
Supporting Governance and Security
in Enterprise IT through Templating

and Infrastructure-as-Code

Christian Frank (#473088)

June 7, 2020

Wirtschaftsinformatik: IT-Management
Dipl. Ing. (FH) Jan Quatram M.A.

FOM - Hochschule für Oekonomie & Management
SS 2020

In this paper, we’ll first have a look at Infrastructure-as-Code frameworks.
After introducing the most popular tool, Terraform, we’ll look at challenges
for Enterprises to manage security for container environments. For a possible
solution, we’ll look at combining Terraform with Cluster Templates provided
in Rancher (Rancher Labs) and the integration with CIS benchmarks.

This work is licensed under the Creative Commons Attribution 4.0 International License.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or
send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

II

Contents

List of Figures III

List of Examples IV

List of Abbreviations V

1 Introduction into Governance and Security 5
1.1 Pronouns . 5
1.2 Governance vs. Compliance . 5
1.3 Security . 5

2 The need for Governance and Security in container run-time environ-
ments 7
2.1 Container Run-Time Environments . 7
2.2 Kubernetes Architecture . 7
2.3 Kubernetes Security . 8
2.4 Rancher Overview . 9
2.5 Rancher Architecture . 9

3 Infrastructure as Code 11
3.1 Terraform . 11
3.2 Templates . 11
3.3 Kubernetes Cluster Creation . 12

3.3.1 Managed Kubernetes . 12
3.3.2 Rancher Node-Driver . 12
3.3.3 Custom Nodes . 12
3.3.4 Import . 13

3.4 Rancher Provider . 13
3.5 Cloud Credentials . 14
3.6 Node Templates . 15
3.7 Cluster Templates . 16
3.8 Kubernetes Cluster . 18

4 CIS Scans 21
4.1 CIS Benchmarks for Kubernetes . 21
4.2 CIS Scan GUI . 21
4.3 Hardened CIS Scan . 22
4.4 Kubernetes Security Policies . 23
4.5 Remediation . 23

5 Summary and recommendations 25

References 26

III

List of Figures

1 Rancher Overview . 9
2 Rancher API Key . 13
3 Cloud Credentials . 15
4 Node Template . 16
5 Cluster Template . 18
6 Cluster Creation . 19
7 Rancher Dashboard . 20
8 CIS Scan GUI . 22
9 Hardened CIS Scan . 22
10 Rancher PSP Support . 24

IV

List of Examples
1 Rancher Provider . 13
2 Cloud Credentials . 14
3 Node Template . 15
4 Cluster Template . 16
5 Kubernetes Cluster . 18
6 Node Pool . 19
7 Cluster Template with PSP . 23

V

List of Abbreviations

ARM Azure Resource Manager

AWS Amazon Web Services

CI/CD Continuous Integration / Continuous Deployment

CIS Center for Internet Security

CLI Command-Line Interface

CNCF Cloud Native Computing Foundation

GPU Graphics Processing Unit

GRC Governance, risk and compliance

GUI Graphical User Interface

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IEC International Electrotechnical Commission

ISO International Organization for Standardization

IT Information Technology

K3s Kubernetes on the edge

K8s Kubernetes

NIST National Institute of Standards and Technology

OS Operating System

PaaS Platform as a Service

PSP Pod Security Policy

RBAC Role-Based Access Control

REST Representational State Transfer

RKE Rancher Kubernetes Engine

SaaS Software as a Service

VI

SOX Sarbanes–Oxley Act

YAML YAML Ain’t Markup Language

5

1 Introduction into Governance and Security

1.1 Pronouns

As we move towards a more gender-fluid society, it’s time to rethink the usage of gendered

pronouns in scientific texts. Two well-known professors from UCLA, Abigail C. Saguy,

and Juliet A. Williams argue that it makes a lot of sense to use singular they/them

instead: ”The universal singular they is inclusive of people who identify as male, female

or nonbinary.”1 Throughout this text, I’ll attempt to follow that suggestion and invite my

readers to do the same for their papers, and support gender inclusivity through gender-

neutral language. A strong focus on diversity and inclusion will significantly benefit your

IT organization and help you find and retain talent. Thank you!

1.2 Governance vs. Compliance

In Enterprise IT, it is quite common to use the terms governance and compliance inter-

changeably. In general, we use the term governance to refer to the process of defining

and adhering to a set of operational standards for the overall IT organization. If we look

at the formal definition of IT governance in ISO/IEC 38500:2015, though, IT governance

is much more focused on the business aspect of running IT. As defined by ISO/IEC, IT

governance will have a heavy emphasis on budgetary control, financial performance, and

investments. Adherence to standards, such as the Sarbanes–Oxley Act, is more seen as

part of compliance than of governance.

However, governance and compliance are part of the overall governance, risk, and com-

pliance (GRC) practice in an IT organization and have to go hand in hand. Governance

will include compliance, and compliance needs governance (oversight).

Throughout the remainder of the document, I will use the term governance to refer to

all three aspects, governance, risk, and compliance.

1.3 Security

In the last decade, IT operations have seen their primary focus shift from an on-premise,

dedicated environment to a shared, on-demand infrastructure, to cloud computing, pro-

vided by public cloud providers.

The National Institute of Standards and Technology (NIST) defines cloud computing as

”a model for enabling ubiquitous, convenient, on-demand network access to a shared

1Saguy, A. (2020): Why We Should All Use They/Them Pronouns. [12]

6

pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management

effort or service provider interaction.”2

In the public cloud space, three major players have emerged: Amazon Web Services,

Microsoft Azure, and Google Cloud. A big contender is Alibaba Cloud who, like Huawei,

struggle with limited acceptance because of their (perceived) relationship to the Chinese

government.

In the early days of cloud computing, virtualization played a key role and drove adoption;

a couple of years ago, the technology focus shifted away from virtualization towards con-

tainerization and the Kubernetes orchestration framework. All major Hyperscalers now

have container run-time offerings, managed and non-managed, based on Kubernetes.

Google has a clear advantage since they are the original creators of Kubernetes - Ku-

bernetes is a spin-off of an internal orchestration tool, Borg, that Google uses to run

google.com.

Container run-time environments have important security aspects, as outlined by NIST

in their container security guide.3

For this document, we’ll concentrate on the aspects of security and governance (regu-

latory compliance) in container run-time environments, focusing on Kubernetes as it is

the dominant choice at the time of writing.

Furthermore, we’ll concentrate on the run-time layer itself and not cover hardening

aspects of the underlying computing infrastructure. Not that this is not an important

topic in itself; it would just exceed the scope of this paper.

2Mell, P. (2011): The NIST Definition of Cloud Computing. [5]
3See Souppaya, M. (2017): Application Container Security Guide. [14]

7

2 The need for Governance and Security in container

run-time environments

2.1 Container Run-Time Environments

Let’s start with the basics. In most of IT, Kubernetes4 has emerged as the container

run-time environment of choice.

Earlier competitors, such as Docker Swarm or Mesos DC/OS, have all but vanished.

After Mirantis acquired Swarm from Docker last year, they announced a two-year end-

of-life timeline for support, but they have since announced that they might extend this

and possibly invest in new features.

The original platforms that spawned cloud-native computing and application design and

gave us the concept of micro-services, Heroku and Cloud Foundry, have also slightly gone

out of favor, or, in the case of Cloud Foundry, moved to a Kubernetes-based run-time.

Salesforce.com acquired Heroku in 2010; an independent foundation, led by VMware,

owns Cloud Foundry with SUSE playing a very active part.

In a previous paper, I have covered Kubernetes in more detail5, in this paper I will only

cover the necessary basics.

2.2 Kubernetes Architecture

A Kubernetes container run-time environment, or cluster, in general, will consist of one

or more logically grouped systems. These systems, most likely virtual machines, will run

a supported container run-time, such as Docker (Microsoft / Ubuntu) or Podman (Red

Hat).

A single Kubernetes cluster has a Control Plane and an Execution Plane. Usually, there

are three nodes in the control plane and one or more nodes in the execution plane. For

the control plane, you should choose an odd number of nodes because the underlying

etcd database is a distributed system and needs to reach quorum on startup. The number

of worker nodes in the execution plane only depends on the needs of your application.

The Kubernetes control plane takes care of orchestrating the application deployments

and maintains their state; on the other hand, the worker nodes execute the actual

application containers as defined and scheduled by the control plane. Worker nodes can

4See The Linux Foundation (2020): Production-Grade Container Orchestration. [17]
5See Frank, C. (2020): Multi-Cluster Management fuer Containerumgebungen .[2]

8

be organized into one or more node pools to separate hardware features or reliability

aspects.

In addition to providing compute nodes, Kubernetes includes overlay networks to allow

communication between the cluster nodes, and ingress controllers for inbound network

access to the running applications. Persistent storage, even though it’s an anathema to

stateless, cloud-native computing, is provided through persistent volumes and storage

classes and linked to the underlying cloud provider.

All administrative access to a given Kubernetes cluster is via the master nodes and its

Kubernetes API endpoint.

2.3 Kubernetes Security

Installing the first Kubernetes cluster is no longer a big task, especially on the three big

public cloud providers, which all offer managed Kubernetes clusters with easy, one-click

installations.

However, designing the platform landscape requires some architectural knowledge and

should be planned well in advance.

One of the crucial components of security when running containers in production, ac-

cording to NIST, is the separation between applications and systems. Put careful con-

sideration during design into the number and type of Kubernetes clusters deployed.6

Kubernetes itself, at the time of writing, does not provide for hard tenancy. Breakouts

and cross-talk remain a possibility. To entirely separate applications on all layers (com-

pute, network, and storage), using multiple clusters is a good option. Many enterprises

might thus end up with more than one Kubernetes cluster, sometimes with many more.

This will, of course, have a significant effect on operations.

With the increase in popularity, Kubernetes also brings other new security challenges

that should be considered when designing the IT environment.7

We’re observing a trend in Enterprise IT to move from traditional perimeter-based net-

work security to more modern zero- or low-trust networks with identity-based security

and temporary infrastructure. Having multiple, short-lived Kubernetes cluster is thus an

entirely likely scenario going forward.

6See Weibel, D. (2020): Architecting Kubernetes clusters. [18]
7See Weizmann, Y. (2020): Threat matrix for Kubernetes. [19]

9

2.4 Rancher Overview

To easily manage a set of Kubernetes clusters, we can turn to Rancher.

What is Rancher? According to the Rancher Labs website, it is ”[...] a complete software

stack for teams adopting containers. It addresses the operational and security challenges

of managing multiple Kubernetes clusters, while providing DevOps teams with integrated

tools for running containerized workloads”8

Rancher provides a management platform to centrally manage multiple Kubernetes clus-

ters in Enterprise IT, all from a choice of two user-friendly GUIs. Rancher also offers

integration tools for application development and robust enterprise-grade features for

security and governance. For operations, Rancher provides integrated solutions for log-

ging, monitoring, and auditing, together with many other features, such as CIS scans or

a built-in service mesh.

The classic Rancher GUI looks like this:

Figure 1: Rancher Overview

2.5 Rancher Architecture

Rancher is, similar to Kubernetes, itself a containerized application and can be installed

from a single image to a single Docker host. Such a single-node installation is ideal

for test-beds or local Rancher installations on a laptop, for example. A single node

installation does not provide any redundancy in case of failure.

For production installations, Rancher can be installed on a separate Kubernetes cluster,

using Kubernetes’ redundancy mechanisms for high-availability and resiliency. It could

either be co-hosted on an existing cluster or better, on a small, separate infrastructure

cluster. Installation on a separate cluster is the recommended choice. It is good prac-

8Rancher Labs (2019): Run Kubernetes Everywhere. [11]

10

tice in IT to keep administrative tools on separate infrastructure from the administered

infrastructure, and thus the installation on a different cluster is the most widespread.

In addition to the GUI, the Rancher server also provides a central Kubernetes API end-

point, which prevents unauthorized access and sits as an intermediary between the users

and the actual Kubernetes clusters.

You can find more details on the Rancher architecture in Rancher’s technical architecture

document.9

The open-source Kubernetes run-time threat detection engine Falco works very well with

Rancher.10

I’ve covered the aspect of cluster and workload segmentation in more detail in my

previous FOM paper on multi-cluster management in Enterprise IT. I’ve also explained

in that paper as to why I view the combination of Kubernetes and Rancher as a very

beneficial one, especially for Enterprise IT.11

9See Rancher Labs (2020): Rancher Technical Architecture. [10]
10See Shankar, P. (2020): Runtime Security in Rancher with Falco. [13]
11See Frank, C. (2020): Multi-Cluster Management fuer Containerumgebungen .[2]

11

3 Infrastructure as Code

3.1 Terraform

All major cloud providers have their infrastructure scripting tools (Azure Resource Man-

ager, AWS Cloud Formation). Still, there’s one declarative tool that’s available for all

infrastructure platforms, on-premise or public: Terraform by HashiCorp.12.

As of Rancher 2.3, released in October 2012, Rancher has a stable Terraform provider.13

You can easily create and decommission Kubernetes clusters from a Terraform plan as

part of a move of Enterprise IT to Infrastructure-as-Code.

With Terraform, creating infrastructure becomes as easy as writing a piece of code.

Terraform integrates nicely with your existing source code revision systems, such as

GitHub or GitLab. It will also ensure that all infrastructure deployments are repeatable

and uniformly executed.

Adding Terraform to the container run-time tool chest of Rancher and Kubernetes is a

major benefit and huge step forward, as it will make the creation of new Kubernetes

clusters so much easier.14

3.2 Templates

Another essential piece for your Kubernetes tool chest is templates. Templates will allow

you to define certain configuration items across the organization, which will help a lot

when dealing with hardening in the next chapter. By using templates and establishing

policies that make their use mandatory, you can enforce settings and hide some details,

such as credentials.

Rancher offers templates on several levels:

• Cloud Credentials

• Node Templates

• Cluster Templates

We’ll look at each of these in more detail below, but let’s first look at the different

possibilities of creating a Kubernetes cluster from within Rancher.

12See HashiCorp (2019): Deliver infrastructure as code with Terraform. [3]
13See Rancher Labs (2019): Introducing the Rancher 2 Terraform Provider. [8]
14See Frank, C. (2020): Deploy Kubernetes Clusters on Microsoft Azure with Rancher. [1]

12

3.3 Kubernetes Cluster Creation

3.3.1 Managed Kubernetes

Overall there are three options to create a Kubernetes cluster with Rancher on any of

the big public cloud providers:

• Managed Kubernetes (GKE, AKS, EKS)

• Rancher node-driver (Azure, AWS)

• Custom nodes (GCP, Azure, AWS)

To create a managed Kubernetes cluster, you’ll have to follow the following steps:

First, within a Terraform plan, define the Rancher provider. Then, in the Rancher cluster

definition, define the GKE, AKS, or EKS options and finally have Terraform create the

cluster. Terraform will be using the platform API for this.

In this setup, the cloud provider will manage the Kubernetes control plane, and Rancher’s

functionality will be a bit more limited than in the next option.

3.3.2 Rancher Node-Driver

If you’re happy to have Rancher manage the control plane and have full control, and are

on either AWS or Azure, consider using the Rancher node-driver. To do this, following

the following steps:

First, within a Terraform plan, define the Rancher provider. Second, in the Rancher

cluster definition, define Azure or AWS cloud provider within the RKE cluster options.

Then, create the appropriate cloud credentials and node templates. Finally, have Ter-

raform create the cluster, using docker-machine.

Using the Rancher node-driver is the most preferred option and the one that we will

follow throughout the document.

3.3.3 Custom Nodes

If you need more fine-grained control over the underlying infrastructure, Rancher also

offers the ability to use custom created nodes for its Kubernetes clusters. For this, you’ll

need to follow these steps:

First, within a Terraform plan, define both the Rancher provider and an infrastructure

provider. Second, in the Rancher cluster definition, define the cloud provider within the

13

RKE cluster options. Then, have Terraform create the cluster nodes with the infrastruc-

ture provider and pass the Rancher registration command to cloud-init

Although this is the most flexible approach, Rancher will lose the ability to scale the

node pools, among other features. It also requires that the Terraform plans have access

to credentials for the infrastructure provider, unlike in the option above, where you could

provide them centrally in Rancher.

3.3.4 Import

A fourth and final option would be to create clusters completely outside of Terraform

and Rancher and manually import them into Rancher later. Importing clusters is an

entirely valid option, but outside of our document’s scope, it would require other forms

of automation.

3.4 Rancher Provider

Let’s start defining our Kubernetes cluster. The first step is to set up the credentials

for Rancher. All API access to Rancher is controlled from the built-in RBAC controller,

and every user can create their own API keys.

Figure 2: Rancher API Key

We’ll then take the defined token and create the Rancher provider in our plan file

provider.tf:

Example 1: Rancher Provider

14

Rancher

provider "rancher2" {

api_url = var.rancher-url

token_key = var.rancher-token

}

The code above is all the end-user credential and provider setup we’ll need to create

a Kubernetes cluster. On terraform init the Rancher provider library will be

downloaded and initialized.

3.5 Cloud Credentials

It is good practice to keep the provider definitions separate from the main plan, so from

here on, all example plan code will go into the main plan file, main.tf. Also, from

here on, the example plan code will be specific to deployment on Microsoft Azure, but

you can easily adapt it for Amazon Web Services.

The first template we want to define is the cloud credentials. Regardless of the cloud

provider, we need to provide some form of access credentials. On Microsoft Azure, this

has to be done in the form of a service principal. These credentials could be created by

the user, or better, be pre-provisioned by the IT organization.

In our Terraform plan, creating the credentials looks like this:

Example 2: Cloud Credentials

Rancher cloud credentials

resource "rancher2_cloud_credential" "credential_az" {

name = "Azure Credentials"

azure_credential_config {

client_id = var.az-client-id

client_secret = var.az-client-secret

subscription_id = var.az-subscription-id

}

}

To create credentials we can also use the Rancher GUI with the same input fields:

15

Figure 3: Cloud Credentials

3.6 Node Templates

As we’ve learned earlier, a Kubernetes cluster consists of one or more node pools, at least

one for the control plane and one or more for the worker nodes. On a small installation,

the control plane and the workers can be in the same node pool.

To create a node pool, we first need to define node templates in our plan:

Example 3: Node Template

Rancher node template

resource "rancher2_node_template" "template_az" {

name = "Azure Node Template"

cloud_credential_id = rancher2_cloud_credential...id

engine_install_url = var.dockerurl

azure_config {

disk_size = var.disksize

image = var.image

location = var.az-region

managed_disks = true

open_port = var.az-portlist

resource_group = var.az-resource-group

storage_type = var.az-storage-type

size = var.type

}

16

}

In a node template, we define size, OS image, and regional placement of the node.

Depending on the future role, we can define them as small or as big as we need them,

or define nodes with specialized hardware, such as GPUs, for machine-learning tasks.

We can make the same definition of node pools as above with the Rancher GUI:

Figure 4: Node Template

The actual node pools will be created later; the template only defines their physical

characteristics.

3.7 Cluster Templates

The third and final template that we are going to define is the template for the actual

cluster.

Example 4: Cluster Template

17

Rancher cluster template

resource "rancher2_cluster_template" "template_az" {

name = "Azure Cluster Template"

template_revisions {

name = "v1"

default = true

cluster_config {

cluster_auth_endpoint {

enabled = false

}

rke_config {

kubernetes_version = var.k8version

ignore_docker_version = false

cloud_provider {

name = "azure"

azure_cloud_provider {

aad_client_id = var.az-client-id

aad_client_secret = var.az-client-secret

subscription_id = var.az-subscription-id

tenant_id = var.az-tenant-id

resource_group = var.az-resource-group

}

}

}

}

}

}

In this template, we define all the essential characteristics of our Kubernetes clusters

that we want to enforce across the IT organization. For example, in the plan above, we

do not allow users to bypass Rancher and access the Kubernetes clusters directly. This

setting will give us a solid first line of defense against malicious attacks based on access

credentials.

If you prefer the Rancher GUI, you can create cluster templates there, too:

18

Figure 5: Cluster Template

3.8 Kubernetes Cluster

Now we have all the components together to build a Kubernetes cluster - credentials,

node, and cluster templates.

A fresh Kubernetes cluster is now only a few lines in our plan:

Example 5: Kubernetes Cluster

Rancher cluster

resource "rancher2_cluster" "cluster_az" {

name = "az-${random_id.instance_id.hex}"

description = "Terraform"

cluster_template_id = ...template_az.id

cluster_template_revision_id = ...default_revision_id

depends_on = [rancher2_cluster_template.template_az]

}

We give our cluster a name and a description and link it to the three templates we

19

defined before.

We also need at least one node pool in our plan:

Example 6: Node Pool

Rancher node pool

resource "rancher2_node_pool" "nodepool_az" {

cluster_id = rancher2_cluster.cluster_az.id

name = "nodepool"

hostname_prefix = "rke-${random_id.instance_id.hex}-"

node_template_id = rancher2_node_template.template_az.id

quantity = var.numnodes

control_plane = true

etcd = true

worker = true

}

In this example, we define a single node pool with control plane and worker roles. Now

we’re done, and we can check the syntax of our plan files with terraform plan, and

then execute the plan with terraform apply.

That’s all that it takes!

In the Rancher GUI, creating a cluster is equally easy:

Figure 6: Cluster Creation

20

With predefined templates, creating well-defined Kubernetes clusters is no longer a dif-

ficult task at all, and it does no longer require any in-depth knowledge of Kubernetes.

After successful creation, Rancher provides a convenient dashboard for the newly created

cluster:

Figure 7: Rancher Dashboard

This figure above shows the new Rancher dashboard layout, as introduced in March

2020 with Rancher 2.4.

21

4 CIS Scans

4.1 CIS Benchmarks for Kubernetes

In the previous chapter, we’ve covered the necessary mechanism to codify and enforce

standards for our Kubernetai across our IT organization, using Terraform and Rancher

templates. Now let’s move one step further and look at checking our clusters for security

issues.

There are many security standards and recommendations for IT, but there is one orga-

nization that’s universally recognized as leading the field of IT security and compliance:

The Center for Internet Security, Inc. (CIS R©)

CIS is a community-driven nonprofit and responsible for CIS Controls R© and CIS Bench-

marks TM, which are globally recognized as the best practices for securing IT systems

and data. If you want to look at the actual CIS Benchmarks, they are available for

download on the CIS website; you’ll need to register with CIS first, though.

Testing a platform against a CIS Benchmark is usually a lengthy process. Fortunately,

there are several automated scan tools available for Kubernetes, and with Rancher 2.4,

a CIS Scan is now available for all managed Clusters right from the Rancher GUI.

CIS Scans can be invoked manually or scheduled regularly, with Rancher’s Alert Manager

reporting it. With Terraform provider version 1.8.0 (March 2020), this feature is now

also available in Terraform, too.15

4.2 CIS Scan GUI

In the classic GUI, at the cluster level, Rancher offers two choices of CIS Scans:

• RKE-CIS-1.4 Permissive

• RKE-CIS-1.4 Hardened

Both scans are based on the Kubernetes CIS Benchmark version 1.4, with different sets

of enabled controls adapted by Rancher to the underlying Rancher Kubernetes Engine

(RKE). A default installation will pass the permissive profile tests. To pass the hardened

profile, you’ll need to adhere fully to the Rancher 2.3 Hardening guide.16

The cluster we created in the previous chapter is using mostly default values and thus

does not pass the scan with the hardened profile:

15See Rancher Labs (2020): Changelog. [9]
16See Rancher Labs (2019): Hardening Guide. [7]

22

Figure 8: CIS Scan GUI

4.3 Hardened CIS Scan

We will not go through all hardening steps in detail, but look at one control as an

example:

Figure 9: Hardened CIS Scan

The control we’ll be focusing on is 1.1.24: Ensure that the admission control plugin

PodSecurityPolicy is set.

23

To fully harden your cluster, please follow the hardening instructions mentioned above;

for now, we’ll look at the missing Pod Security Policy.

4.4 Kubernetes Security Policies

What is a Pod Security Policy (PSP)? Kubernetes provides two types of security policies,

one for pod security and one for network security. Pod security policies, as the name

implies, govern security-relevant aspects of pod specification,17, whereas network policies

govern the allowed communication between groups of pods and the outside world.18

It is good practice when running a Kubernetes cluster in production to secure access

with Pod Security Policies.19 Rancher offers two pre-built PSPs (named ”restricted”

and ”unrestricted”) and a GUI to create your own.20

There are many controls within a Pod Security Policy that we won’t cover in this docu-

ment; instead, we’ll focus on the admission controller.

4.5 Remediation

The scan gives us the following remediation instruction:

Remediation: Follow the documentation and create Pod

Security Policy objects as per your environment

To mitigate the failed control, what we need to do is to add a default Pod Security

Policy. Fortunately, that’s relatively easy in Rancher. In the cluster template, we need

to enable PSP support and define the default policy.

We can do that by adding the following line to our template definition in Terraform:

Example 7: Cluster Template with PSP

default_pod_security_policy_template_id = "restricted"

Or, if your prefer the Rancher GUI, you can set the default Pod Security Policy there

too:

17See The Linux Foundation (2019): Pod Security Policies. [16]
18See The Linux Foundation (2019): Network Policies. [15]
19See Price, J. (2020): Kubernetes - Pod Security Policies. [6]
20See Iradier, A. (2020): Enhancing Kubernetes Security with Pod Security Policies. [4]

24

Figure 10: Rancher PSP Support

Once you’ve enabled the PSP, the control will pass in the CIS scan. It’s an iterative

process: Based on your IT organization’s needs, you’ll have to identify the controls

critical for your business and implement the remediation steps one by one, as needed, to

harden your cluster.

Automated CIS scans will then give you a valuable tool to check all your Kubernetai

regularly for security issues and regulatory compliance, and help you to act on issues

accordingly.

25

5 Summary and recommendations

Infrastructure-as-Code is the perfect tool to enforce regulatory compliance and security

hardening uniformly across all deployed Kubernetes clusters.

Terraform provides the declarative definition for the infrastructure and Rancher, through

templates and access control, the necessary controls for the installation and configuration

of Kubernetes itself.

The Center of Internet Security offers benchmarks to test Kubernetes cluster against.

Rancher has CIS Scans integrated and provides the ability to mitigate the findings.

We were able to show that the combination of Terraform, together with Rancher tem-

plates, provides an ideal solution for Enterprise IT to provision a secure and compliant

container run-time environment and manage the infrastructure life cycle. By having all

infrastructure well defined and under revision control and all infrastructure deployments

automated, you can easily apply GRC controls.

There are alternatives to this combination. Platform-native solutions for the major hy-

perscale platforms do exist, for example, ARM templates on Microsoft Azure or Cloud

Formation on Amazon Web Services. Also, the leading on-premise virtualization plat-

forms, VMware and Hyper-V, each have a native orchestration solution.

Rancher and Terraform, however, are an open-source and provider-independent option

and thus the recommended choice; both tools have been around for a couple of years

and amassed a large and mostly loyal user base.

There are other open-source tools, such as the very recently released CDK8S by Amazon

Web Services. In my opinion, Rancher and Terraform are the most comprehensive and

are ideally suited for cloud computing.

Infrastructure automation is by no means a new invention. Procedural tools like Ansible,

Chef, or Operations Orchestration have been around for decades.

New developments in the area of serverless computing threaten computing infrastructure

as a distinct category itself and might obliterate the need for secure and compliant

orchestration tools, though.

Regardless of future developments, governance, risk management, and regulatory com-

pliance will remain a key topic in Enterprise IT.

You can find all example plan files on my GitHub.

Happy Ranching!

https://github.com/chfrank-cgn/Rancher/tree/master/az-cluster-1

26

References

[1] C. Frank. (2020) Deploy kubernetes clusters on microsoft azure with rancher.

[Access 2020-05-10]. [Online]. Available:

https://rancher.com/blog/2020/build-kubernetes-clusters-on-azure

[2] C. Frank. (2020) Multi-cluster management fuer containerumgebungen. [Access

2020-05-10]. [Online]. Available:

https://storage.googleapis.com/bucket.chfrank.net/Managing%20multiple%

20clusters%20for%20container%20run-time%20environments.pdf

[3] HashiCorp. (2020) Deliver infrastructure as code with terraform. [Access

2020-05-10]. [Online]. Available: https://www.terraform.io/

[4] A. Iradier. (2020) Enhancing kubernetes security with pod security policies.

[Access 2020-05-10]. [Online]. Available:

https://rancher.com/blog/2020/pod-security-policies-part-2

[5] P. Mell and T. Grance. (2011) The nist definition of cloud computing. [Access

2020-05-10]. [Online]. Available: https://doi.org/10.6028/NIST.SP.800-145

[6] J. Price. (2020) Kubernetes - pod security policies. [Access 2020-05-10]. [Online].

Available:

https://developer.squareup.com/blog/kubernetes-pod-security-policies/

[7] Rancher Labs. (2019) Hardening guide - rancher v2.3.x. [Access 2020-05-10].

[Online]. Available:

https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.3/

[8] Rancher Labs. (2019) Introducing the rancher 2 terraform provider. [Access

2020-05-10]. [Online]. Available:

https://rancher.com/blog/2019/rancher-2-terraform-provider/

[9] Rancher Labs. (2020) Rancher 2 terraform provider 1.8.3. [Access 2020-05-10].

[Online]. Available: https://github.com/terraform-providers/

terraform-provider-rancher2/blob/master/CHANGELOG.md

[10] Rancher Labs. (2020) Rancher 2.4 technical architecture. [Access 2020-05-10].

[Online]. Available: https://info.rancher.com/rancher2-technical-architecture

[11] Rancher Labs. (2020) Run kubernetes everywhere. [Access 2020-05-10]. [Online].

Available: https://rancher.com/

[12] A. Saguy and J. Williams. (2020) Why we should all use they/them pronouns.

https://rancher.com/blog/2020/build-kubernetes-clusters-on-azure
https://storage.googleapis.com/bucket.chfrank.net/Managing%20multiple%20clusters%20for%20container%20run-time%20environments.pdf
https://storage.googleapis.com/bucket.chfrank.net/Managing%20multiple%20clusters%20for%20container%20run-time%20environments.pdf
https://www.terraform.io/
https://rancher.com/blog/2020/pod-security-policies-part-2
https://doi.org/10.6028/NIST.SP.800-145
https://developer.squareup.com/blog/kubernetes-pod-security-policies/
https://rancher.com/docs/rancher/v2.x/en/security/hardening-2.3/
https://rancher.com/blog/2019/rancher-2-terraform-provider/
https://github.com/terraform-providers/terraform-provider-rancher2/blob/master/CHANGELOG.md
https://github.com/terraform-providers/terraform-provider-rancher2/blob/master/CHANGELOG.md
https://info.rancher.com/rancher2-technical-architecture
https://rancher.com/

27

[Access 2020-05-10]. [Online]. Available: https://blogs.scientificamerican.com/

voices/why-we-should-all-use-they-them-pronouns/

[13] P. Shankar. (2020) Runtime security in rancher with falco. [Access 2020-05-10].

[Online]. Available: https://rancher.com/blog/2020/runtime-security-with-falco

[14] M. Souppaya, J. Morello, and K. Scarfone. (2017) Application container security

guide. [Access 2020-05-10]. [Online]. Available:

https://doi.org/10.6028/NIST.SP.800-190

[15] The Linux Foundation. (2020) Network policies. [Access 2020-05-10]. [Online].

Available:

https://kubernetes.io/docs/concepts/services-networking/network-policies/

[16] The Linux Foundation. (2020) Pod security policies. [Access 2020-05-10]. [Online].

Available: https://kubernetes.io/docs/concepts/policy/pod-security-policy/

[17] The Linux Foundation. (2020) Production-grade container orchestration. [Access

2020-05-10]. [Online]. Available: https://kubernetes.io/

[18] D. Weibel. (2020) Architecting kubernetes clusters - how many should you have?

[Access 2020-05-10]. [Online]. Available: https://learnk8s.io/how-many-clusters

[19] Y. Weizman. (2020) Threat matrix for kubernetes. [Access 2020-05-10]. [Online].

Available: https:

//www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/
https://blogs.scientificamerican.com/voices/why-we-should-all-use-they-them-pronouns/
https://rancher.com/blog/2020/runtime-security-with-falco
https://doi.org/10.6028/NIST.SP.800-190
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://kubernetes.io/
https://learnk8s.io/how-many-clusters
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/
https://www.microsoft.com/security/blog/2020/04/02/attack-matrix-kubernetes/

	List of Figures
	List of Examples
	List of Abbreviations
	Introduction into Governance and Security
	Pronouns
	Governance vs. Compliance
	Security

	The need for Governance and Security in container run-time environments
	Container Run-Time Environments
	Kubernetes Architecture
	Kubernetes Security
	Rancher Overview
	Rancher Architecture

	Infrastructure as Code
	Terraform
	Templates
	Kubernetes Cluster Creation
	Managed Kubernetes
	Rancher Node-Driver
	Custom Nodes
	Import

	Rancher Provider
	Cloud Credentials
	Node Templates
	Cluster Templates
	Kubernetes Cluster

	CIS Scans
	CIS Benchmarks for Kubernetes
	CIS Scan GUI
	Hardened CIS Scan
	Kubernetes Security Policies
	Remediation

	Summary and recommendations
	References

