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Background 

 Background 

 Conventional statistical methods are very successful in predicting customers to have an 

event of interest given target time window. However, they could be challenged by the 

question: when is the event of interest most likely to occur given a customer? 

Or how to estimate the following survivor function – S(•)? 

 

                         Prob(event=‘Y’|time) = S(time, covariates) 

 
 

 The goal of this study is, through estimating S(•), to show: 
 

 How to understand parametric and semi-parametric approaches 

 

 How to employ parametric and semi-parametric  approaches to estimate survival function 

 

 How to use SAS to conduct them 

 

 How to evaluate the estimations 
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What Can Survival Analysis Do? 

 What is Survival Analysis?  

 Model time to event  

 Unlike linear regression, survival analysis can have a dichotomous (binary) outcome 

 Unlike logistic regression or decision tree, survival analysis analyzes the time to an 

event 

 Why is that important?  

 Able to account for censoring and time-dependent covariates 

 Can compare survival between 2+ groups 

 Assess relationship between covariates and survival time 

 Capable of answering “who/when are most likely to have an event?” 

 When to use Survival Analysis?  

 Example: 

 Time to cancellation of products or services (attrition) 

 Time in acquiring add-on products or upgrading 

 Re-deactivation rate after retention treatment 

 etc. 

 When one believes that 1+ explanatory variable(s) explains the differences in time to 

an event 

 Especially when follow-up is incomplete 
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 Conventional modeling techniques are hard to handle two common features of marketing 

data, i.e. censoring and time-dependent 

 Survival analysis encompasses a wide variety of methods for analyzing the timing of 

events 

Conventional Modeling vs. Survival Analysis 
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Types of Censoring Schemes 

 Right censoring: 

 occurs when all you know about an 

observation on a variable T is that it is less 

than some value c 

 The main reason of right censoring 
occurring are as follows: 

 Termination of the study 

 Failure due to a cause that is not the 

event of interest 

 Loss to follow-up 

 We know that subject survived at least to 

time t 

 Other Types of Censoring  

 Left censoring – a time of event is only 

known to be before a certain time. 

 Interval censoring – a data point is 

somewhere on an interval between two 

values 

C 
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Approach to Survival Analysis 

 Like other statistics we have studied we can do any of the following with survival 

analysis: 

 Descriptive statistics 

 Univariate statistics 

 Multivariate statistics 
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Approach to Survival Analysis Contd. 

 Descriptive statistics: 

  How to describe life time? 

  Mean or Median of survival? 

  What test would you use to compare statistics of survival between 2 cohorts?  

  Average hazard rate 

  Total # of failures divided by observed survival time  

  An incidence rate, with a higher values indicating more events per time 

 Univariate statistics: 

 Univariate method: Kaplan-Meier survival curves: 

  aka. product-limit formula 

  Accounts for censoring 

  Does not account for confounding or effect modification by other covariates 
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Approach to Survival Analysis Contd. 

 Example (Kaplan-Meier curve): A plot of the Kaplan–Meier estimate of the survival function is 

a series of horizontal steps of declining magnitude which approaches the true survival function 

for that population 

 

 

 

 

the median of 

lifetime of mcc_ind = 

0 is 120 months 

longer than that of  

mcc_ind = 1 

Test Chi-Square Pr >Chi-Square

Log-Rank 243.7972 <.0001

Wilcoxon 254.0723 <.0001

-2Log(LR) 241.2043 <.0001

Test of Equality over Strata

median 

median of lifetime 

Question:  

1. What are the medians of 

lifetime of 2 types of customers 

(mcc_ind=0 and 1)? 

2. Are their survival 

distributions significant 

different?.  

120 months 
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Approach to Survival Analysis Contd. 

 Comparing Multiple Kaplan-Meier curves 

 Multiple pair-wise comparisons produce cumulative Type I error – multiple 

comparison problem 

 Instead, compare all curves at once  

 analogous to using ANOVA to compare > 2 cohorts 

 Then use judicious pair-wise testing 

 Multivariate statistics 

 Limit of Kaplan-Meier Curves 

 What happens when you have several covariates that you believe contribute 

to survival? 

 Can use stratified K-M curves – for more than 2 covariates 

 Need another approach – Model With Covariates -- for many covariates 
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Model With Covariates 

 Three Types of Survival Models 

 If we model the survival time process without assuming a statistical distribution, 

this is called non-parametric survival analysis 

 If we model the survival time process in a regression model and assume that a 

    distribution applies to the error structure, we call this parametric survival analysis 

 If we model the survival time process in a regression model and assume  

     proportional hazard exists, we call this semi-parametric survival analysis 
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Model With Covariates Contd. 

 Proportional Hazards Model 

       It is to assume that the effect of the covariates is to increase or decrease the hazard by a 

proportionate amount at all durations. Thus 

 

 

where          is baseline hazard,                is the relative risk associated with covariate 

vector x. So, 

 

 

 

Then the survivor functions can be derived as  

 

Parallel Hazard Functions from Proportional Hazards Model can graphed as follows: 
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Model With Covariates Contd. 

 Proportional Hazards Model Contd. 
 

 Two Common Tests for Examining Proportional Assumption 
 

 Test the interaction of covariates with time  

The covariates should be time-dependent if the test shows the interactions significantly 

exist, which means the proportional assumption is violated 

 Conduct Schoenfeld residuals Test  

 One popular assessment of proportional hazards is based on Schoenfeld residuals, 

which ought to show no association with time if proportionality holds. (Schoenfeld D. 

Residuals for the proportional hazards regression model. Biometrika, 1982, 

69(1):239-241) 
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Model With Covariates Contd. 

 Parametric Survival Model  

 We consider briefly the analysis of survival data when one is willing to 

assume a parametric form for the distribution of survival time 

 Survival distributions within the AFT class are the Exponential, Weibull, 

Standard Gamma, Log-normal, Generalized Gamma and Log-logistic 

 AFT model describes a relationship between the survivor functions of any 

two individuals. If Si(t) is the survivor function for individual i, then for any 

other individual j, the AFT model holds that 

 

                                                                               for all t 

 

)()( tStS ijji 

where      is a constant that is specific to the pair (i,j). This model says, in effect, that what 

makes one individual different from another is the rate at which they age 
ij
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Model With Covariates Contd. 

 Parametric Survival Model Contd. 

 Let T denote a continuous non-negative random variable representing survival 

time, then a family of survival distributions can be expressed as follows: 
 

 

 

where W is a random disturbance term with a standard distribution in               and     ,    

are parameters to be estimated 

 

 A baseline hazard function may change over time 

 A linear function of a set of k fixed covariates give the relative risk when they 

are exponentiated 

 Parametric approach produces estimates of parametric regression models 

with censored survival data using the method of maximum likelihood 

 

i

WxxT ikkii   ...log 110

),( 
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Model With Covariates Contd. 

 Parametric Survival Model Contd. 

 The relationships between various distributions are shown below where the 

direction of each arrow represents going from the general to a special case 

 

 
Loglogistic 
Distribution 
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Model With Covariates Contd. 

 Goodness-of-Fit Tests 
 

 There are three common Statistics methods for model comparisons 

 Log-Likelihoods  

 AIC 

 Likelihood-Ratio Statistic 
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Model With Covariates Contd. 

 Goodness-of-Fit Tests 

 Graphical Methods 

 Exponential Distribution: 

The plot of - log S(t) versus t should yield a straight line with an origin at 0 

 Weibull Distribution 

The plot of log[-logS(t)] versus log t should be a straight line 

 Log-Normal Distribution 

The plot of                      versus log t should be a straight line, where          is the c.d.f 

 Log-Logistic Distribution 

The plot of                               versus log t should be a straight line 
 

 Cox-Snell Residuals Plot (Collett 1994) 

 Cox-Snell Residual is defined as: 

 

 

 where ti is the observed event time or censoring time for individual i, xi is the vector of covariate 

values for individual i, and S(t) is the estimated probability of surviving to time t based on the fitted 

model. 

)(

])())(1(log[ tStS

))(1(1 tS

)|(log iii xtSe 
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 Formulate the Business Problem 

 Rank the current TD type-A customers by their likelihood to have attrition given a point in 

time within next 12 months 

 Time Framework 

 from Dec2009 to Nov2010 

 Population 

 All customers who are open and active as of Oct2009 except seasonal accounts 

 10K eligible customers for modeling 

 N customers are flagged as attritors in terms of attrition definition  

 m% overall attrition rate 

 Target (involuntary attrition is excluded) 

 

Note: All examples in this presentation are based on a fake dataset. 

Examples: 
Application of Semi-Parametric Survival Model 

 



Date: March 2012 

 Model customer data with Cox proportional hazard model using SAS as follows: 
 

proc phreg data=TDM.smpl_typeA_attri_data; 

model month*attrition(0)=var1 - var31 /ties=efron ; 

baseline out=a survival=s logsurv=ls loglogs=lls; 

run; 
 

 The syntax of the model statement is MODEL time < *censor ( list ) > = effects < 
/options > ; 

 That is, our time scale is time since Oct2009 (measured in completed months). 

 

Examples: 
Application of Semi-Parametric Survival Model Contd. 
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 Lift Charts 

The lift charts illustrate the performance of survival model is better than that of 
logistic regression for modeling this Attrition data 

 

Examples: 
Application of Semi-Parametric Survival Model Contd. 
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 Conduct the Tests Using SAS 
 

proc phreg data=TDM.smpl_typeA_attri_data; 

model month*attrition(0)= var1-var31 time*var1–

time*var31/ties=efron; 

output out=b ressch=ressch1-ressch31; 

test_proportionality: test time*var1–time*var31; 

run; 

 

 The test shows that most of interactions of covariates with time are insignificant at 

alpha=0.05 level (e.g. p=0.57 and 0.43 for var15*time and var29*time), but a couple of 

them not. For instance, p<.0001 for var13*time 

Examples: 
Application of Semi-Parametric Survival Model Contd. 
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 Schoenfeld Residuals Test 

 As an example, for var15, its residual has 

a fairly random scatter, and the OLS 

regression of the residual on month 

shows the p-values is 0.5953. That 

indicates no significant trend exists. 

 For the var29 residuals shows the p-

values is 0.1847 and is not very 

informative , which is typical of graphs for 

dichotomous covariates 

 The Schoenfeld Residuals test 

demonstrate there is no evidence of the 

proportional hazard assumption being 

violated for those variables 

 For var13, there appears to be a slight 

tendency for the residuals to increase 

with time since entering study. The p-

value for var13 was 0.02, suggesting that 

there may be some departure from 

proportionality for that variable 

Examples: 
Application of Semi-Parametric Survival Model Contd. 
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 Objectives 

 The example will show how to develop parametric survival model using SAS based on 

TD type-B customer attrition data 

 This analysis will help TD business units better understand attrition risk and attrition 

hazard by predicting “who will attrite” and most importantly “when will they attrite” 

 The findings from this study can be used to optimize customer retention and/or 

treatment resources in TD attrition reduction efforts 
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Examples: 
Application of Parametric Survival Model 

 



Date: March 2012 

Attrition Definition 

 TD type-B customer attrition is defined as an type-B customer account that is closed certain number of 

days (at least 120 days) before maturity 

 The attrition in this study only refers to customer initiated attrition 

  Exclusions 

 Involuntary attrition are excluded 

 All records with repeat attritions are excluded 

 Mortgage closed within one month after opened are excluded 

  Granularity  

 This study examines type-B customer attrition at account level 

 Time Frame For Modeling:  

 01Jan2008 is the origin of time, and 31Aug2009 is the observation termination time 
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Examples: 
Application of Parametric Survival Model Contd. 
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 Population 

 Population For Modeling:  

  All type-B customer accounts are active as of 01Jan2008 except those attrite 

involuntarily in the following months 
 

  200K type-B customer accounts are eligible for modeling 
 

  M accounts are flagged as attritors 

  n% average attrition rate over the 20 months study time window (01Jan2008 to 

31Aug2009 ) 
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Examples: 
Application of Parametric Survival Model Contd. 
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 Attrition Hazard Function Estimation 

 The purpose of estimation is to gain knowledge of hazard characteristics. E.g., when is the 

most risky time of account tenure for the attrition? 
 

 The scatter plot below shows that the shape of hazard function approaches to a Log-

Logistic distribution.  

The highest risk of 

midterm attrition 

occurred around one 

and half years of 

type-B product 

tenure 
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Examples: 
Application of Parametric Survival Model Contd. 
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 Variables For Modeling 
 

 There are 20 variables in the modeling dataset 
 

 11 categorical variables (X1 – X11) with levels ranging from 2 to 3 
 

 9 numeric variables (X12 – X20) 
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Examples: 
Application of Parametric Survival Model Contd. 
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 Model Type Exploration 

 The following scatter plot indicates the Log-Logistic model. However, we’ll try 

multiple distributions and select the champion for the final model type 

 

 
Plot for Evaluating Log-Logistic Model

R2 = 0.9939
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Examples 
Application of Semi-Parametric Survival Model Contd. 
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 PROC LIFEREG -- Parametric Survival Model 

 

 

 

proc lifereg data=TDM.smpl_typeB_attri_data; 

model time*attrition(0)=&catvars &numvars/dist=&distr; 

output out=a cdf=f; 

run; 

Notes:  

1. &distr refers to Exponential, Weibull, LogNormal, LogLosgitic, Gamma 

2. The performance of each model with different distribution is evaluated by AIC and Cox-Snell 

residuals plot 
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Examples: 
Application of Parametric Survival Model Contd. 
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 Evaluation of Model Specification 
 

 

 

Log Likelihood Distribution AIC

-151746.90 Exponential 303495.81

-149094.71 Weibull 298193.42

-148662.78 Lognormal 297329.56

-252226.57 Logistic 504457.13

-148331.69 LLogistic 296667.39

-162677.70 Gamma 325361.40

Gamma >298193

AIC and Log Likelihood By Model Distribution

Champion!! 

Note: The Scale is 0.654503 for the champion model  
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Examples: 
Application of Parametric Survival Model Contd. 
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 Cox-Snell Residuals Plot 
 

 The following scatter plot demonstrates the Log-Logistic model fits the type-B customer 

attrition data nicely 

 

 Log SDF By Cox-Snell Residuals On Validation Data

R2 = 0.9898
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Examples: 
Application of Parametric Survival Model Contd. 
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 Model Performance Validation 
 

 The lift decreases monotonically across deciles, which indicates the model has strong 

predictive power to rank type-B product customers by the probability of  attrition  
 

 

 

 

Lift Charts By Month On Validation Data
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Examples: 
Application of Parametric Survival Model Contd. 
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 Model Performance Validation Contd. 
 

 The top decile lift decreases monotonically over month, which is as expected. It means 
that the power of model rank ordering keeps decaying along with time  

 

 
Top decile Lift by Month On Validation Data
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Examples: 
Application of Parametric Survival Model Contd. 
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 LIFEREG Procedure Versus PHREG 
 

 Estimates of parametric regression models with censored survival data using the 

method of maximum likelihood 

 Accommodates left censoring and interval censoring, while PHREG only allows right 

censoring 

 Can be used to test certain hypotheses about the shape of the hazard function, while 

PHREG only gives you nonparametric estimates of the survivor function, which can be 

difficult to interpret 

 More efficient estimates (with smaller standard errors) than PHREG if the shape of the 

survival distribution is known 

 Possible to perform likelihood-ratio goodness-of-fit tests for many of the other probability 

distributions due to the availability of the generalized gamma distribution 

 Does not handle time-dependent covariates 
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Examples: 
Application of Parametric Survival Model Contd. 
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Conclusions 

 Introduced parametric and semi- parametric survival model approaches, and 

showed how to conduct and evaluate them using SAS  

 Demonstrated Survival analysis is very powerful statistical tool to predict time-to-

event in database marketing 

 Discovered the insight of attrition risk and attrition hazard over the time of 

tenure, which is hard for conventional models to do 

 Overall, this study is helpful in customizing marketing communications and 

customer treatment programs to optimally time their marketing intervention 

efforts 
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