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Introduction

• Side-channel analysis exploits physical leakage of the
cryptographic device

• It has two main components, leakage modeling and
distinguisher

• More research efforts have been focused on distinguisher

• Leakage is mainly modeled with Hamming weight, Hamming
distance, bitwise, etc
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Side-Channel Analysis

• Side-channel analysis can be mainly classified into profiling
and non-profiling based attacks

• In non-profiling attacks, the attacker tries to exploit statistical
dependency (i.e., Correlation Power Analysis, Mutual
Information Analysis)

• In profiling attacks, the attacker’s goal is to characterize the
device (i.e., Template Attacks, Stochastic Approach)
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Background

• The side-channel leakage can be mainly decomposed into the
deterministic part and the randomized part

• Given the plaintext (x) and the key (k), the leakage for
intermediate value IVx,k = f(x, k) is given by:

Tx,k = L(f(x, k)) + ε,

• L is the leakage function that maps the intermediate value to
its side-channel leakage Tx,k and ε is the (assumed) mean free
Gaussian noise (ε ∼ N(0, σ2))
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Profiling Based Attacks

• These attacks are considered as the strongest attacks

• However, this is based on the assumption that the profile is
built correctly

• It could be either by classification (i.e., TA) or by regression
(i.e., SA)
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Classical Profiling Attack

• Template Attacks (TA)
• A template is constructed for each intermediate value
• The template consists of the pair (µ,Σ)

• Stochastic Approach (SA)
• The deterministic part of the leakage is determined using linear

regression based on the subspace representation of the
intermediate value

• Different subspace are for example: F2 which uses HW or HD,
F9 which is bitwise representation, and F256 which is similar to
generic template model

• Only one noise covariance matrix is used
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Machine Learning in Side-Channel Analysis

• Machine learning has been adopted for profiling attacks

• It is used mainly for a leakage characterization or a
distinguisher

• Previous works have shown some promising results

• Commonly used learning algorithms include Support Vector
Machine (SVM) and Random Forest (RF)
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Support Vector Machine

• SVM have been compared with TA under different attack
scenarios

• It is shown to be more robust against noise and requires less
attack traces

• It is used for classification, based on separating hyperplane

• It uses soft margin to deal with non-separable data and kernel
trick to deal with non-linearity issue
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Support Vector Machine

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

(a) SVM on original data (b) Mapping to higher dimension

Figure : How SVM performs linear classification on non-linear data, by
mapping it to higher dimension space.
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Support Vector Machine

• φ(t): transformation into higher dimension, might be
impractical

• Primal form

arg min
w,b,ξ

1

2
‖w‖2 + C

N∑
i=1

ξi ,s.t: ci(〈w,φ(ti)〉+ b) ≥ 1− ξi

• K(ti, tj) = 〈φ(ti), φ(tj)〉, can be expressed as

Kernel name Kernel function

Linear K(ti, tj) = ti
T tj

Radial basis function K(ti, tj) = exp(γ‖ti − tj‖2)
Polynomial K(ti, tj) = (ti · tj)d

• Dual form

arg max
αi≥0

∑
i

αi −
1

2

∑
j,k

αjαkcjckK(tj, tk),

s.t: αi ≤ C,
∑
i

αici = 0
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Support Vector Regression

• The concept is based on support vectors like in SVM, but uses
them for soft margins in the regression process instead of
classification

• Additional parameter, ε, is required, to compute the loss
function
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Support Vector Regression

The problem in SVR is to determine L̄(~a) = 〈~w, φ(~a)〉+ b, where
|L̄(~a)− t| ≤ ε, which could be formulated as:

arg min
w,b

1

2
‖~w‖2 + C

N∑
i=1

(ξi + ξ∗i )

subject to:
ti − 〈~w, φ(~ai)〉 − b ≤ ε+ ξi

〈~w, φ(~ai)〉+ b− ti ≥ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0
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Support Vector Regression
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Figure : SVR on non-linear data, the dash line indicates the ε tube
(L̄± ε)
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Support Vector Regression

• The method is done in similar manner like SA

• Replace the linear regression with SVR during the model
building process to describe the deterministic part of the
leakage

• To deal with parameter tuning, the heuristic method from
Cherassky and Ma1 is used

1
V. Cherkassky and Y. Ma. Practical selection of SVM parameters and noise estimation for SVM

regression. Neural Networks, 17(1):113-126, 2004
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Experiments

• The experiment was done on forward AES implementation
running on a standard 8-Bit µC implementation

• Exploit the power side-channel leakage from the first round
Sbox output

• This is the most common target for SCA, due to its non-linear
property.

• Guessing entropy is used as comparison metric
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Evaluating the Quality of Leakage Modeling Using
CPA

• To compare the quality of the model, Correlation Power
Analysis (CPA) is used

• A set of 50000 traces from AES implementation are used

• The traces are used to estimate model using SA with F9

(basic), denoted SA9 as well as F256 (maximum), denoted
SA256, compared with SVR
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Evaluating the Quality of Leakage Modeling Using
CPA
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Figure : CPA of different leakage model
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Evaluation of Attack on Noisy Traces

• The noise was simulated by adding white Gaussian noise to
the captured power traces

• Using 50K power traces, additional sets with an artificial noise
margins generated with standard deviation σ of the µC power
traces: 2.5 σ (SNR 30 dB) and 8 σ (SNR 20 dB)

• Fix training set 40K and the remaining 10K was used for the
evaluation of the attack
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Evaluation of Attack on Noisy Traces
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Figure : Guessing entropy for different noise level
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Evaluation of Attack on Different Subspaces

• Investigate inter-bit dependent leakage

• The experiment for SA is done using different subspaces (SAi
uses Fi subspace)

• For SVR, only 8-bit dimensional model is used

• The experiments are done using original traces and simulated
traces
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Evaluation of Attack on Different Subspaces
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Figure : Comparison of different subspaces
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Evaluation of Attack on Different Subspaces
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Figure : Guessing entropy on simulated data
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Discussion

• The kernel trick of SVR can be used to generalize the leakage
model

• When the noise level is low, SVR could perform better than
SA with lower subspace, and approach the performance of
SA256

• When moderate level of noise is present, the performance of
SVR based profiling attacks is comparable with SA

• However, there could be a possibility of overfitting when the
noise level is high
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Conclusion

• We applied new machine learning based method for profiling
based attacks

• The proposed method can construct good leakage model

• In the future, we will investigate the effectiveness on different
platforms
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Thank you!
Any questions?
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