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Abstract— Effective use of support vector machines (SVMs)
in classification necessitates the appropriate choice of a kernel.
Designing problem specific kernels involves the definition of a
similarity measure, with the condition that kernels are positive
semi-definite (PSD). An alternative approach which places no
such restrictions on the similarity measure is to construct a set
of inputs and let each example be represented by its similarity
to all the examples in this set and then apply a conventional
SVM to this transformed data. Dynamic time warping (DTW) is
a well established distance measure for time series but has been
of limited use in SVMs since it is not obvious how it can be used
to derive a PSD kernel. The feasibility of the similarity based
approach for DTW is investigated by applying the method to
a large set of time-series classification problems.

I. INTRODUCTION

THE support vector machine (SVM) has over the last
decade become a popular approach to pattern classifi-

cation since it can deliver state-of-the-art performance on a
wide variety of real-world classification problems [1].

The kernel function is at heart of SVMs. This function is
essentially a similarity measure between the objects under
consideration. Kernels can be defined for general data types
such as trees, strings and text, i.e. they are not limited to
traditional vectorial data.

In the standard setting, the kernel is required to be symmet-
ric and positive semi-definite (PSD). The latter requirement
is rather strict, since many commonly used similarity and
distance measures do not (easily) lead to PSD kernels.
Construction of PSD kernels for a specific problem is un-
fortunately non-trivial.

A systematic way of including general similarity mea-
sures in SVMs is highly desirable since a wealth of such
(dis)similarity measures already exists for a wide variety of
objects.

For general (dis)similarity measures k-nearest neighbor (k-
NN) algorithms are a natural choice. A specific example is
1-NN with dynamic time warping distance which has been
found to work very well on many time series classification
problems [2]. In general, k−NN classifiers work reasonably
well but are known to be sensitive to noise in the training
data such as irrelevant inputs and outliers. Since SVMs
often outperform k−NNs on practical classification problems
where a natural choice of PSD kernels exists (see [3] for an
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informative discussion on the subject) it is of considerable
interest to extend the set of available kernels.

Several ad-hoc strategies have been proposed for including
non-PSD ”kernels” in SVMs. The simplest strategy is to
simply ignore the fact that the kernel is non-PSD and see
how it performs. In this case the existence of a Reproducing
Kernel Hilbert Space is not guaranteed [4] and it is no longer
clear what it is that is being optimized. Furthermore, the
resulting optimization problem may no longer be convex,
making it difficult to solve. Another strategy is to apply
regularization to the kernel matrix, i.e. transform it in some
way to make it PSD. This strategy is not very satisfying since
it can lead to kernel matrices with large diagonal entries,
resulting in overfitting [5]. In addition, it is not clear how to
treat test examples which are not available at training time.

A simple strategy which can be applied to general pairwise
similarity measures was proposed in [6]. It involves the
construction of a set of inputs such that each example is
represented with its similarity to all the examples in this
set. An SVM is then applied to the transformed data in the
usual way using this set as a training set. As a consequence,
sparsity of the solution may be lost. Subsequent classification
may thus become expensive since most of the training
examples end up as support vectors. Some possibilities in
retaining sparsity are described in the discussion section. The
loss of sparsity is offset by the larger selection of available
proximity measures.

Support vector machines trained on pairwise similarities
have been employed with quite some success in computa-
tional biology (c.f. [7]) but the strategy appears not to be in
widespread use in the time series community. The aim of
this paper is to investigate the effectiveness of this strategy
for time series classification when the pairwise similarities
are based on the dynamic time warping distance.

The paper is organized as follows. In the next section
the construction of the similarity based inputs is described
in more detail and a connection made with the so-called
arbitrary-kernel SVM. Section III details the dynamic time
warping distance. Numerical experiments are presented in
section IV and section V concludes the paper.

II. SUPPORT VECTOR MACHINES

First, a brief word about the notation employed in the
paper. Matrices are represented as bold upper case characters
(A), column vectors as bold lower case (x), unless explicitly
transposed (xT ). A vector of zeros and ones are denoted by
0 and 1 respectively.



Let S = {(x1, y1), . . . , (xm, ym)} ⊆ X × Y denote a set
with m labelled examples, where xi ∈ X and yi ∈ Y . The
input domain X is not restricted to be a subset of R

n, but
can be any set, e.g. set of strings or graphs. In the following
it is assumed that Y = {−1, 1} unless otherwise noted. Let
Y denote a m × m diagonal matrix with Yii = yi.

A kernel is a function K : X × X �→ R which for
all m ∈ N and all x1, . . . ,xm gives rise to a symmetric
positive semi-definite matrix K with Kij = κ(xi,xj). The
kernel implicitly defines a mapping from input space to
feature space, x �→ φ(x). Two common kernel functions
are the linear kernel κ(x, z) = xT z and the Gaussian kernel
κ(x, z) = exp(−γ||x−z||2) where γ > 0 is a user-specified
shape parameter.

The 1-norm soft margin support vector machine is ob-
tained by solving the following convex quadratic optimiza-
tion problem [4]

minα
1
2αT YKYα − αT1

s.t. αT Y1 = 0
0 ≤ α ≤ C1

(1)

where C is a parameter which controls the trade off between
maximizing the margin and allowing for incorrectly classified
training examples and α ∈ R

m are Lagrange multipliers. The
decision rule is given by

f(x) = sgn

(
m∑

i=1

yiαiκ(x,xi) + b

)
(2)

The threshold b is

b = yj −
m∑

i=1

yiαiκ(xi,xj) (3)

for any j with αj > 0 but is usually computed by averaging
over all such j. The computation of the kernel function can be
quite expensive, e.g. for the DTW distance described below
the cost is quadratic in the length of the time series. From (2)
it is obvious that sparsity of the solution is desirable since
kernel evaluations corresponding to training examples with
αj = 0 can be omitted.

A. Kernels from pairwise data

Following [6], it is assumed that instead of a proper
kernel function, all that is available is a proximity function
P : X×X �→ R. No restrictions are placed on the function P ,
not symmetry nor even continuity. Define the data dependent
mapping Φm by

Φm : x �→ (P (x,x1), P (x,x2), . . . , P (x,xm))T (4)

where xi, i = 1, . . . , m are the examples in S and
represent each training example xi by x̃i = Φm(xi) i.e.
an m−dimensional vector containing proximities to all the
examples in S. Let P denote the m×m matrix with entries
P (xi,xj), i, j = 1, . . . , m. Using the linear kernel on
this data representation, the resulting kernel matrix becomes
K = PPT . In this case the decision rule (2) simplifies to

f(x) = sgn
(
αTYPΦm(x) + b

)
(5)

All elements of Φm(x) must be computed when classifying
a point x. The above SVM formulation will be referred to
as the pairwise proximity function SVM (ppfSVM) in the
following. Note that in this case the problem (1) is equivalent
to the dual problem

minw,ξ,b C1T ξ + 1
2w

T w
s.t. Y(Pw + b1) + ξ ≥ 1

ξ ≥ 0,
(6)

where w = PTYα and ξ ∈ R
m are slack variables.

Computationally, it is however usually more efficient to solve
(1). Also note that the distance between two points φ(x) and
φ(z) in feature space can be computed as

d2(φ(x), φ(z)) = ||φ(x) − φ(z)||2
= κ(x,x) + κ(z, z) − 2κ(x, z) (7)

and can in turn be compared with the original (DTW)
distance.

Remark The ppfSVM is related to the so-called arbitrary-
kernel SVM, a special case of the generalized support vector
machines introduced in [8]. Following [8] let k(A,B) with
A ∈ R

m×n and B ∈ R
n×� denote a function that maps

R
m×n × R

n×� into R
m×�. In particular, k(xT , z) is a real

number, and if X is an m × d matrix such that the i-th
row contains the d-dimensional training example x i then
k(xT ,XT ) is an m element row vector where element i is
the function value between x and element i in the training
set. k(X,XT ) is thus an m × m matrix corresponding to
the training set. The name arbitrary-kernel stems from the
fact that no restrictions such as positive semi-definiteness,
differentiability or continuity are put on the function k.

The training data is used to find a nonlinear separating
surface of the form k(xT ,XT )Yu = γ which discriminates
between the two classes -1 and 1. The decision rule is
therefore

h(x) = sgn
(
k(xT ,XT )Yu − γ

)
(8)

The parameters u ∈ R
m and γ ∈ R are found by solving

the following convex quadratic program ([8], a special case
of eq. (8.6))

minu,ξ,γ C1T ξ + 1
2u

T u
s.t. Y(k(X,XT )Yu − γ1) + ξ ≥ 1

ξ ≥ 0,
(9)

with u ∈ R
m, γ ∈ R and slack variables ξ ∈ R

m.
Identifying k(x, z) with p(x, z), k(x,XT ) with ΦT

m(x),
k(X,XT ) with P, u with Yw and γ with −b this problem
is seen to be identical with (6).

III. DYNAMIC TIME WARPING

Let p = (p1, p2, . . . , pN ) and q = (q1, q2, . . . , qN )
denote two time series of length N . One of the simplest
distance measures for time series is the Euclidian distance,
dE(p,q) = ||p−q||2. The use of Euclidian distance for time
series is problematic since it is sensitive to offset, amplitude



scaling, noise, phase shifts and temporal distortion. The first
two concerns can be mitigated by normalization of individual
time series but the other problems still remain.

Dynamic time warping (DTW) allows local contraction
and expansion of the time axis, alleviating the alignment
problem inherent with Euclidian distance. In the past, DTW
was widely used in speech recognition and more recently
in various time series data mining applications. It is a
reasonable choice if prior knowledge about the data at hand
is limited.

The first step in computing the DTW distance between
time series p and q, is to construct a N ×N distance matrix
D containing pairwise distances between the samples where
Dij = (pi − qj)2 is commonly used, i, j = 1, . . . , N . The
objective is to find a path through the matrix so that the
cumulative distance between p and q is minimized. This
so-called warping path is constrained in order to make the
optimization problem manageable and the resulting solution
sensible. The warping path must start at (1, 1) and end at
(N, N), it should be continuous and movement backwards
in time is prohibited. The amount of warping is sometimes
further restricted by a warping window such as the Sakoe-
Chiba band [9]. No warping window is used in the following.
Let Wij denote the DTW distance between subsequences
p1, . . . , pi and q1, . . . , qj . The DTW distance is obtained by
solving the following recurrence relation

Wij = Dij + min (Wi−1,j , Wi−1,j−1, Wi,j−1)

with dDTW (p,q) = WNN .
Several attempts have been made to derive kernels based

on the dynamic time warping distance. In [10] the Gaussian
dynamic time warping (GDTW) kernel is defined as

kGDTW (x, z) = exp
(− γdDTW (x, z)

)
.

A SVM with GDTW applied to a handwriting recognition
task achieved superior recognition rates compared to a con-
ventional hidden Markov model (HMM) based method. The
authors point out that the kernel is not positive definite but
offer some theoretical and empirical explanations to why it
sometimes works well in practice.

In [11] the pairwise distances in the DTW algorithm are
replaced with pairwise similarities and a dynamic program-
ming algorithm used to find a path through the similarity
matrix which makes the accumulated similarity as large
as possible. The method is applied to a speaker-dependent
speech recognition problem and is found to have comparable
recognition performance to HMMs.

A different approach is taken in [12]. The authors consider
the similarity score spanned by all possible series alignments,
instead of a single highest score. The authors provide a proof
that their kernel is positive definite and point out that the
kernel in [11] is not PSD. Although the kernel in [12] is
PSD, the resulting kernel matrix has very large entries on
the diagonal (compared to the off-diagonal entries) and the
resulting classifier may have poor generalization properties
[5]. The remedy employed in [12] is to use the logarithm of

the kernel values instead. Since this may result in a matrix
that is no longer positive definite, the training matrix is
regularized by subtracting the smallest eigenvalue from the
diagonal while the test-train matrix is left unchanged.

Arguably, the simplest way to define a ”kernel” based on
dDTW is

kNDTW (x, z) = −dDTW (x, z)

which will be referred to as the negated dynamic time
warping (NDTW) kernel in the following, and can be shown
to be indefinite via a simple example. The other kernel
considered here is the Gaussian DTW kernel from [10].
When reference is made to GDTW and NDTW as ”kernels”
below, they are understood to be possibly non-PSD.

IV. EXPERIMENTS

All experiments were carried out in Matlab using the
LIBSVM package [13].

A. Gaussian kernel

The first task was to investigate the loss of accuracy caused
by the pairwise proximity formulation when the proximity
function P happens to be a positive semi-definite kernel,
namely P (x, z) = κ(x, z) = exp(−γ||x− z||2). In this case
it is possible to compare the performance with a conventional
SVM. A subset of the USPS dataset [14] containing digits 2
and 7 was used in the experiment. The training set had 1376
elements and the test set 345 elements.

Since SVMs are sensitive to the choice of parameters (C
and γ in this case), model selection was performed for both
methods. Five fold stratified cross-validation on the training
set was used to search for the parameter values. The search
was carried out for γ ∈ {2−15, 2−13, . . . , 21, 23} and C ∈
{2−5, 2−3, . . . , 213, 215}. After training a classifier using the
”optimal” (C, γ) pair, its performance was evaluated on the
test set.

Once the kernel matrices had been formed, the training
and testing of the ppfSVM was slightly slower than for the
conventional SVM (approx 13%.)

The standard SVM made 4 errors on the test set and the
number of support vectors was 71. The ppfSVM made 5
errors indicating that loss in accuracy is acceptable. The
number of support vectors was 41.

B. DTW distance

The UCR time series benchmark [15] was used to compare
the performance of ppfSVM with SVM using the (indefinite)
dynamic time warping kernels described above. The bench-
mark represents a wide variety of practical classification
problems, including biomedical data, electromagnetic mea-
surements of lightning activity, movement tracking in video
surveillance and so on. The length of the time series varies
from 60 to 637 so that computation of DTW is easily feasible.
Each of the 20 data sets comes with a predefined training/test
set partition. A description of the datasets is given in table
I. The 50words dataset is omitted since it is not compatible
with the one-against-one strategy for multi-class problems.
For state of the art performance on this benchmark see [16].



Dataset nc m mte N
SynthControl 6 300 300 60
Gun Point 2 50 150 150
CBF 3 30 900 128
Face(all) 14 560 1690 131
OSULeaf 6 200 242 427
SwedishLeaf 15 500 625 128
Trace 4 100 100 275
TwoPatterns 4 1000 4000 128
Wafer 2 1000 6174 152
Face(four) 4 24 88 350
Lightning2 2 60 61 637
Lightning7 7 70 73 319
ECG200 2 100 100 96
Adiac 37 390 391 176
Yoga 2 300 3000 426
Fish 7 175 175 463
Beef 5 30 30 470
Coffee 2 28 28 286
OliveOil 4 30 30 570

TABLE I

STATISTICS FOR THE UCR TIME SERIES DATA SETS. NUMBER OF

CLASSES (nc), SIZE OF TRAINING SET (m), SIZE OF TEST SET (mte)

AND LENGTH OF TIME SERIES (N ).

Model selection is done by performing five fold stratified
cross-validation on the training set, searching over the same
range of parameter values as before (for NDTW the value
of γ does not matter.) After training a classifier using the
best parameter values, its performance was evaluated on the
independent test set. The results of SVM and ppfSVM on
the UCR benchmark are given in table II. A nearest neighbor
classifier with the DTW distance is included as a baseline.
The classifiers were ranked on each dataset according to their
performance and the ranks averaged over all datasets (lower
rank indicates better performance.)

The performance of the nearest neighbor classifier and
ppfSVM/NDTW is practically identical (judged by the rank
averages), with the ppfSVM/GDTW trailing slightly behind.
The nonparametric Bonferroni-Dunn test [17] was used to
compare the nearest neighbor classifier with the others. At
significance level α = 0.05, the critical value of the test is
1.28. Only SVM/NDTW performs significantly worse than
NN but SVM/GDTW is just below significant difference.

The ppfSVM classifier does not appear to break down
on any of the data sets, except on Lightning2, but this is
probably an artifact of the small test set. In contrast, plugging
the two kernels directly in a SVM results in occasional
breakdowns. For NDTW this is most evident with the Gun-
Point, OSULeaf, SwedishLeaf, ECG200, Adiac and Yoga
datasets. The SVM with GDTW suffers on SwedishLeaf and
Adiac. The last two problems are difficult since they have a
large number of classes compared to the number of training
examples.

The inferior performance of SVM with NDTW and
GDTW does not come as a surprise since the kernel matrix
was almost always indefinite. Further investigations reveal
that regularization of indefinite kernel matrices, where the
smallest eigenvalue is subtracted from the diagonal, does not

help. The resulting classifiers actually had considerably lower
overall accuracy than their non-regularized counterparts.

By smoothing out large distances, the GDTW kernel
reduces the contribution of distant training examples on the
decision boundary. This should increase robustness towards
outliers compared to NDTW. Since ppfSVM/GDTW per-
forms slightly worse than ppfSVM/NDTW it may suggest
that outliers are not a problem. Another explanation is that
the model selection may be failing to some extent, i.e. the
amount of training data does not justify the tuning of two
parameters with cross-validation. This is supported by the
observation that optimizing the number of neighbors in a
k-nearest neighbor classifier (via cross-validation) lead to
a significantly higher error rate than for a simple nearest
neighbor classifier (k fixed as 1.)

A further complication arises in the case of the SVMs.
In some cases the number of available training examples
for a single class is so small that the binary classification
problems arising in the one-against-one procedure are heavily
unbalanced, reducing accuracy of the final classifier.

Dataset NN ppfSVM ppfSVM SVM SVM
DTW NDTW GDTW NDTW GDTW

SynthControl 0.67 1.33 1.33 1.33 2.33
Gun Point 9.33 4.67 14.00 46.00 12.67
CBF 0.33 0.33 0.11 1.00 4.56
Face(all) 19.23 23.73 22.60 17.04 26.57
OSULeaf 40.91 40.50 35.54 70.66 40.08
SwedishLeaf 20.80 14.72 15.52 36.32 38.24
Trace 0.00 0.00 0.00 0.00 0.00
TwoPatterns 0.00 0.00 0.08 0.67 0.00
Wafer 2.01 1.05 1.52 18.12 3.39
Face(four) 17.05 14.77 11.36 10.23 11.36
Lightning2 13.11 32.79 31.15 49.18 11.48
Lightning7 27.40 30.14 31.51 21.92 30.14
ECG200 23.00 16.00 22.00 44.00 17.00
Adiac 39.64 32.48 34.27 51.15 56.01
Yoga 16.37 22.67 17.67 53.43 21.87
Fish 16.57 18.86 24.00 24.00 29.71
Beef 50.00 56.67 53.33 63.33 60.00
Coffee 17.86 10.71 17.86 50.00 17.86
OliveOil 13.33 16.67 26.67 13.33 26.67
Average rank 2.42 2.47 2.82 3.74 3.55

TABLE II

TEST ERROR (%) FOR THE UCR TIME SERIES DATA SETS.

Intuitively, if distances in feature space have little or
no correlation with the original DTW distances, building a
classifier on the approach described in this paper is not a
promising task. In [18] the properties of various strategies for
embedding DTW distances in feature space are investigated.
The classification accuracy is conjectured to depend on the
ability of the embedding method to maintain small distances
while putting smaller weight on long distances. Figure 1
compares the original distances with distances in feature
space based on equation (7). From this figure it appears that
the relationship between classifier accuracy and distance is
quite complex. Moreover, it turns out that the results are quite
sensitive towards the choice of parameters, C and γ.
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Fig. 1. Distances in feature space versus original DTW distances for the
OSULeaf (top), Fish (middle) and ECG200 (bottom) data sets.

V. DISCUSSION

The experiments with the UCR time series benchmark
suggest that ppfSVM is competitive to the nearest neighbor
classifier with dynamic time warping. A conventional SVM
with the Gaussian DTW kernel performs significantly worse
which illustrates that potential pitfalls of using indefinite
kernels. The price to be paid is lack of sparsity in the decision
rule with respect to kernel evaluations. The sparsity issue is
addressed in [19] where a related method is given which
enforces sparsity by modifying the optimization criteria and
solving a linear programming problem. Another possibility
would be to utilize the reduced support vector machine from
[20].

The performance on the USPS data with a positive-definite
kernel indicates that the ppfSVM does not suffer large loss
in accuracy compared to a conventional SVM.

Directions of future work include experimenting with dif-
ferent embedding strategies such as [18] to improve accuracy.
The unconstrained DTW algorithm is quadratic in the length
of the time series. Coarse-graining or downsampling can be
applied to long time series to make the DTW compations
feasible. An alternative approach would be to construct a
similarity measure based on lower bounds on the DTW
distance such as [21] which can be computed in linear time.
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[17] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” JMLR, vol. 7, pp. 1–30, 2006.

[18] A. Hayashi, Y. Mizuhara, and N. Suematsu, “Embedding time series
data for classification,” in Machine Learning and Data Mining in
Pattern Recognition, 2005, pp. 356–365.

[19] T. Graepel, R. Herbrich, B. Schölkopf, A. Smola, P. Bartlett, K.-
R. Müller, K. Obermayer, and R. Williamson, “Classification on
proximity data with LP-machines,” in Ninth International Conference
on Artificial Neural Networks. London: IEE, 1999, pp. 304–309.

[20] Y.-J. Lee and O. Mangasarian, “RSVM: Reduced support vector
machines,” in Proceedings of the SIAM International Conference on
Data Mining. Philadelphia: SIAM, 2001.

[21] E. Keogh and C. A. Ratanamahatana, “Exact indexing of dynamic
time warping,” Knowledge and Information Systems, vol. 7, no. 3, pp.
358–386, 2005.


