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A Bounding solution of restricted program

In this section we prove that ‖x̆− x∗‖2 is small with high probability, where x̆ is a solution to
Program 3. Specifically, we use regularization parameter λ = Θ(

√
(log n)/m), and prove that

‖x̆− x∗‖2 ≤ O(
√

(k log n)/m).

The proof is motivated by the following rephrasal of part (a) of Lemma 5.2:

− λz̆U =
1

m
ATU (E[ZA,x̆]− E[ZA,x∗ ]) +

1

m
ATU (E[ZA,x∗ ]− y) (4)

where ‖z̆U‖∞ ≤ 1. For intuition, consider the untruncated setting: then E[Zt] = t, so the equation
is simply

−λz̆U =
1

m
ATUAU (x̆U − x∗U )− 1

m
ATUw

where w ∼ N(0, 1)m. Since w is independent of ATU and has norm Θ(m), each entry of ATUw is
Gaussian with variance Θ(m), so 1

mA
T
Uw has norm Θ(

√
k/m). Additionally, ‖λz̆U‖2 ≤ λ

√
k =

O(
√

(k log n)/m). Finally, 1
mA

T
UAU is a Θ(1)-isometry, so we get the desired bound on x̆U − x∗U .

Returning to the truncated setting, one bound still holds, namely ‖λz̆U‖2 ≤ λ
√
k. The remainder of

the above sketch breaks down for two reasons. First, E[ZA,x∗ ] − y is no longer independent of A.
Second, bounding 1

mA
T
U (E[ZA,x̆]− E[ZA,x∗ ]) no longer implies a bound on x̆U − x∗U .

The first problem is not so hard to work around; we can still bound ATU (E[ZA,x∗ ] − y) as follows;
see Section J.1 for the proof.

Lemma A.1. With high probability over A and y,
∥∥ATU (E[ZA,x∗ ]− y)

∥∥2

2
≤ α−1km log n.

So in equation 4, the last term is O(
√

(k log n)/m) with high probability. The first term is always
O(
√

(k log n)/m), since ‖z̆U‖2 ≤
√
k. So we know that 1

mA
T
U (E[ZA,x̆] − E[ZA,x∗ ]) has small

norm. Unfortunately this does not imply that E[ZA,x̆]−E[ZA,x∗ ] has small norm, but as motivation,
assume that we have such a bound.

Since AU is a Θ(
√
m)-isometry, bounding x̆ − x∗ is equivalent to bounding Ax̆ − Ax∗. To relate

this quantity to E[ZA,x̆] − E[ZA,x∗ ], our approach is to lower bound the derivative of µt = E[Zt]
with respect to t. The derivative turns out to have the following elegant form (proof in Section J.2):
Lemma A.2. For any t ∈ R, d

dtµt = Var(Zt).

Crucially, Var(Zt) is nonnegative, and relates to survival probability. By integrating a lower bound
on the derivative, we get the following lower bound on µt − µt∗ in terms of t − t∗. The bound is
linear for small |t− t∗|, but flattens out as |t− t∗| grows. See Section J.3 for the proof.
Lemma A.3. Let t, t∗ ∈ R. Then sign(µt − µt∗) = sign(t − t∗). Additionally, for any constant
β > 0 there is a constant c = c(β) > 0 such that if γS(t∗) ≥ β, then |µt−µt∗ | ≥ cmin(1, |t− t∗|).
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If we want to use this lemma to prove that ‖E[ZA,x̆]− E[ZA,x∗ ]‖2 is at least a constant multiple of
‖A(x̆− x∗)‖2, we face two obstacles: (1) γS(Ajx

∗) may not be large for all j, and (2) the lemma
only gives linear scaling if |Aj(x̆− x∗)| = O(1): but this is essentially what we’re trying to prove!

To deal with obstacle (1), we restrict to the rows j ∈ [m] for which γS(Ajx
∗) is large. To deal with

obstacle (2), we have a two-step proof. In the first step, we use the Ω(1)-lower bound provided by
Lemma A.3 to show that ‖A(x̆− x∗)‖2 = O(

√
m) (so that |Aj(x̆ − x∗)| = O(1) on average). In

the second step, we use this to get linear scaling in Lemma A.3, and complete the proof, showing
that ‖A(x̆− x∗)‖2 = O(

√
k log n).

Formally, define Igood to be the set of indices j ∈ [m] such that γS(Ajx
∗) ≥ α/2 and

|Ajx∗ − Aj x̆|2 ≤ (6/(αm)) ‖Ax∗ −Ax̆‖2. In the following lemmas we show that Igood con-
tains a constant fraction of the indices, so by the isometry properties we retain a constant fraction of
‖A(x̆− x∗)‖2 when restricting to Igood. See Appendices J.4 and J.5 for the proofs of Lemmas A.4
and A.5 respectively.
Lemma A.4. With high probability, |Igood| ≥ (α/6)m.

Lemma A.5. For some constant ε > 0, we have that with high probability, ‖Ax∗ −Ax̆‖2Igood
≥

ε ‖Ax∗ −Ax̆‖2.

We now prove the weaker, first-step bound on ‖A(x̆− x∗)‖2. But there is one glaring issue we must
address: we made a simplifying assumption that ‖E[ZA,x̆]− E[ZA,x∗ ]‖ is small. All we actually
know is that

∥∥ATU (E[ZA,x̆]− E[ZA,x∗ ]
∥∥

2
is small. And ATU has a nontrivial null space.

Here is a sketch of how we resolve this issue. Let a = A(x̆ − x∗) and b = µAx̆ − µAx∗ ; we
want to show that if ‖a‖ is large then

∥∥ATUb∥∥ is large. Geometrically,
∥∥ATUb∥∥ is approximately

proportional to the distance from b to the subspace Null(ATU ). Oversimplifying for clarity, we know
that |bj | ≥ c|aj | for all j. This is by itself insufficient. The key observation is that we also know
sign(aj) = sign(bj) for all j. Thus, b lies in a hyperoctant shifted to have corner ca. Since ca lies in
the row space of ATU , it’s perpendicular to Null(ATU ), so the closest point to Null(ATU ) in the shifted
hyperoctant should be ca.

Formalizing this geometric intuition yields the last piece of the proofs of the following theorems.
See Section J.6 for the full proofs.
Theorem A.6. There are positive constants c′reg = c′reg(α), M ′ = M ′(α), and C ′ = C ′(α) with
the following property. Suppose that λ ≤ c′reg/

√
k and m ≥M ′k log n. Then with high probability,

‖AUx∗ −AU x̆‖2 ≤ C ′
√
m.

Theorem A.7. There are positive constants c′′reg = c′′reg(α), M ′′ = M ′′(α), and C ′′ = C ′′(α)

with the following property. Suppose that λ ≤ c′′reg/
√
k and m ≥ M ′′k log n. Then ‖x∗ − x̆‖2 ≤

C ′′(λ
√
k +

√
(k log n)/m) with high probability.

B Proof of statistical recovery

Extend z̆ to Rn by defining

z̆Uc = − 1

λm
ATUc(EZA,x̆ − y).

We would like to show that ‖zUc‖∞ < 1. Since ATUc is independent of E[ZA,x̆] − y, each entry of
ATUc(E[ZA,x̆]− y) is Gaussian with standard deviation ‖E[ZA,x̆]− y‖2. It turns out that a bound of
O(λ
√
km+

√
m) suffices. To get this bound, we decompose

E[ZA,x̆]− y = A(x̆− x∗) + ERA,x̆ − (y −Ax∗)

and bound each term separately. Here we are defining Rt = Zt − t, and Ra,x = Za,x − aTx and
RA,x = ZA,x −Ax similarly.

We present the proof of the following lemmas in Section J.7 and Section J.8 respectively.
Lemma B.1. There is a constant c = c(α) such that under the conditions of Theorem A.7, with high
probability over (A, y), ‖E[RA,x̆]‖22 ≤ cm.

2



Lemma B.2. There is a constant cy = cy(α) such that ‖RA,x∗‖22 ≤ cym with high probability.

Combining the above lemmas with the bound on ‖x̆− x∗‖2 from the previous section, we get the
desired theorem. See Section J.9 for the full proof.

Theorem B.3. There are constants M = M(α), σ = σ(α), and d = d(α) with the following
property. Suppose m ≥ Mk log n, and λ = σ

√
(log n)/m. Then with high probability we have

‖z̆Uc‖∞ < 1.

As an aside that we’ll use later, this proof can be extended to any random vector near x̆ with support
contained in U (proof in Section J.10).

Theorem B.4. There are constants M = M(α), σ = σ(α), and d = d(α) with the following
property. Suppose m ≥ Mk log n and λ = σ

√
(log n)/m. If X ∈ Rn is a random variable with

supp(X) ⊆ U always, and ‖x̆−X‖2 ≤ 1/m with high probability, then with high probability∥∥ 1
mAUc(EZA,X − y)

∥∥
∞ ≤ λ/2.

Returning to the goal of this section, it remains to show that ATUAU is invertible with high prob-
ability. But this follows from the isometry guarantee of Theorem G.1. Our main statistical result,
Proposition 3.2, now follows.

Proof of Proposition 3.2. TakeM , σ, and d as in the statement of Theorem B.3. Letm ≥Mk log n
and λ = σ

√
(log n)/m. Let x̂ ∈ Rn be any optimal solution to the regularized program, and let

x̆ ∈ RU be any solution to the restricted program. By Theorem B.3, with high probability we have
‖x∗ − x̆‖ ≤ d

√
(k log n)/m and ‖z̆Uc‖ < 1; and by Theorem G.1, ATUAU is invertible. So by

Lemma 5.2, it follows that x̆ = x̂. Therefore ‖x∗ − x̂‖ ≤ d
√

(k log n)/m.

C Primal-dual witness method

Proof of Lemma 5.1. For a single sample (Aj , yj), the partial derivative in direction xi is

∂

∂xi
nll(x;Aj , yj) = Aji(Ajx− y) +

∂
∂xi

∫
S
e−(Ajx−z)2/2 dz∫

S
e−(Ajx−z)2/2 dz

= Aji(Ajx− y)−
∫
S
Aji(Ajx− z)e−(Ajx−z)2/2 dz∫

S
e−(Ajx−z)2/2 dz

= Aji(Ajx− y)− E[Aji(Ajx− ZAjx)]

where expectation is taken over the random variable ZAjx (for fixed Aj). Simplifying yields the
expression

∇ nll(x;Aj , yj) = Aj(E[ZAjx]− y).

The second partial derivative of nll(x;Aj , yj) in directions xi1 and xi2 is therefore

∂2

∂xi1∂xi2
nll(x;Aj , yj) =

∂

∂xi1
Aji2(E[ZAjx]− y)

= Aji2
∂

∂xi1

(∫
S
ze−(Ajx−z)2/2 dz∫
S
e−(Ajx−z)2/2 dz

− y

)

= Aji2

( ∂
∂xi1

∫
S
ze−(Ajx−z)2/2 dz∫

S
e−(Ajx−z)2/2 dz

−∫
S
ze−(Ajx−z)2/2 dz ∂

∂xi1

∫
S
e−(Ajx−z)2/2 dz(∫

S
e−(Ajx−z)2/2 dz

)2
)

= Aji2(E[−Aji1ZAjx(Ajx− ZAjx)]− E[ZAjx]E[−Aji1(Ajx− ZAjx)]

= Aji1Aji2 Var(ZAjx).
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We conclude that
H(x;Aj , yj) = ATj Aj Var(ZAjx).

Averaging over all samples yields the claimed result.

The following lemma collects several useful facts that are needed for the PDW method. Parts (a)
and (b) are generically true for any `1-regularized convex program; part (c) is a holdover from the
untruncated setting that is still true. The proof is essentially due to [27], although part (c) now
requires slightly more work.

Lemma C.1. Fix any (A, y).

(a) A vector x ∈ Rn is optimal for Program 2 if and only if there exists some z ∈ ∂ ‖x‖1 such
that

∇nll(x;A, y) + λz = 0.

(b) Suppose that (x, z) are as in (a), and furthermore |zi| < 1 for all i 6∈ supp(x). Then
necessarily supp(x̂) ⊆ supp(x) for any optimal solution x̂ to Program 2.

(c) Suppose that (x, z) are as in (b), with I = supp(x). If ATI AI is invertible, then x is the
unique optimal solution to Program 2.

Proof. Part (a) is simply the subgradient optimality condition in a convex program.

Part (b) is a standard fact about duality; we provide a proof here. Let x̂ be any optimal solution to
Program 2. We claim that x̂T z = ‖x̂‖1. To see this, first note that xT z = ‖x‖1, since xizi = |xi|
always holds by definition of a subgradient for the `1 norm. Now, by optimality of x and x̂, we have
f(x) = f(x̂) ≤ f(tx+(1−t)x̂) for all 0 ≤ t ≤ 1. Therefore by convexity, f(tx+(1−t)x̂) = f(x)
for all 0 ≤ t ≤ 1. Since f is the sum of two convex functions, both must be linear on the line segment
between x and x̂. Therefore

nll(tx+ (1− t)x̂) = tnll(x) + (1− t) nll(x̂)

for all 0 ≤ t ≤ 1. We conclude that

(∇ nll(x)) · (x̂− x) = nll(x̂)− nll(x) = ‖x‖1 − ‖x̂‖1 .

Since∇ nll(x)+z = 0 by subgradient optimality, it follows that zT (x̂−x) = ‖x̂‖1−‖x‖1. Hence,
zT x̂ = ‖x̂‖1. Since |zi| ≤ 1 for all i, if |zi| < 1 for some i then necessarily x̂i = 0 for equality to
hold.

For part (c), if ATI AI is invertible, then it is (strictly) positive definite. The Hessian of Program 3 is

1

m

m∑
j=1

ATI,jAI,j Var(ZAj ,x).

Since Var(ZAj ,x) is always positive, there is some ε > 0 (not necessarily a constant) such that

1

m

m∑
j=1

ATI,jAI,j Var(ZAj ,x) <
1

m
ε

m∑
j=1

ATI,jAI,j =
1

m
εATI AI .

Thus, the Hessian of the restricted program is positive definite, so the restricted program is strictly
convex. Therefore the restricted program has a unique solution. By part (b), any solution to the
original program has support in I , so the original program also has a unique solution, which must
be x.

As with the previous lemma, the following proof is essentially due to [27] (with a different subgra-
dient optimality condition).

4



Proof of Lemma 5.2. By part (a) of Lemma C.1, a vector x ∈ Rn is optimal for Program 2 if and
only if there is some z ∈ ∂ ‖x‖1 such that

1

m
AT (EZA,x − y) + λz = 0.

This vector equality can be written in block form as follows:

1

m

[
ATU
ATUc

]
(EZA,x − y) + λ

[
zU
zUc

]
= 0.

Since x̆ is optimal in RU , there is some z̆U ∈ ∂ ‖x̆‖1 such that (x̆, z̆U ) satisfy the first of the
two block equations. This is precisely part (a). If furthermore x̆ is zero-extended to Rn, and z̆ is
extended as in part (b), and z̆ satisfies ‖z̆Uc‖∞ ≤ 1, then since xi = 0 for all i 6∈ U , we have that
z̆ is a subgradient for ‖x̆‖1. Therefore x̆ is optimal for Program 2. If ‖z̆Uc‖∞ < 1 and ATUAU is
invertible, then x̆ is the unique solution to Program 2 by parts (b) and (c) of Lemma C.1.

D Sparse recovery from the Restricted Isometry Property

In this section we restate a theorem due to [6] about sparse recovery in the presence of noise. Our
statement is slightly generalized to allow a trade-off between the isometry constants and the sparsity.
That is, as the sparsity k decreases relative to the isometry order s, the isometry constants τ, T are
allowed to worsen.
Theorem D.1 ([6]). Let B ∈ Rm×n be a matrix satisfying the s-Restricted Isometry Property

τ ‖v‖2 ≤ ‖Bv‖2 ≤ T ‖v‖2
for all s-sparse v ∈ Rn. Let w∗ ∈ Rn be k-sparse for some k < s, and let w ∈ Rn satisfy
‖w‖1 ≤ ‖w∗‖1. Then

‖B(w − w∗)‖2 ≥ (τ(1− ρ)− Tρ) ‖w − w∗‖2
where ρ =

√
k/(s− k).

Proof. Let h = w − w∗ and let T0 = supp(w∗). Then

‖w∗‖1 ≥ ‖w‖1 =
∥∥∥hTC

0

∥∥∥
1

+ ‖(h+ w∗)T0‖1 ≥
∥∥∥hTC

0

∥∥∥
1

+ ‖w∗‖1 − ‖hT0‖1 ,

so ‖hT0
‖1 ≥

∥∥∥hTC
0

∥∥∥
1
. Without loss of generality assume that TC0 = {1, . . . , |TC0 |}, and |hi| ≥

|hi+1| for all 1 ≤ i < |TC0 |. Divide TC0 into sets of size s′ = s− k respecting this order:

TC0 = T1 ∪ T2 ∪ · · · ∪ Tr.
Then the Restricted Isometry Property gives

‖Bh‖2 ≥ ‖BhT0∪T1
‖2 −

r∑
t=2

‖BhTt
‖2 ≥ τ ‖hT0∪T1

‖2 − T
r∑
t=2

‖hTt
‖2 (5)

For any t ≥ 1 and i ∈ Tt+1, we have hi ≤ ‖hTt‖1 /s′, so that∥∥hTt+1

∥∥2

2
≤
‖hTt‖

2
1

s′
.

Summing over all t ≥ 2, we get

r∑
t=2

‖hTt
‖2 ≤

1√
s′

r∑
t=1

‖hTt
‖1 =

∥∥∥hTC
0

∥∥∥
1√

s′
≤
‖hT0
‖1√
s′
≤
√
k

s′
‖h‖2 .

The triangle inequality implies that ‖hT0∪T1‖2 ≥ (1 −
√
k/s′) ‖h‖2. Returning to Equation 5, it

follows that
‖Bh‖2 ≥

(
τ(1−

√
k/s′)− T

√
k/s′

)
‖h‖2

as claimed.
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E Summary of the algorithm

Algorithm 1 Projected Stochastic Gradient Descent.

1: procedure SGD(N,λ) . N : number of steps, λ: parameter
2: x(0) ← argmin ‖x‖1 s.t. x ∈ Er . see the Appendix F for details
3: for t = 1, . . . , N do
4: ηt ← 1√

nN

5: v(t) ← GRADIENTESTIMATION(x(t−1)))
6: w(t) ← x(t−1) − ηtw(t)

7: x(t) ← argminx∈Er

∥∥x− w(t)
∥∥

2
. see the Appendix F for details

8: return x̄← 1
N

∑N
t=1 x

(t) . output the average

Algorithm 2 The function to estimate the gradient of the `1 regularized negative log-likelihood.

1: function GRADIENTESTIMATION(x)
2: Pick j at random from [n]
3: Use Assumption II or Lemma K.4 to sample z ∼ ZAjx(t)

4: return Aj(z − yj)

F Algorithm details

In this section we fill in the missing details about the algorithm’s efficiency. Since we have already
seen that the algorithm converges in O(poly(n)) update steps, all that remains is to show that the
following algorithmic problems can be solved efficiently:

1. (Initial point) Compute x(0) = argminx∈Er
‖x‖1 .

2. (Stochastic gradient) Given x(t) ∈ Er and j ∈ [m], compute a sample Aj(z − yj), where
z ∼ ZAjx(t) .

3. (Projection) Given w(t) ∈ Rn, compute x(t+1) = argminx∈Er

∥∥x− w(t)
∥∥

2
.

Initial point. To obtain the initial point x(0), we need to solve the program

minimize ‖x‖1
subject to ‖Ax− y‖2 ≤ r

√
m.

This program has come up previously in the compressed sensing literature (see, e.g., [6]). It can be
recast as a Second-Order Cone Program (SOCP) by introducing variables x+, x− ∈ Rn:

minimize
∑n
i=1(x+

i − x
−
i )

subject to ‖Ax+ −Ax− − y‖2 ≤ r
√
m,

x+ ≥ 0,
−x− ≥ 0.

Thus, it can be solved in polynomial time by interior-point methods (see [4]).

Stochastic gradient. In computing an unbiased estimate of the gradient, the only challenge is sam-
pling from ZAjx(t) . By Assumption II, this takes T (γS(Ajx

(t))) time. We know from Lemma I.4
that γS(Ajx

∗) ≥ α2m. Since x(t), x∗ ∈ Er, we have from Lemma I.2 that

γS(Ajx
(t)) ≥ γS(t∗)2e−|Aj(x(t)−x∗)|2−2 ≥ α4me−4r2m−2 ≥ e−Θ(m/α).

Thus, the time complexity of computing the stochastic gradient is T (e−Θ(m/α)).
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In the special case when the truncation set S is a union of r intervals, there is a sampling algorithm
with time complexity T (β) = poly(r, log(1/β, n)) (Lemma K.4). Hence, in this case the time
complexity of computing the stochastic gradient is poly(r, n).

To be more precise, we instantiate Lemma K.4 with accuracy ζ = 1/(nL), where L = poly(n) is
the number of update steps performed. This gives some sampling algorithm A . In each step, A ’s
output distribution is within ζ of the true distribution N(t, 1;S). Consider a hypothetical sampling
algorithm A ′ in which A is run, and then the output is altered by rejection to match the true
distribution. Alteration occurs with probability ζ. Thus, running the PSGD algorithm with A ′, the
probability that any alteration occurs is at most Lζ = o(1). As shown by Theorem H.1, PSGD with
A ′ succeeds with high probability. Hence, PSGD with A succeeds with high probability as well.

Projection. The other problem we need to solve is projection onto set Er:

minimize ‖x− v‖2
subject to ‖Ax− y‖2 ≤ r

√
m.

This is a convex QCQP, and therefore solvable in polynomial time by interior point methods (see
[4]).

G Isometry properties

Let A ∈ Rm×n consist of m samples Ai from Process 1. In this section we prove the following
theorem:
Theorem G.1. For every ε > 0 there are constants δ > 0, M , τ > 0 and T with the following
property. Let V ⊆ [n]. Suppose that m ≥ M |V |. With probability at least 1 − e−δm over A, for
every subset J ⊆ [m] with |J | ≥ εm, the |J | × k submatrix AJ,V satisfies

τ
√
m ‖v‖2 ≤ ‖AJ,V v‖2 ≤ T

√
m ‖v‖2 ∀ v ∈ RV .

We start with the upper bound, for which it suffices to take J = [m].
Lemma G.2. Let V ⊆ [n]. Suppose that m ≥ |V |. There is a constant T = T (α) such that

Pr[smax (AV ) > T ] ≤ e−Ω(m).

Proof. In the process for generating A, consider the matrix A′ obtained by not discarding any of the
samples a ∈ Rn. Then A′ is a ξ × n matrix for a random variable ξ; each row of A′ is a spherical
Gaussian independent of all previous rows, but ξ depends on the rows. Nonetheless, by a Chernoff
bound, Pr[ξ > 2m/α] ≤ e−m/(3α). In this event, A′ is a submatrix of 2m/α × n matrix B with
i.i.d. Gaussian entries. By [22],

Pr[smax (BV ) > C
√

2m/α] ≤ e−cm

for some absolute constants c, C > 0. Since A′ is a submatrix of B with high probability, and A is
a submatrix of A′, it follows that

Pr[smax (AV ) > C
√

2m/α] ≤ e−Ω(m)

as desired.

For the lower bound, we use an ε-net argument.
Lemma G.3. Let ε > 0 and let v ∈ Rn with ‖v‖2 = 1. Let a ∼ N(0, 1)n. Then

Pr[|aT v| < αε
√
π/2|aTx∗ + Z ∈ S] < ε.

Proof. From the constant survival probability assumption,

Pr[|aT v| < δ|aTx∗ + Z ∈ S] ≤ α−1 Pr[|aT v| < δ].

But aT v ∼ N(0, 1), so Pr[|aT v| < δ] ≤ 2δ/
√

2π. Taking δ = αε
√
π/2 yields the desired bound.
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Lemma G.4. Let V ⊆ [n]. Fix ε > 0 and fix v ∈ RV with ‖v‖2 = 1. There are positive constants
τ0 = τ0(α, ε) and c0 = c0(α, ε) such that

Pr
[
∃J ⊆ [m] : (|J | ≥ εm) ∧ (‖AJ,V v‖2 < τ0)

]
≤ e−c0m.

Proof. For each j ∈ [m] let Bj be the indicator random variable for the event that |Aj,V v| < αε/3.
LetB =

∑m
j=1Bj . By Lemma G.3, EB < εm/3. EachBj is independent, so by a Chernoff bound,

Pr[B > εm/2] ≤ e−εm/18.

In the event [B ≤ εm/2], for any J ⊆ [m] with |J | ≥ εm it holds that

‖AJ,V v‖22 =
∑
j∈J

(Aj,V v)2 ≥
∑

j∈J:Bj=0

(Aj,V v)2 ≥ (αε/3)B ≥ αε2m/6.

So the event in the lemma statement occurs with probability at most e−εm/18.

Now we can prove the isometry property claimed in Theorem G.1.

Proof of Theorem G.1. Let V ⊆ [n]. Let ε > 0. Take γ = 4|V |/(c0m), where c0 = c0(α, ε) is the
constant in the statement of Lemma G.4. Let B ⊆ RV be the k-dimensional unit ball. Let D ⊂ B
be a maximal packing of (1 + γ/2)B by radius-(γ/2) balls with centers on the unit sphere. By a
volume argument,

|D | ≤ (1 + γ/2)k

(γ/2)k
≤ e2k/γ ≤ ec0m/2.

Applying Lemma G.4 to each v ∈ D and taking a union bound,

Pr[∃J ⊆ [m], v ∈ D : (|J | ≥ εm) ∧ (‖AJ,V v‖2 < τ0)] ≤ e−c0m/2.

So with probability 1− e−Ω(m), the complement of this event holds. And by Lemma G.2, the event
smax (AV ) ≤ T

√
m holds with probability 1−e−Ω(m). In these events we claim that the conclusion

of the theorem holds. Take any v ∈ RV with ‖v‖2 = 1, and take any J ⊆ [m] with |J | ≥ εm. Since
D is maximal, there is some w ∈ D with ‖v − w‖2 ≤ γ. Then

‖AJ,V v‖2 ≥ ‖AJ,V w‖2 − ‖AJ,V (v − w)‖2 ≥ τ0 − γT.

But γ ≤ 4/(c0M). For sufficiently large M , we get γ < τ0/(2T ). Taking τ = τ0/2 yields the
claimed lower bound.

As a corollary, we get that ATU is a
√
m-isometry on its row space up to constants (of course, this

holds for any V ⊆ [n] with |V | = k, but we only need it for V = U ).

Corollary G.5. With high probability, for every u ∈ Rk,

τ2

T

√
m ‖AUu‖2 ≤

∥∥ATUAUu∥∥2
≤ T 2

τ

√
m ‖AUu‖2 .

Proof. By Theorem G.1, with high probability all eigenvalues of ATUAU lie in the interval
[τ
√
m,T

√
m]. Hence, all eigenvalues of (ATUAU )2 lie in the interval [τ2m,T 2m]. But then∥∥ATUAUu∥∥2

= uT (ATUAU )2u ≥ τ2muTu ≥ τ2

T

√
m ‖AUu‖2 .

The upper bound is similar.

We also get a Restricted Isometry Property, by applying Theorem G.1 to all subsets V ⊆ [n] of a
fixed size.
Corollary G.6 (Restricted Isometry Property). There is a constant M such that for any s > 0, if
m ≥Ms log n, then with high probability, for every v ∈ Rn with | supp(v)| ≤ s,

τ
√
m ‖v‖2 ≤ ‖Av‖2 ≤ T

√
m ‖v‖2 .
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Proof. We apply Theorem G.1 to all V ⊆ [n] with |V | = s, and take a union bound over the
respective failure events. The probability that there exists some set V ⊆ [n] of size s such that the
isometry fails is at most (

n

s

)
e−δm ≤ es logn−δm.

If m ≥Ms log n for a sufficiently large constant M , then this probability is o(1).

From this corollary, our main result for adversarial noise (Theorem 3.4) follows almost immediately:

Proof of Theorem 3.4. Let M ′ be the constant in Corollary G.6. Let ρ = min(τ/(4T ), 1/3), and
let M = (1 + 1/ρ2)M ′. Finally, let s = (1 + 1/ρ2)k.

Let ε > 0. Suppose that m ≥ Mk log n and ‖Ax∗ − y‖ ≤ ε. Then m ≥ M ′s log n, so by
Corollary G.6, A/

√
m satisfies the s-Restricted Isometry Property.

By definition, x̂ satisfies ‖Ax̂− y‖2 ≤ ε and ‖x̂‖1 ≤ ‖x∗‖1 (by feasibility of x∗). Finally, x∗ is
k-sparse. We conclude from Theorem D.1 and our choice of ρ that∥∥(A/

√
m)(x̂− x∗)

∥∥
2
≥ (τ(1− ρ)− Tρ) ‖x̂− x∗‖2 ≥

τ

2
‖x̂− x∗‖2 .

But ‖A(x̂− x∗)‖2 ≤ 2ε by the triangle inequality. Thus, ‖x̂− x∗‖2 ≤ τε/
√
m.

H Projected Stochastic Gradient Descent

In this section we present the exact PSGD convergence theorem which we use, together with a proof
for completeness.

Theorem H.1. Let f : Rn → R be a convex function achieving its optimum at x̆ ∈ Rn. Let
P ⊆ Rn be a convex set containing x̆. Let x(0) ∈P be arbitrary. For 1 ≤ t ≤ T define a random
variable x(t) by

x(t) = ProjP(x(t−1) − ηv(t−1)),

where E[v(t)|x(t)] ∈ ∂f(x(t)) and η is fixed. Then

E[f(x̄)]− f(x̆) ≤ (ηT )−1E
[∥∥∥x(0) − x̆

∥∥∥2

2

]
+ ηT−1

T∑
i=1

E
[∥∥∥v(i)

∥∥∥2

2

]
where x̄ = 1

T

∑T
i=1 x

(i).

Proof. Fix 0 ≤ t < T . We can write∥∥∥x(t+1) − x̆
∥∥∥2

2
≤
∥∥∥(x(t) − ηv(t))− x̆

∥∥∥2

2
=
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η〈v(t), x(t) − x̆〉+ η2

∥∥∥v(t)
∥∥∥2

2

since projecting onto Er cannot increase the distance to x̆ ∈ Er.

Taking expectation over v(t) for fixed x(0), . . . , x(k), we have

E
[∥∥∥x(t+1) − x̆

∥∥∥2

2

∣∣∣∣x(0), . . . , x(k)

]
≤
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η〈Ev(t), x(t) − x̆〉+ η2E

[∥∥∥v(t)
∥∥∥2

2

]
≤
∥∥∥x(t) − x̆

∥∥∥2

2
− 2η(f(x(t))− f(x̆)) + η2E

[∥∥∥v(t)
∥∥∥2

2

]
where the last inequality uses the fact that Ev(t) is a subgradient for f at x(t). Rearranging and
taking expectation over x(0), . . . , x(t), we get that

2
(
E
[
f(x(t))

]
− f(x̆)

)
≤ η−1

(
E
[∥∥∥x(t) − x̆

∥∥∥2

2

]
− E

[∥∥∥x(t+1) − x̆
∥∥∥2

2

])
+ ηE

[∥∥∥v(t)
∥∥∥2

2

]
.
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But now summing over 0 ≤ t < T , the right-hand side of the inequality telescopes, giving

E[f(x̄)]− f(x̆) ≤ 1

T

T−1∑
t=0

E[f(x(t))]− f(x̆)

≤ 1

ηT
E
[∥∥∥x(0) − x̆

∥∥∥2

2

]
+
η

T

T−1∑
t=0

E
[∥∥∥v(t)

∥∥∥2

2

]
.

This is the desired bound.

I Survival probability

In this section we collect useful lemmas about truncated Gaussian random variables and survival
probabilities.

Lemma I.1 ([9]). Let t ∈ R and let S ⊂ R be a measurable set. Then Var(Zt) ≥ CγS(t)2 for a
constant C > 0.

Lemma I.2 ([9]). For t, t∗ ∈ R,

log
1

γS(t)
≤ 2 log

1

γS(t∗)
+ |t− t∗|2 + 2.

Lemma I.3 ([9]). For t ∈ R,

E[R2
t ] ≤ 2 log

1

γS(t)
+ 4.

Lemma I.4. With high probability,
m∑
j=1

log
1

γS(Ajx∗)
≤ 2m log

(
1

α

)
.

Proof. Let Xj = log 1/γS(Ajx
∗) for j ∈ [m], and let X = X1 + · · · + Xm. Since X1, . . . , Xm

are independent and identically distributed,

E[eX ] = E[eXj ]m = E
[

1

γS(Ajx∗)

]m
=

( Ea∼N(0,1)n [1]

Ea∼N(0,1)n [γS(aTx∗)]

)m
≤ α−m.

Therefore
Pr[X > 2m log 1/α] = Pr[eX > e2m log 1/α] ≤ e−m log 1/α

by Markov’s inequality.

J Omitted proofs

J.1 Proof of Lemma A.1

We start by bounding the subGaussian variance proxy of a truncated Gaussian random variable. The
following tail bound is standard:

Lemma J.1 (Gaussian tail lower bound). Let Z ∼ N(0, 1). For any t > 0,

φ(t) := Pr(Z > t) ≥ e−t
2/2

C(t+ 1)

for an absolute constant C > 0.

Lemma J.2 (Moments of tail-truncated Gaussian). Let p ≥ 1 be integer, and let t > 0. Then

F (t) := φ(t)−1

∫ ∞
t

xpe−x
2/2 dx ≤ (C2(t+ 1)

√
p)p.
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Proof. We distinguish two cases. Suppose t ≤ 2
√
p. Then

F (t) ≤ φ(t)−1

∫ ∞
−∞
|x|pe−x

2/2 dx ≤ C(t+ 1)et
2/2pp/2

by moment bounds for the standard normal. But t+ 1 ≤ et ≤ e2
√
p and et

2/2 ≤ e2p, so

F (t) ≤ C(e4√p)p.

Now conversely suppose t > 2
√
p. Define f(x) = xpe−x

2/2. For any x ≥ t and δ > 0, we have

f(x+ δ)

f(x)
=

(
1 +

δ

x

)p
e−(δx+δ2/2) ≤ exp

(
pδ

x
− δx− δ2/2

)
≤ exp(−δt/2− δ2/2).

Therefore taking δ = 1/(t+ 1), the decay is exp(−t/(2(t+ 1))− 1/(2(t+ 1)2)) ≤ exp(−1/3), so∫ ∞
t

f(x) dx ≤
∞∑
k=0

(t+1)−1

∫ t+(k+1)/(t+1)

t+k/(t+1)

f(x) dx ≤
∞∑
k=0

(t+1)−1f(t)e−k/3 ≤ 4(t+1)−1f(t).

So
F (t) ≤ 4φ(t)−1(t+ 1)−1f(t) ≤ 4Ctp

as desired.

Lemma J.3 (Moments of truncated Gaussian). Let p ≥ 1 be integer, and let S ⊆ R. Let α =
Pr[Z ∈ S] and let X ∼ Z|(Z ∈ S). Then

(E|X|p)1/p ≤ C3

√
p log(2/α).

Proof. Observe that E|X|p = E[|Z|p|Z ∈ S] = α−1E[|Z|p1Z∈S ]. For fixed α, this expectation is
maximized when S = (−∞, a] ∪ [b,∞) for some a < 0 < b (shifting mass towards the tails only
increases the expectation). In fact, it’s maximized when a = −b. In this case we have α = 2φ(b)
and

E[|Z|p1|Z|>b] = 2

∫ ∞
b

xpe−x
2/2 dx ≤ 2φ(b)(C2b

√
p)p.

As a consequence,
E|X|p ≤ (C2(b+ 1)

√
p)p.

But α = 2φ(b) ≤ 2e−b
2/2. So in terms of α, the moment is bounded as

(E|X|p)1/p ≤ C2
√
p(1 +

√
2 log(2/α))

as claimed.

Corollary J.4 (Truncated Gaussian is subGaussian). Let S ⊆ R. Let α = Pr[Z ∈ S] and let
X ∼ Z|Z ∈ S. Then

X − EX ∼ subG(C4 log(2/α)).

Proof. Let Y = X − EX . By the previous lemma, |EX| ≤ C3

√
log(2/α) and for any integer

p ≥ 1,

(E|Y |p)1/p ≤ (E|X|p)1/p + |EX| ≤ 2C3

√
p log(2/α).

Since Y has mean 0, it follows from subGaussian equivalencies that Y ∼ subG(C4 log(2/α)).

Now we can prove Lemma A.1.
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Proof of Lemma A.1.

Recall that EγS(aTx∗) ≥ α > 0 for a ∼ N(0, 1)n, and (A, y) are the m truncated linear samples
of x∗.

Fix i ∈ U . For any j ∈ [m], we have

E[γS(Ajx
∗)−1] =

Ea∼N(0,1)n [γS(aTx∗)−1γS(aTx∗)]

Ea∼N(0,1)n [γS(aTx∗)]
≤ α−1,

so for t > 0 we get the tail bound

Pr[log(2/γS(Ajx
∗)) > t] ≤ 2α−1e−t.

Since Aji is the result of conditioning a Gaussian on an event of likelihood at least α, we also get
the tail bound

Pr[A2
ji > t] ≤ 2α−1e−t/2.

So
Pr[A2

ji log(2/γS(Ajx
∗)) > t] ≤ 4α−1e−

√
t/2.

By concentration of sums of independent, heavy-tailed random variables (see, e.g. Theorem 8.4 in
[18]), it follows that with probability 1− e−Ω(m1/5),∑

j∈[m]

A2
ji log(2/γS(Ajx

∗)) ≤ O(m).

With probability 1− ke−Ω(m1/5), this above bound holds for all i ∈ U . Call this event E.

Condition on A and suppose that event E occurs. For fixed A, we can write yj ∼ N(Ajx
∗, 1, S)

for j ∈ [m]. Moreover
yj − Eyj ∼ subG(C4 log(2/γS(Ajx

∗))).

Fix i ∈ U . Then (AT )i · (y − Ey) is subGaussian with variance proxy
C4

∑
j∈[m]A

2
ji log(2/γS(Ajx

∗)). Since event E is assumed to hold, we have that (AT )i · (y−Ey)

is subGaussian with variance proxy C5m. So

Pr
y

[|(AT )i · (y − Ey)| >
√

10C5m log n] ≤ 1

n10
.

Thus, union bounding and summing over i ∈ U , we have that∥∥ATU (y − Ey)
∥∥2

2
≤ C6mk log n

with probability 1− 1/n9 over y. Taking probability over A and accounting for the probability that
event E fails, the total failure probability is O(1/n9 + ke−Ω(m−1/5)).

J.2 Proof of Lemma A.2

We can write

µt =

∫
S
xe−(x−t)2/2 dx∫
S
e−(x−t)2/2 dx

.

By the quotient rule,

d

dt
µt = −

∫
S
x(t− x)e−(x−t)2/2 dx∫
S
e−(x−t)2/2 dx

+

(∫
S
xe−(x−t)2/2 dx

)(∫
S

(t− x)e−(x−t)2/2 dx
)

(∫
S
e−(x−t)2/2 dx

)2
= −E[Zt(t− Zt)] + E[Zt]E[t− Zt]
= Var(Zt)

as desired.
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J.3 Proof of Lemma A.3

The fact that sign(µt−µt∗) = sign(t−t∗) follows immediately from the fact that d
dtµt = Var(Zt) ≥

0 (Lemma A.2).

We now prove the second claim of the lemma. Suppose t∗ < t; the other case is symmetric. Then
we have

µt − µt∗ =

∫ t

t∗
Var(Zr) dr ≥ C

∫ t

t∗
γS(r)2 dr ≥ Cβ2

∫ t−t∗

0

e−r
2−2 dr

by Lemmas A.2, I.1 and I.2 respectively. But we can lower bound∫ t−t∗

0

e−r
2−2 dr ≥

∫ min(1,t−t∗)

0

e−r
2−2 dr

≥ e−3 min(1, t− t∗).

This bound has the desired form.

J.4 Proof of Lemma A.4

Since Ea∼N(0,1)kγS(aTx∗) ≥ α and γS(aTx∗) is always at most 1, we have Pr[γS(aTx∗) ≤
α/2] ≤ 1 − α/2. Since the samples are rejection sampled on γS(aTx∗), it follows that
Pr[γS(Ajx

∗) ≤ α/2] ≤ 1 − α/2 as well. So by a Chernoff bound, with high probability, the
number of j ∈ [m] such that γS(Ajx

∗) ≤ α/2 is at most (1− α/3)m.

The condition that |Ajx∗−Aj x̆|2 ≥ (6/(αm)) ‖Ax∗ −Ax̆‖2 is clearly satisfied by at most (α/6)m
indices.

J.5 Proof of Lemma A.5

By Lemma A.4 and Theorem G.1, with high probability AIgood,U and AU both have singular values
bounded between

√
τm and

√
Tm for some positive constants τ = τ(α) and T = T (α). In this

event, we have
‖A(x∗ − x̆)‖2Igood

≥ τm ‖x∗ − x̆‖2 ≥ τ

T
‖A(x∗ − x̆)‖2

which proves the claim.

J.6 Proof of Theorems A.6 and A.7

Proof of Theorem A.6. Let a = A(x̆ − x∗) and let b = µAx̆ − µAx∗ . Our aim is to show that
if ‖a‖2 is large, then

∥∥ATUb∥∥2
is large, which would contradict Equation 4. Since ATU is not an

isometry, we can’t simply show that ‖b‖2 is large. Instead, we write an orthogonal decomposition
b = v+AUu for some u ∈ Rk and v ∈ Rm with ATUv = 0. We’ll show that ‖AUu‖2 is large. Since
ATUb = ATUAUu, and ATU is an isometry on the row space of AU , this suffices.

For every j ∈ Igood with |aj | > 0, we have by Lemma A.3 that

|bj | ≥ C min(1, |aj |) = C|aj |min(1/|aj |, 1)

where C is the constant which makes Lemma A.3 work for indices j with γS(Ajx
∗) ≥ α/2. Take

C ′ =
√

6/α, and suppose that the theorem’s conclusion is false, i.e. ‖a‖2 > C ′
√
m. Also suppose

that the events of Lemmas A.1 and A.5 hold.

Then by the bound |aj |2 ≤ (6/(αm)) ‖a‖22 for j ∈ Igood we get

|bj | ≥ C|aj |min

(√
α/6
√
m

‖a‖2
, 1

)
=
c
√
m

‖a‖2
|aj | (6)

where c = C
√
α/6. We assumed earlier that |aj | > 0 but Equation 6 certainly also holds when

|aj | = 0.
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By Lemma A.3, aj and bj have the same sign for all j ∈ [m]. So ajbj ≥ 0 for all j ∈ [m]. Moreover,
together with Equation 6, the sign constraint implies that for j ∈ Igood,

ajbj ≥
c
√
m

‖a‖
a2
j .

Summing over j ∈ Igood we get∑
j∈Igood

a2
j ≤
‖a‖2
c
√
m

∑
j∈Igood

ajbj ≤
‖a‖2
c
√
m
〈a, b〉 =

‖a‖2
c
√
m
〈a,AUu〉.

By Lemma A.5 on the LHS and Cauchy-Schwarz on the RHS, we get

ε ‖a‖22 ≤
‖a‖22
c
√
m
‖AUu‖2 .

Hence ‖AUu‖2 ≥ εc
√
m. But then

∥∥ATUb∥∥2
=
∥∥ATUAUu∥∥2

≥ (τ2/T )εcm. On the other hand,
Equation 4 implies that

1

m

∥∥ATUb∥∥2
≤ λ
√
k +

1

m

∥∥ATU (E[ZA,x∗ ]− y)
∥∥

2
≤ c′reg +

√
α−1(k log n)/m

since event (2) holds. This is a contradiction for M ′ sufficiently large and c′reg sufficiently small. So
either the assumption ‖a‖2 > C ′

√
m is false, or the events of Lemma A.1 or A.5 fail. But the latter

two events fail with probability o(1). So ‖a‖2 ≤ C ′
√
m with high probability.

Now that we know that ‖x∗ − x̆‖2 ≤ O(1), we can bootstrap to show that ‖x∗ − x̆‖2 ≤√
(k log n)/m. While the previous proof relied on the constant regime of the lower bound pro-

vided by Lemma A.3, the following proof relies on the linear regime.

Proof of Theorem A.7. As before, let a = A(x̆ − x∗) and b = µAx̆ − µAx∗ . Suppose that the
conclusion of Theorem A.6 holds, i.e. ‖a‖2 ≤ C ′

√
m. Also suppose that the events stated in

Lemmas A.1 and A.5 holds. We can make these assumptions with high probability. For j ∈ Igood,
we now know that |aj |2 ≤ (6/(αm)) ‖a‖22 = O(1). Thus,

|bj | ≥ C|aj | ·min(1/|aj |, 1) ≥ δ|aj |

where δ = C min(1,
√
α/6/C ′). By the same argument as in the proof of Theorem A.6, except

replacing (c
√
m)/ ‖a‖2 by δ, we get that

ε ‖a‖22 ≤ δ
−1 ‖a‖2 · ‖AUu‖2 .

Thus, ‖a‖2 ≤ ε−1δ−1 ‖AUu‖2 . By the isometry property of ATU on its row space (Corollary G.5),
we get

‖a‖2 ≤
τ2

Tεδ
√
m

∥∥ATUAUu∥∥2
=

c′√
m

∥∥ATUb∥∥2

for an appropriate constant c′. Since a = A(x̆ − x∗) and AU is a
√
m-isometry up to constants

(Theorem G.1), we get

‖x̆− x∗‖2 ≤
‖a‖2
τ
≤ c′

τm

∥∥ATUb∥∥2
.

By Equation 4 and bounds on the other terms of Equation 4, the RHS of this inequality is O(λ
√
k+√

(k log n)/m).

J.7 Proof of Lemma B.1

For 1 ≤ j ≤ m we have by Lemma I.3 that

(ERAj ,x̆)2 ≤ E[R2
Aj ,x̆] ≤ 2 log

1

γS(Aj x̆)
+ 4.
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By Lemma I.2, we have

log
1

γS(Aj x̆)
≤ 2 log

1

γS(Ajx∗)
+ |Aj x̆−Ajx∗|2 + 2.

Therefore summing over all j ∈ [m],

‖ERA,x̆‖22 ≤ 4

m∑
j=1

log
1

γS(Ajx∗)
+ 2 ‖A(x̆− x∗)‖22 + 8m.

Lemma I.4 bounds the first term. Theorems A.7 and G.1 bound the second: with high probability,

‖A(x̆− x∗)‖2 ≤ 2T (λ
√
km+ C ′′

√
k log n).

Thus,
‖E[RA,x̆]‖22 ≤ 8m log(1/α) + 8m+ 8T 2λ2km+ 8(TC ′′)2k log n

with high probability. Under the assumptions λ ≤ c′′reg/
√
k and m ≥ M ′′k log n, this quantity is

O(m).

J.8 Proof of Lemma B.2

Draw m samples from the distribution RAj ,x∗ as follows: pick a ∼ N(0, 1)n and η ∼ N(0, 1).
Keep sample η if aTx∗ + η ∈ S; otherwise reject. We want to bound η2

1 + · · · + η2
m. Now

consider the following revised process: keep all the samples, but stop only once m samples satisfy
aTx∗ + η ∈ S. Let t be the (random) stopping point; then the random variable η2

1 + · · · + η2
t

defined by the new process stochastically dominates the random variable η1 + · · ·+ η2
m defined by

the original process.

But in the new process, each ηi is Gaussian and independent of η1, . . . , ηi−1. With high probability,
t ≤ 2m/α by a Chernoff bound. And if η′1, . . . , η

′
2m/α ∼ N(0, 1) are independent then

η′
2
1 + · · ·+ η′

2
2m/α ≤ 4m/α

with high probability, by concentration of norms of Gaussian vectors. Therefore η2
1 + · · · + η2

t ≤
4m/α with high probability as well.

J.9 Proof of Theorem B.3

Set σ = 4(
√
c +

√
cy), where c and cy are the constants in Lemmas B.1 and B.2. Set

M = max(16T 2C ′′2(σ + 1)2/σ2, σ2/c′′
2
reg). Note that M is chosen sufficiently large that

λ = σ
√

(log n)/m ≤ c′′reg/
√
k.

By Theorem A.7, we have with high probability that the following event holds, which we call Eclose:

‖x∗ − x̆‖2 ≤ C
′′(λ
√
k +

√
(k log n)/m) = C ′′(σ + 1)

√
k log n

m
.

Now notice that
EZA,x̆ − y = A(x̆− x∗) + ERA,x̆ − (y −Ax∗).

IfEclose holds, then by Theorem G.1, we get ‖A(x̆− x∗)‖2 ≤ TC ′′(σ+1)
√
k log n. By Lemma B.1,

with high probability ‖ERA,x̆‖2 ≤
√
cm. And by Lemma B.2, with high probability ‖y −Ax∗‖2 ≤√

cym. Therefore

‖EZA,x̆ − y‖2 ≤ TC
′′(σ + 1)

√
k log n+

√
cym+

√
cm ≤ σ

2

√
m

where the last inequality is by choice of M and σ. Thus, the event

E : ‖EZA,x̆ − y‖2 ≤
σ

2

√
m

occurs with high probability.
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Suppose that event E occurs. Now note that ATUc has independent Gaussian entries. Fix any i ∈ Uc;
since (AT )i is independent of AU , x̆, and y, the dot product

(AT )i(EZA,x̆ − y)

is Gaussian with variance ‖EZA,x̆ − y‖22 ≤ σ
2m/4. Hence, z̆i = 1

λm (AT )i(EZA,x̆−y) is Gaussian
with variance at most (σ2m/4)/(λm)2 = 1/(4 log n). So

Pr[|z̆i| ≥ 1] ≤ 2e−2 logn ≤ 2

n2
.

By a union bound,

Pr[‖z̆Uc‖∞ ≥ 1] ≤ 2

n
.

So the event ‖z̆Uc‖ < 1 holds with high probability.

J.10 Proof of Theorem B.4

We know from Theorem B.3 that
∥∥ 1
mA

T
Uc(E[ZA,x̆]− y)

∥∥
∞ ≤ λ/3. So it suffices to show that

1

m

∥∥ATUc(E[ZA,X ]− y)−ATUc(E[ZA,x̆]− y)
∥∥
∞ ≤

λ

6
.

Thus, we need to show that
1

m
|(AT )i(E[ZA,X ]− E[ZA,x̆])| ≤ λ

6

for all i ∈ U c. Fix one such i. Then by Lemma A.2,

‖E[ZA,X ]− E[ZA,x̆]‖22 =

m∑
i=1

(µAiX − µAix̆)2

=

m∑
i=1

(∫ Aix̆

AiX

Var(Zt) dt

)2

≤
m∑
i=1

(AiX −Aix̆)2 · sup
t∈[AiX,Aix̆]

Var(Zt).

By Lemma I.4, we have
m∑
j=1

log
1

γS(Ajx∗)
≤ 2m log(1/α)

with high probability over A. Assume that this inequality holds, and assume that ‖X − x̆‖2 ≤ 1
and ‖x̆− x∗‖2 ≤ 1, so that ‖X − x∗‖2 ≤ 2. Then by Theorem G.1, ‖A(X − x∗)‖2 ≤ 2T

√
m. By

Lemma I.2, for every j ∈ [m] and every t ∈ [AjX,Aj x̆],

log
1

γS(t)
≤ 2 log

1

γS(Ajx∗)
+ |t−Ajx∗|2 + 2 ≤ cm

for a constant c. Hence, by Lemma I.3,

Var(Zt) ≤ E[(Zt − t)2] ≤ 2 log
1

γS(t)
+ 4 ≤ 2cm+ 4.

We conclude that

‖E[ZA,X ]− E[ZA,x̆]‖22 ≤ (2cm+ 4) ‖AX −Ax̆‖22 ≤ (2cm+ 4)
T 2m

m2
≤ O(1).

Additionally,
∥∥(AT )i

∥∥
2
≤ T
√
m with high probability. Thus, Cauchy-Schwarz entails that

1

m
|(AT )i(E[ZA,X ]− E[ZA,x̆])| ≤ 1

m
T
√
m ·O(1) ≤ λ

6

for large n.
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J.11 Proof of Lemma 5.4

Note that
‖Ax̆− y‖2 ≤ ‖A(x̆− x∗)‖2 + ‖Ax∗ − y‖2 .

With high probability, ‖x̆− x∗‖2 ≤ 1. Theorem G.1 gives that ‖A(x̆− x∗)‖2 ≤ T
√
m. Further-

more, ‖Ax∗ − y‖2 ≤ 2
√
m/α by Lemma B.2.

J.12 Proof of Lemma 5.5

With high probability x̆ ∈ Er by the above lemma. Note that
∥∥x(0)

∥∥
1
≤ ‖x̆‖1, and∥∥A(x(0) − x̆)

∥∥
2
≤ 2r

√
m. Set ρ = min(τ/(4T ), 1/3) and s = k(1 + 1/ρ2). If m ≥ Mk log n

for a sufficiently large constant M , then by Corollary G.6, A/
√
m with high probability satisfies

the s-Restricted Isometry Property. Then by Theorem D.1 (due to [6], but reproduced here for
completeness), it follows that

∥∥x(0) − x̆
∥∥

2
≤ O(1).

J.13 Proof of Lemma 5.6

Note that sign(x(t)) is a subgradient for ‖x‖1 at x = x(t). Furthermore, for fixed A,

E
[
Aj(z

(t) − yj)
∣∣∣x(t)

]
=

1

m

m∑
j′=1

Aj′(EZAj′ ,x
(t) − yj′) = ∇nll(x(t);A, y).

It follows that
E[v(t)|x(t)] = E

[
Aj(z

(t) − yj)
∣∣∣x(t)

]
+ sign(x(t))

is a subgradient for f(x) at x = x(t).

We proceed to bounding E[
∥∥v(t)

∥∥2

2
|x(t)]. By definition of v(t),∥∥∥v(t)

∥∥∥2

2
≤ 2

∥∥∥Aj(z(t) − yj)
∥∥∥2

2
+ 2

∥∥∥λ · sign(x(t))
∥∥∥2

2

where j ∈ [m] is uniformly random, and z(t)|x(t) ∼ ZAj ,x(t) . Since
∥∥λ · sign(x(t))

∥∥2

2
= o(n) it

remains to bound the other term. We have that

E[
∥∥∥Aj(z(t) − yj)

∥∥∥2

2
|x(t)] =

1

m

m∑
j′=1

E[
∥∥∥Aj′(ZAj′ ,x

(t) − yj′)
∥∥∥2

2
].

With high probability, ‖Ai‖22 ≤ 2n for all i ∈ [m]. Thus,

E[
∥∥∥Aj(z(t) − yj)

∥∥∥2

2
|x(t)] ≤ n

m

m∑
j′=1

E[(ZAj′ ,x
(t) − yj′)2].

Now
m∑
i=1

E[(ZAi,x(t) − yi)2] ≤ 2

m∑
i=1

(Aix
(t) − yi)2 + 2

m∑
i=1

E[(Aix
(t) − ZAi,x(t))2].

The first term is bounded by 2r2m since x(t) ∈ Er. Additionally,∥∥∥A(x(t) − x∗)
∥∥∥

2
≤
∥∥∥Ax(t) − y

∥∥∥
2

+ ‖Ax∗ − y‖2 ≤ 2r
√
m

since x(t), x∗ ∈ Er. Therefore the second term is bounded as

2

m∑
i=1

E[R2
Ai,x(t) ] ≤ 4

m∑
i=1

log

(
1

γS(Aix(t))

)
+ 8m

≤ 8

m∑
i=1

log

(
1

γS(Aix∗)

)
+ 4

∥∥∥A(x(t) − x∗)
∥∥∥2

2
+ 16m

≤ 64 log(1/α)m+ 16r2m+ 80m.
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where the first and second inequalities are by Lemmas I.3 and Lemma I.2, and the third inequality
is by Lemma I.4. Putting together the two bounds, we get

m∑
i=1

E[(ZAi,x(t) − yi)2] ≤ O(m),

from which we conclude that E[
∥∥v(t)

∥∥2

2
|x(t)] ≤ O(n). The law of total expectation implies that

E[
∥∥v(t)

∥∥2

2
] ≤ O(n) as well.

J.14 Proof of Lemma 5.7

We need to show that fRU is ζ-strongly convex near x̆. Since ‖x‖1 is convex, it suffices to show that
nll(x;A, y)RU is ζ-strongly convex near x̆. The Hessian of nll(x;A, y)|RU is

HU (x;A, y) =
1

m

m∑
j=1

ATj,UAj,U Var(ZAj ,x).

Hence, it suffices to show that

1

m

m∑
j=1

ATj,UAj,U Var(ZAj ,x) � ζI

for all x ∈ Rn with supp(x) ⊆ U and ‖x− x̆‖2 ≤ 1. Call this region B. With high probability
over A we can deduce the following.

(i) By Theorem A.7, we have ‖x̆− x∗‖2 ≤ d
√

(k log n)/m. As ‖x− x̆‖2 ≤ 1 for all x ∈ B, we
get ‖A(x̆− x)‖22 ≤ T 2(d+ 1)2m for all x ∈ B.

(ii) By the proof of Lemma A.4, the number of j ∈ [m] such that γS(Ajx
∗) ≤ α/2 is at most

(1− α/3)m.

Fix x ∈ B, and define Jx ⊆ [m] to be the set of indices

Jx = {j ∈ [m] : γS(Ajx
∗) ≥ α/2 ∧ |Aj(x− x∗)|2 ≤ (6/α)T 2(d+ 1)2.}

For any j ∈ Jx,

log
1

γS(Ajx)
≤ 2 log

1

γS(Ajx∗)
+ |Aj(x− x∗)|2 + 2 ≤ log(2/α) + (6/α)T 2(d+ 1)2 + 2.

Thus,
Var(ZAj ,x) ≥ CγS(Ajx)2 ≥ e− log(2/α)−(6/α)T 2(d+1)2−2 = Ω(1).

Let δ denote this lower bound—a positive constant. By (i) and (ii), |Jx| ≥ (α/6)m, so by Theo-
rem G.1,

HU (x;A, y) =
1

m

m∑
j=1

ATj,UAj,U Var(ZAj ,x) � δ

m
ATJx,UAJx,U � δτI

as desired.

J.15 Proof of Lemma 5.8

Let t = ‖(x− x̆)U‖2. Define w = x̆+ (x− x̆) min(t−1/m, 1). Also define w′ = [wU ; 0Uc ] ∈ Rn.
Then ‖(w − x̆)U‖2 ≤ 1/m, so

‖(∇nll(w′;A, y))Uc‖∞ ≤
λ

2
.

Therefore wi · (∇nll(w′;A, y))i ≤ (λ/2)|wi| for all i ∈ U c, so

f(w)− f(w′) = (nll(w;A, y)− nll(w′;A, y)) + λ(‖w‖1 − ‖w
′‖1)

≥ (w − w′) · ∇ nll(w′;A, y) + λ ‖wUc‖1

≥ λ

2
‖wUc‖1 .
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Additionally, since ‖w′ − x̆‖2 ≤ 1 and supp(w′) ⊆ U , we know that

f(w′)− f(x̆) ≥ ζ

2
‖w′ − x̆‖22 .

Adding the second inequality to the square of the first inequality, and lower bounding the `1 norm
by `2 norm,

1

2
(f(w)− f(x̆))2 +

1

2
(f(w)− f(x̆)) ≥ 1

2
(f(w)− f(w′))2 +

1

2
(f(w′)− f(x̆))

≥ λ2

8
‖wUc‖22 +

ζ

4
‖w′ − x̆‖22

≥ λ2

8
‖(w − x̆)Uc‖22 +

ζ

4
‖(w − x̆)U‖22

≥ min

(
λ2

8
,
ζ

4

)
‖w − x̆‖22

Since f(x)− f(x̆) ≤ 1, by convexity f(w)− f(x̆) ≤ 1 as well. Hence,

f(w)− f(x̆) ≥ 1

2
(f(w)− f(x̆))2 +

1

2
(f(w)− f(x̆)) ≥ min

(
λ2

8
,
ζ

4

)
‖w − x̆‖22 . (7)

We distinguish two cases:

1. If t ≤ 1/m, then w = x, and it follows from Equation 7 that

f(x)− f(x̆) ≥ min

(
λ2

8
,
ζ

4

)
‖x− x̆‖22

as desired.
2. If t ≥ 1/m, then ‖(w − x̆)U‖2 = 1/m, and thus ‖w − x̆‖2 ≥ 1/m. By convexity and this

bound,

f(x)− f(x̆) ≥ f(w)− f(x̆) ≥ min

(
λ2

8
,
ζ

4

)
1

m2
,

which contradicts the lemma’s assumption for a sufficiently small constant cf > 0.

J.16 Proof of Theorem 5.9

By Lemmas 5.4, 5.5, and 5.6, we are guaranteed that x̆ ∈ Er,
∥∥x(0) − x̆

∥∥2

2
≤ O(1), and

E[
∥∥v(t)

∥∥2

2
] ≤ O(n) for all t. Thus, applying Theorem H.1 with projection set Er, step count

T = m6n2, and step size η = 1/
√
Tn gives E[f(x̄)]− f(x̆) ≤ O(1/(m3n)). Since f(x̄)− f(x̆) is

nonnegative, Markov’s inequality gives
Pr[f(x̄)− f(x̆) ≤ cf (log n)/m3] ≥ 1− 1/n.

From Theorem 5.8 we conclude that ‖x̄− x̆‖2 ≤ O(1/m) with high probability.

K Efficient sampling for union of intervals

In this section, in Lemma K.4, we see that when S = ∪ri=1[ai, bi], with ai, bi ∈ R, then Assump-
tion II holds with T (γS(t)) = poly(log(1/γS(t)), r). The only difference is that instead of exact
sampling we have approximate sampling, but the approximation error is exponentially small in total
variation distance and hence it cannot affect any algorithm that runs in polynomial time.
Definition K.1 (EVALUATION ORACLE). Let f : R → R be an arbitrary real function. We define
the evaluation oracle Ef of f as an oracle that given a number x ∈ R and a target accuracy η
computes an η-approximate value of f(x), that is |Ef (x)− f(x)| ≤ η.
Lemma K.2. Let f : R → R+ be a real increasing and differentiable function and Ef (x) an
evaluation oracle of f . Let ` ≤ f ′(x) ≤ L for some `, L ∈ R+. Then we can construct
an algorithm that implements the evaluation oracle of f−1, i.e. Ef−1 . This implementation on
input y ∈ R+ and input accuracy η runs in time T and uses at most T calls to the evalua-
tion oracle Ef with inputs x with representation length T and input accuracy η′ = η/`, with
T = poly log(max{|f(0)/y|, |y/f(0)|}, L, 1/`, 1/η).
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Proof of Lemma K.2. Given a value y ∈ R+ our goal is to find an x ∈ R such that f(x) = y. Using
doubling we can find two numbers a, b such that f(a) ≤ y − η′ and f(b) ≥ y + η′ for some η′
to be determined later. Because of the lower bound ` on the derivative of f we have that this step
will take log((1/`) ·max{|f(0)/y|, |y/f(0)|}) steps. Then we can use binary search in the interval
[a, b] where in each step we make a call to the oracle Ef with accuracy η′ and we can find a point
x̂ such that |f(x)− f(x̂)| ≤ η′. Because of the upper bound on the derivative of f we have that f
is L-Lipschitz and hence this binary search will need log(L/η′) time and oracle calls. Now using
the mean value theorem we get that for some ξ ∈ [a, b] it holds that |f(x)− f(x̂)| = |f ′(ξ)| |x− x̂|
which implies that |x− x̂| ≤ η′/`, so if we set η′ = ` · η, the lemma follows.

Using the Lemma K.2 and the Proposition 3 of [7] it is easy to prove the following lemma.
Lemma K.3. Let [a, b] be a closed interval and µ ∈ R such that γ[a,b](µ) = α. Then there exists
an algorithm that runs in time poly log(1/α, ζ) and returns a sample of a distribution D , such that
dTV(D , N(µ, 1; [a, b])) ≤ ζ.

Proof Sketch. The sampling algorithm follows the steps: (1) from the cumulative distribution func-
tion F of the distribution N(µ, 1; [a, b]) define a map from [a, b] to [0, 1], (2) sample uniformly a
number y in [0, 1] (3) using an evaluation oracle for the error function, as per Proposition 3 in [7],
and using Lemma K.2 compute with exponential accuracy the value F−1(y) and return this as the
desired sample.

Finally using again Proposition 3 in [7] and Lemma K.3 we can get the following lemma.
Lemma K.4. Let [a1, b1], [a2, b2], . . . , [ar, br] be closed intervals and µ ∈ R such that
γ∪r

i=1[ai,bi](µ) = α. Then there exists an algorithm that runs in time poly(log(1/α, ζ), r) and
returns a sample of a distribution D , such that dTV(D , N(µ, 1;∪ri=1[ai, bi])) ≤ ζ.

Proof Sketch. Using Proposition 3 in [7] we can compute α̂i which estimated with exponential accu-
racy the mass αi = γ[ai,bi](µ) of every interval [ai, bi]. If α̂i/α ≤ ζ/3r then do not consider interval
i in the next step. From the remaining intervals we can choose one proportionally to α̂i. Because of
the high accuracy in the computation of α̂i this is ζ/3 close in total variation distance to choosing an
interval proportionally to αi. Finally after choosing an interval iwe can run the algorithm of Lemma
K.3 with accuracy ζ/3 and hence the overall total variation distance from N(µ, 1;∪ri=1[ai, bi]) is at
most ζ.
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