
Surface to Surface Intersections

N. M. Patrikalakis, T. Maekawa, K. H. Ko, H. Mukundan

May 2004



Slide No. Slide No. Slide No. Slide No. 2222

Introduction 
Motivation

Surface to surface intersection (SSI) is needed in:

• Solid modeling (B-rep)

• Contouring

• Numerically controlled machining (Milling)

• Collision avoidance

• Feature recognition

• Manufacturing simulation

• Computer animation
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Introduction 
Background

Intersection of two parametric surfaces, defined 
in parametric spaces and can have 
multiple components [4]. 

An intersection curve segment is represented by a continuous 
trajectory in parametric space.
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Introduction
Possible Approaches

Three popular methods

• Lattice methods

Issues related to topology, missing roots.

• Subdivision based methods 

Issues related to topology, extraneous roots.

• Marching scheme (Our Choice)

Intersection curve segment is computed through an IVP.
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Introduction 
Marching Scheme

A marching scheme involves:

• Identifying all components

• Obtaining an accurate starting point in each component

• Tracing the given intersection correctly

Assumption:

• The given surfaces are Rational Polynomial Parametric (RPP).

• We are given an intersection curve segment.

• No singularities exist in the intersection curve segment.
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Introduction
Objective

Given an error bound on the starting point in both parametric 
spaces, obtain a bound for the entire intersection curve segment
in 3D model space. 

Strict Error Bound on Starting Point (Given) Strict Error Bound on the Entire 
Intersection Curve Segment (Goal)



Slide No. Slide No. Slide No. Slide No. 7777

Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions
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Problem Formulation
Transversal Intersection

Transversal intersection formulated as a system of ordinary differential 
equations (ODEs) in parametric space [4]. 
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Problem Formulation
Tangential Intersection

ODEs have the same form as in transversal intersection case

From the condition of equal normal curvatures we obtain the equation

where are functions of the first and second fundamental 
form coefficients of the surfaces.
For a unique marching direction, and 
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Problem Formulation
Vector IVP for ODE

Given a starting point (initial condition) belonging to an 
intersection curve segment, we can integrate the system of 
ODEs.

The system of ODEs with the starting point  represents an initial 
value problem (IVP).
• Written in vector notation as:
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Outline

Problem Formulation

Error Bounds in Parametric Space
• Review of Standard Schemes

• Interval Arithmetic 

• Validated Interval Scheme  

Error Bounds in 3D Model Space

Results and Examples

Conclusions
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Review of Standard Schemes

Well-known Standard Schemes:
• Runge-Kutta Method
• Adams-Bashforth Method
• Taylor Series Method

Properties of Standard Schemes:
• They are approximation schemes and introduce a truncation error
• They do not consider uncertainty in initial conditions
• They are prone to rounding errors
• They suffer from straying or looping near closely spaced features
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Interval Arithmetic (Introduction)

Intervals are defined by [2]:

Example:

Basic interval arithmetic operations are defined by:

[ ] ][3.142  , 3.141
4635897932383.14159265

ππ
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Interval Arithmetic (Solution of IVPs)

For strict bounds for IVPs in parametric space, we employ a 
validated interval scheme for ODEs [3]. 

The error in starting point is bounded by an initial interval.

Interval solution represents a family of solutions passing through 
the initial interval satisfying the governing ODEs.
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated Interval Scheme (Introduction)

Every step of a validated interval scheme involves [3]:

• Computing an interval valued function         such that:

and 

The width of the is below a given tolerance 

• Verifying the existence and uniqueness of the solution in
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated Interval Scheme (Overview)

One step of a validated interval scheme is done in two phases:

• Phase I Algorithm

A step size

An a priori enclosure such that:

• Phase II Algorithm

Using         compute a tighter bound
at . 
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated Interval Scheme (Phase I : Validation)

A pair of      and    satisfying the relation:

• This assures existence and uniqueness of the solution.
• This method is called a constant enclosure method [3]. 

The a priori enclosure bounds the true solution in the 
parametric space .

Numerical implementation
• Choosing a      and,

• Iterating to find a corresponding    .
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated Interval Scheme (Phase II : Tighter Bound)

Using the a priori enclosure we
• find a tighter bound at        [3]. 

This phase helps in the propagation of the solution by providing
an initial interval for the successive step. 

The key idea is to use:
• Interval version of Taylor’s  formula [3]. 
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obtained using a techniquecalled Automatic Differentiation .
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated Interval Scheme (Application to SSI)

We represent the surfaces as interval surfaces.
• Interval surfaces have interval coefficients and are written as:

We obtain a vector interval ODE system :

With an interval initial condition :
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Error Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric SpaceError Bounds in Parametric Space
Validated ODE solver produces a priori enclosures in parametric 
space of each surface, guaranteed to contain the true intersection 
curve segment.

The union of a priori enclosures bounds the true intersection 
curve segment in parametric space.
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Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions
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Error Bounds in 3D Model SpaceError Bounds in 3D Model SpaceError Bounds in 3D Model SpaceError Bounds in 3D Model Space
Mapping into 3D Model Space

Mapping from parametric space to 3D model space
• using corresponding surfaces
• coupled with rounded interval arithmetic evaluation

Ensures continuous error bounds in 3D model space [1]

guaranteed to contain the true curve of intersection.

[ ] [ ] ),(o),( vurt QP σ
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Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions



Slide No. Slide No. Slide No. Slide No. 24242424

Torus and cylinder Two bi-cubic surfaces

Results & Examples 
Error Bounds in 3D Model Space (Transversal)

0.02 0.001

Self intersection of 
a bi-cubic surface
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Tangential intersections of parametric surfaces

Results & Examples 
Error Bounds in 3D Model Space (Tangential)
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Validated ODE solver can correctly trace the intersection curve segment even 
through closely spaced features, where standard methods fail.

Results & Examples 
Preventing Straying and Looping

Adams-Bashforth Runge-Kutta

Result from a 
validated interval 

scheme

Perturbation Steps Required by
the Method
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Outline

Problem Formulation

Error Bounds in Parametric Space

Error Bounds in 3D Model Space

Results and Examples

Conclusions
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Conclusions
Merits

We realize validated error bounds in 3D model space which 
enclose the true curve of intersection.

The scheme can prevent the phenomenon of straying or looping. 

The scheme can accommodate the errors in:
• initial condition

• rounding during digital computation

Validated error bounds for surface intersection is essential in 
interval boundary representation for consistent solid models [5]. 
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Conclusions
Limitations and Future Work

Limitations
• We assume that we have 

Identified each intersection curve segment
Strict error bound on the starting point

• Increasing width of the interval solutions due to
Rounding
Phenomenon of wrapping

Scope for future work
• Identification of all components
• Accurate evaluation of starting points in each of the component
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