Supporting information

Bitopic Fluorescent Antagonists of the A_{2A} Adenosine Receptor Based on Pyrazolo[4,3e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine Functionalized Congeners

Romain Duroux, Antonella Ciancetta, Philip Mannes, Jinha Yu, Shireesha Boyapati, Elizabeth Gizewski, Said Yous, Francisco Ciruela, John A. Auchampach, Zhan-Guo Gao, and Kenneth A. Jacobson

Contents

Synthetic Methods	S1-S7
Molecular Modeling Methods	S7-S9
Molecular Modeling Results	S7-S14
Pharmacological Results	S15-S16
Off-target interactions for selected compounds	S17
Representative NMR and Mass Spectra and HPLC Analysis	S18-S28
Visible and UV spectral data (9)	S29

Synthetic methods

Scheme S1. (a) BBr₃, CH₂Cl₂, rt, 4h; (b) sodium 4-(bromomethyl)benzenesulfonate, NaH, DMF, rt, 2h, 42%.

Chemical Synthesis. Materials and Instrumentation. Compound **3** (Tocris Bioscience, Ellisville, MO), Alexa Fluor[®] 647 NHS Ester (tri-potassium salt, ThermoFisher Scientific, Ref. A20006), BODIPY[®] 630/650-X NHS Ester (ThermoFisher Scientific, Ref. D10000) and Alexa Fluor[®] 488 Carboxylic Acid, 2,3,5,6-Tetrafluorophenyl Ester, 5-isomer (di-triethylamine salt, ThermoFisher Scientific, Ref. A30005) were obtained from the commercial sources specified in the parenthesis next to its name. All other reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO). NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts are given in ppm (δ), calibrated to the residual solvent signals or TMS. TLC analysis was carried out on glass sheets precoated with silica gel F 254 (0.2 mm) from Aldrich and spots were examined under ultraviolet light at 254 nm. Purification of final fluorescent compounds was performed by preparative HPLC with CH₃CN/H₂O as mobile phase (column A: Luna 5 μ m C18(2) 100 Å, LC column 250 mm \times 21.2 mm, flow rate of 5 mL/min; column B: Eclipse XDB-C18, 5 μ m, 4.6 mm × 250 mm, flow rate of 5 mL/min). Column chromatography was performed on silica gel (40-63 µm, 60 Å). High resolution mass (HRMS) measurements were performed on a proteomics optimized Q-TOF-2 (Micromass-Waters). The purity of final derivatives was checked using a Hewlett-Packard 1100 HPLC equipped with a Zorbax SB-Aq 5 μ m analytical column (50 × 4.6 mm; Agilent Technologies Inc., Palo Alto, CA). The mobile phase was as follows: linear gradient solvent system, 5 mM TBAP (tetrabutylammonium dihydrogen phosphate) – CH_3CN from 100:0 to 0:100 in 15 min; the flow rate was 0.5 mL/min. All derivatives tested for biological activity showed >95% purity by HPLC analysis with detection at 254 nm for molecules without fluorescent moleties and at 488 nm, 640 nm or 647 nm depending on the fluorescent ligands.

General procedure for synthesis of compounds 6a - 6e, by aminolysis of ester 8:

Compound 8 (1 eq., 0.047 mmol) was dissolved in a mixture of the corresponding dialkylamine and MeOH (7 mL, 1:9, v/v) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography (20:78:2, MeOH:CH₂Cl₂:aq.NH₃, v/v/v) to afford the desired product.

2-(4-(3-(5-Amino-2-(furan-2-yl)-7*H*-pyrazolo[4,3-*e*][1,2,4]triazolo[1,5-*c*]pyrimidin-7-yl)propyl)phenoxy)-*N*-(2-aminoethyl)acetamide **6a**.

Compound **8** (1 eq., 12 mg, 0.0268 mmol) was dissolved in a mixture of ethylenediamine and MeOH (2 mL, 1:9, v/v). After stirring at room temperature overnight, the reaction mixture was concentrated to dryness, and the resulting residue was purified by silica gel column chromatography (20:78:2 MeOH:CH₂Cl₂:aq.NH₃, v/v/v) to afford a white solid (8 mg, 63 %) as a white solid. ¹H NMR (MeOD-*d*₄, δ ppm) 8.10 (s, 1H), 7.77 (d, *J* = 0.7 Hz and *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 0.7 Hz and *J* = 3.4 Hz, 1H), 7.10 (d, 2H, *J* = 8.7 Hz), 6.84 (d, 2H, *J* = 8.7 Hz), 6.68 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.44 (s, 2H), 4.38 (t, 2H, *J* = 6.7 Hz), 3.33 (t, 2H, *J* = 6.2 Hz), 2.77 (t, 2H, *J* = 6.2 Hz), 2.62 (t, 2H, *J* = 6.2 Hz), 2.26-2.23 (m, 2H). ESI-HRMS calculated for C₂₃H₂₆N₉O₃ [M + H]⁺, 476.2160; Calcd. 476.2159. HPLC purity 98% (R_t = 6.9 min).

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)-*N*-(3-aminopropyl)acetamide **6b**.

Compound **8** (1 eq., 7 mg, 0.0157 mmol) was dissolved in a mixture of 1,3-diaminopropane and MeOH (2 mL, 1:9, v/v). After stirring at room temperature overnight, the reaction mixture was concentrated to dryness, and the resulting residue was purified by silica gel column chromatography (20:78:2 MeOH:CH₂Cl₂:aq.NH₃, v/v/v) to afford a white solid (4.5 mg, 59 %). ¹H NMR (MeOD-*d*₄, δ ppm) 8.10 (s, 1H), 7.77 (d, *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 3.2 Hz, 1H), 7.10 (d, 2H, *J* = 8.7 Hz), 6.84 (d, 2H, *J* = 8.7 Hz), 6.68 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.43 (s, 2H), 4.38 (t, 2H, *J* = 6.7 Hz), 3.33 (t, 2H, *J* = 6.2 Hz), 2.68 (t, 2H, *J* = 6.2 Hz), 2.62 (t, 2H, *J* = 6.2 Hz), 2.26-2.23 (m, 2H), 1.74-1.67 (m, 2H). ESI-HRMS calculated for C₂₄H₂₈N₉O₃ [M + H]⁺, 490.2321; Calcd. 490.2315. HPLC purity 99% (R_t = 6.9 min).

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)-*N*-(4-aminobutyl)acetamide **6c**.

Compound **8** (1 eq., 21 mg, 0.047 mmol) was dissolved in a mixture of putrescine and MeOH (7 mL, 1:9, v/v) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography (20:78:2 MeOH:CH₂Cl₂:aq.NH₃, v/v/v) to afford a white solid (22 mg, 94 %). ¹H NMR (MeOD-*d*₄, δ ppm) 8.10 (s, 1H), 7.78 (d, *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 0.7 Hz and *J* = 3.4 Hz, 1H), 7.10 (d, 2H, *J* = 8.7 Hz), 6.84 (d, 2H, *J* = 8.7 Hz), 6.68 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.42 (s, 2H), 4.38 (t, 2H, *J* = 6.7 Hz), 3.33 (t, 2H, *J* = 6.2 Hz), 2.90 (t, 2H, *J* = 6.2 Hz), 2.62 (t, 2H, *J* = 6.2 Hz), 2.26-2.23 (m, 2H), 1.62-1.61 (m, 4H). ESI-HRMS calculated for C₂₅H₃₀N₉O₃ [M + H]⁺, 504.2476; Calcd. 504.2472. HPLC purity 97% (R_t = 7.4 min).

2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)-*N*-(5-aminopentyl)acetamide **6d**.

Compound **8** (1 eq., 10 mg, 0.0224 mmol) was dissolved in a mixture of cadaverine and MeOH (5 mL, 1:9, v/v) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography (20:78:2 MeOH:CH₂Cl₂:aq.NH₃, v/v/v) to afford a white solid (7.5 mg, 65 %). ¹H NMR (MeOD-*d*₄, δ ppm) 8.10 (s, 1H), 7.78 (d, *J* = 0.7 Hz and *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 0.7 Hz and *J* = 3.4 Hz, 1H), 7.10 (d, 2H, *J* = 8.7 Hz), 6.83 (d, 2H, *J* = 8.7 Hz), 6.68 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.42 (s, 2H), 4.38 (t, 2H, *J* = 6.8 Hz), 3.27 (t, 2H, *J* = 7.2 Hz), 2.74-2.67 (m, 4H), 2.62 (t, 2H, *J* = 7.2 Hz), 2.26-2.23 (m, 2H), 1.61-1.51 (m, 4H). ESI-HRMS calculated for C₂₆H₃₂N₉O₃ [M + H]⁺, 518.2631; Calcd. 518.2628. HPLC purity 96% (R_t = 7.8 min).

2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)-*N*-(6-aminohexyl)acetamide **6**e.

Compound **8** (1 eq., 7 mg, 0.0157 mmol) was dissolved in a mixture of 1,6-diaminohexane and MeOH (2 mL, 1:9, v/v) and stirred overnight at room temperature before concentrated to dryness. The resulting residue was purified by silica gel column chromatography (20:78:2 MeOH:CH₂Cl₂:aq.NH₃, v/v/v) and to afford a white solid (1.5 mg, 20 %). ¹H NMR (MeOD-*d*₄, δ ppm): 8.10 (s, 1H), 7.78 (d, *J* = 0.7 Hz and *J* = 1.7 Hz, 1H), 7.26 (d, *J* = 0.7 Hz and *J* = 3.4 Hz, 1H), 7.10 (d, 2H, *J* = 8.7 Hz), 6.84 (d, 2H, *J* = 8.7 Hz), 6.68 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.42 (s, 2H), 4.38 (t, 2H, *J* = 6.8 Hz), 3.27 (t, 2H, *J* = 7.2 Hz), 2.91 (t, 2H, *J* = 7.2 Hz), 2.62 (t, 2H, *J* = 7.2 Hz), 2.26-2.23 (m, 2H), 1.68-1.66 (m, 2H), 1.64-1.62 (m, 2H), 1.61-1.58 (m, 4H). ESI-HRMS calculated for C₂₇H₃₄N₉O₃ [M + H]⁺, 532.2776; Calcd. 532.2785. HPLC purity 96% (R_t = 7.5 min).

4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenol 7.

To a solution of 2-(furan-2-yl)-7-(3-(4-methoxyphenyl)propyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (**3**, 1 eq., 90 mg, 0.231 mmol) in DCM (12 mL) was added dropwise BBr₃ (5 eq., 1 M in CH₂Cl₂, 1.18 mL, 1.18 mmol) at 0 °C. The mixture was stirred for 4 h at room temperature, hydrolyzed carefully with MeOH at 0 °C and evaporated *in vacuo* to afford a brown solid, which was used without further purification in the next step (83 mg, 95 %). ¹H NMR (MeOD-*d*₄, δ ppm) 8.12 (s, 1H), 7.78 (d, *J* = 1.1 Hz, 1H), 7.25 (d, *J* = 3.1 Hz, 1H), 6.92-7.10 (d, *J* = 8.5 Hz, 2H), 6.66 (d, *J* = 1.9 Hz, 1H), 6.61-6.65 (d, *J* = 8.5 Hz, 2H), 4.37 (t, *J* = 7.0 Hz, 2H), 2.52 (t, *J* = 7.0 Hz, 2H), 2.16-2.25 (m, 2H). ESI-HRMS calculated for C₁₉H₁₈N₇O₂ [M + H]⁺, 376.1532; Calcd. 376.1522.

Methyl 2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetate **8**.

To a suspension of 7 (1 eq., 18 mg, 0.048 mmol) in MeOH (3 mL) was added cesium carbonate (5 eq., 78.1 mg, 0.24 mmol). The mixture was stirred for 1 h at 40 °C and then methyl bromoacetate (12 eq., 0.055 mL, 0.58 mmol) was added. The mixture was stirred overnight at 40 °C and then concentrated *in vacuo*. The crude product was purified by silica gel column chromatography (DCM/MeOH : 99/1) to afford a white solid (12 mg, 90 %). ¹H NMR (MeOD-*d*₄, δ ppm) : 8.21 (s, 1H), 7.65 (d, *J* = 1.8 Hz, 1H), 7.29-7.26 (m, 1H), 7.14-7.10 (d, 2H, *J* = 8.8 Hz), 6.85-6.80 (d, 2H, *J* = 8.8 Hz), 6.63 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 5.97 (s, 2H), 4.62 (s, 3H), 4.37 (t, 2H, *J* = 7.0 Hz), 2.62 (t, 2H, *J* = 7.0 Hz), 2.30-2.19 (m, 2H). ESI-HRMS calculated for C₂₂H₂₂N₇O₄ [M + H]⁺, 448.1727; Calcd. 448.1733.

2-((1E,3E)-5-((E)-3-(6-((2-(2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)ethyl)amino)-6-oxohexyl)-3-methyl-5-sulfonato-1-(3-sulfonatopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-(3-sulfonatopropyl)-3H-indol-1-ium-5-sulfonate, triethylammonium salt **9**.

To a solution of **6a** (1 eq., 0.7 mg, 0.0015 mmol) in DMF (0.3 mL) was added Et₃N (1.1 eq., 0.0002 mL, 0.0016 mmol) and Alexa Fluor[®] 647 NHS Ester (0.54 eq., 1.0 mg, 0.0008 mmol). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column A, H₂O/AN : from 100/0 to 70/30, 40 min, $t_R = 27.8$ min) to afford after lyophilization a blue solid (1.2 mg, 62 %). ¹H NMR (D₂O-*d*₄, δ ppm): 7.87-7.84 (m, 1H), 7.79-7.76 (m, 1H), 7.75-7.71 (m, 2H), 7.59-7.57 (m, 2H), 7.50-7.48 (m, 1H), 7.28 (d, 1H, *J* = 8.3 Hz), 7.06 (d, 1H, *J* = 3.3 Hz), 6.92 (d, 1H, *J* = 8.3 Hz), 6.64 (d, 2H, *J* = 8.7 Hz), 6.53 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 6.29-6.19 (m, 4H), 5.87 (d, 1H, *J* = 13.7 Hz), 5.37 (s, 1H), 4.21-4.19 (m, 2H), 4.16-4.13 (m, 2H), 4.08-4.02 (q, NCH₂), 3.96 (d, 1H, *J* = 14.6 Hz), 3.86-3.82 (m, 2H), 3.76 (d, 1H, *J* = 14.6 Hz), 3.66-3.52 (m, 1H), 3.57-3.54 (m, 1H), 3.11-3.00 (m, 2H), 2.94-2.91 (m, 2H), 2.84 (t, 2H, *J* = 7.25 Hz), 2.55 (m, 2H), 2.22-2.11 (m, 2H), 2.08 (t, 2H, *J* = 7.25 Hz), 1.99-1.94 (m, 3H), 1.82 (s, 1H), 1.54 (s, 3H), 1.49 (s, 3H), 1.41 (s, 3H), 1.34-1.26 (m, 2H), 1.23-1.18 (m, 5H), 1.16 (t, NCH₃), 1.09-1.01 (m, 1H). ESI-HRMS calculated for C₅₉H₆₈N₁₁O₁₆S4 [M + H]⁺, 1314.3739; Calcd. 1314.3728. HPLC purity 99% (R_t = 14.0 min).

2-((1E,3E)-5-((E)-3-(6-((4-(2-(4-(3-(5-amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl)propyl)phenoxy)acetamido)butyl)amino)-6-oxohexyl)-3-methyl-5-sulfonato-1-(3-sulfonatopropyl)indolin-2-ylidene)penta-1,3-dien-1-yl)-3,3-dimethyl-1-(3-sulfonatopropyl)-3H-indol-1-ium-5-sulfonate, triethylammonium salt **10**.

To a solution of **6c** (1 eq., 0.741 mg, 0.0015 mmol) in DMF (0.3 mL) was added Alexa Fluor[®] 647 NHS Ester (0.543 eq., 1 mg, 0.0008 mmol) and Et₃N (1.1 eq., 0.0002 mL, 0.00162 mmol). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column A, H₂O/AN : from 100/0 to 70/30, 40 min, t_R = 29.06 min) to afford after lyophilization a blue solid (1.5 mg, 76 %). ¹H NMR (MeOD-*d*₄, δ ppm): 7.83-7.65 (m, 5H), 7.56 (m, 2H), 7.48 (d, 1H, *J* = 8.4 Hz), 7.24 (d, 1H, *J* = 7.6 Hz), 6.98 (m, 1H), 6.91, (d, 1H, *J* = 7.6 Hz), 6.62 (d, 2H, *J* = 6.3 Hz), 6.51 (m, 1H), 6.23 (d, 2H, *J* = 8.8 Hz), 6.18-6.13 (m, 1H), 5.79 (d, 1H, *J* = 13.2 Hz), 4.10 (m, 4H), 3.94 (d, 1H, *J* = 14.4 Hz), 3.83-3.82 (m, 2H), 3.71 (d, 1H, *J* = 10.8 Hz), 3.10 (q, NCH₂), 3.01 (m, 2H), 2.95-2.80 (m, 8H), 2.49 (m, 2H), 2.14-2.11 (m, 6H), 1.99-1.92 (m, 4H), 1.49 (s, 3H), 1.41 (s, 3H), 1.37 (s, 3H), 1.23-1.20 (m, 6H), 1.17 (t, NCH₃), 1.06 (m, 2H). ESI-HRMS calculated for C₆₁H₇₂N₁₁O₁₆S4 [M + H]⁺, 1342.4052; Calcd. 1342.4041. HPLC purity 99% (R_t = 10.1 min).

(E) - N - (4 - (2 - (4 - (3 - (5 - Amino - 2 - (furan - 2 - yl) - 7H - pyrazolo[4, 3 - e][1, 2, 4]triazolo[1, 5 - c]pyrimidin - 7 - yl)propyl)phenoxy) acetamido) butyl) - 6 - (2 - (4 - (2 - (5, 5 - difluoro - 7 - (thiophen - 2 - yl) - 5H - 4l4, 5l4 - dipyrrolo[1, 2 - c: 2', 1' - f][1, 3, 2]diazaborinin - 3 - yl)vinyl) phenoxy) acetamido) hexanamide**11**.

To a solution of **6c** (1 eq., 1.5 mg, 0.0029 mmol) in DMF (0.3 mL) was added Et₃N (3.0 eq., 1.2 μ L, 0.0087 mmol) and BODIPY[®] 630/650-X NHS Ester (0.8 eq., 1.57 mg, 0.0024 mmol). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column A, H₂O/AN : 50/50 to 0/100, 40 min, t_R = 29.9 min) to afford after lyophilization a blue solid (1.9 mg ; 61 %). ¹H NMR (MeOD-*d*₄, δ ppm): 8.05 (m, 2H), 7.74 (m, 1H), 7.60 (d, 1H, *J* = 7.6 Hz), 7.56 (d, 2H, *J* = 7.6 Hz), 7.46 (d, 1H, *J* = 3.9 Hz), 7.31 (s, 1H), 7.23 (d, 1H, *J* = 3.2 Hz), 7.18 (m, 2H), 7.00 (d, 1H, *J* = 4.4 Hz), 7.07-7.03 (m, 4H), 6.99 (d, 2H, *J* = 8.8 Hz), 6.65 (m, 1H), 4.36 (m, 2H), 4.29 (t, 2H, *J* = 6.8 Hz), 3.22 (t, 2H, *J* = 6.4 Hz), 3.12-3.10 (m, 2H), 2.56 (t, 2H, *J* = 6.4 Hz), 2.19-2.13 (m, 4H), 1.59-1.43 (m, 8H), 1.28-1.26 (m, 2H), 1.21-1.19 (m, 2H). ESI-HRMS calculated for C₅₄H₅₆BF₂N₁₂O₆S [M + H]⁺, 1049.4224; Calcd. 1049.4228. HPLC purity 96% (R_t = 13.6 min).

5-((4-(2-(4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7yl)propyl)phenoxy)acetamido)butyl)carbamoyl)-2-(6-amino-3-imino-4,5-disulfo-3H-xanthen-9yl)benzoic acid, triethylammonuim salt **12**

To a solution of **6c** (1 eq., 0.71 mg, 0.00141 mmol) in DMF (0.14 mL) was added Et₃N (1.1 eq., 0.0002 mL, 0.0016 mmol) and Alexa Fluor[®] 488 Carboxylic Acid, 2,3,5,6-Tetrafluorophenyl Ester, 5-isomer (0.8 eq., 1 mg, 0.0011 mmol). The flask was protected from light, and the mixture was stirred overnight. The crude product was then directly purified by HPLC (column B, H₂O/AN : 100/0 to 70/30, 20 min, t_R = 10.7 min) to afford after lyophilization an orange solid (0.47 mg ; 33 %). ¹H NMR (D₂O, δ ppm): 8.07 (s, 1H), 7.82 (s, 1H), 7.70 (m, 1H), 7.58 (s, 1H), 7.02 (d, 1H, *J* = 3.6 Hz), 6.85 (d, 2H, *J* = 9.6 Hz), 6.69-6.66 (m, 5H), 6.53 (m, 1H), 6.39 (d, 2H, *J* = 8.4 Hz), 4.09 (m, 4H), 3.24 (s, 2H), 3.10 (q, NCH₂), 3.07-3.05 (m, 2H), 2.27-2.25 (m, 2H), 2.03 (m, 2H), 1.39 (m, 4H), 1.17 (t, NCH₃). ESI-HRMS calculated for C₄₆H₄₀N₁₁O₁₃S₂ [M + H]⁺, 1020.2411; Calcd. 1020.2405. HPLC purity 99% (R_t = 10.1 min).

4-((4-(3-(5-Amino-2-(furan-2-yl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-

yl)propyl)phenoxy)methyl)benzenesulfonate ammonium salt 13

To a solution of 7 (1 eq., 10 mg, 0.0266 mmol) in DMF (4.29 mL) under N₂ was added NaH (1 eq., 0.64 mg, 0.027 mmol) and the mixture was stirred for 15 min at room temperature before adding sodium 4-(bromomethyl)benzenesulfonate (1.1 eq., 8 mg, 0.0293 mmol). After 1 h stirring at room temperature, sodium 4-(bromomethyl)benzenesulfonate (1.1 eq., 8 mg, 0.0293 mmol) was added again, and the mixture was stirred for 45 min. The mixture was then treated with MeOH, concentrated *in vacuo* and purified by silica gel column chromatography (DCM/MeOH/NH₃: 85/15/1) to afford a white solid (6.3 mg, 42 %). ¹H NMR (MeOD-*d*₄, δ ppm) : 8.12 (s, 1H), 7.77-7.76 (m, 3H), 7.76 (m, 1H), 7.49 (d, 1H, *J* = 8.0 Hz), 7.45 (d, 2H, *J* = 8.4 Hz), 7.24 (dd, 1H, *J* = 0.4 Hz and *J* = 3.2 Hz), 7.04 (d, 2H, *J* = 8.8 Hz), 6.80 (d, 2H, *J* = 8.8 Hz), 6.67 (dd, 1H, *J* = 1.6 Hz and *J* = 3.2 Hz), 4.99 (s, 2H), 4.69 (br s, 1H), 4.38 (t, 2H, *J* = 7.0 Hz), 2.62 (t, 2H, *J* = 7.0 Hz), 2.27-2.24 (m, 2H). ESI HRMS calculated for C₂₆H₂₂N₇O₅S⁻[M-H]⁻, 544.1401; Calcd. 544.1403. HPLC purity 96% (R_t = 10.8 min).

Pharmacological assays:

Cell culture for membrane binding assays and flow cytometry: HEK-293 cells stably expressing the $A_{2A}AR$ were grown in Dulbecco's Modified Eagle's Medium (DMEM) with 10% FBS, 100 units/ml penicillin, 100 mg/ml streptomycin, 2 mM L-glutamine and 0.500 mg/mL G418 Sulfate (Geneticin). Cells were maintained in a humidified atmosphere and sterile incubation conditions held at 37 °C and 5% CO₂ (g). A day prior to the experiment, cells were plated on a 96-well clear and flat bottom plate at 80-90% confluency in 100 µL of medium.

Radioligand binding assays: Cell membranes were prepared as reported.¹

Binding assays were carried out using standard radioligands and membrane preparations from HEK-293 cells stably expressing the human (h) A₁, A_{2A} or A₃ARs or mouse (m) A₁, A_{2A} or A₃ARs. The radioligands used were: A₁AR, [³H]8-cyclopentyl-1,3-dipropylxanthine **14**; A_{2A}AR, [³H]**2**; A₃AR, [¹²⁵I] N^{6} -(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide **16**. The radioligand for archival A_{2A}AR affinity data presented in Table 1 was [³H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine **15**. Nonspecific binding was determined using 10 μ M 8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-1,3-dipropylxanthine **17** (A₁AR and A_{2A}AR) or 10 μ M adenosine-5'-N-ethyluronamide **18** (A₃AR). HEK-293 cells expressing recombinant mA₁, A_{2A}, or A₃AR were used.

Protein was determined as reported.² In all the binding experiments, IC_{50} values and K_i values were calculated using GraphPad Prism software (San Diego, CA). Values are expressed as mean±SEM.

Fluorescent binding studies: All binding studies were done in triplicate. For saturation binding studies, cells were treated with 50 μ L of **11** (MRS 7396) or **12** (MRS 7416), to achieve a final concentration from 0.19 to 400 nM, and 50 μ L of Tris-HCl buffer containing 10 mM MgCl₂. Non-specific binding was determined with SCH442416 **3** (final concentration of 10 μ M, in Tris-HCl buffer). For displacement experiments, cells were incubated simultaneously with 50 μ L of 40 nM **11** or **12** (final concentration 10 nM) and 50 μ L of the non-labeled displacing ligand at increasing concentrations. The total binding was measured in the absence of a displacing ligand, and non-specific binding was determined with 10 μ M **3**. After 1 h at 37 °C (for both the saturation and displacement experiments), the medium was removed and the cells were carefully washed two times with 150 μ L of ice-cold PBS (not containing Mg⁺² or Ca⁺²). The cells were treated with 40 μ L of Corning Cellstripper (Mediatech, Manassas, VA) per well and then incubated at 37 °C for 10 min. To each well was subsequently added 160 μ L of PBS (not containing Mg⁺² or Ca⁺²), and the cell fluorescence was analyzed with a BD FACSCalibur flow cytometer (Becton, Dickinson and Co., Franklin Lakes, NJ) with excitation at 635 nm (red diode laser, for **11**) or 488 nm (blue laser, for **12**) in conjunction with the software from BD Bioscience PlateManager and CellQuest. Data anlysis was performed with the Prism 5 (GraphPad, San Diego, CA) software.

1. Tosh, D.K., Paoletta, S., Chen, Z., Crane, S., Lloyd, J., Gao, Z.G., Gizewski, E.T., Auchampach, J.A., Salvemini, D., Jacobson, K.A. Structure-based design, synthesis by click chemistry and in vivo activity of highly selective A₃ adenosine receptor agonists. Med. Chem. Comm., 2015, 6:555-563.

2. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.* **1976**, *72*, 248-254.

Molecular Modeling Methods

Protein preparation. The high-resolution $hA_{2A}AR$ X-ray structure in complex with the triazolo-triazine antagonist ZM241385, structurally related to the reference compound **3**, was retrieved from the Protein Data Bank (PDB)¹ (ID: 4EIY). Hydrogen atoms were added using the Protein Preparation Wizard tool implemented in the Schrödinger suite². During the protein preparation, co-crystallized hetero groups and the fusion partner (BRIL) were removed. The protonation states of titrable residues were determined according to H-bond patterns with surrounding residues. To this aim, all water molecules present in the X-Ray construct were retained during the protein preparation procedure. However, for the subsequent docking analysis only water molecules in the first solvation sphere of the ligand were kept. According to H-bond pattern analysis His75/278/306 and His155/230/250 were protonated on the N⁸ and the N⁸, respectively, whereas His264 (establishing a salt bridge with Glu169) was considered doubly protonated. The native sequence of the $hA_{2A}AR$ as well as missing side chains of residues whose backbone coordinates were observed in the X-ray structure were restored by building a homology model with Prime³.

Docking. Structures of selected ligands were built and prepared for docking using the Builder and the LigPrep tools implemented in the Schrödinger suite⁴. The structures were minimized using the OPLS_2005 force field. Molecular docking was performed with the Glide package from the Schrödinger suite⁵, with the barycenter of the co-crystallized ligand representing the center of the Glide Grid (inner box: $14 \times 14 \times 14$ Å; outer box extended by 20 Å in each direction from the inner box). Docking was performed considering the protein binding sites residues rigid by using the standard precision (SP) scoring function. Ligands were docked at the hA_{2A}AR by retaining a variable number (depending upon the specific ligand considered) of non-overlapping water molecules according to the following protocol: ligands were first docked at the hA_{2A}AR structure without water molecules; the best docking poses so obtained were superimposed with the hA_{2A}AR structure containing water molecules in the first solvation sphere of the co-crystallized ligand; after the superimposition, non-overlapping water molecules. In a few cases, iterative cycles of removal of non-overlapping water molecules and ligand docking were performed until the SP score did not further improve.

Molecular Dynamics, MD system setup, equilibration, and production were performed with the HTMD⁶ module (Acellera, Barcelona Spain, version 1.5.4). The ligand-protein complexes were embedded into an 80 x 80 Å 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membrane leaflet generated through the VMD Membrane Plugin tool⁷. Overlapping lipids (within 0.6 Å) were removed upon protein insertion and the systems were solvated with TIP3P⁸ water and neutralized by Na⁺/Cl⁻ counter-ions (final concentration 0.154 M). MD simulations with periodic boundaries conditions were carried out with the ACEMD engine (Acellera, version 2016.10.27)⁹ using the CHARMM36^{10,11}/CGenFF(3.0.1)^{12,13} force fields for lipid and protein, and ligand atoms, respectively. Ligand parameters were retrieved from the ParamChem service (https://cgenff.paramchem.org, accessed 04/2017, version 1.0.0) with no further optimization. After initial validation, the atom types for compounds 12 were manually assigned to enforce the equivalency of the atoms on the two terminal aryl rings of the fluorophore moiety, consistently with previous MD studies performed on AlexaFluor488^{14,15}. As for the specific purpose of this study atomic charges on the so-defined atom types were not optimized, the electrostatic contribution to the total ligandprotein interaction energy for this ligand was evaluated only qualitatively and will not be described in detail. The systems were equilibrated through a 5000-step minimization followed by 40 ns of MD simulation in the NPT ensemble by applying initial constraints (0.8 for the ligand atoms, 0.85 for alpha carbon atoms, and 0.4 for the other protein atoms) that were linearly reduced after 20 ns. During the equilibration procedure, the temperature was maintained at 310 K using a Langevin thermostat with a low damping constant of 1 ps⁻¹, and the pressure was maintained at 1 atm using a Berendensen barostat. Bond lengths involving hydrogen atoms were constrained using the M-SHAKE¹⁶ algorithm. The equilibrated systems were subjected to 30 ns of unrestrained MD simulations run in triplicate for each ligand-protein complex (NVT ensemble, timestep = 2 fs, damping constant = 0.1 ps^{-1}). Long-range Coulomb interactions were handled using the particle mesh Ewald summation method (PME)¹⁷ with grid size rounded to the approximate integer value of cell wall dimensions. A non-bonded cutoff distance of 9 Å with a switching distance of 7.5 Å was used. All simulations were run on three NVIDIA GeForce GTX (970, 980Ti, and 1080).

MD Trajectory Analysis. MD trajectory analysis was performed with an in-house script exploiting the NAMD 2.10¹⁸ *mdenergy* function and the RMSD trajectory tool (RSMDTT) implemented in VMD⁷. All simulations were run in triplicate and selection of representative trajectories and of lowest interaction energy (IE) ligand-protein complexes were based upon the total ligand–protein interaction energy (IE_{tot}) expressed as the sum of van der Waals (IE_{vdW}) and electrostatic (IE_{ele}) contribution as previously described¹⁹. IE vs simulation time graph was generated with an in-house script exploiting Gnuplot²⁰.

Modeling References

1. Bernstein, F. C.; Koetzle, T. F.; Williams, G. J.; Meyer Jr., E. E.; Brice, M. D.; Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank: A computer-based archival file for macromolecular structures. *J. Mol. Biol.* **1977**, *112*, 535–542.

2. Sastry, G. M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments *J. Comput. Aided Mol. Des.* **2013**, *27*, 221–234.

3. Prime, Schrödinger, LLC, New York, NY, 2017.

4. LigPrep, Schrödinger, LLC, New York, NY, 2017.

5. Glide, Schrödinger, LLC, New York, NY, 2017.

6. Doerr, S.; Harvey, M. J.; Noé, F.; De Fabritiis, G. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. *J. Chem. Theory Comput.*, **2016**, *12*, 1845-1852.

7. Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual molecular dynamics. J. Mol. Graphics, 1996, 14, 33–38.

8. Jorgensen W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **1983**, *79*, 926–935.

9. Harvey, M.; Giupponi, G.; De Fabritiis, G. ACEMD: Accelerated molecular dynamics simulations in the microseconds timescale. *J. Chem. Theory Comput.* **2009**, *5*, 1632–1639.

10. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell Jr., A. D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi1 and chi2 dihedral angles. *J. Chem. Theory Comput.* **2012**, *8*, 3257–3273.

11. Klauda, J. B.; Venable, R. M.; Freites, J. A.; O'Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell Jr., A. D.; Pastor, R. W. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. *J. Phys. Chem. B*, **2010**, *114*, 7830-7843.

12. Vanommeslaeghe, K.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. *J. Chem. Inf. Model.* **2012**, *52*, 3144-3154.

13. Vanommeslaeghe, K.; Raman, E. P.; MacKerell, A. D., Jr., Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. *J. Chem. Inf. Model.* **2012**, *52*, 3155-3168.

14. Kräutler, V.; Van Gunsteren, W. F.; Hünenberger, P. H. A Fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. *J. Comput. Chem.* **2001**, *22*, 501-508.

15. Corry, B.; Jayatilaka, D. Simulation of Structure, orientation and Energy transfer between AlexaFluor Molecules Attached to MscL. *Bioph. J.* **2008**, *95*, 2711-2721.

16. Walczewska-Szewc, K.; Deplaxes, E.; Corry, B. Comparing the Ability of Enhanced Sampling Molecular Dynamics Methods To Reproduce the Behavior of Fluorescent Labels on Proteins. *J. Chem. Theory Comput.* **2015**, *11*, 3455-3465.

17. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; LeeH.; Pedersen L. G. A. Smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593.

18. Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD *J. Comput. Chem.* **2005**, *26*, 1781-1802.

19. Williams, T.; Kelley, C. Gnuplot 5.0: An Interactive Plotting Program, version 5.0.3, 2017; <u>http://gnuplot.info</u> (accessed April 10, **2017**).

20. Toti, K. S.; Osborne, D.; Ciancetta, A.; Boison, D.; Jacobson, K. A. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase. *J. Med. Chem.* **2016**, 59, 6860-6877.

Molecular Modeling Results: Tables and Figures

Table S1. Parameters considered for the selection of a representative trajectory among three replicas: protein alpha carbon atoms ($C\alpha$) average RMSD, ligand average RMSD, and slope of the dynamic scoring function (DSFslope). RMSD values are in Å and DSF is adimensional. Selected runs are marked in bold.

Ligand	Due Number	DSFslope	Average RMSD [Å]			
Ligand	Kun Number	[adimensional]	Ligand	Calpha		
	1	-38.325	1.819	1.611		
2	2	-14.632	3.892	1.970		
	3	-59.813	1.524	1.871		
	1	-23.526	3.587	1.657		
6c (BM1)	2	-23.990	4.231	1.575		
· · ·	3	-21.610	4.045	1.468		
	1	-26.236	2.866	1.478		
6c (BM2)	2	-22.169	3.545	1.767		
· · ·	3	-34.341	2.368	1.567		
	1	-12.775	5.465	1.560		
12 (BM1)	2	-28.363	3.106	1.676		
	3	-30.760	3.083	1.546		
	1	-71.977	3.268	1.505		
12 (BM2)	2	-130.815	1.835	1.420		
	3	-86.127	3.004	1.409		
	1	-10.573	6.704	1.652		
13 (BM1)	2	-27.083	3.129	1.749		
	3	-19.874	3.289	1.789		
	1	-26.010	3.355	1.695		
13 (BM2)	2	-22.557	5.427	1.368		
	3	-28.201	2.256	1.511		
	1	-21.335	5.235	1.494		
13 (BM3)	2	-26.411	4.350	1.458		
	3	-17.947	4.426	1.832		

Figure S1. Most energetically favored ligand-protein structure (Interaction Energy = -89.544 kcal/mol)) obtained for **2**-hA_{2A}AR complex in the selected MD run starting from the docking pose. In this snapshot the ligand features the same interaction pattern observed for the initial docking pose, thus validating the quality of the ligand-protein interaction predicted by docking. Side view facing TM6, TM7, and TM1 (from the left).

Figure S2. Two alternative binding modes obtained for compound **6c**, the synthetic precursor of **11**, at the hA_{2A}AR. In the most energetically favored docking complex (orange carbon sticks, docking score =- 12.077 kcal/mol) the points toward TM4 and TM5, the amide moiety establishes a H-bond with the sidechain of E169, and the terminal amine group engages in H-bond interactions with the backbone of E169 (EL2) and the sidechain of K150 (EL2). In the alternative binding mode (green carbon sticks, docking score =-10.994 kcal/mol), the tail points toward TM1 and TM2 and does not establish additional interactions. Residues establishing polar (dashed orange lines) and π - π interactions with the docked ligands are represented as thin sticks. Non-polar hydrogen atoms are omitted.

Figure S3. Three-dimensional representation (A) and schematic depiction (B) of the distance between the terminal ammine group and the centroids of the aromatic moieties in the fluorophore group of **11**. (C) Most energetically favored ligand-protein complexes obtained after MD simulation, starting from **6c**-hA_{2A}AR docked complexes. Aromatic (solid surface) and hydrophobic (wireframe surface) regions in the proximity of the terminal amine moiety are colored according to the distance from the nitrogen atom as follows: 5 Å = magenta, 13 Å = green, and 14 Å = yellow. As depicted, only in one orientation the proximity of aromatic/hydrophobic regions in the protein (colored arrow) are compatible with the placement of the aromatic moieties of the fluorophore group of **11**. Side view, facing TM6, TM7, and TM1 (from the left).

Figure S4. Superimposition of the most energetically favorable **12**-hA_{2A}AR complexes obtained after three MD simulation starting from BM2: the three replicas converged in a unique binding mode. The structures are colored according to the IE value, the lower (more favorable) the value the darker the color.

Figure S5. (A) Superimposition of the most energetically favorable **13**-hA_{2A}AR complexes obtained after MD simulation starting from three different binding modes (BM1 = cyan, BM2 = magenta, BM3 = orange): the three different initial poses converged in a unique binding mode. (B) Ligand-protein complex with the lowest interaction energy (IE = -201.590 kcal/mol) obtained after MD simulation starting from BM3: with respect to its initial conformation, the 7-phenylpropyl ring of the ligand moves toward TM7 and establishes a π - π stacking interaction with Y271 (7.36). Both A and B are a side view facing TM6, TM7, and TM1 (from the left).

Pharmacological Results

Inhibition of whole cell binding of fluorescent probe 12 by agonists:

Although the inhibition of binding of AlexaFluor488 conjugate **12** provided the expected affinities when employing antagonists, the inhibition by agonists was complex, possibly due to multiple affinity states of this GPCR for agonists. Further study is required.

Agonists 2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine **15** and 6-(2,2-diphenylethylamino)-9-((2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxytetrahydrofuran-2-yl)-N-(2-(3-(1-(pyridin-2-yl)piperidin-4-yl)ureido)ethyl)-9H-purine-2-carboxamide **19** bound with K_i values, respectively, of 4.0 and 99 nM.

Demonstration of antagonist action at the hA2AAR:

Figure S6. Right shifts of the hA_{2A}AR curve for activation, i.e. cyclic AMP accumulation, by CGS21680 **15**, induced by antagonists **11** (A) and **13** (B). Results are expressed and mean \pm SEM from 2-3 experiments performed in duplicate. The EC₅₀ of CGS21680 **15** alone was 0.89 \pm 0.17 nM, in the presence of **11** (1000 nM), EC₅₀ = 128 \pm 35 nM; in the presence of **13** (100 nM), EC₅₀ = 10.2 \pm 2.3 nM.

Chinese hamster ovary (CHO) cells stably expressing the human $A_{2A}AR$ were cultured in Dulbecco's Modified Eagle Medium (Mediatech, Manassas, VA) supplemented with 10% fetal bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin and 2 µmol/ml glutamine. Cells were plated in 96-well plates in 100 µl medium. After 24 h, the medium was removed and cells were washed three times with 100 µl DMEM, containing 50 mM HEPES, pH 7.4. Cells were treated with antagonists (or medium for control) in the presence of rolipram (10 µM) and adenosine deaminase (3 units/ml) and 5 min later with agonist for 20 min. The reaction was terminated by removal of the supernatant, and cells were lysed upon the addition of 100 µl of lysis buffer (0.3% Tween-20). cAMP was measured using ALPHAScreen cAMP kits (PerkinElmer, Boston, MA) as instructed by the manufacturer.

Off-target interactions for selected compounds (K_i in radioligand binding inhibition <10 μ M)

Refer to: <u>http://pdspdb.unc.edu</u> for full list of comprehensive screen at 45 targets.

PDSP 48400, MRS7352 (13)

None detected.

6b, MRS7353

onoisotopic Mass, Even Electron Ions 2 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) lements Used:

9-Dec-2018 dx-19dec16-017 127 (2.349) Cn (Cen.5, 50.00, Ar); Sm (SG, 1x3.00); Sb (12,5.00)

TOF MS ES+

Signal 1: DAD1 A, Sig=254,8 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area 1
1	6.915	MM	0.4503	8.88846e4	3289.68872	98.8995
2	7.776	MM	0.0852	207.92612	40.68391	0.2314
3	8.463	MM	0.3377	781.08868	38.54378	0.8691
Total	8 ;			8.98736e4	3368.91641	

6c, MRS7354

Monoisotopic Mass, Even Electron Ions 93 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 9-9 O: 0-40

21-Dec-2016 rdx-21dec16-018 184 (3.402) Cn (Cen,5, 50.00, Ar); Sm (SG, 1x3.00); Sb (12,5.00)

TOF MS ES+ 2.80e+003

6d, MRS7355

Monoisotopic Mass, Even Electron Ions 102 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 9-9 O: 0-40 04-Jan-207 rdx-04jan17-029-mrs/355 118 (2.182) Cn (Cen.5, 50.00, Ar); Sm (SG, 1x3.00); Sb (12,5.00) 518.3 100-519.3 % -2.0 1000.0 Minimum: Maximum: 10.0 10.0 nDa PPM DBE 1 - FTTFormula Mass Calc. Mass $\begin{array}{c}
 15.5 \\
 6.5 \\
 2.5
 \end{array}$ 81.1 174.2 268.5 C26 H32 N9 O3 C19 H36 N9 O8 C15 H36 N9 O11 0.3 -5.6 9.7 0.6 -10.8 18.7 518.2631 518.2628 518.2687 518.2534 RDX029 (01-04-2017) -MeOD E88-99 80000 - 8 -4.418 -4.395 -4.378 -4.361 3.5 3.0 2.5 2.0 1.5 ppm 5.0 4.5 4.0 6.0 5.5 8.0 7.5 7.0 6.5 100 2.34 F 100 200 88 ŝ

TOF MS ES+ 4.61e+003

6e, MRS7356

Monoisotopic Mass, Even Electron Ions 103 formula(e) evaluated with 3 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 9-9 O: 0-40 03-Jan-2017 rdx-03jan17-020 131 (2.423) Cn (Cen.5, 50.00, Ar); Sm (SG, 1x3.00); Sb (12,5.00) 520 3 TOF MS ES+ 6.78e+003 532.3 100-533.3 % 471.3 476.3 481.4 489.3 486.4 503.3 509.5 513.4 523.5 531.4 537.5 548.4 551.5 559.4 581.4 563.4 564.4 572.4 581.4 567.4 592.4 599.4 677. 675. 580 585 500 595 600 405 470 475 480 485 490 495 500 505 516 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 500 595 600 -2.0 1000.0 Minimum: Maximum: 10.0 10.0 i-FIT Formula DBE nDa PPM Calc. Mass Mass C27 H34 N9 O3 C20 H38 N9 O8 C16 H38 N9 O11 6.6 62.2 160.6 15.5 6.5 2.5 -1.7 -12.6 16.0 -0.9 -6.7 8.5 532,2785 532,2843 532,2691 532,2776 RDX020-4 (12-30-2016)-dmso 7.269 7.269 7.261 7.261 6.847 6.847 6.695 6.695 6.695 6.682 3.287 3.269 3.269 2.929 2.929 2.929 2.929 2.626 2.283 2.626 5.283 2.293 2.293 4.419 4.403 4.386 -7.779 -8.105 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 ppm 112 ST 1.21 2.99 2.65 2.00 128 1.76 1.81 1.87

9, MRS7322

Sata File 0:\{hem33\1\Sata\32040/0ex 2016-05-04 15-03-13\Y3-1-250000002.0 Sample Name: Y3-1-15

are, deerstor	: \$15704	Seq. Line : 2
Aco. Instrument	: HPLC-003	Location 1
Intertion Date	: 5/4/2016 3:35:35 PM	14j: 1
		Inj Valume : 10.000 pl
Olfferent Inj V	Volume from Sample Entry!	Actual Inj Vulume : 5.000 µl
Sequence File	: D:\Chem32\1\De1a\33NHA	/New 2016-05-04 15-00-13/New.5
Nethod	: D:\Chex33\1\Dota\33NHA	New 2016-05-04 15:00:13\MMAL_A20-50_C00-40_15PD4.H
	Sequence Hethod)	
Last changed	: 5/4/2856 3100113 PH by	SYSTEM

1 2 3 4	14.028 22.090 22.851 22.929	58 60 0V VV	0.1568 0.0996 0.1064 0.0684	9.63941 123.17556 35.29288	1,34534 14,60608 8,87608	1.0620 13.5703 3.8882
5	23,020	V8	0.1111	63.38794	7.45948	6.9839
Tatal				987,68542	99,81921	

Signal 2: 0401 8, Sig=280,8 Ref=360,100

Peak RetTime Ty/ # [min] 1 14.029 BB 2 22.090 98 3 22.853 UV 4 22.927 VV 5 33.030 VD	0.0937 0.0506 0.1508	Area [mAU*s] 688.06165 7.60416 64.20507 17.22940 29.61807	Height [mAU] 68.71677 1.12209 8.73712 4.50268 3.90876	Anea % 85.2914 0.9426 7.9588 2.1357 3.6714
Totals :		806.71834	\$6.98742	

Signal 3: DAD1 C, Sig=647,4 Ref=360,100

Peak RetTime Type # [min] 	Width [min] 0.1506 0.0348 0.0751	Area [mAU*s] 6023.11035 25.71258 32.46241	Height [mAU] 602,50580 10.43033 6.00627	Area % 99.0434 0.4228 0.5338
Totals :		6081.28535	618.94239	

10, MRS7395

 Wonoisotopic Mass, Even Electron Ions

 442 formula(e) evaluated with 7 results within limits (up to 19 closest results for each mass)

 Elements Usad:

 C: 0-100
 H: 0-200

 N: 11-11
 O: 0-40

 32S: 4-4

 26-Jan-2017

 xxx28pin17-sample-neg

 232 (4.291) Cn (Cen,5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

www.waganiii. wa													12/02/07/07/04	
100 	1336.8 1336.8 1335.0 134	1342.4 1343 41.4 41.4 0.0 134	.4 1345.4 1346.4 1346.4 15.0 12	1350.5 1353 1990-1991	3.9 1356.4 1357.	13 4 1362.3 14-1-1-1 60.0 1	M.4 1365.4 1365.0	4 1367.4 137	1372.4,1 +-+++-0 0.0	373.4 1379. 	4 1380.3 1381. 	1386.4 4 1388 1385.0	^{1,4} 1389,4 1392.3 +Մ-Մ-Դ-Է m/2 1390.0	Ŀ
Minimum: Maximum:		10.0	10.0	-2.0 1000.0										
Mass	Calc. Mass	nDa	PPM	DBE	1-FIT	Formula								
1342.4052	1342.4041 1342.4065 1342.4076 1342.4076 1342.4006 1342.4100 1342.3903 1342.4135	1.1 -1.3 -2.4 4.6 -4.8 6.9 -8.3	0.8 -1.0 -1.8 3.4 -3.6 5.1 -6.2	31.5 0.5 53.5 9.5 22.5 40.5 44.5	17.8 73.1 5.4 52.7 28.7 10.5 8.1	C61 H7 C36 H8 C79 H6 C43 H8 C54 H7 C68 H6 C72 H6	2 N11 4 N11 4 N11 0 N11 6 N11 8 N11 8 N11	016 034 029 021 011 08	3284 3284 3284 3284 3284 3284 3284 3284					

TOF MS ES-

11, MRS7396

Monoisotopic Mass, Even Electron Ions 320 formula(e) evaluated with 5 results within limits (up to 19 closest results for each mass) Elements Used: C: 0-100 H: 0-200 N: 10-10 O: 0-40 F: 2-2 32S: 1-1 11B: 1-1

31-Jan-2017 rdx-31jan17-056 279 (5.159) Cn (Cen.5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00)

TOF MS ES+

TOF MS ES+ 6.97e+003

12, MRS7416

 120, 171100

 Monoisotopic Mass, Even Electron Ions

 307 formula(e) evaluated with 8 results within limits (up to 19 closest results for each mass)

 Elements Used:

 C: 0-100
 H: 0-200

 N: 11-11
 O: 0-40
 325: 2-2

 03-Mar-2017
 rdx-03mar17-085
 118 (2.182) Cn (Cen, 5, 50.00, Ar); Sm (SG, 3x5.00); Sb (12,5.00.)

100-1 1020.2

%	021.3						
0 1020.0	1022.3 1023.3 1024.2 1025.0	103	0.0	1035.0	1040.0	1042.2.1043.3 1064.2 1045.0 1050.0 1065.0 1060.0 100	έ τ- m/z 85.0
Minimum: Maximum:		10.0	10.0	-2.0 1000.0			
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Formula	
1020.24)	11 1020.2405 1020.2429 1020.2440 1020.2370 1020.2464 1020.2346 1020.2346 1020.2499 1020.2311	0.6 -1.8 -2.9 4.1 -5.3 6.5 -8.8 10.0	0.6 -1.8 -2.8 4.0 -5.2 6.4 -8.6 9.8	31.5 0.5 53.5 9.5 22.5 40.5 44.5 18.5	50.1 512.7 167.5 292.5 91.1 65.5 89.4 150.6	C46 H42 N11 013 3282 C21 H54 N11 031 3282 C64 H34 N11 3282 C39 H46 N11 026 3282 C53 H38 N11 08 3282 C53 H38 N11 08 3282 C57 H38 N11 05 3282 C35 H46 N11 021 3282	

13, MRS7352

Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
	[min]		[min]	[mAU*s]	[UAm]	8
1	8.312	MM	0.3210	26.23638	1.36222	0.2104
2	9.175	MM	0.3816	47.96289	2.09474	0.3846
3	9.704	MM	0.1867	191.19376	17.06560	1.5332
4	10.486	MM	0.1954	47.38156	4.04104	0.3800
5	10.828	MM	0.2401	1.19515e4	829.54095	95.8390
6	12.006	MM	0.1946	121.38776	10.39646	0.9734
7	16.317	MM	0.2314	53,98130	3.88733	0.4329
8	20.474	MM	0.0692	13,98472	3.36783	0.1121
9	20.702	MM	0.0850	16.77163	3.28925	0.1345
Total	10 :			1.24704e4	875.04543	

Signal 2: DAD1 B, Sig=280,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	8.300	BB	0.2367	68.20911	4.13051	0.5514	
2	9.593	BV	0.0725	8.43298	1.80643	0.0682	
3	9.696	VB	0.1355	26.96090	2.77155	0.2180	
4	10.221	BV	0.1309	16.29919	1.84790	0.1318	
5	10.564	VV	0.2031	100.01395	6.30378	0.8085	
- G	10.828	VB	0.1914	1.18983e4	809.86029	96.1875	
7	11.993	BB	0.2353	228.84384	14.10428	1.8500	
8	20.476	BB	0.0649	9.94817	2.27815	0.0804	
9	20.702	BB	0.0868	12.89487	2.06762	0.1042	
Total	ls :			1.23699e4	845.17053		

UV absorption of MRS 7322

amount = 8.71 μg

