
Surveillance Robot Using Arduino Microcontroller, Android APIs and the Internet

Chinmay Kulkarni, Suhas Grama, Pramod Gubbi Suresh, Chaitanya Krishna, Joseph Antony
Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,

Surathkal, Mangalore, India.

Abstract— We propose a cost-effective four-wheeled surveillance
robot using an Arduino UNO microcontroller and a smartphone
running the Android Operating System. Surveillance robots
typically consist of a video camera, a GPS module, and GSM
radios. Android smartphones come with excellent hardware
satisfying the above needs. This can be leveraged and used to
advantage through APIs (Application Programming Interfaces)
provided for the Android operating system. Moreover, the cost
for building said robot using a smartphone is mitigated to a great
extent. The robot can be controlled remotely from a PC using the
internet and a microcontroller-smart phone interface residing on
the robot. To capture and archive the real time video from the
robot, the inbuilt camera input of the phone is utilized. The robot
can be controlled based on visual feedback from the same smart
phone. Four motors help achieve a zero turning radius. The
camera is attached to a stepper motor which makes it feasible to
capture the scene or object of interest. The captured video can be
enhanced and made intelligible using further image processing
on the remote PC thereby eliminating the need for extra DSP
hardware on the robot.

Keywords— Surveillance Robots, Android, Arduino, Video
streaming.

I. INTRODUCTION
Surveillance is the process of monitoring a situation, an area
or a person. This generally occurs in a military scenario where
surveillance of borderlines and enemy territory is essential to
a country’s safety. Human surveillance is achieved by
deploying personnel near sensitive areas in order to constantly
monitor for changes. But humans do have their limitations,
and deployment in inaccessible places is not always possible.
There are also added risks of losing personnel in the event of
getting caught by the enemy. With advances in technology
over the years, however, it is possibly to remotely monitor
areas of importance by using robots in place of humans. Apart
from the obvious advantage of not having to risk any
personnel, terrestrial and aerial robots can also pick up details
that are not obvious to humans. By equipping them with high
resolution cameras and various sensors, it is possible to obtain
information about the specific area remotely. Satellite
communication makes it possible to communicate seamlessly
with the robots and obtain real-time audiovisual feedback.
Thus, in recent times, surveillance technology has become an
area of great research interest. However, building a small
robot for testing and research purposes proves to be extremely
expensive. Primarily because a security robot would require
certain components such as a GPS module (Global
Positioning System), High resolution cameras, radios for
satellite connectivity, etc. Each of these components are quite

expensive and piecing them together for the purpose of a robot
is a very costly and time consuming affair. Moreover, a lot of
time is wasted in writing driver code to interface all these
components. The solution to this dilemma is quite simple. In
the last few years, feature-rich smartphones have become
popular. These phones come equipped with the required
features such as a GPS module, a high resolution camera and
internet connectivity. Due to the extremely efficient supply
chains that go into manufacturing consumer electronic devices,
these phones come quite cheap for the features that they
provide. Also, the operating system on these smartphones
provide Application Programmer Interfaces (APIs) for using
the various sensors with ease. By using the APIs provided, we
can easily write apps in a high-level language like Java,
without the complication of writing driver code. In our system,
we have used a smartphone running the Android Operating
System [8], which is one the most popular mobile operating
systems today.
 Thus, it is our aim to build a fully-featured surveillance robot
using an easily available Android phone, which can be
remotely controlled over the internet.

II. RELATED WORKS
The field of surveillance robots is quite popular. A lot of

work has been done in navigational algorithms and control
system of wireless surveillance robots [1], [2]. A common
theme is also the use of a camera on the robot in order to
receive live video feedback [1], [3], [5]. Wireless robots made
using the Arduino microcontroller have been implemented,
but wireless communication occurs using the Zigbee protocol,
which limits the range of the robot [6]. A robot which
performs image processing using the camera on an Android
smartphone has also been implemented [7]. However, this
method is limited by the processing power of the phone, a
problem that we have addressed by remotely performing all
imaging processing operations on a different computer, after
transmitting the camera’s feed.

Our project is rather unique in the sense that it is a low-cost
solution that offers the ability to remotely control a robot with
an unlimited range (by using the internet), while also offering
video feedback. There is also no constraint on any extra
processing since everything is done remotely.

III. SYSTEM DESCRIPTION
Our system consists of a remote computer and a robot. The
robot is controlled by a user sitting at the remote computer,
over the internet. The robot consists of a smartphone running

2014 First International Conference on Systems Informatics, Modelling and Simulation

978-0-7695-5198-2/14 $31.00 © 2014 IEEE

DOI 10.1109/SIMS.2014.25

83

2014 First International Conference on Systems Informatics, Modelling and Simulation

978-0-7695-5198-2/14 $31.00 © 2014 IEEE

DOI 10.1109/SIMS.2014.25

83

2014 First International Conference on Systems Informatics, Modelling and Simulation

978-0-7695-5198-2/14 $31.00 © 2014 IEEE

DOI 10.1109/SIMS.2014.25

83

2014 First International Conference on Systems Informatics, Modelling and Simulation

978-0-7695-5198-2/14 $31.00 © 2014 IEEE

DOI 10.1109/SIMS.2014.25

83

2014 First International Conference on Systems Informatics, Modelling and Simulation

978-0-7695-5198-2/14 $31.00 © 2014 IEEE

DOI 10.1109/SIMS.2014.25

83

the Android operating system, an Arduino microcontroller to
control the robot’s motion, and the requisite hardware (motors,
chassis, power supply, etc.)
The user controls the robot by sending control signals to the
Android smartphone. The smartphone then forwards these
signals to the Arduino Microcontroller, which then moves the
robot in the required direction. The camera on the Android
smartphone is used to send video feedback to the remote user
simultaneously over the internet. This enables the user to
navigate the robot remotely. Additional processing can be
performed on the video feed on the remote computer. A visual
representation is shown below.

IV. MODULES AND INTERFACES
 The project is divided into 3 modules, each of which are

explained in detail below.
A. Android to user Communication

At the remote computer, the user can control the robot through
a MATLAB GUI that we created using the GUIDE toolset
[19]. A screenshot of the same is shown below.

Figure 3 MATLAB GUI on the remote computer

As seen in the figure, there are 4 navigation buttons to move
the robot. There is also a window showing the live video feed
from the robot. The slider above the video feed allows us to
control the brightness of the incoming video. We have also
implemented an auto contrast feature for the video. The ability
to record, save and play back the video feed has also been
implemented.
The Android smartphone on the robot writes the video feed to
a particular IP address which is set by the user. When the user
clicks on the “Start Video” button, a MATLAB timer is set off.
This timer calls back on a read function at regular intervals of
time. This function reads the image that is transmitted by the
Android phone at that instant in time. The image is then passed
through the user-controlled brightness and contrast filters, and
then displayed in the GUI. The interval at which the read
function is called defines the frame rate of the video feed. A
record feature is also implemented where in the sequence of
RGB matrices of the frames are stored in a 4D matrix. This
matrix is stored as .mat file, which can be played back later.
Navigation of the robot, based on the video feed, is done using
the buttons on the GUI, or through the arrow keys on the
keyboard. When a particular button/key is pressed, a unique
String assigned to it is sent to the same IP address. This String
is read by an app on the Android smartphone.
Both the video feed (phone to user) and navigation signals
(user to phone) occur simultaneously on different ports of the
same IP address. This is done with the help of internet sockets
[14].
Figs. 4 and 5 show flowcharts depicting the functioning of the
GUI and the video feed respectively.

Fig. 1 A basic overview of the system.

Fig. 2 Android to user interface.

8484848484

B. Android to Robot(Arduino) Communication
The Android phone is connected to the Arduino using a

USB OTG (On-the-Go) cable. Android provides support for
USB connected devices through two modes of communication:
USB host and USB accessory. In our case, the Android phone
acts as the host and powers the Arduino [9].

The Android phone acts as a bridge for communicating
between the remote computer and the Arduino. For this
purpose, there are two separate apps running simultaneously
on the phone. One of these is for transmitting the video feed
to the remote computer. For this purpose, we have used a
freely available Android app called IP Webcam [18]. The
second app is responsible for receiving control signals from
the Remote User and relaying them to the Arduino
microcontroller. A screenshot of the app is shown below.

The app is coded in Java using the Android Software

Development Kit (SDK) [10]. The app listens for incoming
Strings from the Remote User on a specified port. Each String
is then mapped to a hexadecimal value. For example, an “up”
command would be mapped to 0x00, “back” as 0x01 and so
on. This hexadecimal value is then sent to the Arduino
microcontroller. We have used the USB Host API provided by
Android for this purpose [9].

In the app, we have also included five navigation buttons
for testing purposes. These buttons simulate the same
response as the ones on the MATLAB GUI.

Figure 4 User Input through MATLAB GUI

Figure 5 MATLAB function for reading transmitted video.

Figure 6 A screenshot of the Android app running on the phone

8585858585

Figure 7 Workflow of the Android app on the smartphone

C. Arduino Implementation
In our system, we have used an Arduino Uno is a

microcontroller board based on the ATmega328 [11]. The
Arduino project provides an integrated development
environment (IDE) based on Processing, and programming is
done using a language based on Wiring, which is very similar
to C++ [13].

The Arduino microcontroller is configured to receive serial
input from the app running on the Android smartphone, and
subsequently control four DC motors (2 front and 2 rear).
Upon receiving the hexadecimal codes from the Android
phone, the Arduino generates two control signals per DC
motor. For e.g, on receiving 0x00 to indicate a forward
motion, the code on the Arduino sends one HIGH and one
LOW on each pair of control signals. A backward motion
would involve inverting of the same, and so on. Since the
Arduino cannot directly power a DC motor due to insufficient
current, motor drivers, with their own power supply are used.
Each motor driver is capable of controlling 2 DC motors.
Hence, two motor drivers are used. In our implementation,
the Arduino sends the control signals to two L293D motor
drivers each powered by a 9 volt battery [17].

Figure 8 A circuit diagram of the motor driver circuit

Figure 10 A picture of the robot, with the Arduino on top

Figure 9 Flowchart depicting functioning of Arduino

8686868686

V. SCOPE FOR FUTURE WORK AND CONCLUSION

This project offers a lot of scope for adding newer features.
Since all image processing is done remotely, there are no
resource constraints apart from the bandwidth of the network.
We can program the robot such that it can detect objects and
reach them on its own. Thus, we can make it completely
autonomous. Also, with the presence of GPS navigation and
mapping software, the robot has the capability of finding the
best route possible to reach a certain location. Also, by making
it sturdier and giving it extra protection, we can make it an all-
terrain robot, which would make it ideal for a surveillance
robot.

There is also the option of adding sound processing to the
remote computer, thus giving it greater surveillance
capabilities.

The possibilities are endless. This robot in its current state
provides a platform for further research into improving its
capabilities.

REFERENCES
[1] Hou-Tsan Lee, Wei-Chuan Lin, Ching-Hsiang Huang, Yu-Jhih Huang,

“Wireless indoor surveillance robot”, in 2011 Proceedings of SICE
Annual Conference (SICE), 2011, p. 2164- 2169

[2] Change Zheng, “Mechanical design and control system of a miniature
surveillance robot”, in ICIA '09, International Conference on
Information and Automation, 2009, p. 1228- 1233

[3] Kyunghoon Kim, “Intelligent surveillance and security robot systems”,
in IEEE Workshop on Advanced Robotics and its Social Impacts
(ARSO), 2010, p. 70- 73

[4] D. Matko, “Image based control of a space surveillance robot”, IEEE
International Conference on Robotics and Biomimetics (ROBIO),
2011, p. 2838- 2843

[5] Ki Sang Hwang, Kyu Jin Park, Do Hyun Kim, Sung-Soo Kim, Sung
Ho Park, “Development of a mobile surveillance robot”, in ICCAS '07,
International Conference on Control, Automation and Systems, 2007,
p. 2503- 2508

[6] Christian Hernández, Raciel Poot, Lizzie Narváez, Erika Llanes and
Victor Chi, “Design and Implementation of a System for Wireless
Control of a Robot”, IJCSI International Journal of Computer Science
Issues, Vol. 7, Issue 5, September 2010

[7] Mejdl Safran and Steven Haar, “Arduino and Android Powered Object
Tracking Robot”. [Online]. Available:
http://faculty.ksu.edu.sa/mejdl/Publications/Android_Arduino_Robot.
pdf

[8] Android Developers Site [Online]. Available:
http://developer.android.com/index.html, 2012

[9] Android Developers Site on USB Host [Online]. Available:
http://developer.android.com/guide/topics/connectivity/usb/host.html,
November 2012

[10] Android Developers Site API Guides [Online]. Available:
http://developer.android.com/guide/components/index.html, October
2012

[11] The Arduino Uno Website [Online]. Available:
http://arduino.cc/en/Main/arduinoBoardUno, September 2012

[12] Arduino Language Reference [Online]. Available:
http://arduino.cc/en/Reference/HomePage, September 2012

[13] Shiffman, Daniel (September 23, 2009). "Interview with Casey Reas
and Ben Fry". Rhizome.org

[14] The Java Tutorials: All About Sockets [Online]. Available:
http://docs.oracle.com/javase/tutorial/networking/sockets, March
2013

[15] Android USB Host + Arduino: How to communicate without rooting
your Android Tablet or Phone [Online]. Available:
http://android.serverbox.ch/?p=549, September 2012

[16] How do I use my smart phone camera as a webcam in MATLAB? On
the MATLAB forums [Online]. Available:
http://www.mathworks.in/matlabcentral/answers/12036, February
2013

[17] L293D Datasheet- Texas Instruments – Quadruple Half- H Driver
[Online] Available: http://www.alldatasheet.com/datasheet-
pdf/pdf/27189/TI/L293D.html, October 2012

[18] IP Webcam, Google Play [Online]. Available:
https://play.google.com/store/apps/details?id=com.pas.webcam&hl=e
n, February 2012.

[19] (2013) Creating Graphical User Interfaces in MATLAB. On the
Mathworks website [Online]. Available:
http://www.mathworks.com/discovery/matlab-gui.html, February
2013

8787878787

