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Abstract—NoSQL data stores are becoming popular due to
their schema-less nature. They offer a high level of flexibility,
since they do not require to declare a global schema. Thus, the
data model is maintained within the application source code.
However, due to this flexibility, developers have to struggle
with a growing data structure entropy and to manage legacy
data. Moreover, support to schema evolution is lacking, which
may lead to runtime errors or irretrievable data loss, if not
properly handled. This paper presents an approach to support
the evolution of a schema-less NoSQL data store by analyzing
the application source code and its history. We motivate this
approach on a subject system and explain how useful it is to
understand the present database structure and facilitate future
developments.

I. INTRODUCTION

NoSQL data stores are becoming increasingly popular in the
context of big data software development. These data stores
were designed to manipulate big volumes of data that are
not organized according to the relational model. NoSQL tech-
nologies were introduced to address some relational database
limitations: simplicity of design, faster query execution and
flexibility. Indeed, most NoSQL data stores are schema-less
and can thus manage data with ever-changing structures. In a
continuously changing environment, database schema evolu-
tion becomes an unavoidable activity and therefore, proposing
such a flexibility is a precious asset. Schema-less NoSQL data
stores do not require developers to specify a global schema,
which makes data evolution simpler. For instance, adding new
fields to a data structure can be done at any time and instantly.

However, this flexibility may lead to an increasing data
structure entropy within the system. When the schema evolves,
the outdated entities must be migrated to fit with the new struc-
tures. Nevertheless, migrating data may be time-consuming
and expensive; especially when a huge amount of data has
to be migrated or when the system is contractually linked
to a database-as-a-service provider for all data store reads
and writes. As a consequence, data migration may never be
achieved and thus, data entities of different schema versions
may co-exist in the data store. Figure 1 illustrates an ex-
ample of co-existence of legacy and up-to-date data entities
within the same NoSQL database, after several changes of
the data structure. Such an entropy may prove error-prone.
For instance, conflictual entities can cause runtime errors and
data loss, or can even corrupt the database, if not handled
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properly. For instance, changing the type of a particular field
requires to deal with both the legacy and the up-to-date entities
when manipulating data in the program. In other words, in
NoSQL data stores, the past belongs to the present, and
clearly affects the future. Therefore, understanding schema
evolution in schema-less NoSQL databases is essential for
future developments.

In schema-less data stores, no explicit database schema is
declared by developers. Thus, the main source of information
concerning the data structures is the source code itself. In
particular, the database writes and reads located in the source
code give concrete clues about data structures. Among others
NoSQL technologies, MongoDB is a schema-less document-
oriented database. It stores JSON-like documents in collec-
tions. Collections are similar to tables in relational databases,
and are composed of fields [1].
Figure 2 depicts an example of Java code manipulating enti-
ties from a MongoDB database. Useful information can be
extracted from that code sample; the existence of several
collections as well as the type of some of their fields can be
inferred. Moreover, analyzing how the source code (especially
the database-related code) evolved over time can significantly
help developers to understand how the schema evolved and
thus to prevent potentially severe errors.
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Fig. 1. Example of the co-existence of legacy and up-to-date entities within
the same NoSQL database.

This paper presents an automatic approach that aims at
supporting schema evolution in NoSQL data stores. The paper
makes two main contributions: (1) an automatic approach that
infers the database schema of a schema-less NoSQL data
store by analyzing the application source code and (2) the
application of this approach to the whole system history in
order to understand schema evolution and to prevent errors
and data losses. The remainder of this paper is structured



as follows. Section II presents our approach. Section III
illustrates the benefits of our approach on a subject system. A
related work discussion is provided in Section IV. Concluding
remarks are given in Section V.

II. APPROACH

This section presents our automatic approach allowing
developers to understand and analyze schema evolution in
schema-less NoSQL data stores. Our approach, summarized
in Figure 3, is made up of three phases, namely schema
extraction, historical schema extraction and exploitation.
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Fig. 3. Overview of our approach.

A. Schema Extraction

As previously explained, useful information about the
NoSQL database schema can be extracted by analyzing the
source code, especially those code locations accessing the
database. The first step of our automatic approach aims to
infer the database schema by statically analyzing the database
accesses from the source code. Our technique is currently
implemented for systems using the MongoDB Java driver to
communicate with the database. The choice for Java is because
it is the most popular programming language today according
to different sources such as the TIOBE Programming Com-
munity index [4]. Moreover, we focus on MongoDB which is
currently ranked among the top five database systems and at
first position among the NoSQL database systems [2].

For describing our technique, we will consider the Java code
example depicted in Figure 2. If one further observes this code,
one can detect the presence of three database accesses, at lines
3, 5 and 23, respectively. (1) Line 3 reads the database to
find a particular author based on a given identifier; (2) line 5
reads the database to find a particular show based on a given
identifier; (3) line 23 updates a particular author.
Through this example and by reading the Java MongoDB API
documentation1, we can make two important observations:

1) A database access may use one or several selection
criteria to create the query (e.g., authorQuery at line 3,
showQuery at line 5 and, authorQuery and author
at line 23). Thus, analyzing the operations performed on
those objects before the database access execution, brings
added information about the collection fields concerned by
the selection criteria.

2) A database access may return a set of objects resulting
from the operation (e.g., author and show variables respec-
tively at line 3 and 5, storing the query results). Analyzing the

1https://api.mongodb.com/java/current/

read operations performed on those objects after the access
execution, gives indications about the fields they contain.

In other words, information about the database structures
may be inferred by analyzing (1) the usage flow of the query
inputs before query execution and (2) the usage flow of the
query outputs after query execution. A first algorithm can be
proposed:
1 foreach access ∈ getAccesses() do
2 getCollectionNames(access);
3 foreach input ∈ access.inputs do
4 analyzeUsageFlowBefore(input);
5 end
6 foreach output ∈ access.outputs do
7 analyzeUsageFlowAfter(output);
8 end
9 end

Line 1 detects the code locations accessing the database.
We achieve this first step by exhaustively listing the set of
Java methods provided by the MongoDB API that allows
developers to query the database. Once this list established,
we use a visitor class which parses the Java code and
detects any MongoDB database accesses. For each detected
access, we have to determine which collection(s) is queried
(line 2). This information can be obtained by analyzing
instructions in the form of DB.getCollection(String
collectionName). The answer is in the value affected
to collectionName. However this value depends on the
call graph of the application and the intra-procedural control-
flow of the methods. Indeed, building a string value may
necessitate to pass through different statements and boolean
conditions (e.g., for, while, if-then-else statements). Thus,
our static analysis has to consider all the possible program
paths. Similarly, the string value construction may be done
by successive concatenations of string fragments or by using
some input parameters of the local method. Therefore, we need
to consider the call graph of the application to get the actual
values of the string input parameters. To achieve this task of
string reconstruction, we use the tool support we developed
in our previous work dedicated to database access recovery in
Java source code [6]. We developed an extended version of this
static analysis approach to automatically reconstruct a string
value by exploring the call graph of the application and the
intra-procedural control-flow of the methods. Let us come back
to our example in Figure 2: our static analyzer automatically
detects that the database accesses at line 3, 5 and 23 actually
query, respectively, the author, show and author collections.

The next step consists in analyzing the input objects
which serve as selection criteria for the query creation
(analyzeUsageFlowBefore procedure). Thanks to the
MongoDB API, we pointed out that the creation crite-
ria are mainly expressed by means of the DBObject,
BasicDBObject and BasicDBList classes. An instance
of those classes is a key-value map that can be stored in the
database, where the key represents a field name and the value
is the field value. Accordingly, analyzing the usage flow of that
map from its creation until the access execution allows us to
spot the fields used to define the query. To realize this task, we



1 p u b l i c S t r i n g save ( C o n t r i b u t i o n T o S a v e c o n t r i b u t i o n T o S a v e ) {
2 BasicDBObjec t a u t h o r Q u e r y = new BasicDBObjec t ( ” i d ” , new O b j e c t I d ( c o n t r i b u t i o n T o S a v e . g e t A u t h o r ( ) . g e t I d ( ) ) ) ;
3 DBObject a u t h o r = db . g e t C o l l e c t i o n ( ” a u t h o r ” ) . f indOne ( a u t h o r Q u e r y ) ;
4 BasicDBObjec t showQuery = new BasicDBObjec t ( ” i d ” , new O b j e c t I d ( c o n t r i b u t i o n T o S a v e . getShow ( ) . g e t I d ( ) ) ) ;
5 DBObject show = db . g e t C o l l e c t i o n ( ” show ” ) . f indOne ( showQuery ) ;
6 a d d C o n t r i b u t i o n T o A u t h o r ( c o n t r i b u t i o n T o S a v e , au thorQuery , a u t h o r , show ) ;
7 re turn ” ok ” ; }
8

9 p r i v a t e vo id a d d C o n t r i b u t i o n T o A u t h o r ( C o n t r i b u t i o n T o S a v e c o n t r i b u t i o n T o S a v e , Bas icDBObjec t au thorQuery , DBObject a u t h o r ,
DBObject show ) {

10 Bas icDBLis t c o n t r i b u t i o n s = ( Bas icDBLis t ) a u t h o r . g e t ( ” c o n t r i b u t i o n s ” ) ;
11 i f ( c o n t r i b u t i o n s == n u l l ) {
12 c o n t r i b u t i o n s = new Bas icDBLis t ( ) ;
13 a u t h o r . p u t ( ” c o n t r i b u t i o n s ” , c o n t r i b u t i o n s ) ;
14 }
15 BasicDBObjec t c o n t r i b u t i o n = new BasicDBObjec t ( ) ;
16 c o n t r i b u t i o n . p u t ( ” n i c k ” , c o n t r i b u t i o n T o S a v e . g e t N i c k ( ) ) ;
17 BasicDBObjec t c o n t r i b u t i o n S h o w = new BasicDBObjec t ( ) ;
18 c o n t r i b u t i o n S h o w . p u t ( ” a l i a s ” , show . g e t ( ” a l i a s ” ) ) ;
19 c o n t r i b u t i o n S h o w . p u t ( ”name” , ( S t r i n g ) show . g e t ( ”name” ) ) ;
20 c o n t r i b u t i o n S h o w . p u t ( ” r e f ” , new DBRef ( db , ” show ” , show . g e t ( ” i d ” ) ) ) ;
21 c o n t r i b u t i o n . p u t ( ” show ” , c o n t r i b u t i o n S h o w ) ;
22 c o n t r i b u t i o n s . add ( c o n t r i b u t i o n ) ;
23 db . g e t C o l l e c t i o n ( ” a u t h o r ” ) . u p d a t e ( au thorQuery , a u t h o r ) ; }

Fig. 2. Java code example using the MongoDB API to access the database.

overloaded our static analyzer so that it can control the usage
flow of the inputs. For instance, the database access at line 3
uses a unique selection criterion to create its query, i.e., the
authorQuery object. By analyzing the usage flow of this
given object (and by reusing our string value extractor), our
analyzer automatically spots line 2 which actually represents
a value assignment to the author._id field. It is worth
noticing that the analyzeUsageFlowBefore procedure is
actually recursive. Indeed, the value assigned to a particular
key in the map may be, itself, an instance of the DBObject,
BasicDBObject and BasicDBList classes and thus, a
recursive call is needed to analyze that instance.

The final step consists in analyzing the usage flow
of the output objects resulting of the database access
(analyzeUsageFlowAfter procedure). Indeed, analyzing
the operations performed on those output objects may reveal
new fields of the target collection. This step is similar to
the previous one, the only difference being that, instead of
analyzing the object usage flow before the database access, it
focuses on the object usage flow after the database access. In
Figure 2, variable show contains the result of the database
access at line 5. However, analyzing the usage flow of an
object after a given event (i.e., a database access) requires
the analysis of the application call graph, since the object
may be part of the input parameters of a method call. In the
example, our static analyzer determines that show is used
as input in the addContributionToAuthor method call
(line 6), and it visits this method to observe how the object is
manipulated. At line 18, 19 and 20, the analyzer detects the
read of, respectively, the alias, name and _id fields.

As output, the analyzer returns the database schema frag-
ment which is concerned by each detected database access.
Finally, our analyzer merges all the extracted schema frag-
ments in order to obtain a unique condensed schema. Fig-
ure 4 depicts the schema (according to the Entity-Relationship
model) automatically inferred by our approach when applied
to Figure 2. Our analyzer is also able to deal with the

referential constraints, i.e., foreign keys, declared in the source
code. At line 20 in Figure 2, a referential constraint is
declared between author.contributions.show.ref
and show._id. Indeed, DBRef allows documents located
in multiple collections to be more easily linked to documents
from a single collection.
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Fig. 4. Schema automatically inferred by our approach applied to Figure 2.

The field extraction process also tries to gain information
about the types of the fields. For instance, after detecting an
access to the name field at line 19, our analyzer considers the
extracted field as a String object.

B. Historical Schema Extraction
The second step of our approach aims to apply the schema

extraction process to the whole system history by exploiting
the versioning system. This step, inspired by our previous
work [5], consists in extracting and comparing the successive
versions of the database schema, in order to produce the so-
called historical database schema. The latter is a representa-
tion of the database schema evolution over time. It contains all
database schema objects (i.e., collections, fields and referential
constraints) that have existed in the history of the system.
Those schema objects are annotated with meta-information
about their lifetime such as (1) the list of schema versions
where the object is present and (2) for each version of this
list, the code locations accessing the object. In addition, each
field owns information about its data type and its evolution;
one can know the data type of any field at any version of
the system. In this way, one has an accurate overview of the
field evolution over time which could allow detecting error-
prone data type changes. The historical database schema thus



constitutes an integrated representation of the system past and
present. Exploiting this historical schema can help to detect
potential runtime errors or data corruptions and to facilitate
future developments.

Finally, we apply an automatic procedure that colourizes
each historical schema object, depending on its age and its
liveness. All schema objects depicted in green are still present
in the latest schema version. All red schema objects have
disappeared. The colour shade corresponds to the object age.
A dark red schema object is an object that has disappeared a
long time ago. A light red object is an object that has recently
disappeared from the schema. An object depicted in green
corresponds to an object that is still present in the latest schema
version. The darker the green, the older the object is, and vice
versa. Figure 5 shows an example of schema evolution and
the corresponding colourized historical schema.
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Fig. 5. Example of schema evolution and the corresponding historical schema.

C. Exploitation
Exploiting the historical schema can facilitate the under-

standing of the schema evolution, and it can allow developers
to spot potentially severe runtime errors or irretrievable data
losses, together with the related code locations.
Colourization benefits. The color assigned to an object gives
indications about its liveness. The red color is assigned to
objects which have disappeared in the latest schema version.
However, a red object does not necessarily represent a deleted
object; it might only represent a field/collection that is no
longer accessed in the latest source code version but that still
exists in the database schema. Moreover, even if a red object
is actually deleted from the schema, it does not ensure that
there is no legacy data linked to this object. A red object
only represents a soft warning to make developers aware of
potentially outdated entities which should be either migrated
or kept in mind for future developments.
Type mismatch detection. As previously explained, a data
type change may cause error/crash if not properly managed.
Detecting a data type change occurred over time is made
possible by the historical schema and its meta-information.
Renaming detection. When a field or a collection is renamed
or moved, developers need to keep it in mind for future devel-
opments. Indeed, similarly to a data type change, the legacy
data have to be managed. Therefore, our automatic approach
supports the identification of implicit (field/collection) renam-
ings. The detection algorithm is based on different comparison
criteria (e.g., name similarity, the field type similarity, etc.).
Data corruption/loss detection. Since a schema-less data
store does not require an explicit schema, no verification
before a data write is done, which might cause a data cor-
ruption/loss (e.g., accidentally removing/erasing stored data).
Analyzing the historical schema of the system can help de-
tecting such scenarios.

III. EARLY EVALUATION

We applied our approach to a particular subject system
containing the backend services of the Tilos Radio2. The Tilos
Radio is a community, non-profit radio station in Budapest,
Hungary. The versioning system of this project has a two-year
history [3]. Since the introduction of MongoDB in the project,
303 versions of the system were committed on a period of
one year. We applied our schema extraction approach to each
version and computed the corresponding historical schema. In
this period, the number of fields has doubled (from 39 to 79).

The historical schema, shown in Figure 6, is visualized
by our visualization tool. The latter provides developers with
reports about what happened in the system past. Icons warn
developers of particular past events; clicking on those icons
allows one to display automatic reports about those events.
Error icons report on past events that might cause program
crashes or data corruption. Warning icons aim to make devel-
opers aware of past events that should be considered for future
developments (e.g., renamed fields/collections).

By analyzing that historical schema and the automatic
reports processed by our tool, we made interesting observa-
tions concerning the schema evolution of this subject system.
Figure 7 shows an example of data type change detected
by our tool. The type of the comment.identifier field
changed at version 68 (from Integer to String). Furthermore,
the tool provides the user with direct links to the source code
showing the code locations where the change was performed3.
Developers are now warned that this past data type change
might require to be handled for future developments (e.g.,
migrating legacy data to new type, managing the reads of
legacy data in the source code, ...).

Another interesting observation is the automatic detection
of a particular renaming (see Figure 8) occurred at version
198: the bookmark collection was moved (renamed) and
became a compound field of the episode collection4. Thus,
the remaining legacy entities of the outdated bookmark
collection should be managed accordingly by developers.

Figure 9 shows an example of potential data loss oc-
curred in the system past. Our approach automatically
spotted a potential data loss due to a misuse of the
user.passwordChangeTokenCreated field. Indeed,
developers assigned a wrong value to this field, which over-
writes the correct value 5. This mistake stayed unfixed during
20 system versions (from version 0 to version 19), what
could represent an important data loss since the correct values
to store in the database are definitely lost. Further analysis
revealed that the wrong value should have been assigned to
another field of the user collection.

IV. RELATED WORK

Recent approaches and studies have focused on the evo-
lution of NoSQL databases. Scherzinger et al. [8] present a

2https://tilos.hu/page/english
3Before change:http://bit.ly/2dk4HEQ. After change:http://bit.ly/2cW5NnC
4Before move:http://bit.ly/2d35A1b. After move:http://bit.ly/2dlzLQw
5Before fix:http://bit.ly/2cxI1A3. After fix:http://bit.ly/2cPbQII
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Fig. 6. Historical schema of Radio Tilos displayed by our visualization tool. Error and warning icons report on particular past events.

Fig. 7. Before and after changing the type of identifier at version 68.

Fig. 8. Before and after moving bookmark in episode at version 198.

Fig. 9. Loss of the value to store in passwordChangeTokenCreated.

model checking approach to reveal scalability bottlenecks in
NoSQL schemas. In [9], the authors describe a framework con-
trolling schema evolution in NoSQL applications. Ringlstetter
et al. [7] analyzed how developers evolve NoSQL document
stores by means of evolution annotations for object-NoSQL
mappers. Object-NoSQL mappers allow defining mappings
between classes/attributes and NoSQL entities. They rely on
annotations within class declarations in the application source
code. Those mappers make the communication between the
database and the source code more abstract and thus, can
facilitate the comprehension of the schema, since the latter is
implicitly declared within the source code. In contrast to those
works, we focus on NoSQL databases where the schema is not
declared. In a previous work, we presented an approach [6]
allowing developers to automatically locate and extract all the

relational database accesses that use JDBC, Hibernate and JPA.
In summary, this paper presents two main novel contribu-

tions: (1) a static analysis approach which extracts the NoSQL
database schema from the application source code (as unique
information source) by exploring the call graph and the intra-
procedural control-flow of the application; (2) a historical
analysis which helps developers to understand the schema
evolution and allows the automatic detection of potential errors
and data losses.

V. CONCLUSION

In this paper, we presented an automatic approach to infer
the schema of a schema-less NoSQL database, and to analyze
its evolution over time. We applied this approach to the whole
history of a subject system and we computed the so-called
historical schema. We finally showed how analyzing the past of
a system, by using this historical schema, can be useful to un-
derstand the present version and to ease future developments.
In particular, our approach automatically detects and warns
developers about potential risks, such as past data structure
changes, data type mismatches and data losses. In the future,
we intend to lead empirical studies on a large set of systems to
analyze how developers evolve NoSQL databases in practice
and to further study the entropy introduced by this evolution.
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