

Surrogate Fuel Modeling and Uncertainty Quantification

Perrine Pepiot-Desjardins, Supreet Bhaga, Guillaume Blanquart Heinz Pitsch

Stanford University

- Component Library Approach for transportation fuel surrogates
 - Chemistry reduction techniques
 - Component library approach
 - Application: Jet fuel surrogate
- Chemical mechanism for aliphatic species
- Uncertainty quantification in chemical systems

Reduction Strategies

DRGEP1: Directed Relation Graph with Error Propagation

- Removes as many species and reactions as possible while retaining the accuracy of detailed mechanism
- Automatic, fast and efficient
- Generates skeletal mechanisms with consistent chemical pathways

Chemical Lumping²

- Replaces chemical isomers by one single representative species
- Very efficient for large hydrocarbons oxidation
- Rate coefficients of the lumped reactions estimated accurately through statistical analysis of the detailed results

Quasi-steady state assumptions

• Replaces differential equations by algebraic expressions

¹ P. Pepiot-Desjardins, H. Pitsch, *Combust. Flame*, 2008.
 ² P. Pepiot-Desjardins, H. Pitsch, *Combust. Th. Model.*, 2008.

Integrated Approach

p = 13

- Highest reduction ratio obtained by combining all techniques
- Example: Iso-octane oxidation mechanism
 - Initial size: 850 species, 7212 reactions
 - Reduced size: 57 species, 504 reactions

104

 10^{2}

 $\Phi = 0.5$

p = 1 ba

Component Library Approach

Individual Components and Detailed Kinetic Models

Class	Molecule	Formula	Structure	Comments	
Paraffins	Dodecane	$C_{12}H_{26}$	~~~~~	Mech: 174 species, <i>Wang et al.</i> , 2008 Exp: ST, flames	
	lso-octane	C ₈ H ₁₈		Mech : 850 species, <i>LLNL</i> , 2002 Exp : ST, PFR, flames	
Naphthenes	Methyl- cyclohexane	C ₇ H ₁₄	\bigcirc	Mech : 998 species, <i>LLNL</i> , 2005 Exp : ST, PFR	
Aromatics	Toluene	C ₇ H ₈	\bigcirc	Mech: Blanquart et al., 2008	
	Benzene	C_6H_6	$\langle O \rangle$	Exp : ST, PFR, flames	

Base chemistry (C_0-C_4) developed for PAH and soot formation

- Extensively validated

- 151 species, Blanquart et al., 2008.

Possible Jet Fuel Surrogate Compositions

 Automatic composition optimization for any given targets based on group additivity theory

		Average Jet Fuel**	Neat Dodecane	Surrogate 1*	Surrogate 2
Composition	Dodecane		100	73.5	45
	lso-octane			5.5	
	MCH	N/A		10	26.1
[/onlog	Toluene			10	28.9
	Benzene			1	
H/C ratio		1.91	2.17	2.09	1.91
Formula		C ₁₁ H ₂₁	$C_{12}H_{26}$	$C_{10.7}H_{22.3}$	C _{9.3} H _{17.7}
Hydrocarbon composition [%vol]	Paraffins	~60	100	88	62
	Naphthenes	~20	0	6.4	20
	Aromatics	~18	0	5.6	18
Cetane Number		~42.7	80	73.4	58
Treshold Sooting Index		~15	5.2	9.3	16.3

*Violi et al., Comb. Sci. Tech. 174:11, 2002

** Edwards *et al.*, J. Prop. Pow., 17:2, 2001

Validation Procedure

- Reduction done for various configurations and over a wide range of pressures, equivalence ratios, and temperatures > 900 K
- Validation performed at each stage of reduction and combination, for each fuel component

Pyrolysis of MCH in plug flow reactor

Mechanisms		N _s	N _R
Components	Base Chemistry	151	1658
	Dodecane	174	2625
	lso-octane	850	7212
	Methyl-cyclohexane	998	8820
Multi–c	90 + 91 QSS	1197	

Comparison with Jet Fuel Experiments

- Fully automatic, multi-stage reduction strategy
- Development of an interactive framework for chemical modeling of transportation fuel surrogates
 - Modular and flexible
- Future:
 - Incorporate JetSurF into Component Library
 - Validate multi-component surrogates with experimental data

- Objective:
 - Integrate our recent developments for PAH chemical mechanism into JetSurF mechanism

PAH Thermodynamics

Thermodynamic Properties

- Describe how stable each species are
- Required for *accurate* modeling of combustion
 - Heat capacity
 - Entropy
 - Heat of formation

Polycyclic Aromatic Hydrocarbons (PAH)

- Formed in *rich premixed* and *diffusion* flames
- Intermediates to soot formation

• New Database of Thermodynamic Properties

- Ab-initio quantum calculations
 - G3MP2//B3
- Internal degree of rotation
 - Hindered rotors
- Group Corrections (GC)
- ⇒ Blanquart, G., Pitsch, H. « Thermochemical properties of Polycyclic Aromatic Hydrocarbons (PAH) from G3MP2B3 calculations » Journal of Physical Chemistry A (2007)

		G3MF	G3MP2//B3	
species	exp.	orig.	GC	
Aromatic Species				
benzene	82.93 ± 0.5	76.95	82.99	
naphthalene	150.3 ± 1.5	134.89	148.83	
anthracene	226.7 ± 3.5	208.28	230.11	
phenanthrene	201.7 ± 2.9	185.18	201.76	
pyrene	225.7 ± 1.2	200.69	226.09	
chrysene	263.5 ± 4.5	240.64	259.86	
perylene	306.0 ± 0.8	283.32	306.11	
coronene	302.0 ± 8.0	251.99	292.43	
avg. error		22.11	2.34	
Substituted Aromatics and Radicals				
phenyl	339.7 ± 2.0	341.14		
phenylacetylene	306.6 ± 1.7	307.97		
styrene	146.9 ± 1.0	138.38		
styryl	393.5 ± 7.0	402.80		
acenaphthylene	259.7 ± 4.6	244.18		
biphenyl	182.0 ± 0.7	163.33		

Chemical Mechanism

- Based Blanquart et al. mechanism
- PAH part starts from Wang, Frenklach mechanism
- Updated with new rates and pathways

⇒ Blanquart, G., Pepiot-Desjardins, P., Pitsch, H. « Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors » Combustion and Flame (2008) submitted

PAH Growth

Chemical Mechanism

.

٠

Small Hydrocarbon Chemistry	# # # ################################		
C3 & C4 Chemistry	# HIGH TEMPERATURE # 15 Species # 73 Reactions # Reactions of I-C8H18	# # #	
	ICOO : I-C8H18 -> Y-C7H15 + CH3 ICO1 : I-C8H18 -> I-C4H8 + I-C3H7 + CH3 ICO2 : I-C8H18 -> 2 T-C4H9	{ A = 1.02E+49 n = -9.38 E = 404.10 } { A = 5.75E+49 n = -9.66 E = 410.20 } { A = 1.94E+57 n =-11.84 E = 414.13 }	
Aromatic Chemistry	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \{ \begin{array}{lllllllllllllllllllllllllllllllllll$	
	# Reactions of C-C8H17		
Chemistry of Alkanes	IC10 : C-C8H17 -> I-C4H8 + T-C4H9 IC11 : C-C8H17 -> Y-C7H14 + CH3 IC12 : C-C8H17 -> I-C4H8 + CH3 + C3H6	{ A = 4.28E+22 n = -2.81 E = 127.70 } { A = 2.55E+39 n = -7.47 E = 189.48 } { A = 4.22E+24 n = -3.34 E = 158.66 }	
	IC13 : C-C8H17 + HO2 -> D-C8H170 + OH IC14 : C-C8H17 + CH302 -> D-C8H170 + CH30	{ A = 7.00E+12 n = .00 E = -4.18 } { A = 7.00E+12 n = .00 E = -4.18 }	
	# Reactions of D-C8H170		
PAH Chemistry	IC15 : D-C8H170 -> I-C4H8 + CH3 + CH3C0CH3 IC16 : D-C8H170 -> T-C4H9 + I-C3H7 + HC0 IC17 : D-C8H170 -> Y-C7H15 + CH20	{ A = 1.33E+23 n = -2.98 E = 64.44 } { A = 7.95E+33 n = -6.00 E = 97.57 } { A = 2.69E+20 n = -2.08 E = 62.99 }	
	# Reactions of Y-C7H15		
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \left\{ \begin{array}{l} A = 7,92E{+}16 \ n = -1,01 \ E = 15,98 \\ \{ \ A = 1,83E{+}17 \ n = -0,90 \ E = 165,71 \\ \{ \ A = 1,94E{+}18 \ n = -1,49 \ E = 136,77 \\ \{ \ A = 1,12E{-}44 \ n = 15,73 \ E = -65,59 \\ \end{array} \right\} $	
Results	# Reactions of Y-C7H14		
 1 Detailed chemical mechanism 	IC22 : Y-C7H14 -> I-C4H7 + I-C3H7 IC23 : Y-C7H14 -> T-C4H9 + A-C3H5	{ A = $6.53E+59$ n =-12.99 E = 394.69 } { A = $2.09E+65$ n =-14.94 E = 384.52 }	
	IC24 : Y-C7H14 + H -> X-C7H13 + H2 IC25 : X-C7H13 + H2 -> Y-C7H14 + H	{ A = 2.38E-13 n = 7.67 E = -47.65 } { A = 3.93E+06 n = 2.36 E = 92.29 } } \label{eq:alpha}	
– 13 fuels	IC26 : Y-C7H14 + OH -> X-C7H13 + H2O IC27 : X-C7H13 + H2O -> Y-C7H14 + OH	{ $A = 7.76E-09 \ n = 6.18 \ E = -41.33$ } { $A = 1.92E+05 \ n = 2.76 \ E = 159.33$ }	
– 149 species	# Reactions of X-C7H13		
	IC28 : X-C7H13 + H02 -> I-C3H5CH0 + I-C3H7 + OH	{ A = 1.00E+13 n = .00 E = .00 }	
 1651 reactions 	# Keactions of T-C4H90 IC29: T-C4H90 -> I-C3H7 + HC0 + H IC30: T-C4H90 -> KH20 + I-C3H7 IC31: T-C4H90 -> CH3C0CH3 + CH3	(A = 1.78E+39 n = -7.30 E = 156.05) (A = 7.25E+39 n = -7.59 E = 140.03) (A = 3.09E+13 n = 0.03 E = 58.87)	

⇒ Blanquart, G., Pepiot-Desjardins, P., Pitsch, H. « Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors » Combustion and Flame (2008) submitted

Validation Results

- Entire mechanism validated with large database of experimental data
 - Ignition delay times
 - Lean
 - Stoichiometric
 - Rich
 - Laminar Burning Velocities
 - Atmospheric
 - Moderate pressure (3bar 5bar)
 - *High* pressure (up to 25bar)
- Soot precursors in flames
 - Premixed flames
 - n-heptane
 - iso-octane
 - Counterflow diffusion flames
 - acetylene
 - n-heptane

Soot Precursors

Laminar Premixed Flames

Laminar Diffusion Flames

Fuel Components

- Results Analysis
 - Accurate prediction of soot concentration in premixed flames
 - Soot volume fraction *increases with equivalence ratio* (ϕ)

Uncertainty Quantification for Reactive Flow Simulations

- Uncertainty in numerical solution can be classified into
 - Aleatory: Uncertainty due to randomness in system, e.g. uncertainty in operating conditions of system or physical properties
 - Epistemic: Uncertainty due to lack of knowledge
- Monte Carlo (MC) simulations can be used for propagation of parametric uncertainty
 - MC simulations for complex models are very inefficient
 - No information about sensitivity of model to parametric uncertainty
- Polynomial chaos (PC) expansions can be used for stochastic representation of uncertainty

Polynomial Chaos Expansion Approach

- Uncertain model parameter (α) can be represented as spectral expansion given its PDF
- Spectral expansions called Polynomial Chaos expansions can be constructed using
 - Orthogonal polynomials (Hermite, Legendre, Laguerre etc.)
 - Weights associated with PDF

$$\alpha = \sum_{k=0}^{\infty} \alpha_k \Psi_k$$

• If Hermite polynomials are used then $\Psi_0=1, \Psi_1=\xi, \Psi_2=\xi^2-1$ etc.

- MC sampling of stochastic parameters is done to compute deterministic solution
- Coefficients of PC expansion are computed by projecting solutions onto PC basis
- Advantage: No need to modify trusted deterministic codes
- Disadvantage: Expensive for computationally intensive problem
- Intrusive method can be used for efficient solution

Intrusive Polynomial Chaos

• Variable $u(x,t,\xi)$ is expressed in form of PC expansion

$$u(x,t,\xi) = \sum_{k=0}^{N} u_k(x,t) \Psi_k$$

- The expansion is substituted in the deterministic equation
- Orthogonality is used to get N+1 equations for u_k 's
- Nonlinear models involve operations on multiple stochastic parameters
- Pseudospectral approach is used to simplify function evaluation of stochastic parameters

Uncertainty Quantification

- Objective:
 - Uncertainty propagation in LES
 - E.g.: Effect of uncertain rates on NOx emissions from aircraft engine
 - Intrusive PC too expensive and complicated
 - New UQ method with greatly reduced cost based on direct solution of uncertainty PDF equation
 - New method didn't work!
 - -Focus on
 - -Intrusive PC in laminar chemistry code
 - -Epistemic uncertainty
 - Uncertainty caused by chemistry reduction

- Intrusive PC leads to high order polynomials in non-linear terms
 - Pseudospectral approach
 - Multiplication
 - Product of two PC expansions having order P result in PC expansion of order 2P
 - Expansion of order 2P is projected on PC expansion of order P
 - Thus if $w=u \times v$ then

$$w = \sum_{k=0}^{P} w_k \Psi_k$$
 where $w_k = \sum_{i=0}^{P} \sum_{j=0}^{P} u_i v_j \frac{\langle \Psi_i \Psi_j \Psi_k \rangle}{\langle \Psi_k^2 \rangle}$

- Overloaded mathematical operators and functions were implemented in a library
- Can be used in chemical kinetic calculations to propagate uncertainty in initial conditions, reaction rate parameters, thermodynamic properties etc.
- E.g. Knowing PC expansions of A, T, E_a, evaluation of reaction rate k=ATⁿexp(-E_a/T) can be done as

$$k = A \star exp(n \star ln(T) - E_a \oslash T)$$

Where \star and \oslash are overloaded multiplication and division operators

- Incorporation of JetSurF into Component Library
- Validate surrogates based on JetSurF
- Integration of PAH chemistry into JetSurF mechanism
- UQ
 - Intrusive PC in laminar chemistry code
 - Model uncertainty caused by chemistry reduction