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MicroRNA168 (miR168) is a key miRNA that targets 
Argonaute1 (AGO1), a major component of the RNA-induced 
silencing complex1,2. Previously, we reported that miR168 
expression was responsive to infection by Magnaporthe ory-
zae, the causal agent of rice blast disease3. However, how 
miR168 regulates immunity to rice blast and whether it 
affects rice development remains unclear. Here, we report our 
discovery that the suppression of miR168 by a target mimic 
(MIM168) not only improves grain yield and shortens flow-
ering time in rice but also enhances immunity to M. oryzae. 
These results were validated through repeated tests in rice 
fields in the absence and presence of rice blast pressure. We 
found that the miR168–AGO1 module regulates miR535 to 
improve yield by increasing panicle number, miR164 to reduce 
flowering time, and miR1320 and miR164 to enhance immu-
nity. Our discovery demonstrates that changes in a single 
miRNA enhance the expression of multiple agronomically 
important traits.

Rice is a staple food for half of the world’s population. Yield, 
flowering time and disease resistance are key factors in rice produc-
tion. However, the presence of disease-resistance genes can penalize 
crop yield4. For example, a trade-off between biomass and resistance 
has been documented in 56% of disease-resistance studies5. There is 
also a correlation between growth duration and yield. Crops with 
higher yields usually have longer vegetative growth6,7. Despite these 
challenges, recent reports indicate that certain immune regulators 
can promote immunity without yield penalties; in particular, ideal 
plant architecture 1 (ipa1) -1D promotes both yield and immunity8,9. 
In addition, the presence of a long noncoding RNA has been dem-
onstrated to reduce flowering time without yield penalty10. To date, 
no regulators have been reported to promote yield, early maturity 
and immunity together.

MicroRNAs (miRNAs) are global gene regulators controlling 
plant growth, development and immunity11,12. We therefore exam-
ined miRNAs that have the potential to affect rice growth, yield and 
immunity. miR168 is responsive to Magnaporthe oryzae infection3 
and targets Argonaute1 (AGO1), which encodes the key compo-
nent of the RNA-induced silencing complex1,13. For these reasons, 
miR168 serves as a good candidate for such a study. Here, we cre-
ated miR168 target mimic (MIM168) transgenic lines and overex-
pression (OX168) lines (Supplementary Fig. 1a,b). OX168 plants 

showed significantly higher miR168 expression, leading to lower 
AGO1 expression, whereas MIM168 displayed significantly lower 
miR168 expression, resulting in higher expression of AGO1 com-
pared with the Nipponbare (NPB) control plants (Supplementary 
Fig. 1b–d).

We observed pleiotropic phenotypes in OX168 and MIM168 
plants. Compared with the NPB control, OX168 plants displayed 
increased height, significantly fewer panicles, slightly higher 
1,000-grain weight and similar grain number per panicle (Fig. 
1a–c and Supplementary Table 1). Conversely, MIM168 plants were 
shorter and displayed significantly more panicles, with similar grain 
number per panicle but slightly lower 1,000-grain weight than the 
control (Fig. 1a–c and Supplementary Table 1). In addition, OX168 
lines exhibited an approximately ten-day delay in flowering time and 
developed 17 leaves on average, whereas MIM168 flowered approxi-
mately three days earlier and developed 14 leaves, with the control 
developing 15 leaves (Fig. 1d,e and Supplementary Fig. 2a,b). These 
results clearly show that the alteration of miR168 amounts affects 
plant architecture and flowering time and may influence yield.

To test the capacity of MIM168 and OX168 lines in grain yield, 
we grew them along with the NPB control in rice fields from 2017 
to 2019. Three independent lines were included for each of MIM168 
and OX168. MIM168 lines yielded significantly more grain (up to 
30–40% higher), calculated both per plant and per area (m2) in the 
rice paddy fields; in contrast, OX168 lines yielded significantly less 
grain (approximately 20–40% lower) (Fig. 1f and Supplementary 
Table 1). These results demonstrate that the suppression of miR168 
changes plant architecture, resulting in higher grain yields.

AGO1, the target of miR168, was previously shown to be required 
for pathogen-associated molecular-pattern-triggered immunity in 
Arabidopsis14. We therefore tested two lines for each of MIM168 and 
OX168 in a rice field with high rice blast pressure to assess their 
potential effects on resistance to M. oryzae. We found that, while 
the NPB control yield was 13% less under blast disease pressure, 
MIM168 lines had only a 1–4% reduction in yield. In contrast, 
OX168 lines displayed a 20–40% reduction in yield (Fig. 2a,b and 
Supplementary Fig. 2c). These results suggest that lower miR168 
levels enhance resistance, whereas higher miR168 levels decrease 
resistance to M. oryzae. Under blast nursery conditions, MIM168 
lines yielded up to 75% higher per m2 than the NPB control (Fig. 2a,b  
and Supplementary Fig. 2c). Consistent with the field results, OX168 
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lines were more susceptible to M. oryzae strain Guy11, as well as 
97-27-2 and NC-34 (two strains isolated from rice fields in north 
China and south China, respectively). The OX168 lines displayed 
significantly larger disease lesions and 2–4.5-fold higher fungal 
biomass, whereas MIM168 plants were more resistant, displaying 
smaller lesions and less than 50% fungal biomass compared with 
the NPB control (Fig. 2c,d and Supplementary Fig. 2d,e). Moreover, 
OX168 showed significant increased invasive hyphae progression at 
18–48 hours post-inoculation (hpi) with Guy11 in sheath cells and 
reduced H2O2 accumulation at 48 hpi. In contrast, MIM168 showed 
delayed invasive hyphae progression and increased H2O2 accumula-
tion at the infected sites (Fig. 2e,f), a marker of defence responses. 
Consistently, MIM168 lines accumulated higher mRNA levels of 
the defence-related genes, including OsPR1, OsPR10b, Os04g10010 
and the H2O2 production genes respiratory burst oxidase homologues 

RbohB and RbohE, but lower levels of a catalase gene encoding H2O2 
degradation enzyme (Supplementary Fig. 2f–k). OX168 lines, how-
ever, displayed an opposite or unchanged expression pattern of these 
genes in response to M. oryzae infection. These results demonstrate 
that miR168 suppresses rice immunity against M. oryzae, and the 
suppression of miR168 enhances rice immunity to M. oryzae.

We next created AGO1-silencing transgenic lines (AGO1i) to 
explore whether miR168 regulates rice growth and immunity via 
AGO1. AGO1i lines showed significantly lower AGO1 (AGO1a-d) 
amounts compared with the NPB control (Supplementary Fig. 3a,b). 
Consistent with the yield traits of OX168, AGO1i lines showed 
taller plants, slightly larger seeds, fewer tillers, lower 1,000-grain 
weights and significantly reduced yields than the NPB control 
(Supplementary Fig. 3c–e and Supplementary Table 1). Moreover, as 
observed for the OX168 lines, the AGO1i lines displayed enhanced 
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Fig. 1 | miR168 regulates rice yield and flowering time. a, Gross morphology and husked grains of the NPB control, OX168 and MIM168. Scale bars, 50 cm 
for gross morphology and 5 mm for grains. b–d, Quantification of panicle number (b), 1,000 grain weight (c) and flowering time (d). The data are shown as 
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f, the P values were determined by one-way analysis of variance (ANOVA).
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susceptibility to and accelerated invasive progression of M. oryzae, 
and less H2O2 accumulation upon inoculation with three strains 
(Supplementary Fig. 3f–i). These results indicate that AGO1 medi-
ates miR168 function.

Because the miR168–AGO1 module regulates the accumula-
tion of miRNAs globally, we performed small RNA sequencing to 
examine changes of miRNAs in leaves at the seedling and tillering 
stages and in panicles at the booting stage. Many miRNAs altered 
expression in OX168 and MIM168 lines (Supplementary Table 2). 

We found 162 miRNAs at the seedling stage, 156 at the tillering 
stage and 197 at the booting stage that were regulated by miR168 
(Supplementary Fig. 4a and Supplementary Table 3). Among them, 
we found 15 miRNAs11,15–17 that were previously identified as regu-
lators of rice developmental processes (Supplementary Fig. 4b). 
To identify the miR168–AGO1 module-regulated miRNAs that 
are probably involved in immunity, we compared those miRNAs 
affected in MIM168 and OX168 (Supplementary Table 3) with 
those responsive to M. oryzae (Supplementary Table 2 in ref. 3) and 
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identified 54 miRNAs from 39 families. Among these, we found 
nine miRNAs3,12,18–23 that were previously identified to be involved 
in immunity (Supplementary Fig. 4b,c and Supplementary Table 4). 
Consistently, the transcript levels of many target genes of these nine 
miRNAs were changed in OX168 and MIM168 (Supplementary  
Fig. 4d). These data indicate that many miRNAs mediate miR168 
function, and some of these are critical to immunity.

First, the previously uncharacterized miR1320 was upregulated in 
MIM168 and downregulated in OX168 at the seedling and tillering 
stages. Its expression was validated by quantitative PCR with reverse 
transcription (RT–qPCR) and northern blotting analysis, although 
northern blot seems not sensitive enough to detect the altera-
tion of low-abundance miR1320 (Fig. 3a, Supplementary Fig. 4e  
and Supplementary Table 3). Importantly, miR1320 was differ-
entially upregulated in a blast-resistant rice variety (International 

Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake (IRBLkm-Ts)), 
consistent with a previous report24, whereas it was downregulated 
in the susceptible variety Lijiang xin Tuan Heigu (LTH) upon M. 
oryzae infection (Fig. 3b). These results suggest that miR1320 may 
mediate miR168 function in immunity to M. oryzae. We therefore 
tested the effects of miR1320 directly by generating overexpression 
(OX1320) and target mimic (MIM1320) lines (Fig. 3c) in Kasalath, 
and overexpression lines in OX168 (OX1320/OX168) and MIM168 
(OX1320/MIM168) (Fig. 3f). We found that OX1320 lines showed 
enhanced resistance, with smaller lesions and lower fungal biomass 
(by ~50%), whereas MIM1320 displayed the opposite phenotypes 
(Fig. 3d,e and Supplementary Fig. 5a,b). Moreover, OX1320/OX168 
lines were more resistant than OX168 and null segregants, and 
OX1320/MIM168 lines were more resistant than MIM168 and null 
segregants (Fig. 3g,h). Consistently, OX1320 lines showed delayed 
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NaTuRe PLaNTS | VOL 7 | FEBRUARY 2021 | 129–136 | www.nature.com/natureplants 133

http://www.nature.com/natureplants


Letters NATuRe PlANTs

invasive hyphae progression, more H2O2 and higher mRNA levels of 
H2O2-generation and defence-related genes than the Kasalath con-
trol upon M. oryzae infection (Supplementary Fig. 5c–f). MIM1320 
showed the opposite (Fig. 3g,h and Supplementary Fig. 5c–f). In 
addition, OX1320 showed similar yields as the Kasalath control 
(Supplementary Table 1). These results suggest that miR1320 con-
tributes to MIM168-conferred resistance to M. oryzae.

Second, miR156, miR529 and miR535 target SQUAMOSA pro-
moter binding protein-like (SPL) 14 (also known as IPA1), which 
positively regulates panicle development15,25,26. We examined their 
accumulation in the shoot apical meristem. miR156 was decreased 
or unchanged, and miR529 was not detected in OX168 and MIM168 
lines (Supplementary Fig. 6). In contrast, miR535 was repressed in 
OX168 and elevated in MIM168 at the early tillering stage, whereas 
it was repressed in both OX168 and MIM168 at the late tillering 
stage (Fig. 4a and Supplementary Fig. 4e). Because miR535 was 
not previously demonstrated to regulate SPL14, we tested whether 
miR535 could repress SPL14. We fused the putative miR535 target 
site of SPL14 to yellow fluorescence protein (YFP) at the 5′ terminus 
(35S-SPL14ts–YFP) and transfected Nicotiana benthamiana with or 
without miR535. The YFP signal was clearly decreased in the pres-
ence of miR535 (Supplementary Fig. 7a–c), indicating that miR535 
represses SPL14. Consistently, SPL14 was suppressed at the early til-
lering stage but elevated at the late tillering stage in MIM168 in the 
shoot meristem (Fig. 4a).

To test the role of miR535, we generated miR535 overexpres-
sion (OX535) and target mimic (MIM535) lines (Fig. 4b). We 
found that OX535 greatly reduced SPL14 levels and MIM535 sig-
nificantly increased them (Fig. 4b), indicating that miR535 sup-
presses SPL14 expression in rice. More importantly, OX535 lines 
developed approximately threefold more tillers, although they car-
ried smaller panicles with less filled grains, leading to lower yield; 
conversely, MIM535 lines displayed unchanged tiller numbers, but 
carrying bigger panicles with more grains per panicle, leading to 
higher yield per plant than the control (Fig. 4c,d and Supplementary 
Table 1). Consistently, both OX535/OX168 and OX535/MIM168 
lines developed more tillers than OX168 and MIM168, respectively 
(Fig. 4e,f). Moreover, MIM535 displayed enhanced resistance with 
more H2O2 accumulation compared with the NPB control, while 
OX535 showed the opposite (Supplementary Fig. 8). These results 
suggest that higher miR535 levels in MIM168 at the seedling to 
early tillering stages favour the development of more tillers/panicles 
via the suppression of SPL14 but disfavour immunity (Fig. 4a–d), 
whereas lower miR535 levels at the late tillering to booting stages 
shift the balance from more tillers/panicles to larger panicle size, 
and improve immunity via SPL14 (ref. 9).

We next assessed the miRNAs that contribute to the alteration 
of flowering time in OX168 and MIM168. miR164a was signifi-
cantly repressed in MIM168 and remained unchanged in OX168 at 
the booting stage (Fig. 4g and Supplementary Table 3). Conversely, 
miR164-targeted NAC11, which contributes to shortening flow-
ering time27, was significantly increased in MIM168 (Fig. 4g and 
Supplementary Fig. 9b), suggesting that the decrease in miR164 
at the booting stage contributes to the increase in NAC11, result-
ing in earlier flowering in MIM168. To validate this hypothesis, 
we generated miR164a overexpression (OX164) and target mimic 
(MIM164) lines in NPB, OX168 (OX164/M168) and MIM168 
(OX164/M168) lines (Supplementary Fig. 9g). OX164 displayed 
a shorter stature and an approximately four-day delay in flower-
ing associated with significantly decreased NAC11 levels than the 
control, and OX164/MIM168 showed an approximately three-day 
delay in flowering in comparison with MIM168; conversely, 
MIM164 showed a similar plant height and flowered approximately 
five days earlier, accompanied with increased levels of NAC11 and 
the flowering genes Hd3a and RFT1 (Fig. 4h–l). Furthermore, 
we generated two homozygous knockout lines, nac11-1 and 

nac11-2, through CRISPR–Cas9 technology (Supplementary  
Fig. 10a–d) and found that the resulting lines displayed sig-
nificantly delayed flowering (Fig. 4m,n), indicating that NAC11 
contributes to the early flowering of MIM168 lines. In addition, 
miR164 was enhanced in OX168 but repressed in MIM168 at 
the seedling and booting stages (Supplementary Figs. 5e and 9a). 
Consistently, OX164 showed reduced resistance to M. oryzae, 
whereas MIM164 displayed enhanced resistance24 (Supplementary 
Fig. 9c–f). Moreover, OX164/OX168 showed lower resistance 
than OX168, and OX164/MIM168 showed lower resistance than 
MIM168 and the null segregants (Supplementary Fig. 9g–i).

Grain yield correlates with growth duration and competes with 
disease resistance. Here, we report that the suppression of miR168 
results in enhanced yield, an earlier flowering time and increased 
resistance to M. oryzae. In the complex miRNA network modu-
lated by the miR168–AGO1 module, miR1320 plays a key role in 
resistance to M. oryzae, miR535 is important for balancing tiller 
development and immunity, and miR164 is critical for controlling 
flowering time and immunity. We propose a model in Fig. 4o to 
summarize our major finding that AGO1 mediates miR168 func-
tion via multiple miRNAs. This model is not all inclusive, and other 
miRNAs and genes probably also contribute to tillering, flowering 
and resistance to M. oryzae.

Methods
Plant materials and growth conditions. The rice (Oryza sativa L.) accessions 
NPB (ssp. japonica), Kasalath (ssp. indica), LTH, ZH11 and IRBLkm-Ts were used 
in this study. LTH is a japonica accession highly susceptible to over 1,300 isolates 
of M. oryzae worldwide, and no major R gene is ever identified in it28, whereas 
IRBLkm-Ts contains a single R gene, Pikm, that mediates ETI against M. oryzae 
strains expressing the avirulence gene alleles AVR-PikA/D/E29,30. For the yield 
traits assay and blast pressure assay, the control and transgenic plants were grown 
in paddy fields with high blast disease pressure (blast nursery) or no blast disease 
(normal field) in Chengdu, China (36° N, 103° E) during the normal rice-growing 
season from mid-April to mid-September. The rice seeds were immersed in water 
for two days at 37 °C in darkness for germination and then grown in a soil seed 
bed for four weeks before being transplanted into the paddies. For the blast disease 
assays, the control and transgenic plants were grown in a greenhouse with a 
28/24 ± 1 °C day/night temperature, 70% relative humidity and a light/dark period 
of 14 h/10 h.

Construction of transgenic rice plants. To make transgenic lines overexpressing 
miRNAs, MIR gene-specific primers (Supplementary Table 5) were used to 
amplify the genomic sequences including 250–350 base pairs (bp) upstream and 
200–300 bp downstream of the miRNAs from NPB total genomic DNA. The 
PCR products were then cloned into the binary vector 35S-pCAMBIA1300 at 
KpnI and SpeI (or SalI) sites and introduced into NPB (for miR168, miR164 and 
miR535) and Kasalath (for miR1320). To construct transgenic plants expressing 
the target mimic of the miRNAs, we utilized the gene INDUCED BY PHOSPHATE 
STARVATION1 (IPS1) as a skeletal structure, which contains a mismatched loop 
at the miR399 cleavage site31. The target mimic sequences of miR168, miR164, 
miR535 and miR1320 were inserted into IPS1 to substitute the miR399 target 
mimic site with specific primers (Supplementary Table 5). The mutated IPS1 was 
then cloned into the binary vector 35S-pCAMBIA1300 at KpnI and SpeI (or SalI) 
sites and introduced into NPB (for MIM168, MIM164 and MIM535) or Kasalath 
(for MIM1320) via agrobacterium strain GV3101-mediated transformation. 
The transgenic plants were screened by a solution containing 0.1 mM 6-BA and 
30 mg l−1 hygromycin (as previously described3,20) and confirmed by PCR to check 
the hygromycin-resistance genes. More than 20 independent transgenic lines 
were obtained for each construct, and two or three lines at T2 to T4 generation 
were used for the analyses of yield traits and the blast disease assays. To make 
transgenic lines overexpressing miRNAs in OX168 and MIM68, the PCR products 
of miR164, miR1320 and miR535 genes were cloned into the binary vector 
35S-pCAMBIA2300 at KpnI and PstI sites, and the products were introduced into 
OX168 and MIM168, respectively. The transgenic plants were screened using a 
solution containing 0.1 mM 6-BA and 30 mg l−1 G418 and confirmed by PCR to 
check the G418-resistance gene. More than 15 independent transgenic lines  
were obtained for each construct, and two lines at T1 to T2 generation were used 
for the study.

Trait measurements. Plant height, panicle number per plant, grain number per 
panicle and 1,000-grain weight were measured at full maturity from five plants 
in the middle of three rows. Plant height was measured in the paddy fields. The 
1,000-grain weight was weighted using an SC-A grain analysis system (Wanshen) 
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after the fully filled grains were dried in a 42 °C oven for one week. The data were 
analysed by a one-way ANOVA followed by post-hoc Tukey HSD analysis with 
significant differences (P < 0.01). These experiments were repeated two times using 
transgenic plants from two generations in two years.

Gene expression analyses. Total RNAs were extracted from rice leaves using 
TRIzol reagent (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. The first-strand complementary DNA was synthesized from 
1 μg of total RNA for transcriptional analysis using a PrimeScript RT Reagent 
Kit with gDNA Eraser (Takara Biotechnology) following the manufacturer’s 
instructions. RT–qPCR was performed using specific primers and SYBR Green mix 
(QuantiNova SYBR Green PCR Kit, QIGEN) with a BIO-RAD C1000TM Thermal 
Cycler (Bio-Rad). The rice ubiquitin (UBQ) gene was selected as an internal 
reference for data normalization. To measure the accumulation of miRNAs, 
total RNA was reverse-transcribed using miRNA-specific stem-loop RT primers 
(Supplementary Table 4) with the PrimeScript RT Reagent Kit with gDNA Eraser 
(Takara Biotechnology), and the RT product was subsequently used as a template 
for qPCR by using miRNA-specific forward primers and the universal reverse 
primer (Supplementary Table 4). The snRNA U6 served as an internal reference for 
the detection of miRNAs. The qPCR analyses were performed with three technical 
replicates. The 2−∆∆CT method was exploited to analyse the relative expression levels 
of miRNAs.

Pathogen infection and microscopy analysis. M. oryzae strains Guy11, 97-27-2, 
NC-34, GFP-tagged Guy11 and GFP-tagged strain Zhong8-10–14 (GZ8) were used 
for the blast disease assays. The M. oryzae strains were cultured in plates containing 
agar–oatmeal–tomato medium at 28 °C with 12-h/12-h light/dark cycles for two 
weeks. After the surface mycelia were washed with distilled water, the plates were 
further incubated for three days to promote sporulation. The spores were collected 
with distilled water, and the inoculum concentration was adjusted to 3 × 105 
conidia per ml; the spores were then inoculated on 5-cm-long leaf sheaths from 
four-week-old plants as described previously32. The inoculated epidermal layer was 
excised, and conidia germination, appressorium development and invasive hyphae 
growth were recorded by a Nikon A1 Laser Scanning Confocal Microscope (Nikon 
Instruments) at 12, 24, 36 and 48 hpi. The quantitative analysis of infestation stage 
was conducted as described previously3. Wound inoculation was done following a 
previous report33. Briefly, dilution-drop conidia suspensions of M. oryzae strains 
Guy11, 97-27-2, GZ8 and NC-34 (3 × 105 conidia per ml) were placed against 
wounded sites or spray-inoculated on the three- to five-leaf-stage seedlings’ leaves. 
Lesion formation was examined at four to six days after inoculation. The infection 
experiments were repeated twice. The relative fungal biomass was measured using 
the DNA amounts of M. oryzae Mopot2 against rice ubiquitin DNA amounts by 
qPCR using specific primers and SYBR Green mix (QuantiNova SYBR Green PCR 
Kit, QIGEN) with a BIO-RAD C1000TM Thermal Cycler (Bio-Rad). The rice UBQ 
gene was selected as an internal reference for data normalization.

To observe the immune responses of rice transgenic plants upon M. oryzae 
infection, three-leaf-stage seedlings were inoculated with M. oryzae strain 
Guy11 at a concentration of 5 × 105 conidia per ml. At 48 hpi, the leaves were 
collected and incubated in 1 mg ml−1 DAB (Sigma, Merck Life Science Co.) at 
22 °C for 8 h at illumination. The DAB-stained leaves were double stained with 
trypan blue and observed under a microscope (Zeiss imager A2, Carl Zeiss). To 
detect the expression of defence-related genes and H2O2-related genes, the leaves 
were collected at indicated time points for RNA extraction and RT–qPCR. The 
experiments were repeated twice.

Small RNA-seq and data analysis. Total RNA was isolated with TRIzol (Thermo 
Fisher Scientific) from rice leaf samples collected at the three-leaf seedling and 
28-day-old tillering stages and from young panicle samples collected at the 
booting stage. To obtain the young panicles at similar developmental stages, we 
collected samples from tillers with zero distance between the pulvinus of the flag 
leaf and that of the top-second leaf from nine-week-old plants. RNA integrity 
and concentration were checked with gel electrophoresis and the RNA Nano 
6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies). 
Three micrograms of total RNA were subjected to the construction of a small 
RNA library with NEB Next Multiplex Small RNA Library Prep Set for Illumina 
(New England Biolabs), following the manufacturer’s instructions. Index codes 
were added to attribute sequences to each sample. Library quality was checked 
on the Agilent Bioanalyzer 2100 system with High Sensitivity Chips. Clustering 
was carried out on a cBot Cluster Generation System with TruSeq SR Cluster Kit 
v3-cBot-HS (Illumina). The prepared libraries were loaded on an Illumina Hiseq 
2500 platform for 50-bp single-end sequencing. The raw data were subjected 
to removing reads containing ploy-N, with 5′ adapter contaminants, without 3′ 
adapter or the insert tag, containing ploy A or T or G or C and low-quality reads. 
The obtained clean data were mapped to the rice reference genome (ftp://ftp.
ensemblgenomes.org/pub/release-31/plants/fasta/oryza_sativa) by Bowtie34. The 
mapped small RNA reads were used to align with known miRNA in miRBase 
v.20.0 without mismatch using the modified software mirdeep2 (refs. 35). The 
miRNA expression data were estimated by transcript per million. The fold change 
in the expression of miRNAs between OX168/NPB and MIM168/NPB was 

calculated. miRNAs regulated by miR168 were classified into two groups. Group 
one showed reverse expression patterns between OX168 and MIM168 (log2 ≥ 0.5 
or log2 ≤ −0.5 at any stage, OX168 or MIM168 versus control). Group two showed 
synchronous changes in both OX168 and MIM168 (log2 ≥ 0.5 or log2 ≤ −0.5 in 
OX168 or MIM168 versus control at any stage).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analysed during this study are included in this Article and in 
its Supplementary Information files. The data are available upon request. Source 
data are provided with this paper.
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