Surface to Surface Intersections

N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan

May 2004

Introduction Motivation

Surface to surface intersection (SSI) is needed in:

- Solid modeling (B-rep)
- Contouring
- Numerically controlled machining (Milling)
- Collision avoidance
- Feature recognition
- Manufacturing simulation
- Computer animation

Introduction Background

Intersection of two *parametric surfaces*, $P(\sigma,t) = Q(u,v)$ defined in *parametric spaces* $0 \le \sigma, t \le 1$ and $0 \le u, v \le 1$ can have *multiple components*^[4].

An *intersection curve segment* is represented by a continuous trajectory in *parametric space*.

Slide No. 3

III iii

Introduction Possible Approaches

- Three popular methods
 - Lattice methods
 - Issues related to topology, missing roots.
 - Subdivision based methods
 - Issues related to topology, extraneous roots.
 - Marching scheme (Our Choice)
 - Intersection curve segment is computed through an IVP.

Introduction Marching Scheme

A *marching scheme* involves:

- Identifying all components
- Obtaining an accurate starting point in each component
- Tracing the given intersection correctly
- Assumption:
 - The given surfaces are *Rational Polynomial Parametric (RPP)*.
 - We are given an intersection curve segment.
 - No singularities exist in the intersection curve segment.

Introduction Objective

Given an error bound on the *starting point* in both *parametric spaces,* obtain a bound for the entire *intersection curve segment* in *3D model space.*

Massachusetts Institute of Technology

Outline

Problem Formulation

- Error Bounds in Parametric Space
- Error Bounds in 3D Model Space
- Results and Examples
- Conclusions

Problem Formulation Transversal Intersection

Transversal intersection formulated as a system of ordinary differential equations (ODEs) in parametric space ^[4].

Problem Formulation Tangential Intersection

ODEs have the same form as in transversal intersection case

$$\sigma' = \frac{Det[\mathbf{c}, \mathbf{P}_{t}, \mathbf{N}^{\mathsf{P}}(\sigma, t)]}{\mathbf{N}^{\mathsf{P}}(\sigma, t) \bullet \mathbf{N}^{\mathsf{P}}(\sigma, t)}, \quad t' = \frac{Det[\mathbf{P}_{\sigma}, \mathbf{c}, \mathbf{N}^{\mathsf{P}}(\sigma, t)]}{\mathbf{N}^{\mathsf{P}}(\sigma, t) \bullet \mathbf{N}^{\mathsf{P}}(\sigma, t)}, \quad u' = \frac{Det[\mathbf{c}, \mathbf{Q}_{v}, \mathbf{N}^{\mathsf{Q}}(u, v)]}{\mathbf{N}^{\mathsf{Q}}(u, v)}, \quad v' = \frac{Det[\mathbf{Q}_{u}, \mathbf{c}, \mathbf{N}^{\mathsf{Q}}(u, v)]}{\mathbf{N}^{\mathsf{Q}}(u, v) \bullet \mathbf{N}^{\mathsf{Q}}(u, v)}, \\ \mathbf{N}^{\mathsf{P}} = \mathbf{P}_{\sigma} \times \mathbf{P}_{t} \quad Normal \ to \ \mathbf{P}(\sigma, t) \ and \quad \mathbf{N}^{\mathsf{Q}} = \mathbf{Q}_{u} \times \mathbf{Q}_{v} \quad Normal \ to \ \mathbf{Q}(u, v) \\ \mathbf{c} \ \text{is determined using the second derivatives of the surfaces.}$$

From the condition of equal normal curvatures we obtain the equation

$$b_{11}(\sigma')^2 + 2b_{12}(\sigma')(t') + b_{22}(t')^2 = 0$$

where b_{11} , b_{12} , b_{22} are functions of the *first* and *second fundamental form coefficients* of the surfaces.

For a unique marching direction, $(b_{12}^2 - b_{11}b_{22}) = 0$ and $(b_{12}^2 + b_{11}^2 + b_{22}^2) \neq 0$

• Thus if: $b_{11} \neq 0$, or if: $b_{11} = 0, b_{22} \neq 0$

$$\mathbf{c} = \frac{v\mathbf{P}_{\sigma} + \mathbf{P}_{t}}{|v\mathbf{P}_{\sigma} + \mathbf{P}_{t}|}, \text{ where } v = -\frac{b_{12}}{b_{11}} \qquad \mathbf{c} = \frac{\mathbf{P}_{\sigma} + \mu\mathbf{P}_{t}}{|\mathbf{P}_{\sigma} + \mu\mathbf{P}_{t}|}, \text{ where } \mu = -\frac{b_{12}}{b_{22}}$$

Massachusetts Institute of Technology

Problem Formulation Vector IVP for ODE

- Given a starting point (initial condition) belonging to an intersection curve segment, we can integrate the system of ODEs.
- The system of ODEs with the starting point represents an initial value problem (IVP).
 - Written in vector notation as:

$$\begin{bmatrix} \frac{d\sigma}{ds} \\ \frac{dt}{ds} \\ \frac{du}{ds} \\ \frac{dv}{ds} \end{bmatrix} = \begin{bmatrix} f_1(\sigma, t, u, v) \\ f_2(\sigma, t, u, v) \\ f_3(\sigma, t, u, v) \\ f_4(\sigma, t, u, v) \end{bmatrix}$$

$$\frac{d\mathbf{y}}{ds} = \mathbf{f}(\mathbf{y}), \quad \mathbf{y}(\mathbf{0}) = \mathbf{y}_0$$

Outline

Problem Formulation

- Error Bounds in Parametric Space
 - Review of Standard Schemes
 - Interval Arithmetic
 - Validated Interval Scheme
- Error Bounds in 3D Model Space
- Results and Examples
- Conclusions

Error Bounds in Parametric Space Review of Standard Schemes

- Well-known Standard Schemes:
 - Runge-Kutta Method
 - Adams-Bashforth Method
 - Taylor Series Method
- Properties of Standard Schemes:
 - They are approximation schemes and introduce a *truncation error*
 - They do not consider *uncertainty in initial conditions*
 - They are prone to *rounding errors*
 - They suffer from *straying* or *looping* near closely spaced features

Massachusetts Institute of Technology

Error Bounds in Parametric Space Interval Arithmetic (Introduction)

Intervals are defined by ^[2]:

$$[a] \equiv [\underline{a}, \overline{a}] \equiv \{x | \underline{a} \leq x \leq \overline{a}\}, \ \underline{a}, \overline{a}, x \in \mathbf{R}, \ \underline{a} \leq \overline{a}$$

Example:

$$\pi = 3.14159265358979323846...$$
$$\pi \in [3.141, 3.142] = [\pi]$$

Basic *interval arithmetic* operations are defined by:

Error Bounds in Parametric Space Interval Arithmetic (Solution of IVPs)

- For strict bounds for IVPs in *parametric space*, we employ a *validated interval scheme* for ODEs ^[3].
- The error in *starting point* is bounded by an *initial interval*.
- Interval solution represents a family of solutions passing through the initial interval satisfying the governing ODEs.

Massachusetts Institute of Technology

Error Bounds in Parametric Space Validated Interval Scheme (Introduction)

• Every *step* of a *validated interval scheme* involves ^[3]:

- Computing an interval valued function [y](s) such that:
 - $\mathbf{y}(s) \in [\mathbf{y}](s)$, and
 - The width of the **[y]**(*s*) is below a given tolerance

$$\forall s \in [s_j, s_{j+1}]$$

• Verifying the *existence* and *uniqueness* of the solution in $[S_i, S_{i+1}]$.

Error Bounds in Parametric Space Validated Interval Scheme (Overview)

One *step* of a *validated interval scheme* is done in *two* phases:

• Phase I Algorithm

• A step size
$$h_j = s_{j+1} - s_j$$

- An *a priori enclosure* $[\widetilde{y}_j]$ such that: $y(s) \in [\widetilde{y}_j], \quad \forall s \in [s_j, s_{j+1}]$
- Phase II Algorithm
 - Using $[\widetilde{y}_j]$ compute a *tighter bound* $[y_{j+1}]$ at S_{j+1} .

[4]ii

Error Bounds in Parametric Space Validated Interval Scheme (Phase I : Validation)

• A pair of $[\tilde{\mathbf{y}}_j]$ and h_j satisfying the relation:

 $[\widetilde{\mathbf{y}}_j] \supseteq [\mathbf{y}_j] + \mathbf{f}([\widetilde{\mathbf{y}}_j])h_j$

- This assures *existence* and *uniqueness* of the solution.
- This method is called a *constant enclosure method* ^[3].
- The *a priori enclosure* $[\widetilde{\mathbf{y}}_j]$ bounds the true solution in the *parametric space* $\forall s \in [s_j, s_{j+1}]$.
- Numerical implementation
 - Choosing a $[\widetilde{\mathbf{y}}_i]$ and,
 - Iterating to find a corresponding h_i .

Massachusetts Institute of Technology

Error Bounds in Parametric Space Validated Interval Scheme (Phase II : Tighter Bound)

- Using the *a priori enclosure* we
 - find a tighter bound $[\mathbf{y}_{j+1}]$ at s_{j+1} ^[3].
- This phase helps in the propagation of the solution by providing an *initial interval* for the successive step.
- The key idea is to use:
 - Interval version of *Taylor's formula*^[3].

$$[\mathbf{y}_{j+1}] = [\mathbf{y}_{j}] + \sum_{i=1}^{k-1} h_{j}^{i} \mathbf{f}^{[i]}([\mathbf{y}_{j}]) + h_{j}^{k} \mathbf{f}^{[k]}([\tilde{\mathbf{y}}_{j}])$$

where $\mathbf{f}^{[i]}([\mathbf{y}_{j}])$ represents the *i*th *Taylor coefficient* obtained using a technique called Automatic Differentiation^[3].

Massachusetts Institute of Technology

Slide No. 18

Error Bounds in Parametric Space Validated Interval Scheme (Application to SSI)

• We represent the surfaces as *interval surfaces*.

• *Interval surfaces* have *interval coefficients* and are written as:

 $[\mathbf{P}](\boldsymbol{\sigma},t)$ and $[\mathbf{Q}](u,v)$

• We obtain a *vector interval ODE system* :

$$\left[\frac{d\sigma}{ds}\frac{dt}{ds}\frac{du}{ds}\frac{dv}{ds}\right]^{T} = \frac{d\mathbf{y}}{ds} = \mathbf{f}([\mathbf{y}(s)])$$

With an *interval initial condition* :

$$[\mathbf{y}_0] = [[\sigma_0] \ [t_0] \ [u_0] \ [v_0]]^T$$

Error Bounds in Parametric Space

Validated ODE solver produces a priori enclosures in parametric space of each surface, guaranteed to contain the true intersection curve segment.

The union of a priori enclosures bounds the true intersection curve segment in parametric space.

Outline

- Problem Formulation
- Error Bounds in Parametric Space
- Error Bounds in 3D Model Space
- Results and Examples
- Conclusions

Error Bounds in 3D Model Space Mapping into 3D Model Space

Mapping from *parametric space* to 3D model space

- using corresponding surfaces $[\mathbf{P}](\sigma, t)$ or $[\mathbf{Q}](u, v)$
- coupled with *rounded interval arithmetic* evaluation

Ensures continuous error bounds in 3D model space ^[1] guaranteed to contain the true curve of intersection.

Outline

- Problem Formulation
- Error Bounds in Parametric Space
- Error Bounds in 3D Model Space
- Results and Examples
- Conclusions

Results & Examples Error Bounds in 3D Model Space (Transversal)

Results & Examples Error Bounds in 3D Model Space (Tangential)

Tangential intersections of parametric surfaces

Results & Examples Preventing Straying and Looping

Validated ODE solver can correctly trace the *intersection curve segment* even through closely spaced features, where standard methods fail.

Outline

- Problem Formulation
- Error Bounds in Parametric Space
- Error Bounds in 3D Model Space
- Results and Examples
- Conclusions

Conclusions Merits

- We realize validated error bounds in 3D model space which enclose the true curve of intersection.
- The scheme can prevent the phenomenon of straying or looping.
- The scheme can accommodate the errors in:
 - initial condition
 - rounding during digital computation
 - *Validated error bounds* for surface intersection is essential in *interval boundary representation* for consistent *solid models*^[5].

Conclusions Limitations and Future Work

- Limitations
 - We assume that we have
 - Identified each intersection curve segment
 - Strict error bound on the starting point
 - Increasing width of the interval solutions due to
 - Rounding
 - Phenomenon of *wrapping*
 - Scope for future work
 - Identification of all components
 - Accurate evaluation of *starting points* in each of the component

Acknowledgements

- National Science Foundation
- Prof. T. Sakkalis
- Prof. N. Nedialkov

References

- 1. Tracing surface intersections with a validated ODE system solver, Mukundan, H., Ko, K. H., Maekawa, T. Sakkalis, T., and Patrikalakis, N. M., Proceedings of the Ninth EG/ACM Symposium on Solid Modeling and Applications, G. Elber and G. Taubin, editors. Genova, Italy, June 2004. Eurographics Press.
- 2. Moore R. E. Interval Analysis. Prentice-Hall, Englewood Cliffs, 1966.
- **3.** Nedialkov N. S.. Computing the Rigorous Bounds on the Solution of an Initial Value Problem for an Ordinary Differential Equation. PhD thesis, University of Toronto, Toronto, Canada, 1999.
- 4. Patrikalakis N. M. and Maekawa T.. Shape Interrogation for Computer Aided Design and Manufacturing. Springer-Verlag, Heidelberg, 2002.
- 5. Sakkalis T., Shen G. and Patrikalakis N.M., Topological and Geometric Properties of Interval Solid Models, Graphical Models, 2001.
- 6. Grandine T. A., Klein F. W.: A new approach to the surface intersection problem. *Computer Aided Geometric Design 1*4, 2 (1997), 111–134. 650.

