Surface area

Vector
integrals
Changing orientation

Surface Integrals

Math 240 - Calculus III

Summer 2013, Session II
Wednesday, July 3, 2013

Scalar

integrals
Surface area
Vector
integrals
Changing orientation

1. Scalar surface integrals Surface area
2. Vector surface integrals
3. Changing orientation

Definition

Let $\mathbf{X}: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a smooth parameterized surface. Let f be a continuous scalar function whose domain includes $S=\mathbf{X}(D)$. The scalar surface integral of f along \mathbf{X} is

$$
\iint_{\mathbf{X}} f d S=\iint_{D} f(\mathbf{X}(s, t))\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t
$$

$$
=\iint_{D} f(\mathbf{X}(s, t))\|\mathbf{N}(s, t)\| d s d t
$$

Scalar surface integrals

Example

Let S be the closed cylinder of radius 3 with axis along the z-axis, top face at $z=15$, and bottom face at $z=0$. Let's calculate $\iint_{S} z d S$.
Denote the lateral cylindrical face of S by S_{1} and the bottom and top faces by S_{2} and S_{3},
 respectively.

We compute

$$
\iint_{S_{1}} z d S=675 \pi, \iint_{S_{2}} z d S=0, \text { and } \iint_{S_{3}} z d S=135 \pi .
$$

Therefore,

$$
\iint_{S} z d S=\iint_{S_{1}} z d S+\iint_{S_{2}} z d S+\iint_{S_{3}} z d S=810 \pi
$$

Surface
Integrals

Surface area

Scalar

Figure: The quantity $\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\|$ is the area of the gray square on the right.

Fact
If S is a smooth surface parameterized by $\mathbf{X}: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ then the surface area of S is given by

$$
\iint_{D}\|\mathbf{N}\| d s d t=\iint_{D}\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t=\iint_{\mathbf{X}} 1 d S
$$

Surface area

Scalar

Therefore, the surface area of the sphere is

$$
\int_{0}^{\pi} \int_{0}^{2 \pi} r^{2} \sin t d s d t=\int_{0}^{\pi} 2 \pi r^{2} \sin t d t=4 \pi r^{2}
$$

Vector surface integrals

Scalar

Definition

Let $\mathbf{X}: D \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a smooth parameterized surface. Let
\mathbf{F} be a continuous vector field whose domain includes
$S=\mathbf{X}(D)$. The vector surface integral of \mathbf{F} along \mathbf{X} is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

In physical terms, we can interpret \mathbf{F} as the flow of some kind of fluid. Then the vector surface integral measures the volume of fluid that flows through S per unit time. This is called the flux of \mathbf{F} across S.

Changing orientation

Scalar

integrals
Surface area
Vector
integrals
Changing orientation

Figure: \mathbf{X} and \mathbf{Y} parameterize the same surface with opposite normal directions.

$$
\begin{aligned}
\iint_{\mathbf{Y}} f d S & =\iint_{\mathbf{X}} f d S \\
\iint_{\mathbf{Y}} \mathbf{F} \cdot d \mathbf{S} & =-\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}
\end{aligned}
$$

This can be achieved by exchanging s and t :

$$
\mathbf{T}_{t} \times \mathbf{T}_{s}=-\left(\mathbf{T}_{s} \times \mathbf{T}_{t}\right) .
$$

