both recall and F1-measure achieve better values 

in the WorldView-3 model. This confirms the visual analysis 

given above. The average recall raises with 3% for ground and 

with 8% for roads compared to Pleiades 1st acquisition and with 

5% compared to Pleiades 2nd acquisition (for Scenario 1).  

 
Figure 6. Comparison of average classification metrics with 

standard deviations (below 3%) for each class in all three 

scenarios: (a) recall and (b) F1-score 

However, the statistics for buildings drop from the Pléiades to 

the WorldView results by a maximum of 15% (Figure 6). Given 

the clearer appearance of buildings in Figure 5, this is 

unexpected. This can be explained, on one hand, by the leafless 

trees in the WorldView-3 images, which have similar 

radiometric properties as buildings and are therefore miss-

classified as buildings. On the other hand, in all three 

acquisitions many points surrounding buildings are miss-

classified as trees (Figure 7c). These particular areas are raising 

difficulties for the classifier, because the two classes show 

similar geometric features. Even colour information does not 

make the difference here, due to shadowing effects. 

At the individual class level, the unbalanced data makes the 

classifier biased toward the ground and trees classes, while 

dwarfing the buildings, roads, and vehicles. For the vehicle 

class, the precision, recall, and F1-score are 0.00% in all 

scenarios. This is because they were no points correctly 

classified as vehicles (no true positives). For the class roads the 

highest variation of ~7% F1-score is obtained between Scenario 

2 and Scenario 3 when using the WorldView-3 data. 

 
Figure 7. Detailed view of classification results (a) RGB point cloud; (b) reference labelled 3D point cloud; (c) classification result
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In the context of our investigation, repeatability refers to the 

agreement between the independent results, obtained by 

applying the same classifier to the same data within short 

interval of times. This was possible for the Pléiades acquisitions 

due to the temporal difference of only 7 days. Since land cover 

might change and trees appearance in images can differ, we 

considered buildings and roads as stable classes in time, with 

well-defined shapes and boundaries. Whereas the accuracy 

changes are small (below 0.15%) for both buildings and roads 

classes, the F1-score varies between -2.1 and 2.6 in scenario 3 

(Figure 8). Besides the quality of the classifier, the repeatability 

results suggest also the stability of the Pléiades sensor itself, 

with respect to the spectral geometric precision and geolocation 

accuracy. 

 

Figure 8. Comparison of classification metrics changes for each 

class (except vehicles) in all three scenarios: (a) accuracy and 

(b) F1-score changes between the two Pléiades acquisitions 

The transferability performance of a classifier across different 

acquisition times is an important question. How does the 

classifier trained on a dataset perform on a new dataset for the 

same area, but from a different acquisition time? For testing the 

cross-time performance, we applied the classifier trained on the 

Pleiades 1st acquisition on the test set of Pleiades 2nd acquisition 

and vice versa and compared the prediction performance to the 

one achieved when training and test set are from the same 

acquisition time. The results are shown in Table 4, for the F1-

score in each scenario. 

  Tested on 

  
Pleiades 1st 

acq. 

Pleiades 2nd 

acq. 

  Scenario 1 

Trained 

on 

Pleiades 1st acq. 64,26 63,26 

Pleiades 2nd acq. 60,26 63,49 

 Scenario 2 

Pleiades 1st acq. 63,87 61,87 

Pleiades 2nd acq. 61,82 64,32 

 Scenario 3 

Pleiades 1st acq. 63,19 62,92 

Pleiades 2nd acq. 60,97 63,56 

Table 4. F1-score result for the cross-time performance 

The F1-measures do not change significantly when the classifier 

is trained with data from another acquisition time. That proves a 

good transferability in time, which allows utilising the same 

classifier for future acquisition datasets for the same area. 

Overall, the evaluation metrics show a slightly higher variation 

between the three scenarios when compared with the changes 

between the two Pléiades acquisitions (Figure 5). Hence, the 

selection of the training data for building the classifier has a 

higher influence on the performance, than the different 

acquisition times. 

Another critical factor that influences the performance of the 

classifier is the correctness of the manual ground truth 

annotations in all three datasets. Due to the smoothed geometric 

appearance of the point clouds generated by image matching, 

with unclear object contours labelling is a challenging task and 

some uncertainty may occur. 

Besides the variation of the classification metrics between 

Pléiades and WorldView-3, the higher GSD of the latter leads 

to higher computation times. With the same hardware 

configuration, an 2 x AMD EPYC 7302, 3GHz, 16-Core 

Processors, 512 GB RAM memory, (64-bit operating system), 

the processing times are approximately three times higher for 

World View-3 point clouds compared to Pléiades (Table 5). 

Processing Step 

Processing Time / Scenario 

Pléiades 

(1st acq.) 

Pléiades 

(2nd acq.) 

WorldView-

3 

Feature 

computation 
9h 42’ 9h 11’ 31h 40’ 

Train model 3h 17’ 2h 54’ 10h 46’ 

Apply model 28’ 31’ 1h 20’ 

Total time/iteration 13h 27’ 12h 36’ 43h 46’ 

Total (5 iterations – 

train and apply) 
~18h 45’ ~17h 5’ ~60h 30’ 

Table 5. Processing times for classification 

 

 

5. CONCLUSIONS AND FUTURE WORK 

In this work, we analysed the performance of a supervised 

machine learning classification algorithm that exploits the full 

3D content of point clouds derived from dense image matching 

of tri-stereo Very High Resolution (VHR) satellite imagery. The 

tree based classification method has been already successfully 

applied to aerial laser scanning data and point clouds from 

aerial image matching, but in contrast to previous research, in 

our study, we trained the decision tree on the geometric and 

color features of the satellite image driven 3D point clouds. 

This was a challenging investigation, since the geometric 

information precision of the satellite-driven point clouds is 

lower compared to the accurate geometric 3D position of laser 

scanning point datasets. 

For evaluating the performance and quality of the classifier, we 

comparatively investigated the variation of the results by 

adopting three different scenarios for three different data 

sources: Pléiades (6 June 2017), Pléiades (20 June 2017) and 

WorldView-3 (8 April 2018). In each scenario, we have used 

40% of the data for training and the rest of 60% for validation. 

The result of the classification are the labelled 3D point clouds; 

each point assigned to one of the following classes: ground, 

trees, roads, buildings, and vehicles. The unbalanced data leads 

to better classification metrics for the ground and trees classes, 

while dwarfing the buildings, roads, and vehicles classes. Due 

to the extremely low number of points belonging to the vehicle 

class, the algorithm was not able to recognize them. Our results 
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show that the adopted tree based supervised learning shows a 

good performance with overall accuracies  

The agreement between the outcomes for the two Pléiades 

datasets with very low variations, assure that the reported 

quality measures did not result by chance. Moreover, it 

confirms the stability of the sensor itself, in terms of spectral 

geometric precision and geolocation accuracy. Additionally, we 

show the behaviour of the classifier when using a different 

sensor (WorldView-3) with a higher resolution and a distinct 

acquisition geometry. From our investigations, a factor of three 

could be established between WorldView-3 and Pléiades data, 

with respect to point cloud densities (the total number of points) 

and processing times. This lead to a moderate improvement for 

some classes (ground, roads). For the class building the higher 

resolution and geometric sharpness provided by WorldView-3 

did not lead to higher quality.  

The large training sets resulted in long training computation 

times. Therefore, in future work, Graphic Processing Unit 

(GPU) programming and parallelization schemes will have be to 

exploited to further reduce the computing time. 

It will also be necessary to include strategies to counter the class 

imbalanced (data augmentation, resampling, or oversampling), 

for improving the performance of the model. Another direction 

of further research would be the use of the classified point 

clouds for 3D object reconstruction and modelling. 

In summary, it can be stated that the adopted classifier is stable, 

providing a high potential in VHR satellite tri-stereo point 

clouds scene classification. 
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