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1 Description of Datasets and Competing Methods

The list of datasets and competing methods are presented in Tables 1 and 2 respectively.

Figure 1 shows simulation results on the value-weighted datasets. The results are qualitatively

similar to those in Figure 3 in the manuscript.

Figure 2 shows how the average one-year Sharpe ratio of AlphaRob varies with the training

sample size n (results are on real-world monthly returns and not simulated returns). For compar-

ison, we also show the results for CS, Min Var (NLS), and Min Var (L2). AlphaRob generally

has the best Sharpe ratio or is close to the best. The sole exception is again the 10FFVW dataset.

We note that for small n and large p, the robust optimization of CS becomes infeasible for the

parameter values suggested by Ceria and Stubbs (2006).

2 Proofs of Theorems 1 to 6.

In the following, we will abbreviate EDn [.] to En[.] and V arDn(.) to V arn(.).
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Dataset Abbreviation p

Six portfolios of firms sorted by size and book-to-market 6FFEW, 6FFVW 6
Ten industry portfolios representing U.S. stock market 10FFEW, 10FFVW 10
Twenty-five portfolios of firms sorted by size and book-to-market 25FFEW, 25FFVW 25
Forty-eight industry portfolios representing U.S. stock market 48FFEW, 48FFVW 48
One hundred portfolios of firms sorted by size and book-to-market 100FFEW, 100FFVW 96
Top 200 market-value individual stocks with annual updates 200Stocks 200
Top 500 market-value individual stocks with annual updates 500Stocks 500

Table 1: List of Datasets: We use EW (equally-weighted) and VW (value-weighted) to indicate
the corresponding weighting type in the abbreviation. For 100FFEW and 100FFVW, we ignore 4
assets with missing values in the data, so p = 96.

Name Description

Equal Weight Each asset has the same weight

Portfolios using robust covariance estimators
Min Var (NLS) Non-linear shrinkage for covariance (Ledoit and Wolf, 2012, 2017)
Min Var (L2) Linear shrinkage for covariance (Ledoit and Wolf, 2004; DeMiguel et al., 2009)

Est. Max Sharpe (NLS) Based on the sample mean and non-linear shrinkage of covariance
Est. Max Sharpe (L2) Based on the sample mean and linear shrinkage of covariance

Combination portfolios (each with risk aversion γ = 1 and γ = 3)
AA Combines minimum-variance and mean-variance portfolios

using ambiguity aversion (Garlappi et al., 2007)
EQL MV-min Combines minimum-variance and mean-variance using quadratic-loss

calibration estimated using the bootstrap (DeMiguel et al., 2013)
TZ Combines mean-variance and equal-weight portfolios (Tu and Zhou, 2011)

Portfolios needing out-of-sample parameter fitting
CS? Robust portfolio to maximize worst-case expected reward (Ceria and Stubbs, 2006)

PARR? Portfolios built from partially completed conjugate descent (DeMiguel et al., 2009)

Table 2: List of competing methods: Methods whose parameters need to be set using out-of-sample
data are starred.

2



6F
F

V
W

1
0F

F
V

W
25

F
F

V
W

48
F

F
V

W
10

0F
F

V
W

(a) Gaussian distribution (b) t distribution

Figure 1: Sharpe ratios after simulating returns for different number of assets. The two columns
show simulations using a Gaussian distribution and a heavy-tailed t-distribution respectively.
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(a) 6FFVW (b) 10FFVW

(c) 25FFVW (d) 48FFVW

(e) 100FFVW (f) 6FFEW

(g) 10FFEW (h) 25FFEW

(i) 48FFEW (j) 100FFEW

Figure 2: Average one-year Sharpe ratios as a function of the training size n. For some datasets
and training sizes, the CS method gave no results and hence is not shown.
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Proof of Theorem 1. From Eq. 1 and the definition of x,

Sx (x) =
EDn,r

[
wTr

]√
V arDn,r [wTr]

where w =
Σ−1/2x

1TΣ−1/2x
=

Σ−1/2x

mTx
.

Here Dn consists of n i.i.d. samples from a distribution f(.), r is another independent sample

drawn from f(.), and µ and Σ are the mean and covariance matrix under f(.). Now,

EDn,r[wTr] = EnEr[wTr] = En[wTµ] = En

[
xTΣ−1/2µ

1TΣ−1/2x

]
= En

[
xTz

mTx

]
.

Also,

V ar(wTr) = En
[
V arr(wTr)

]
+ V arn

(
Er[wTr]

)
= En

[
wTΣw

]
+ V arn

(
wTµ

)
= En

[
xTx

(mTx)2

]
+ V arn

(
xTz

mTx

)
.

The theorem statement follows.

Proof of Theorem 2. The estimated mean asset return µ̂ is the average of n independent and

identically distributed returns from a distribution with mean µ and covariance Σ. So, E [ẑ] =

Σ−1/2µ = z and V ar (ẑ) = (1/n) · Ip×p, where Ip×p is the identity matrix of that size. Since

x = m + α · ẑ, we have En[x] = m + α · z = χ and V arn(x) =
α2

n
· Ip×p. Now we do a Taylor

expansion of the function f(x) = (zTx)/(mTx) around x = χ and then take expectations. After

some algebraic manipulations, we get

En

[
zTx

mTx

]
=
zTχ

mTχ
+
α3
(
‖m‖2‖z‖2 − s2

)
n (mTχ)3

+ o

(
1

n

)
.

Here, we use the fact that higher-order moments of ẑ are o(1/n). By another Taylor expansion of
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the function f(x) =
(
(zTx)/(mTx)

)2
around x = χ and taking expectations, we get

En

[(
zTx

mTx

)2
]

=

(
zTχ

zTχ

)2 [
1 +

α2

n

{
‖z‖2

(mTχ)2
− 4s

(zTχ)(mTχ)
+

3‖m‖2

(mTχ)2

}]
+ o

(
1

n

)

⇒ V arn

(
zTx

mTx

)
= En

[(
zTx

mTx

)2
]
−
(
En

[
zTx

mTx

])2

=
α2

n
·
(
‖m‖2‖z‖2 − s2

)
‖χ‖2

(mTχ)4
+ o

(
1

n

)
.

A Taylor expansion of the function f(x) = (xTx)/(mTx)2 around x = χ yields

En

[
xTx

(mTx)2

]
=
‖χ‖2

(mTχ)2
+

α2

n (mTχ)2

(
(p− 4) +

3‖m‖2‖χ‖2

(mTχ)2

)
+ o

(
1

n

)
=
‖χ‖2

(mTχ)2
+

α2

n (mTχ)2

(
(p− 1) +

3α2
(
‖m‖2‖z‖2 − s2

)
(mTχ)2

)
+ o

(
1

n

)
.

Combining these and applying Theorem 1, we get

Sx (x) =

En

[
zTx

mTx

]
√
En

[
x′x

(mTx)2

]
+ V arn

(
zTx

mTx

)

=

(zTχ) +
α3

n
·
(
‖m‖2‖z‖2 − s2

)
(mTχ)2√√√√‖χ‖2 +

α2

n

[
(p− 1) +

(
‖m‖2‖z‖2 − s2

)
·
(
3α2 + ‖χ‖2

)
(mTχ)2

] + o

(
1

n

)
.

Proof of Theorem 3. We will first show that

0 ≤ α3

n
·
(
‖m‖2‖z‖2 − s2

)
(mTχ)2 (zTχ)

≤ 1/θ2 − 1

n‖z‖2

(1− θ2)‖z‖2 ≤
(
‖m‖2‖z‖2 − s2

)
·
(
3α2 + ‖χ‖2

)
(mTχ)2

≤ (1− θ2) · (‖z‖2 + 3)

θ2
.
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Using χ = m+ α · z, we have

‖χ‖2 = ‖m‖2 + 2αθ‖m‖‖z‖+ α2‖z‖2 mTχ = ‖m‖2 + αs zTχ = s+ α‖z‖2.

Using mTz = s = ‖m‖‖z‖θ, we have

α3

n
·
(
‖m‖2‖z‖2 − s2

)
(mTχ)2 (zTχ)

=
‖m‖2‖z‖2

(
1− θ2

)
n (s+ ‖m‖2/α)2 (‖z‖2 + s/α)

∈

[
0,

(
1/θ2 − 1

)
n‖z‖2

]
,

which proves the first bound. Also,

(
‖m‖2‖z‖2 − s2

)
·
(
3α2 + ‖χ‖2

)
(mTχ)2

=
‖z‖2(1− θ2)(‖m‖2 + 2α‖m‖‖z‖θ + α2(3 + ‖z‖2)

(‖m‖+ αθ‖z‖)2

= ‖z‖2(1− θ2)

(
1 +

(
3 + ‖z‖2(1− θ2)

)
(‖m‖/α+ θ‖z‖)2

)

∈
[
(1− θ2)‖z‖2, (1− θ2) · (3 + ‖z‖2)

θ2

]
,

proving the second bound. Using these two bounds in Theorem 2 followed by algebraic manipula-

tions yields the desired result.

Proof of Theorem 4. The numerator of Eq. 9 does not depend on α. We will show that the

denominator has a single minimum at α = α?. The denominator equals 1 + q (α | ‖z‖, θ) (Eq. 10):

q (α | ‖z‖, θ) =

(
‖m‖2‖z‖2 − s2

)
+ α2(p/n)‖z‖2

(s+ α‖z‖2)2

=

(
1− θ2

)
+ α2A

(θ + αB)2
where A =

p

n‖m‖2
, B =

‖z‖
‖m‖

. (1)

Taking the derivative with respect to α,

d

dα
q (α | ‖z‖, θ) = 2 ·

αAθ −
(
1− θ2

)
B

(θ + αB)3
. (2)

Since θ > 0, α ≥ 0, and B ≥ 0, this has a single inflection point at α = α? as defined in the

theorem statement. Also, the derivative is positive for α > α? and negative for α < α?, so this is a
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minimum. The theorem follows.

Proof of Theorem 5. We have E[ẑ] = z and V ar(ẑ) = (1/n) · Ip×p. By a Taylor expansion of

the function f(x) =
√
xTx around x = z and taking expectations, we get

E‖ẑ‖ = ‖z‖+
1

2
· E
[
(ẑ − z)T

1

‖z‖

(
Ip×p −

1

‖z‖2
· zzT

)
(ẑ − z)

]
+ o

(
1

n

)
= ‖z‖+

1

2‖z‖
· Trace

[(
Ip×p −

1

‖z‖2
· zzT

)
· V ar (ẑ)

]
+ o

(
1

n

)
= ‖z‖+

p− 1

2n‖z‖
+ o

(
1

n

)
.

Similarly, taking a Taylor expansion of the function f(x) = (mTx)/(‖m‖‖x‖) around x = z and

taking expectations, we get

Eθ̂ = θ − (p− 1) ·mTz

2n‖m‖‖z‖3
+ o

(
1

n

)
= θ

(
1− p− 1

2n‖z‖2

)
+ o

(
1

n

)
.

This proves the theorem.

Proof of Theorem 6. By Eq. 11, any element in {‖z‖ | (‖z‖, θγ) ∈ Γγ} must satisfy ‖z‖ = γp ·

(n‖m‖ · (1/θγ − θγ))−1, which proves the first statement.

Define fγ(α, θ) = h (α | ‖z‖, θ) as a function of α and θ, with ‖z‖ fixed to the unique value that

gives α?(‖z‖, θ) = γ. Also, let gγ(α, θ) = d
dθ log (1 + q (α | ‖z‖, θ)). The second statement of the

theorem will be proved if we show that d
dθfγ(α, θ) ≥ 0 for any α ≥ 0. Now,

d

dθ
fγ(α, θ) ≥ 0⇔ d

dθ
log (1 + q (γ | ‖z‖, θ))− d

dθ
log (1 + q (α | ‖z‖, θ)) ≥ 0⇔ gγ(γ, θ) ≥ gγ(α, θ).

(3)

To show Eq. 3, we will show that for any fixed θ, α = γ is a maximum of gγ(α, θ).
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First, observe that

d

dα
gγ(α, θ) =

d2

dαdθ
log (1 + q (α | ‖z‖, θ))

=
d

dθ

2(α− γ)Aθ

(θ + αB)3 (1 + q (α | ‖z‖, θ))

= 2(α− γ)A · d
dθ

(
θ

(θ + αB)3 (1 + q (α | ‖z‖, θ))

)
(4)

where the second equality is obtained from Eqs. 2 and 11. Note that B is a function of ‖z‖, which

itself is a function of γ and θ. Thus,
[
d
dαgγ(α, θ)

]
α=γ

= 0, so gγ(α, θ) has a mode at α = γ for any

θ. To show that this mode is a maximum, we will show that d
dαgγ(α, θ) is positive for 0 < α < γ

and negative for α > γ.

Let us fix α > 0, and use q(θ) = q (α | ‖z‖, θ) and B(θ) to denote the fact that q (. | ‖z‖, θ) and

B(.) are functions of θ. Let C(θ) = (θ + αB(θ))3 (1 + q(θ)). Continuing from Eq. 4,

d

dθ

(
θ

(θ + αB)3 (1 + q(θ))

)
=

(
θ + αB(θ)

C(θ)

)2

D(θ)

where D(θ) = (θ + αB(θ))(1 + q(θ))− 3θ(1 + q(θ)) · d
dθ

(θ + αB(θ))− θ(θ + αB(θ)) · d
dθ
q(θ)

Now, by Eqs. 11 and 1, we have

B(θ) = γA

(
θ

1− θ2

)
⇒ d

dθ
(θ + α ·B(θ)) = 1 + γαA · 1 + θ2

(1− θ2)2
= 1 +

αB(θ)

θ

(
1 +

2θ2

1− θ2

)
(5)

d

dθ
q(θ) =

d

dθ

(
1− θ2 + α2A

(θ + αB(θ))2

)
= − 2θ

(θ + αB(θ))2
− 2

(
q(θ)

θ + αB(θ)

)
· d
dθ

(θ + αB(θ)) .

(6)
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Using these in the formula for D(θ), we have

D(θ) = (θ + αB(θ))(1 + q(θ)) +
2θ2

θ + αB(θ)
− θ (3 + q(θ)) · d

dθ
(θ + αB(θ))

= (1 + q(θ))

(
θ + αB(θ)− θ · d

dθ
(θ + αB(θ))

)
+

2θ2

θ + αB(θ)
− 2θ · d

dθ
(θ + αB(θ))

= (1 + q(θ))

(
−2αθ2B(θ)

1− θ2

)
+

2θ2

θ + αB(θ)
− 2θ − 2αB(θ)

(
1 +

2θ2

1− θ2

)
= −3

(
αθ2B(θ)

1− θ2

)
(3 + q(θ))− 2

(
αB(θ)(2θ + αB(θ))

θ + αB(θ)

)
< 0,

where the first equality follows from Eq. 6, the third equality from Eq. 5, and the inequality from

q(θ) > 0, since θ ≤ 1 and α > 0. Using this in Eq. 4 shows that d
dαgγ(α, θ) is positive for 0 < α < γ

and negative for α > γ. This completes the proof of the second statement.

3 Proof of Theorem 7.

We first prove several helpful lemmas. Define u(t) and v(t) to be the minimum and maximum of

h
(
α(t) | γ(t+1)

lo

)
and h

(
α(t) | γ(t+1)

hi

)
(see Figure 2). Note that κ(t), κ(t+1), u(t), and v(t) are all less

than or equal to zero.

Lemma 1. If θ− > 0, ‖z‖+ <∞, and 0 ≤ α ≤ max(Iγ), there exist constants C1 > 0 and C2 > 0

that depend on I‖z‖ and Iθ such that C1 · |α− γ| ≤
∣∣ d
dαh (α | γ)

∣∣ ≤ C2.

Proof.

d

dα
h (α | γ) =

d

dα
log

(
1 + q (γ | ‖z‖, θ)
1 + q (α | ‖z‖, θ)

)
= − 2(α− γ)Aθ

(1 + q (α | ‖z‖, θ)) (θ + αB)3
.

The desired bounds follows from θ ≥ θ− > 0, ‖z‖ ≤ ‖z‖+ < ∞, and 0 ≤ α ≤ max(Iγ) =

α?(‖z‖+, θ−) <∞.
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Lemma 2. We have:

∀t′, κ(t′) ≥ κrob, u(t) ≤ κrob, κ(t+1) ≤ v(t) ≤ κ(t).

Proof. First we will show that κ(t
′) ≥ κrob. Suppose this is not the case. Then, α(t′) 6= αrob

and h
(
α(t′) | γ(t

′)
lo

)
= h

(
α(t′) | γ(t

′)
hi

)
= κ(t

′) < κrob. If α(t′) < αrob, then h
(
αrob | γ

(t′)
lo

)
<

h
(
α(t′) | γ(t

′)
lo

)
< κrob, where the first inequality follows from unimodality of h

(
α | γ(t

′)
lo

)
(The-

orem 4) and the fact that it achieves its maximum at γ
(t′)
lo < α(t′) < αrob. But by definition,

κrob = minγ h (αrob | γ). This leads to a contradiction. A similar argument holds when α(t′) > αrob.

Hence, κ(t
′) ≥ κrob.

If u(t) > κrob, then v(t) > u(t) > κrob, by the definition of u(t) and v(t). By the definitions of

γ
(t+1)
lo and γ

(t+1)
hi in Algorithm 1, the above statement implies that minγ h

(
α(t) | γ

)
> κrob (recall

that h (α | γ) ≤ 0 always). This contradicts the definition of αrob and κrob. Hence, u(t) ≤ κrob.

Now suppose, without loss of generality, that the maximum of h
(
α(t) | γ(t+1)

lo

)
and h

(
α(t) | γ(t+1)

hi

)
was achieved by the former. Then, from the definition of γ

(t+1)
lo , we have v(t) = minγ≤α(t) h

(
α(t) | γ

)
≤

h
(
α(t) | γ(t)lo

)
= κ(t). Also, κ(t+1) must be between u(t) and v(t), since κ(t+1) is achieved at the in-

tersection of the curves indexed by γ
(t+1)
lo and γ

(t+1)
hi . Hence, we must have v(t) ≥ κ(t+1). This

proves the lemma.

Lemma 3. Under the conditions of Lemma 1, for any feasible α, α′, and γ, we have

|α− α′| ≥ |h (α | γ)− h (α′ | γ) |
C2

.

In particular,

min
(
|α(t) − γ(t+1)

lo |, |α(t) − γ(t+1)
hi |

)
≥ |v

(t)|
C2

, |α(t+1) − α(t)| ≥ v(t) − u(t)

2 · C2
.

Proof. The first statement follows from |h (α | γ)− h (α′ | γ) | =
∣∣∣∫ α′α d

dxh (x | γ) dx
∣∣∣ ≤ C2 · |α− α′|,
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where we used Lemma 1 in the inequality. Applying this twice, we find

|α(t) − γ(t+1)
lo | ≥

|h
(
α(t) | γ(t+1)

lo

)
− h

(
γ
(t+1)
lo | γ(t+1)

lo

)
|

C2
=
|h
(
α(t) | γ(t+1)

lo

)
|

C2
,

|α(t) − γ(t+1)
hi | ≥

|h
(
α(t) | γ(t+1)

hi

)
|

C2
,

⇒ min
(
|α(t) − γ(t+1)

lo |, |α(t) − γ(t+1)
hi |

)
≥

min
(
|h
(
α(t) | γ(t+1)

lo

)
|, |h

(
α(t) | γ(t+1)

hi

)
|
)

C2
=
|v(t)|
C2

,

proving the second statement. Repeating this argument, we see

|α(t+1) − α(t)| ≥
|h
(
α(t+1) | γ(t+1)

lo

)
− h

(
α(t) | γ(t+1)

lo

)
|

C2
=
v(t) − κ(t+1)

C2
,

and |α(t+1) − α(t)| ≥
|h
(
α(t+1) | γ(t+1)

hi

)
− h

(
α(t) | γ(t+1)

hi

)
|

C2
=
κ(t+1) − u(t)

C2
,

where we assumed without loss of generality that v(t) = h
(
α(t) | γ(t+1)

lo

)
, and we used the fact that

u(t) ≤ κrob ≤ κ(t+1) ≤ v(t) (Lemma 2). Summing these two statements, |α(t+1)−α(t)| ≥ v(t)−u(t)
2·C2

.

Proof of Theorem 7. The fact that κrob ≤ κ(t
′) ≤ κ(1) ≤ 0 follows from Lemma 2. Since the

curves are unimodal (Theorem 4), κ(1) = 0 iff γ
(1)
lo = γ

(1)
hi . By construction, this happens only if

the interval Iγ is degenerate. Now assume, without loss of generality, that v(t) = h
(
α(t) | γ(t+1)

lo

)
.

This implies that α(t+1) ≥ α(t), since α(t+1) is the intersection of the curves indexed by γ
(t+1)
lo and
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γ
(t+1)
hi (see Figure 2). Then,

κ(t+1) = κ(t) +

∫ α(t+1)

α(t)

d

dα
h
(
α | γ(t+1)

lo

)
≤ κ(t) − |α(t) − α(t+1)| · C1 · |α(t) − γ(t+1)

lo | (Lemma 1)

≤ κ(t) −

(
v(t) − u(t)

2 · C2

)
· C1 ·

|v(t)|
C2

(Lemma 3)

≤ κ(t)
(

1 +
C1 ·

(
v(t) − u(t)

)
2 · C2

2

)
(|v(t)| = −v(t) ≥ −κ(t) by Lemma 2)

⇒ |κ(t+1) ≥ |κ(t)|

(
1 +

C1 ·
(
v(t) − u(t)

)
2 · C2

2

)

≥ |κ(t)|

(
1 +

C1 ·
(
|κrob| − |v(t)|

)
2 · C2

2

)
(u(t) ≤ κrob by Lemma 2)

This shows that |κ(t+1)| ≥ |κ(t)|, since |κrob| ≥ |κ(t+1)| ≥ |v(t)| by Lemma 2. But, by Lemma 2, we

also have κ(t+1) ≤ v(t). So,

|κ(t+1)| ≥ max
(
|v(t)|, |κ(t)|

(
1 + C3 ·

(
|κrob| − |v(t)|

))) (
C3 =

C1

2 · C2
2

)
≥ |κ(t)|

(
1 + C3 · |κrob|
1 + C3 · |κ(t)|

)
,

where the second inequality is achieved by setting v(t) to equalize both terms in the maximum.

Hence,

|κrob| − |κ(t+1)| ≤ |κrob| − |κ
(t)|

1 + C3 · |κ(t)|

≤ |κrob| − |κ
(t)|

1 + C3 · |κ(1)|
since |κ(t+1)| ≥ |κ(t)|.

The formula in the theorem statement follows easily.
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4 Combination Portfolios under the Mean-Variance Utility.

This common utility function linearly combines the mean portfolio return and its variance:

Uw(w) = E[wTr]− γ · V ar(wTr), (7)

where the parameter γ > 0 represents the risk-reward tradeoff.

Let x be defined as in Section 3, and let Ux(x) refer to the expected utility of the portfolio w

constructed from x.

Theorem 1.

Ux(m+ α · ẑ) =

(
zTχ

mTχ

)[
1 +

α3

n
·
(
‖m‖2‖z‖2 − s2

)
(mTχ)2 (zTχ)

]

− γ

(mTχ)2
·

[
‖χ‖2 +

α2

n

[
(p− 1) +

(
‖m‖2‖z‖2 − s2

)
·
(
3α2 + ‖χ‖2

)
(mTχ)2

]]
+ o

(
1

n

)
,

where χ = m+ α · z.

Under the conditions of Theorem 3, this simplifies to

Ux(m+ α · ẑ) ≈ zTχ

mTχ
− γ ·

‖χ‖2 + α2 · pn
(mTχ)2

.

The optimum is attained at

α?MV =


‖m‖2

2γ
(
1+ p

n
·
(

‖m‖2
‖m‖2‖z‖2−s2

))
−s
, if γ

(
1 + p

n ·
(

‖m‖2
‖m‖2‖z‖2−s2

))
≥ s

2

∞, otherwise

This behaves quite differently from the α? for the maximum-Sharpe portfolios (Eq. 11). The

maximum-Sharpe α? grows linearly with n. However, for the expected utility in Eq. 7, there is a

threshold behavior. When γ ≥ s/2, α?MV converges to ‖m‖2/(2γ − s) from below as n increases.

When γ < s/2, α?MV increases as n increases towards a threshold value, and jumps to ∞ above

14



this threshold. This threshold is given by

nthresh =
2γp

(s− 2γ)‖z‖2(1− θ2)
,

where θ = s/(‖m‖‖z‖).

This can be intuitively explained by viewing Eq. 7 as the Lagrangian of the “mean-variance”

optimization problem:

maximize E[wTr] subject to V ar(wTr) ≤ ρ,wT1 = 1.

Larger values of γ correspond to tighter constraints on the variance (i.e., smaller ρ), and reduces the

achievable mean return. Thus, for a large enough γ, the optimal αopt converges to a constant with

growing n. However, if γ is too small, the variance constraint is not active and the mean portfolio

continuously grows with α?MV as long as the expected return of each asset can be estimated relatively

accurately (i.e., large enough n). For small n, uncertainty about the expected asset returns limits

the achievable return of the overall portfolio.
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