Supporting information

Bitopic Fluorescent Antagonists of the A2A Adenosine Receptor Based on Pyrazolo[4,3$e][1,2,4]$ triazolo $[1,5-c]$ pyrimidin-5-amine Functionalized Congeners

Romain Duroux, Antonella Ciancetta, Philip Mannes, Jinha Yu, Shireesha Boyapati, Elizabeth Gizewski, Said Yous, Francisco Ciruela, John A. Auchampach, Zhan-Guo Gao, and Kenneth A. Jacobson

Contents

Synthetic Methods S1-S7
Molecular Modeling Methods S7-S9
Molecular Modeling Results S7-S14
Pharmacological Results S15-S16
Off-target interactions for selected compounds S17
Representative NMR and Mass Spectra and HPLC Analysis S18-S28
Visible and UV spectral data (9) S29

Synthetic methods

Scheme S1. (a) $\mathrm{BBr}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 4h; (b) sodium 4-(bromomethyl)benzenesulfonate, NaH , DMF, rt, 2h, 42\%.

Chemical Synthesis. Materials and Instrumentation. Compound 3 (Tocris Bioscience, Ellisville, MO), Alexa Fluor ${ }^{\circledR} 647$ NHS Ester (tri-potassium salt, ThermoFisher Scientific, Ref. A20006), BODIPY ${ }^{\circledR}$ 630/650-X NHS Ester (ThermoFisher Scientific, Ref. D10000) and Alexa Fluor ${ }^{\circledR} 488$ Carboxylic Acid, 2,3,5,6-Tetrafluorophenyl Ester, 5-isomer (di-triethylamine salt, ThermoFisher Scientific, Ref. A30005)
were obtained from the commercial sources specified in the parenthesis next to its name. All other reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO). NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts are given in ppm (δ), calibrated to the residual solvent signals or TMS. TLC analysis was carried out on glass sheets precoated with silica gel F 254 (0.2 mm) from Aldrich and spots were examined under ultraviolet light at 254 nm . Purification of final fluorescent compounds was performed by preparative HPLC with $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ as mobile phase (column A: Luna 5 $\mu \mathrm{m}$ C18(2) $100 \AA$, LC column $250 \mathrm{~mm} \times 21.2 \mathrm{~mm}$, flow rate of $5 \mathrm{~mL} / \mathrm{min}$; column B: Eclipse XDB-C18, $5 \mu \mathrm{~m}, 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, flow rate of $5 \mathrm{~mL} / \mathrm{min}$). Column chromatography was performed on silica gel ($40-63 \mu \mathrm{~m}, 60 \AA$). High resolution mass (HRMS) measurements were performed on a proteomics optimized Q-TOF-2 (Micromass-Waters). The purity of final derivatives was checked using a HewlettPackard 1100 HPLC equipped with a Zorbax SB-Aq $5 \mu \mathrm{~m}$ analytical column ($50 \times 4.6 \mathrm{~mm}$; Agilent Technologies Inc., Palo Alto, CA). The mobile phase was as follows: linear gradient solvent system, 5 mM TBAP (tetrabutylammonium dihydrogen phosphate) $-\mathrm{CH}_{3} \mathrm{CN}$ from 100:0 to 0:100 in 15 min ; the flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$. All derivatives tested for biological activity showed $>95 \%$ purity by HPLC analysis with detection at 254 nm for molecules without fluorescent moieties and at $488 \mathrm{~nm}, 640 \mathrm{~nm}$ or 647 nm depending on the fluorescent ligands.

General procedure for synthesis of compounds $\mathbf{6 a - 6 e}$, by aminolysis of ester $\mathbf{8}$:
Compound 8 (1 eq., 0.047 mmol) was dissolved in a mixture of the corresponding dialkylamine and $\mathrm{MeOH}(7 \mathrm{~mL}, 1: 9, \mathrm{v} / \mathrm{v})$ and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography ($20: 78: 2, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{aq}^{2} \cdot \mathrm{NH}_{3}$, $\mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford the desired product.

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)- N-(2-aminoethyl)acetamide $\mathbf{6 a}$.

Compound $\mathbf{8}$ (1 eq., $12 \mathrm{mg}, 0.0268 \mathrm{mmol}$) was dissolved in a mixture of ethylenediamine and $\mathrm{MeOH}(2$ $\mathrm{mL}, 1: 9, \mathrm{v} / \mathrm{v})$. After stirring at room temperature overnight, the reaction mixture was concentrated to dryness, and the resulting residue was purified by silica gel column chromatography (20:78:2 $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ aq. $\mathrm{NH}_{3}, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford a white solid ($8 \mathrm{mg}, 63 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (MeOD- d_{4}, $\delta \mathrm{ppm}) 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=0.7 \mathrm{~Hz}$ and $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.7 \mathrm{~Hz}$ and $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.68(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.38$ $(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.33(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.77(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.26-2.23$ (m, 2H). ESI-HRMS calculated for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 476.2160$; Calcd. 476.2159. HPLC purity 98% ($\mathrm{R}_{\mathrm{t}}=6.9 \mathrm{~min}$).

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)- N -(3-aminopropyl)acetamide $\mathbf{6 b}$.

Compound 8 (1 eq., $7 \mathrm{mg}, 0.0157 \mathrm{mmol}$) was dissolved in a mixture of 1,3 -diaminopropane and MeOH ($2 \mathrm{~mL}, 1: 9, \mathrm{v} / \mathrm{v}$). After stirring at room temperature overnight, the reaction mixture was concentrated to dryness, and the resulting residue was purified by silica gel column chromatography (20:78:2 $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ aq. $\mathrm{NH}_{3}, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford a white solid ($4.5 \mathrm{mg}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$) 8.10 (s, 1H), $7.77(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}), 6.68(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.33(\mathrm{t}, 2 \mathrm{H}, J=6.2$ $\mathrm{Hz}), 2.68(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}, 490.2321$; Calcd. 490.2315. HPLC purity $99 \%\left(\mathrm{R}_{\mathrm{t}}=6.9 \mathrm{~min}\right)$.

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)- N-(4-aminobutyl)acetamide $\mathbf{6 c}$.

Compound 8 (1 eq., $21 \mathrm{mg}, 0.047 \mathrm{mmol}$) was dissolved in a mixture of putrescine and $\mathrm{MeOH}(7 \mathrm{~mL}, 1: 9$, v / v) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography ($20: 78: 2 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{aq} . \mathrm{NH}_{3}, \mathrm{v} / \mathrm{v} / \mathrm{v}$) to afford a white solid ($22 \mathrm{mg}, 94 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$) $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.7$ Hz and $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.68(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and J $=3.2 \mathrm{~Hz}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.33(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.90(\mathrm{t}, 2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.62(\mathrm{t}$, $2 \mathrm{H}, J=6.2 \mathrm{~Hz}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.61(\mathrm{~m}, 4 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 504.2476; Calcd. 504.2472. HPLC purity $97 \%\left(R_{t}=7.4 \mathrm{~min}\right)$.

2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)- N -(5-aminopentyl)acetamide $\mathbf{6 d}$.

Compound 8 (1 eq., $10 \mathrm{mg}, 0.0224 \mathrm{mmol}$) was dissolved in a mixture of cadaverine and $\mathrm{MeOH}(5 \mathrm{~mL}$, $1: 9, \mathrm{v} / \mathrm{v}$) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography ($20: 78: 2 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$ aq. NH_{3}, v/v/v) to afford a white solid ($7.5 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $\left.d_{4}, \delta \mathrm{ppm}\right) 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=0.7 \mathrm{~Hz}$ and $J=1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.7 \mathrm{~Hz}$ and $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.83(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.68(\mathrm{dd}$, $1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}$), $4.42(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.27(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.74-2.67$ $(\mathrm{m}, 4 \mathrm{H}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 4 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 518.2631; Calcd. 518.2628. HPLC purity $96 \%\left(\mathrm{R}_{\mathrm{t}}=7.8 \mathrm{~min}\right)$.

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-
yl)propyl)phenoxy)- N-(6-aminohexyl)acetamide $\mathbf{6 e}$.
Compound 8 (1 eq., $7 \mathrm{mg}, 0.0157 \mathrm{mmol}$) was dissolved in a mixture of 1,6-diaminohexane and $\mathrm{MeOH}(2$ $\mathrm{mL}, 1: 9, \mathrm{v} / \mathrm{v}$) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography ($20: 78: 2 \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}:$:aq. $\mathrm{NH}_{3}, \mathrm{v} / \mathrm{v} / \mathrm{v}$) and to afford a white solid ($1.5 \mathrm{mg}, 20 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$): $8.10(\mathrm{~s}, 1 \mathrm{H}), 7.78$ (d, $J=0.7 \mathrm{~Hz}$ and J $=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.7 \mathrm{~Hz}$ and $J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.84(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $6.68(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.27(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$, $2.91(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 2.26-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.62(\mathrm{~m}, 2 \mathrm{H})$, 1.61-1.58 (m, 4H). ESI-HRMS calculated for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{9} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$, 532.2776; Calcd. 532.2785. HPLC purity $96 \%\left(R_{t}=7.5 \mathrm{~min}\right)$.

4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenol 7.
To a solution of 2-(furan-2-yl)-7-(3-(4-methoxyphenyl)propyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin- 5 -amine ($\mathbf{3}, 1 \mathrm{eq} ., 90 \mathrm{mg}, 0.231 \mathrm{mmol}$) in $\mathrm{DCM}(12 \mathrm{~mL})$ was added dropwise $\mathrm{BBr}_{3}(5 \mathrm{eq} ., 1$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.18 \mathrm{~mL}, 1.18 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 4 h at room temperature, hydrolyzed carefully with MeOH at $0^{\circ} \mathrm{C}$ and evaporated in vacuo to afford a brown solid, which was used without further purification in the next step ($83 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$) $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.78$ (d, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61-$ $6.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.25(\mathrm{~m}, 2 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}, 376.1532$; Calcd. 376.1522.

Methyl 2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7yl)propyl)phenoxy)acetate 8.

To a suspension of 7 (1 eq., $18 \mathrm{mg}, 0.048 \mathrm{mmol}$) in $\mathrm{MeOH}(3 \mathrm{~mL})$ was added cesium carbonate (5 eq., $78.1 \mathrm{mg}, 0.24 \mathrm{mmol}$). The mixture was stirred for 1 h at $40^{\circ} \mathrm{C}$ and then methyl bromoacetate (12 eq. , $0.055 \mathrm{~mL}, 0.58 \mathrm{mmol}$) was added. The mixture was stirred overnight at $40^{\circ} \mathrm{C}$ and then concentrated in vacuo. The crude product was purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH}: 99 / 1$) to afford a white solid ($12 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$) : $8.21(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.26 (m, 1H), 7.14-7.10 (d, 2H, $J=8.8 \mathrm{~Hz}$), 6.85-6.80 (d, 2H, $J=8.8 \mathrm{~Hz}$), 6.63 (dd, 1H, $J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 5.97(\mathrm{~s}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.62(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 2.30-2.19(\mathrm{~m}$, $2 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}, 448.1727$; Calcd. 448.1733.

2-((1E,3E)-5-((E)-3-(6-((2-(2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)ethyl)amino)-6-oxohexyl)-3-methyl-5-sulfonato-1-(3-sulfonatopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-(3-sulfonatopropyl)-3H-indol-1-ium-5-sulfonate, triethylammonium salt 9 .

To a solution of $\mathbf{6 a}(1 \mathrm{eq} ., 0.7 \mathrm{mg}, 0.0015 \mathrm{mmol})$ in DMF $(0.3 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{eq} ., 0.0002 \mathrm{~mL}$, 0.0016 mmol) and Alexa Fluor ${ }^{\mathbb{B}} 647$ NHS Ester (0.54 eq., $1.0 \mathrm{mg}, 0.0008 \mathrm{mmol}$). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column $\mathrm{A}, \mathrm{H}_{2} \mathrm{O} / \mathrm{AN}$: from $100 / 0$ to $70 / 30,40 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=27.8 \mathrm{~min}$) to afford after lyophilization a blue solid ($1.2 \mathrm{mg}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}-d_{4}, \delta \mathrm{ppm}$): 7.87-7.84 (m, 1H), 7.79-7.76 (m, 1 H), 7.75-7.71 (m, 2H), $7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=$ $8.3 \mathrm{~Hz}), 6.64(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.53(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 6.29-6.19(\mathrm{~m}, 4 \mathrm{H}), 5.87(\mathrm{~d}$, $1 \mathrm{H}, J=13.7 \mathrm{~Hz}), 5.37(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.08-4.02\left(\mathrm{q}, \mathrm{NCH}_{2}\right), 3.96(\mathrm{~d}, 1 \mathrm{H}, J$ $=14.6 \mathrm{~Hz}), 3.86-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, J=14.6 \mathrm{~Hz}), 3.66-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.00$ $(\mathrm{m}, 2 \mathrm{H}), 2.94-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{t}, 2 \mathrm{H}, J=7.25 \mathrm{~Hz}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{t}, 2 \mathrm{H}, J=$ $7.25 \mathrm{~Hz}), 1.99-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.23-$ $1.18(\mathrm{~m}, 5 \mathrm{H}), 1.16\left(\mathrm{t}, \mathrm{NCH}_{3}\right), 1.09-1.01(\mathrm{~m}, 1 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{59} \mathrm{H}_{68} \mathrm{~N}_{11} \mathrm{O}_{16} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 1314.3739; Calcd. 1314.3728. HPLC purity $99 \%\left(R_{t}=14.0 \mathrm{~min}\right)$.

2-((1E,3E)-5-((E)-3-(6-((4-(2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)butyl)amino)-6-oxohexyl)-3-methyl-5-sulfonato-1-(3-sulfonatopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-(3-sulfonatopropyl)-3H-indol-1-ium-5-sulfonate, triethylammonium salt $\mathbf{1 0}$.

To a solution of $\mathbf{6 c}(1$ eq., $0.741 \mathrm{mg}, 0.0015 \mathrm{mmol})$ in DMF $(0.3 \mathrm{~mL})$ was added Alexa Fluor ${ }^{\circledR} 647 \mathrm{NHS}$ Ester (0.543 eq., $1 \mathrm{mg}, 0.0008 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.1$ eq., $0.0002 \mathrm{~mL}, 0.00162 \mathrm{mmol})$. The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column A, $\mathrm{H}_{2} \mathrm{O} / \mathrm{AN}$: from $100 / 0$ to $70 / 30,40 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=29.06 \mathrm{~min}$) to afford after lyophilization a blue solid ($1.5 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$): 7.83-7.65 (m, 5H), $7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48(\mathrm{~d}, 1 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.98(\mathrm{~m}, 1 \mathrm{H}), 6.91,(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}), 6.62(\mathrm{~d}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz})$, $6.51(\mathrm{~m}, 1 \mathrm{H}), 6.23(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.18-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.79(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}), 4.10(\mathrm{~m}, 4 \mathrm{H}), 3.94$ $(\mathrm{d}, 1 \mathrm{H}, J=14.4 \mathrm{~Hz}), 3.83-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}), 3.10\left(\mathrm{q}, \mathrm{NCH}_{2}\right), 3.01(\mathrm{~m}, 2 \mathrm{H}), 2.95-$ $2.80(\mathrm{~m}, 8 \mathrm{H}), 2.49(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, 1.23-1.20 (m, 6H), $1.17\left(\mathrm{t}, \mathrm{NCH}_{3}\right), 1.06(\mathrm{~m}, 2 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{61} \mathrm{H}_{72} \mathrm{~N}_{11} \mathrm{O}_{16} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+}$, 1342.4052; Calcd. 1342.4041. HPLC purity $99 \%\left(R_{t}=10.1 \mathrm{~min}\right)$.
(E)-N-(4-(2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)butyl)-6-(2-(4-(2-(5,5-difluoro-7-(thiophen-2-yl)-5H-414,514-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-3-yl)vinyl)phenoxy)acetamido)hexanamide 11.

To a solution of $\mathbf{6 c}(1 \mathrm{eq} ., 1.5 \mathrm{mg}, 0.0029 \mathrm{mmol})$ in $\mathrm{DMF}(0.3 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(3.0$ eq., $1.2 \mu \mathrm{~L}$, 0.0087 mmol) and BODIPY ${ }^{\circledR} 630 / 650-X$ NHS Ester (0.8 eq., $1.57 \mathrm{mg}, 0.0024 \mathrm{mmol}$). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column A, $\mathrm{H}_{2} \mathrm{O} / \mathrm{AN}: 50 / 50$ to $0 / 100,40 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=29.9 \mathrm{~min}$) to afford after lyophilization a blue solid ($1.9 \mathrm{mg} ; 61 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $d_{4}, \delta \mathrm{ppm}$): $8.05(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=7.6$ Hz), $7.56(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 7.46(\mathrm{~d}, 1 \mathrm{H}, J=3.9 \mathrm{~Hz}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, 1 \mathrm{H}, J=3.2 \mathrm{~Hz}), 7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=4.4 \mathrm{~Hz}), 7.07-7.03(\mathrm{~m}, 4 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.65(\mathrm{~m}, 1 \mathrm{H}), 4.36(\mathrm{~m}, 2 \mathrm{H})$, $4.29(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.22(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 3.12-3.10(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}), 2.19-2.13$ $(\mathrm{m}, 4 \mathrm{H}), 1.59-1.43(\mathrm{~m}, 8 \mathrm{H}), 1.28-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.19(\mathrm{~m}, 2 \mathrm{H})$. ESI-HRMS calculated for $\mathrm{C}_{54} \mathrm{H}_{56} \mathrm{BF}_{2} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}, 1049.4224\right.$; Calcd. 1049.4228. HPLC purity $96 \%\left(\mathrm{R}_{\mathrm{t}}=13.6 \mathrm{~min}\right)$.

5-((4-(2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)butyl)carbamoyl)-2-(6-amino-3-imino-4,5-disulfo-3H-xanthen-9yl)benzoic acid, triethylammonuim salt $\mathbf{1 2}$
To a solution of $\mathbf{6 c}(1$ eq., $0.71 \mathrm{mg}, 0.00141 \mathrm{mmol})$ in DMF $(0.14 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(1.1 \mathrm{eq} ., 0.0002$ $\mathrm{mL}, 0.0016 \mathrm{mmol}$) and Alexa Fluor ${ }^{\circledR} 488$ Carboxylic Acid, 2,3,5,6-Tetrafluorophenyl Ester, 5-isomer (0.8 eq., $1 \mathrm{mg}, 0.0011 \mathrm{mmol}$). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column B, $\mathrm{H}_{2} \mathrm{O} / \mathrm{AN}: 100 / 0$ to $70 / 30,20 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}=10.7$ $\mathrm{min})$ to afford after lyophilization an orange solid $(0.47 \mathrm{mg} ; 33 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, \delta \mathrm{ppm}\right): 8.07(\mathrm{~s}, 1 \mathrm{H})$, $7.82(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=9.6 \mathrm{~Hz}), 6.69-6.66(\mathrm{~m}$, $5 \mathrm{H}), 6.53(\mathrm{~m}, 1 \mathrm{H}), 6.39(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 4.09(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 3.10\left(\mathrm{q}, \mathrm{NCH}_{2}\right), 3.07-3.05(\mathrm{~m}$, $2 H), 2.27-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 4 \mathrm{H}), 1.17\left(\mathrm{t}, \mathrm{NCH}_{3}\right)$. ESI-HRMS calculated for $\mathrm{C}_{46} \mathrm{H}_{40} \mathrm{~N}_{11} \mathrm{O}_{13} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$, 1020.2411; Calcd. 1020.2405. HPLC purity $99 \%\left(\mathrm{R}_{\mathrm{t}}=10.1 \mathrm{~min}\right)$.

4-((4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7yl)propyl)phenoxy)methyl)benzenesulfonate ammonium salt 13
To a solution of 7 (1 eq., $10 \mathrm{mg}, 0.0266 \mathrm{mmol}$) in DMF (4.29 mL) under N_{2} was added $\mathrm{NaH}(1 \mathrm{eq} ., 0.64$ $\mathrm{mg}, 0.027 \mathrm{mmol}$) and the mixture was stirred for 15 min at room temperature before adding sodium 4(bromomethyl)benzenesulfonate ($1.1 \mathrm{eq} ., 8 \mathrm{mg}, 0.0293 \mathrm{mmol}$). After 1 h stirring at room temperature, sodium 4-(bromomethyl)benzenesulfonate ($1.1 \mathrm{eq} ., 8 \mathrm{mg}, 0.0293 \mathrm{mmol}$) was added again, and the mixture was stirred for 45 min . The mixture was then treated with MeOH , concentrated in vacuo and purified by silica gel column chromatography ($\mathrm{DCM} / \mathrm{MeOH} / \mathrm{NH}_{3}: 85 / 15 / 1$) to afford a white solid ($6.3 \mathrm{mg}, 42 \%$). ${ }^{1} \mathrm{H}$ NMR (MeOD- $\left.d_{4}, \delta \mathrm{ppm}\right): 8.12(\mathrm{~s}, 1 \mathrm{H}), 7.77-7.76(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.45$ $(\mathrm{d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J=0.4 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 7.04(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.80(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.8 \mathrm{~Hz}), 6.67(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$ and $J=3.2 \mathrm{~Hz}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 4.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.38(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz})$, $2.62\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}\right.$), 2.27-2.24 (m, 2H). ESI HRMS calculated for $\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}_{5} \mathrm{~S}^{-}[\mathrm{M}-\mathrm{H}]^{-}, 544.1401$; Calcd. 544.1403 . HPLC purity $96 \%\left(\mathrm{R}_{\mathrm{t}}=10.8 \mathrm{~min}\right)$.

Pharmacological assays:

Cell culture for membrane binding assays and flow cytometry: HEK-293 cells stably expressing the $A_{2 A A R}$ were grown in Dulbecco's Modified Eagle's Medium (DMEM) with 10% FBS, 100 units $/ \mathrm{ml}$ penicillin, $100 \mathrm{mg} / \mathrm{ml}$ streptomycin, 2 mM L-glutamine and $0.500 \mathrm{mg} / \mathrm{mL}$ G418 Sulfate (Geneticin). Cells were maintained in a humidified atmosphere and sterile incubation conditions held at $37{ }^{\circ} \mathrm{C}$ and $5 \% \mathrm{CO}_{2}$ (g). A day prior to the experiment, cells were plated on a 96 -well clear and flat bottom plate at $80-90 \%$ confluency in $100 \mu \mathrm{~L}$ of medium.

Radioligand binding assays: Cell membranes were prepared as reported. ${ }^{1}$
Binding assays were carried out using standard radioligands and membrane preparations from HEK-293 cells stably expressing the human (h) $A_{1}, A_{2 A}$ or A_{3} ARs or mouse (m) $A_{1}, A_{2 A}$ or $A_{3} A R s$. The radioligands used were: $\mathrm{A}_{1} \mathrm{AR},\left[{ }^{3} \mathrm{H}\right] 8$-cyclopentyl-1,3-dipropylxanthine $14 ; \mathrm{A}_{2 \mathrm{~A}} \mathrm{AR},\left[{ }^{3} \mathrm{H}\right] \mathbf{2} ; \mathrm{A}_{3} \mathrm{AR}$, $\left[{ }^{125} \mathrm{I}\right] N^{6}$-(4-amino-3-iodobenzyl)adenosine-5'- N-methyluronamide 16. The radioligand for archival $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ affinity data presented in Table 1 was $\left[{ }^{3} \mathrm{H}\right] 2-[\mathrm{p}-(2$-carboxyethyl)phenyl-ethylamino]-5' N ethylcarboxamidoadenosine 15. Nonspecific binding was determined using $10 \mu \mathrm{M} 8$-[4-[[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-1,3-dipropylxanthine 17 ($\mathrm{A}_{1} \mathrm{AR}$ and $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$) or $10 \mu \mathrm{M}$ adenosine-5'- N-ethyluronamide 18 ($\mathrm{A}_{3} \mathrm{AR}$). HEK-293 cells expressing recombinant $\mathrm{mA}_{1}, \mathrm{~A}_{2 \mathrm{~A}}$, or $\mathrm{A}_{3} \mathrm{AR}$ were used.
Protein was determined as reported. ${ }^{2}$ In all the binding experiments, IC_{50} values and K_{i} values were calculated using GraphPad Prism software (San Diego, CA). Values are expressed as mean \pm SEM.

Fluorescent binding studies: All binding studies were done in triplicate. For saturation binding studies, cells were treated with $50 \mu \mathrm{~L}$ of $\mathbf{1 1}$ (MRS 7396) or $\mathbf{1 2}$ (MRS 7416), to achieve a final concentration from 0.19 to 400 nM , and $50 \mu \mathrm{~L}$ of Tris- HCl buffer containing $10 \mathrm{mM} \mathrm{MgCl}{ }_{2}$. Non-specific binding was determined with SCH4424163 (final concentration of $10 \mu \mathrm{M}$, in Tris- HCl buffer). For displacement experiments, cells were incubated simultaneously with $50 \mu \mathrm{~L}$ of $40 \mathrm{nM} \mathbf{1 1}$ or $\mathbf{1 2}$ (final concentration 10 $\mathrm{nM})$ and $50 \mu \mathrm{~L}$ of the non-labeled displacing ligand at increasing concentrations. The total binding was measured in the absence of a displacing ligand, and non-specific binding was determined with $10 \mu \mathrm{M} 3$. After 1 h at $37{ }^{\circ} \mathrm{C}$ (for both the saturation and displacement experiments), the medium was removed and the cells were carefully washed two times with $150 \mu \mathrm{~L}$ of ice-cold PBS (not containing Mg^{+2} or Ca^{+2}). The cells were treated with $40 \mu \mathrm{~L}$ of Corning Cellstripper (Mediatech, Manassas, VA) per well and then incubated at $37^{\circ} \mathrm{C}$ for 10 min . To each well was subsequently added $160 \mu \mathrm{~L}$ of PBS (not containing Mg^{+2} or Ca^{+2}), and the cell fluorescence was analyzed with a BD FACSCalibur flow cytometer (Becton, Dickinson and Co., Franklin Lakes, NJ) with excitation at 635 nm (red diode laser, for 11) or 488 nm (blue laser, for 12) in conjunction with the software from BD Bioscience PlateManager and CellQuest. Data anlysis was performed with the Prism 5 (GraphPad, San Diego, CA) software.

1. Tosh, D.K., Paoletta, S., Chen, Z., Crane, S., Lloyd, J., Gao, Z.G., Gizewski, E.T., Auchampach, J.A., Salvemini, D., Jacobson, K.A. Structure-based design, synthesis by click chemistry and in vivo activity of highly selective A_{3} adenosine receptor agonists. Med. Chem. Comm., 2015, 6:555-563.
2. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.

Molecular Modeling Methods

Protein preparation. The high-resolution $\mathrm{hA}_{2 \mathrm{~A}} A R \mathrm{X}$-ray structure in complex with the triazolo-triazine antagonist ZM241385, structurally related to the reference compound 3, was retrieved from the Protein Data Bank (PDB) ${ }^{1}$ (ID: 4EIY). Hydrogen atoms were added using the Protein Preparation Wizard tool implemented in the Schrödinger suite ${ }^{2}$. During the protein preparation, co-crystallized hetero groups and the fusion partner (BRIL) were removed. The protonation states of titrable residues were determined according to H -bond patterns with surrounding residues. To this aim, all water molecules present in the X-Ray construct were retained during the protein preparation procedure. However, for the subsequent docking analysis only water molecules in the first solvation sphere of the ligand were kept. According to H-bond pattern analysis His75/278/306 and His155/230/250 were protonated on the N^{δ} and the N^{ε}, respectively, whereas His264 (establishing a salt bridge with Glu169) was considered doubly protonated. The native sequence of the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ as well as missing side chains of residues whose backbone coordinates were observed in the X-ray structure were restored by building a homology model with Prime ${ }^{3}$.

Docking. Structures of selected ligands were built and prepared for docking using the Builder and the LigPrep tools implemented in the Schrödinger suite ${ }^{4}$. The structures were minimized using the OPLS_2005 force field. Molecular docking was performed with the Glide package from the Schrödinger suite ${ }^{5}$, with the barycenter of the co-crystallized ligand representing the center of the Glide Grid (inner box: $14 \times 14 \times 14 \AA$; outer box extended by $20 \AA$ in each direction from the inner box). Docking was performed considering the protein binding sites residues rigid by using the standard precision (SP) scoring function. Ligands were docked at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ by retaining a variable number (depending upon the specific ligand considered) of non-overlapping water molecules according to the following protocol: ligands were first docked at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ structure without water molecules; the best docking poses so obtained were superimposed with the $h A_{2 A} A R$ structure containing water molecules in the first solvation sphere of the co-crystallized ligand; after the superimposition, non-overlapping water molecules were identified; ligands were therefore redocked at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ containing those water molecules. In a few cases, iterative cycles of removal of non-overlapping water molecules and ligand docking were performed until the SP score did not further improve.

Molecular Dynamics. MD system setup, equilibration, and production were performed with the HTMD ${ }^{6}$ module (Acellera, Barcelona Spain, version 1.5.4). The ligand-protein complexes were embedded into an 80 x $80 \AA$ 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane leaflet generated through the VMD Membrane Plugin tool ${ }^{7}$. Overlapping lipids (within $0.6 \AA$) were removed upon protein insertion and the systems were solvated with TIP3P ${ }^{8}$ water and neutralized by $\mathrm{Na}^{+} / \mathrm{Cl}^{-}$counter-ions (final concentration 0.154 M$)$. MD simulations with periodic boundaries conditions were carried out with the ACEMD engine (Acellera, version 2016.10.27) ${ }^{9}$ using the CHARMM36 ${ }^{10,11} / \mathrm{CGenFF}(3.0 .1)^{12,13}$ force fields for lipid and protein, and ligand atoms, respectively. Ligand parameters were retrieved from the ParamChem service (https://cgenff.paramchem.org, accessed 04/2017, version 1.0.0) with no further optimization. After initial validation, the atom types for compounds $\mathbf{1 2}$ were manually assigned to enforce the equivalency of the atoms on the two terminal aryl rings of the fluorophore moiety, consistently with previous MD studies performed on AlexaFluor $488^{14,15}$. As for the specific purpose of this study atomic charges on the so-defined atom types were not optimized, the electrostatic contribution to the total ligandprotein interaction energy for this ligand was evaluated only qualitatively and will not be described in detail. The systems were equilibrated through a 5000 -step minimization followed by 40 ns of MD simulation in the NPT ensemble by applying initial constrains (0.8 for the ligand atoms, 0.85 for alpha carbon atoms, and 0.4 for the other protein atoms) that were linearly reduced after 20 ns . During the equilibration procedure, the temperature was maintained at 310 K using a Langevin thermostat with a low damping constant of $1 \mathrm{ps}^{-1}$, and the pressure was maintained at 1 atm using a Berendensen barostat. Bond
lengths involving hydrogen atoms were constrained using the M-SHAKE ${ }^{16}$ algorithm. The equilibrated systems were subjected to 30 ns of unrestrained MD simulations run in triplicate for each ligand-protein complex (NVT ensemble, timestep $=2 \mathrm{fs}$, damping constant $=0.1 \mathrm{ps}^{-1}$). Long-range Coulomb interactions were handled using the particle mesh Ewald summation method (PME) ${ }^{17}$ with grid size rounded to the approximate integer value of cell wall dimensions. A non-bonded cutoff distance of $9 \AA$ with a switching distance of $7.5 \AA$ was used. All simulations were run on three NVIDIA GeForce GTX (970, 980Ti, and 1080).

MD Trajectory Analysis. MD trajectory analysis was performed with an in-house script exploiting the NAMD 2.10^{18} mdenergy function and the RMSD trajectory tool (RSMDTT) implemented in VMD ${ }^{7}$. All simulations were run in triplicate and selection of representative trajectories and of lowest interaction energy (IE) ligand-protein complexes were based upon the total ligand-protein interaction energy ($\mathrm{IE}_{\text {tot }}$) expressed as the sum of van der Waals ($\mathrm{IE}_{\mathrm{vdW}}$) and electrostatic ($\mathrm{IE}_{\text {ele }}$) contribution as previously described ${ }^{19}$. IE vs simulation time graph was generated with an in-house script exploiting Gnuplot ${ }^{20}$.

Modeling References

1. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J.; Meyer Jr., E. E.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. J. Mol. Biol. 1977, 112, 535-542.
2. Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments J. Comput. Aided Mol. Des. 2013, 27, 221-234.
3. Prime, Schrödinger, LLC, New York, NY, 2017.
4. LigPrep, Schrödinger, LLC, New York, NY, 2017.
5. Glide, Schrödinger, LLC, New York, NY, 2017.
6. Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput., 2016, 12, 1845-1852.
7. Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual molecular dynamics. J. Mol. Graphics, 1996, 14, 33-38.
8. Jorgensen W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
9. Harvey, M.; Giupponi, G.; De Fabritiis, G. ACEMD: Accelerated molecular dynamics simulations in the microseconds timescale. J. Chem. Theory Comput. 2009, 5, 1632-1639.
10. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell Jr., A. D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi1 and chi 2 dihedral angles. J. Chem. Theory Comput. 2012, 8, 3257-3273.
11. Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell Jr., A. D.; Pastor, R. W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B, 2010, 114, 7830-7843.
12. Vanommeslaeghe, K.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 2012, 52, 3144-3154.
13. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 2012, 52, 3155-3168.
14. Kräutler, V.; Van Gunsteren, W. F.; Hünenberger, P. H. A Fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 2001, 22, 501-508.
15. Corry, B.; Jayatilaka, D. Simulation of Structure, orientation and Energy transfer between AlexaFluor Molecules Attached to MscL. Bioph. J. 2008, 95, 2711-2721.
16. Walczewska-Szewc, K.; Deplaxes, E.; Corry, B. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins. J. Chem. Theory Comput. 2015, 11, 3455-3465.
17. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; LeeH.; Pedersen L. G. A. Smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593.
18. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD J. Comput. Chem. 2005, 26, 17811802.
19. Williams, T.; Kelley, C. Gnuplot 5.0: An Interactive Plotting Program, version 5.0.3, 2017; http://gnuplot.info (accessed April 10, 2017).
20. Toti, K. S.; Osborne, D.; Ciancetta, A.; Boison, D.; Jacobson, K. A. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase. J. Med. Chem. 2016, 59, 6860-6877.

Med. Chem. Comm.

Molecular Modeling Results: Tables and Figures

Table S1. Parameters considered for the selection of a representative trajectory among three replicas: protein alpha carbon atoms ($\mathrm{C} \alpha$) average RMSD, ligand average RMSD, and slope of the dynamic scoring function (DSFslope). RMSD values are in \AA and DSF is adimensional. Selected runs are marked in bold.

Ligand	Run Number	DSFslope[adimensional]	Average RMSD [\AA]	
			Ligand	Calpha
2	1	-38.325	1.819	1.611
	2	-14.632	3.892	1.970
	3	-59.813	1.524	1.871
6c (BM1)	1	-23.526	3.587	1.657
	2	-23.990	4.231	1.575
	3	-21.610	4.045	1.468
6c (BM2)	1	-26.236	2.866	1.478
	2	-22.169	3.545	1.767
	3	-34.341	2.368	1.567
12 (BM1)	1	-12.775	5.465	1.560
	2	-28.363	3.106	1.676
	3	-30.760	3.083	1.546
12 (BM2)	1	-71.977	3.268	1.505
	2	-130.815	1.835	1.420
	3	-86.127	3.004	1.409
13 (BM1)	1	-10.573	6.704	1.652
	2	-27.083	3.129	1.749
	3	-19.874	3.289	1.789
13 (BM2)	1	-26.010	3.355	1.695
	2	-22.557	5.427	1.368
	3	-28.201	2.256	1.511
13 (BM3)	1	-21.335	5.235	1.494
	2	-26.411	4.350	1.458
	3	-17.947	4.426	1.832

Figure S1. Most energetically favored ligand-protein structure (Interaction Energy $=-89.544 \mathrm{kcal} / \mathrm{mol}$)) obtained for $2-h A_{2 A} A R$ complex in the selected MD run starting from the docking pose. In this snapshot the ligand features the same interaction pattern observed for the initial docking pose, thus validating the quality of the ligand-protein interaction predicted by docking. Side view facing TM6, TM7, and TM1 (from the left).

Figure S2. Two alternative binding modes obtained for compound $\mathbf{6 c}$, the synthetic precursor of 11, at the $\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$. In the most energetically favored docking complex (orange carbon sticks, docking score $=$ $12.077 \mathrm{kcal} / \mathrm{mol}$) the points toward TM4 and TM5, the amide moiety establishes a H -bond with the sidechain of E169, and the terminal amine group engages in H -bond interactions with the backbone of E169 (EL2) and the sidechain of K150 (EL2). In the alternative binding mode (green carbon sticks, docking score $=-10.994 \mathrm{kcal} / \mathrm{mol}$), the tail points toward TM1 and TM2 and does not establish additional interactions. Residues establishing polar (dashed orange lines) and $\pi-\pi$ interactions with the docked ligands are represented as thin sticks. Non-polar hydrogen atoms are omitted.

Figure S3. Three-dimensional representation (A) and schematic depiction (B) of the distance between the terminal ammine group and the centroids of the aromatic moieties in the fluorophore group of $\mathbf{1 1}$. (C) Most energetically favored ligand-protein complexes obtained after MD simulation, starting from 6c$\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ docked complexes. Aromatic (solid surface) and hydrophobic (wireframe surface) regions in the proximity of the terminal amine moiety are colored according to the distance from the nitrogen atom as follows: $5 \AA=$ magenta, $13 \AA=$ green, and $14 \AA=$ yellow. As depicted, only in one orientation the proximity of aromatic/hydrophobic regions in the protein (colored arrow) are compatible with the placement of the aromatic moieties of the fluorophore group of $\mathbf{1 1}$. Side view, facing TM6, TM7, and TM1 (from the left).
A)

Minimized conformation

c)

Figure S4. Superimposition of the most energetically favorable 12-hA ${ }_{2 A} A R$ complexes obtained after three MD simulation starting from BM2: the three replicas converged in a unique binding mode. The structures are colored according to the IE value, the lower (more favorable) the value the darker the color.

Figure S5. (A) Superimposition of the most energetically favorable $13-\mathrm{hA}_{2 \mathrm{~A}} \mathrm{AR}$ complexes obtained after MD simulation starting from three different binding modes (BM1 $=$ cyan, $\mathrm{BM} 2=$ magenta, $\mathrm{BM} 3=$ orange): the three different initial poses converged in a unique binding mode. (B) Ligand-protein complex with the lowest interaction energy ($\mathrm{IE}=-201.590 \mathrm{kcal} / \mathrm{mol}$) obtained after MD simulation starting from BM3: with respect to its initial conformation, the 7-phenylpropyl ring of the ligand moves toward TM7 and establishes a $\pi-\pi$ stacking interaction with Y271 (7.36). Both A and B are a side view facing TM6, TM7, and TM1 (from the left).

Pharmacological Results

Inhibition of whole cell binding of fluorescent probe 12 by agonists:
Although the inhibition of binding of AlexaFluor488 conjugate $\mathbf{1 2}$ provided the expected affinities when employing antagonists, the inhibition by agonists was complex, possibly due to multiple affinity states of this GPCR for agonists. Further study is required.

Agonists 2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'- N-ethylcarboxamidoadenosine 15 and 6-(2,2-diphenylethylamino)-9-((2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxytetrahydrofuran-2-yl)-N-(2-(3-(1-(pyridin-2-yl)piperidin-4-yl)ureido)ethyl)-9H-purine-2-carboxamide 19 bound with K_{i} values, respectively, of 4.0 and 99 nM .

Demonstration of antagonist action at the hA2AAR:

Figure S6. Right shifts of the $h_{A_{2 A} A R}$ curve for activation, i.e. cyclic AMP accumulation, by CGS21680 $\mathbf{1 5}$, induced by antagonists $\mathbf{1 1}$ (A) and $\mathbf{1 3}$ (B). Results are expressed and mean \pm SEM from 2-3 experiments performed in duplicate. The EC_{50} of CGS21680 15 alone was $0.89 \pm 0.17 \mathrm{nM}$, in the presence of $\mathbf{1 1}$ (1000 $\mathrm{nM}), \mathrm{EC}_{50}=128 \pm 35 \mathrm{nM}$; in the presence of $\mathbf{1 3}(100 \mathrm{nM}), \mathrm{EC}_{50}=10.2 \pm 2.3 \mathrm{nM}$.

```
A
```


B

Chinese hamster ovary (CHO) cells stably expressing the human $\mathrm{A}_{2 \mathrm{~A}} \mathrm{AR}$ were cultured in Dulbecco's Modified Eagle Medium (Mediatech, Manassas, VA) supplemented with 10% fetal bovine serum, 100 units $/ \mathrm{ml}$ penicillin, $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin and $2 \mu \mathrm{~mol} / \mathrm{ml}$ glutamine. Cells were plated in 96 -well plates in $100 \mu 1$ medium. After 24 h , the medium was removed and cells were washed three times with $100 \mu \mathrm{l}$ DMEM, containing 50 mM HEPES, pH 7.4 . Cells were treated with antagonists (or medium for control) in the presence of rolipram $(10 \mu \mathrm{M})$ and adenosine deaminase (3 units $/ \mathrm{ml}$) and 5 min later with agonist for 20 min . The reaction was terminated by removal of the supernatant, and cells were lysed upon the addition of $100 \mu \mathrm{l}$ of lysis buffer (0.3% Tween-20). cAMP was measured using ALPHAScreen cAMP kits (PerkinElmer, Boston, MA) as instructed by the manufacturer.

Off-target interactions for selected compounds (K_{i} in radioligand binding inhibition $<\mathbf{1 0} \boldsymbol{\mu} \mathbf{M}$)
Refer to: http://pdspdb.unc.edu for full list of comprehensive screen at 45 targets.
PDSP 46674, MRS7354 (6c)
$5 \mathrm{HT}_{2 \mathrm{~A}}$ serotonin receptor:

$5 \mathrm{HT}_{2 \mathrm{~B}}$ serotonin receptor:

PDSP 48400, MRS7352 (13)
None detected.

6b, MRS7353

Signal 1: DAD1 A, Sig-254, Ref=360,100
Peak RetTime Type Width Area Height Area
 $1 \quad 6.915 \mathrm{MM} \quad 0.4503$ 8.88846e4 $3289.68872 \quad 98.8995$ $\begin{array}{lllllll}2 & 7.776 \\ \mathrm{NH} & 0.0852 & 207.92612 & \mathbf{4 0 . 6 8 3 9 1} & 0.2314\end{array}$
$\begin{array}{lll}\text { Totale : 8.98736e4 } & 3368.91641\end{array}$

6c, MRS7354
Monoisotopic Mass, Even Electron lons
93 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: } 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 9-9 & \mathrm{O}: 0-40\end{array}$
21 -Dec-2016

RDX018-2-meod (12-23-2016)-neod

6d, MRS7355
Monoisotopic Mass, Even Electron Ions
102 formula(e) evaluated with 3 results whtin limits (up to 19 closest resuits for each mass)
$\begin{array}{llll}\text { Elements Used } \\ \text { C: 0-100 } & \mathrm{H}: 0-200 & \mathrm{~N}: 9-9 & \mathrm{O}: 0-40\end{array}$

6e, MRS7356
Monoisolopic Mass, Even Electron Ions
103 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass)
$\begin{array}{llll}\text { Elements Used } \\ \text { C: } 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 9-9 & \mathrm{O}: 0-40\end{array}$
$\begin{array}{lll}\text { C: } 0-100 \mathrm{H}: 0-200 \mathrm{~N}: 9-9 \mathrm{O}: 0-40 & \text { TOF MS ES* } \\ \text { 03. } \mathrm{Jan} 2017 \\ 6.780+003\end{array}$

9, MRS7322

28 formula(e) eviluated with 7 resith whin linits (up is 19 closost ensuls for each mass)

Ota file DivChem32\avpata\jyaulwen 2016-05-04 15-03-23\Y3-2-250000002.0
ota file 0:VChens2
sample Mane: Y3-1-25

1.4. Operstor : SVSTEM
heq. Instrument : If LC-001 Location : 3
Injection Date : 5/4/2016 3:35:35 PM Inj wolum : 10.600
oifferent Inj wolume froe sample Entry! Actual Inf Volume : 5.000 pl ,

Last charged ; 5/4/2016 3:03:13 PW by SVSTEM

$\begin{gathered} \text { Peak } \\ \mathrm{z} \end{gathered}$	RetTise Type [min]	$\begin{gathered} \text { didth } \\ {[\sin]} \end{gathered}$		Height [5 Ul]	$\begin{gathered} \text { Ares } \\ \underline{y} \end{gathered}$
- \mid-..	0.1508	676.18964	67.53223	74.4960
2	22.830 Bl	0.0996	9.63941	1.34534	1.0620
3	22.851 ov	0.2064	123.27556	14.60608	13.5703
4	22.929 W	e.ese4	35.29238	8.87608	3.8883
5	23,620 v8	0.1111	63.38794	7.45943	6.5835
			907.68542	99,81521	

Sienal 2: 0001 B, Sig. 260,8 Refo360,109

Poak	aet干5.me [min]		$\begin{aligned} & \text { width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Ares } \\ {\left[\mathrm{m} A J^{\prime} \mathrm{s}\right]} \end{gathered}$	Neelight [mul]	$\begin{gathered} \text { Area } \\ \mathbf{\Sigma} \end{gathered}$
-	*.....)	88	0.1503	683.66165	68.71677	85.2914
2	22.000	88	0.0951	7.69416	1.12289	0.9826
3	22.153	W	0.0937	64.23567	8.73712	7.5588
4	22.927	w	0.0546	17.21940	4.50268	2.1357
5	23.020		0.1004	29.61897	3.99876	1.6714
				506.71834	26.9874?	

Stgral 3; DaDI C, 5igo647,4 Ref=360,200

$\begin{array}{llllll}14.028 & \text { t3 } & 0.1596 & 6023.12035 & 10.43633 & 0.4228\end{array}$ $\begin{array}{llllll}2 & 22.993 & \text { bV } & 0.0348 & 25.71258 & 10.49039 \\ 3 & 22.983 \mathrm{~W} & 0.0751 & 32.46241 & 6.00627 & 0.5378\end{array}$

Tetals : 6291.24535 628.94239

10, MRS7395
Monoisotopic Mass, Even Electron Ions
442 formula(e) evaluated with 7 resuits within limits (up to 19 closest resuts for each mass)
$\begin{array}{lllll}\text { Elements Used: } \\ \mathrm{C}: ~ 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: ~ 11-11 & \mathrm{O}: 0-40 & 32 \mathrm{~S}: 4-4\end{array}$

$4.43 \mathrm{e}+002$

人

11, MRS7396

Monoisotopic Mass, Even Electron Ions
320 formula(e) evaluated with 5 results within limits (up to 19 closest results for each mass)
Elements Used:
$\begin{array}{lllllll}\text { C: 0-100 } & \text { H: } 0-200 & \mathrm{~N}: 10-10 & \mathrm{O}: 0-40 & \mathrm{~F}: 2-2 & 32 \mathrm{~S}: 1-1 & 11 \mathrm{~B}: 1-1\end{array}$

12, MRS7416

Monoisotopic Mass, Even Electron lons
307 formula(e) evaluated with 8 results within imits (up to 19 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: 0-100 & \mathrm{H}: 0-200 & \mathrm{~N}: 11-11 & \mathrm{O}: 0-40 & 32 S: 2-2\end{array}$

13, MRS7352

Manoisolopic Mass, Even Electron lons

Mishmun: Maximuas		10.0	10.0	$\begin{aligned} & -2.9 \\ & 1000 . \end{aligned}$						
Mass	Calc, Maas	mas	PPM	tes	1-FIT	Formula				
544.1401		-0.2	-0.4	19.5	34.2	C26	122	17	${ }^{\text {os }}$	328
	544.1344	5.7	10.5	28.5	59.5	C33	818	N7	328	
	\$44.1462	-6.1	-11.2	10.5	84.3	C19	526	m	010	323
	544.1309	9.2	16.9	6.5	158.4	c19	126	m	013	328

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

UV absorption of MRS 7322

Lambda Maxium at 630 nm
Absorption: 3.4
Extinction Coefficient of Alexa 647: 270,000 $\mathrm{cm}^{-1} \mathrm{M}^{-1}$
Path Length: 1 cm
MW: 1382.45
Volume: $500 \mu \mathrm{~L}$
$A=\varepsilon b c$
$3.4=270000 \times 1 \times c$
$c=3.4 / 270000=1.26 \times 10^{-5} \mathrm{M}$
$\mathrm{c}=12.6 \mu \mathrm{M}$
$c=m / v$
$1.26 \times 10^{-5}=\mathrm{m} / 5 \times 10^{-4}$
$\mathrm{m}=6.3 \times 10^{-9} \mathrm{~mol}$
$\mathrm{m}=\mathrm{amount} / \mathrm{M} . \mathrm{W}$
$6.3 \times 10^{-9} \mathrm{M}=$ amount $/ 1382.45$
amount $=8.71 \mu \mathrm{~g}$

