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464 Chapter 7 Surface Integrals and Vector Analysis

the cube’s faces by Xi : [0, 1] × [0, 1] → R3, i = 1, . . . , 6, where

X1(s, t) = (0, s, t); X2(s, t) = (1, s, t); X3(s, t) = (s, 0, t);

X4(s, t) = (s, 1, t); X5(s, t) = (s, t, 0); X6(s, t) = (s, t, 1).

Each map Xi is clearly of class C1 and one-one. In addition, the faces have
well-defined nonzero normal vectors. For example, for both X1 and X2,

N1 = N2 = Ts × Tt = j × k = i.

Similarly,

N3 = N4 = i × k = −j and N5 = N6 = i × j = k.

None of these vectors vanishes. There is no consistent way to define normal
vectors along the edges of the cube (where two faces meet). That is why the cube
is only piecewise smooth. ◆

Area of a Smooth Parametrized Surface
Now, we use the notion of a parametrized surface to calculate the surface area of a
smooth surface. In the discussion that follows, we take S = X(D) to be a smooth
parametrized surface, where D is the union of finitely many elementary regions
in R2 and X: D → R3 is of class C1 and one-one except possibly along ∂ D.
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Figure 7.13 The image of the �s × �t rectangle in D is approximately a
parallelogram spanned by Ts(s0, t0)�s and Tt (s0, t0)�t .

The key geometric observation is as follows: Consider a small rectangular
subset of D whose lower left corner is at the point (s0, t0) ∈ D and whose width
and height are �s and �t , respectively. The image of this rectangle under X is a
piece of the underlying surface S that is approximately the parallelogram with a
corner at X(s0, t0) and spanned by the vectors Ts(s0, t0)�s and Tt (s0, t0)�t . (See
Figure 7.13.) The area �A of this piece is

�A ≈ ‖Ts(s0, t0)�s × Tt (s0, t0)�t‖ = ‖Ts(s0, t0) × Tt (s0, t0)‖�s�t.

Now, suppose D = [a, b] × [c, d]; that is, suppose D itself is a rectangle.
Partition D into n2 subrectangles via

a = s0 < s1 < · · · < sn = b and c = t0 < t1 < · · · < tn = d.

Let �si = si − si−1 and �t j = t j − t j−1 for i , j = 1, . . . , n. Then S is in turn
partitioned into pieces, each of which is approximately a parallelogram, assuming
�si and �t j are small for i , j = 1, . . . , n. If �Ai j denotes the area of the piece

Definition
Let X : D ⊆ R2 → R3 be a smooth parameterized surface. Let
f be a continuous scalar function whose domain includes
S = X(D). The scalar surface integral of f along X is∫∫

X
f dS =

∫∫
D
f(X(s, t)) ‖Ts ×Tt‖ ds dt

=

∫∫
D
f(X(s, t)) ‖N(s, t)‖ ds dt.
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Example

Let S be the closed cylinder of radius 3 with
axis along the z-axis, top face at z = 15, and
bottom face at z = 0. Let’s calculate

∫∫
S z dS.

Denote the lateral cylindrical face of S by S1
and the bottom and top faces by S2 and S3,
respectively.
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To define and evaluate scalar surface integrals over piecewise smooth para-
metrized surfaces, simply calculate the surface integral over each smooth piece
and add the results.

y

x

z

S1: x2 + y2 = 9

S2: z = 0

S3: z = 15

Figure 7.15 The closed
cylinder of radius 3 and
height 15 of Example 2.

EXAMPLE 2 Let S be the closed cylinder of radius 3 with axis along the z-axis,
top face at z = 15, and bottom face at z = 0, as shown in Figure 7.15. Then S
is a piecewise smooth surface; it is the union of the three smooth parametrized
surfaces S1, S2, and S3 described next. We calculate

∫∫
S z d S.

The three smooth pieces may be parametrized as follows:

S1 (lateral cylindrical surface):

⎧⎨
⎩

x = 3 cos s
y = 3 sin s
z = t

0 ≤ s ≤ 2π , 0 ≤ t ≤ 15,

S2 (bottom disk):

⎧⎨
⎩

x = s cos t
y = s sin t
z = 0

0 ≤ s ≤ 3, 0 ≤ t ≤ 2π ,

and

S3 (top disk):

⎧⎨
⎩

x = s cos t
y = s sin t
z = 15

0 ≤ s ≤ 3, 0 ≤ t ≤ 2π .

Using Definition 2.1, we have∫ ∫
S1

z d S =
∫ 15

0

∫ 2π

0

t ‖(−3 sin s i + 3 cos s j) × k‖ ds dt

=
∫ 15

0

∫ 2π

0

t ‖3 sin s j + 3 cos s i‖ ds dt

=
∫ 15

0

∫ 2π

0

3t ds dt =
∫ 15

0

6π t dt = 3π t2
∣∣15

0
= 675π.

Now,
∫∫

S2
z d S = 0, since z vanishes along the bottom of S. For S3, we have∫ ∫

S3

z d S =
∫ ∫

S3

15 d S = 15 ·
∫ ∫

S3

1 d S

= 15 · area of disk = 15 · (9π ) = 135π.

Therefore, ∫ ∫
S

z d S =
∫ ∫

S1

z d S +
∫ ∫

S2

z d S +
∫ ∫

S3

z d S

= 675π + 0 + 135π = 810π.
◆

If a surface S is given by the graph of z = g(x, y), where g is of class C1 on
some region D in R2, then S is parametrized by X(x, y) = (x, y, g(x, y)) with
(x, y) ∈ D. (See Example 4 of §7.1.) Then, from Example 13 in §7.1,

N(x, y) = −gx i − gy j + k,

so that ∫ ∫
X

f d S =
∫ ∫

D
f (x, y, g(x, y))

√
g2

x + g2
y + 1 dx dy. (4)

We compute∫∫
S1

z dS = 675π,

∫∫
S2

z dS = 0, and

∫∫
S3

z dS = 135π.

Therefore,∫∫
S
z dS =

∫∫
S1

z dS +

∫∫
S2

z dS +

∫∫
S3

z dS = 810π.
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the cube’s faces by Xi : [0, 1] × [0, 1] → R3, i = 1, . . . , 6, where

X1(s, t) = (0, s, t); X2(s, t) = (1, s, t); X3(s, t) = (s, 0, t);

X4(s, t) = (s, 1, t); X5(s, t) = (s, t, 0); X6(s, t) = (s, t, 1).

Each map Xi is clearly of class C1 and one-one. In addition, the faces have
well-defined nonzero normal vectors. For example, for both X1 and X2,

N1 = N2 = Ts × Tt = j × k = i.

Similarly,

N3 = N4 = i × k = −j and N5 = N6 = i × j = k.

None of these vectors vanishes. There is no consistent way to define normal
vectors along the edges of the cube (where two faces meet). That is why the cube
is only piecewise smooth. ◆

Area of a Smooth Parametrized Surface
Now, we use the notion of a parametrized surface to calculate the surface area of a
smooth surface. In the discussion that follows, we take S = X(D) to be a smooth
parametrized surface, where D is the union of finitely many elementary regions
in R2 and X: D → R3 is of class C1 and one-one except possibly along ∂ D.
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Figure 7.13 The image of the �s × �t rectangle in D is approximately a
parallelogram spanned by Ts(s0, t0)�s and Tt (s0, t0)�t .

The key geometric observation is as follows: Consider a small rectangular
subset of D whose lower left corner is at the point (s0, t0) ∈ D and whose width
and height are �s and �t , respectively. The image of this rectangle under X is a
piece of the underlying surface S that is approximately the parallelogram with a
corner at X(s0, t0) and spanned by the vectors Ts(s0, t0)�s and Tt (s0, t0)�t . (See
Figure 7.13.) The area �A of this piece is

�A ≈ ‖Ts(s0, t0)�s × Tt (s0, t0)�t‖ = ‖Ts(s0, t0) × Tt (s0, t0)‖�s�t.

Now, suppose D = [a, b] × [c, d]; that is, suppose D itself is a rectangle.
Partition D into n2 subrectangles via

a = s0 < s1 < · · · < sn = b and c = t0 < t1 < · · · < tn = d.

Let �si = si − si−1 and �t j = t j − t j−1 for i , j = 1, . . . , n. Then S is in turn
partitioned into pieces, each of which is approximately a parallelogram, assuming
�si and �t j are small for i , j = 1, . . . , n. If �Ai j denotes the area of the piece

Figure: The quantity
‖Ts ×Tt‖ is the
area of the gray
square on the right.

Fact
If S is a smooth surface parameterized by X : D ⊆ R2 → R3

then the surface area of S is given by∫∫
D
‖N‖ ds dt =

∫∫
D
‖Ts ×Tt‖ ds dt =

∫∫
X
1 dS.
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Example

Recall our parameterization of a sphere:

X(s, t) = r(cos s)(sin t) i+ r(sin s)(sin t) j+ r(cos t)k.

We calculate

Ts = −r sin s sin t i+ r cos s sin t j,

Tt = r cos s cos t i+ r sin s cos t j− r sin tk,
N = −r2 cos s sin2 t i− r2 sin s sin2 t j− r2 sin t cos tk,

and ‖N‖ = r2 sin t.

Therefore, the surface area of the sphere is∫ π

0

∫ 2π

0
r2 sin t ds dt =

∫ π

0
2πr2 sin t dt = 4πr2.
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Vector surface integrals

Definition
Let X : D ⊆ R2 → R3 be a smooth parameterized surface. Let
F be a continuous vector field whose domain includes
S = X(D). The vector surface integral of F along X is∫∫

X
F · dS =

∫∫
D
F(X(s, t)) ·N(s, t) ds dt.

In physical terms, we can interpret F as the flow of some kind
of fluid. Then the vector surface integral measures the volume
of fluid that flows through S per unit time. This is called the
flux of F across S.
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478 Chapter 7 Surface Integrals and Vector Analysis

The parametrized surface Y is the same as X, except that the standard nor-
mal vector arising from Y points in the opposite direction to the one arising
from X. ◆

The calculation in Example 7 generalizes thus: Suppose X is a smooth
parametrized surface and Y is a smooth reparametrization of X via H, mean-
ing that

Y(s, t) = X(u, v) = X(H(s, t)).

Since H is assumed to be of class C1, we can show from the chain rule that the
standard normal vectors are related by the equation

NY(s, t) = ∂(u, v)

∂(s, t)
NX(u, v). (11)

(See the addendum at the end of this section for a derivation of formula (11).)
Formula (11) shows that NY is a scalar multiple of NX. In addition, since H is
invertible and both H and H−1 are of class C1, it follows that the Jacobian of H
is either always positive or always negative. (To see this, note that both H ◦ H−1

and H−1 ◦ H are the identity function. Hence, the chain rule may be applied to
show that the derivative matrix DH(s, t) is invertible for each (s, t); therefore, its
determinant, which is the Jacobian of H, must be nonzero. Since the determinant
is a continuous function of the entries of H, it thus cannot change sign.) Hence,
the standard normal NY either always points in the same direction as NX or else
always points in the opposite direction (Figure 7.20). Under these assumptions, we
say that both H and Y are orientation-preserving if the Jacobian ∂(u, v)/∂(s, t)
is positive, orientation-reversing if ∂(u, v)/∂(s, t) is negative.

t

s

D2

u

D1

S = X(D1) = Y(D2)

NX

NY

Y

X

v

Figure 7.20 If Y is an orientation-reversing reparametrization of X, then NY

points opposite to NX.

The following result, a close analogue of Theorem 1.4, Chapter 6, shows that
smooth reparametrization has no effect on the value of a scalar line integral.

THEOREM 2.4 Let X: D1 → R3 be a smooth parametrized surface and f any
continuous function whose domain includes X(D1). If Y: D2 → R3 is any smooth
reparametrization of X, then∫ ∫

Y
f d S =

∫ ∫
X

f d S.

Figure: X and Y
parameterize the
same surface with
opposite normal
directions.

∫∫
Y
f dS =

∫∫
X
f dS∫∫

Y
F · dS = −

∫∫
X
F · dS

This can be achieved by exchanging s and t:

Tt ×Ts = − (Ts ×Tt) .
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