Topographic Survey

$>$ Topography is the study of the shape and features of land surfaces.

$>$ Topography is a field of geoscience and planetary science and is concerned with local detail in general, including not only relief but also natural and artificial features, and even local history and culture.

Topographic Survey

$>$ Topography is the study of the shape and features of land surfaces.

$>$ This meaning is less common in the United States, where topographic maps with elevation contours have made "topography" synonymous with relief.

Topographic Survey

Topography - defined as the shape or configuration or relief or three-dimensional quality of a surface
$>$ Topography maps are very useful for engineers when planning and locating a faciltiy

Topographic Survey

$>$ U.S. Geological Survey (USGS) has developed maps for a large part of the US
> Napoleon Bonaparte received his first promotion because of ability to make and use maps

Topographic Survey

Topographic Survey

Contours

The most common method of representing the topography of an area is to use contour lines

Topographic Survey

Contours

There are several rules to note when viewing topographic maps:
> The rule of Vs: sharp-pointed V usually are in stream valleys, with the drainage channel passing through the point of the V, with the V pointing upstream.
> The rule of Os: closed loops are normally uphill on the inside and downhill on the outside, and the innermost loop is the highest area
> Spacing of contours: close contours indicate a steep slope; distant contours a shallow slope. Two or more contour lines merging indicates a cliff

Topographic Survey

Contours

Topographic Survey

Contours

Topographic Survey
Contours

When is the steepest part of this terrain?

Topographic Survey

Contours

What is the shallowest part?

Topographic Survey
Contours

Topographic Survey

Contours

Topographic Survey

Contours

$>$ The selection of the contour is important
$>$ The contour interval should be small enough to give the desired topographic detail while remaining economic
$>$ Usually every fifth contour line is shown in a heavy, wider line, this is called a index line

Topographic Survey

Contours

WHat You set
ON YOUR MAP

STEEP SLOPE

Topographic Survey
Contours

Topographic Survey

Contours

Topographic Survey
Contours

Topographic Survey
Contours

Topographic Survey

Characteristics of Contours
$>$ Depression and hill look the same; note the contour value to distinguish the terrain
$>$ Important points can be further defined by including a "spot" elevation
$>$ Contour lines tend to parallel each other on uniform slopes

Topographic Survey

Characteristics of Contours
> Closely spaced contours indicate steep slopes
$>$ Widely spaced contours indicate moderate slopes
> Contours should be labeled to the elevation value

- Contours are not shown going through buildings
> Contour line do not cross

Topographic Survey

Construction of Contours
$>$ The first step in developing a contour map is measuring the elevations of a group of points
$>$ It will be easier for us to establish a rectangular grid of points (marked with flags) and measure the elevation
$>$ The location of the flag points can be established by taping and checked by pacing or the odometer

Topographic Survey
Group Work

What is the elevation of point A ?

Topographic Survey

Group Work

What is the elevation of point C ?

Topographic Survey

Group Work

What is the approximate slope between points A and C ?

Topographic Survey

Construction of Contours
$>$ For our project, the spacing of the grid is established by requiring that no more than 1-foot contour elevation change in each grid cell.
$>$ To compute that spacing consider the slope along each edge of your site:

$$
\begin{aligned}
& \text { slope }=\frac{\Delta \text { elevation }}{\text { length }}=\frac{102-98}{100} \\
& \text { grid spacing }=\frac{1}{\text { slope }}=\frac{100}{4}=25 \mathrm{ft} .
\end{aligned}
$$

Topographic Survey

Construction of Contours

> Repeat this calculation for each side of your site and use the smallest value for you grid spacing
$>$ If the grid spacing value is problematic to use or set-up, round down to a convenient value - probably a multiple of 10 would be convenient.

Topographic Survey			
Construction of Contours			
$>$ Repeat this calculation for each side of your site and use the smallest value for you grid spacing $>$ If the grid spacing value is problematic to use or set-up, round down to a convenient value - probably a multiple of 10 would be convenient.			
Side	Length (ft.)	Δ Elevation	Grid Spacing
AB			
BC			
CD			
DA			

Topographic Survey

Group Work

slope $=\frac{\Delta \text { elevation }}{\text { length }}=\frac{53 \mathrm{ft} .-64 \mathrm{ft} .}{300 \mathrm{ft} .}=-0.037=-3.7 \%$

Topographic Survey

Construction of Contours

- Repeat this calculation for each side of your site and use the smallest value for you grid spacing
$>$ If the grid spacing value is problematic to use or set-up, round down to a convenient value - probably a multiple of 10 would be convenient.

$$
\begin{aligned}
& \text { slope }=\frac{\text { selevation }}{\text { length }}=\frac{102-98}{100} \\
& \text { grid spacing }=\frac{1}{\text { slope }}=\frac{100}{4}=25 \mathrm{ft} .
\end{aligned}
$$

Topographic Survey

Construction of Contours

Topographic Survey

Once your contour grid is established, measure the elevation of each grid point

Topographic Survey

$>$ We want a contour map on 5 ft . intervals
$>$ The grid is rectangular, the dimensions of the sides are 80 ft . (north) and 100 ft . (east)

Topographic Survey

Construction of Contours

$>$ The basic method for estimating contour is applied to each grid cell individually
\Rightarrow Use linear interpolation to find the location of the desired contour interval
$>$ Let consider the cell in the upper left-hand corner remember the contour interval is 5 ft .

Topographic Survey

Construction of Contours

Topographic Survey

Let's look at the bottom edge of the grid cell

Topographic Survey

Locate the contour intervals locations on the grid cell

Topographic Survey

TopHat Questions

Topographic Survey

Let's look at the right edge of the grid cell

Topographic Survey

Repeating the linear interpolation for each of the remaining grid cell gives:

Topographic Survey

End of Topographic Surveying

