Workbook

Surviving Chemistry

One Concept at a Time

A Workbook for high school chemistry

Free Preview and Printouts

Effiong Eyo

E3 Scholastic Publishing

Surviving Chemistry Book Series

Family of five student-friendly HS chemistry books that are certain to:

Excite students to study

Engage students in learning

Enhance students understanding

For more information and to order:

e3chemistry.com

(877) 224 – 0484

info@e3chemistry.com

Surviving Chemistry: One Concept at a Time Workbook

Our #1 seller to Schools

Trusted By Teachers, Enjoyed By Students

© 2010 by E3 Scholastic Publishing.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without prior written permission of E3 Scholastic Publishing.

ISBN-13: 978-1466232624

ISBN-10: 1466232625

Printed in The United States of America

e3chemistry.com (877) 224 - 0484

Table of Contents

Worksheets

vvoi kaileeta	
Topic 1: Matter and Energy	Pg 1 - 10
Worksheet 1: Types of matter	
Worksheet 2: Phases of matter, energy, and Temperature	
Worksheet 3: Heat and Heat calculations	
Worksheet 4: Characteristics of gases and gas law calculations	
Topic 2: The Periodic Table	Pg 11 - 16
Worksheet 5: Types of Elements and their properties	
Worksheet 6: Classifying the Elements	
Worksheet 7: Periodic Trends	
Topic 3: The Atomic Structures	Pg 17 - 26
Worksheet 8: Historical development of atom	
Worksheet 9: The atomic structures	
Worksheet 10: Atomic mass calculations	
Worksheet 11: Bohr's atomic model and electron configurations	
Worksheet 12: Neutral atoms and ions	
Topic 4: Chemical Bonding	Pg 27 - 36
Worksheet 13: Chemical bonding, stability of atoms, and energy	1827 30
Worksheet 14: Bonding between atoms (intermolecular forces)	
Worksheet 15: Types of substances and their properties	
Worksheet 16: Molecular structures, molecular shapes, and molecular polarity	
Worksheet 17: Lewis electron-dot diagrams	
Topic 5: Chemical Formulas and Equations	Pg 37 - 44
Worksheet 18: Chemical formulas	1801
Worksheet 19: Writing and naming formulas	
Worksheet 20: Chemical equations	
Topic 6: Moles: Mathematics of Formulas and Equations	Pg 45 - 52
Worksheet 21: Mole calculations in formulas	. 8 . 3 . 3 .
Worksheet 22: Percent composition calculations	
Worksheet 23: Mole – mole calculations in equations	
· '	

Table of Contents

Topic 7: Solutions	Pg 53 – 62
Worksheet 24: Solubility factors	
Worksheet 25: Types of solutions	
Worksheet 26: Molarity and parts per million calculations	
Worksheet 27: Vapor pressure	
Worksheet 28: Effect of solute on boiling and freezing points	
Горіс 8: Acids, Bases and Salts	Pg 63 – 70
Worksheet 29: Terms and definitions	
Worksheet 30: Properties of acids and bases	
Worksheet 31: Reactions of acids and bases	
Worksheet 32: Titration	
Worksheet 33: Relating H+ concentration to pH	
Worksheet 34: Naming and writing formula of acids	
Горіс 9: Kinetics and Equilibrium	Pg 71 – 82
Worksheet 35: Rate of reactions	
Worksheet 36: Energy and chemical reactions	
Worksheet 37: Potential energy diagrams	
Worksheet 38: Equilibrium and Le Chatelier's principle	
Topic 10: Organic Compounds	Pg 83 - 96
Worksheet 39: Properties of organic compounds	
Worksheet 40: Hydrocarbon compounds	
Worksheet 41: Functional group compounds	
Worksheet 42: Classes of organic compounds	
Worksheet 43: Drawing organic structures	
Worksheet 44: Isomers	
Worksheet 45: Organic reactions	
Topic 11: Redox and Electrochemistry	Pg 97 – 110
Worksheet 46: Oxidation numbers	
Worksheet 47: Redox equation, half-reaction equations	
Worksheet 48: Interpreting redox equations	
Worksheet 49: Balancing redox equations	
Worksheet 50: Electrochemistry- Definitions and facts	
Worksheet 51: Electrochemical cells	
Горіс 12: Nuclear Chemistry	Pg 111 – 116
Worksheet 52: Definition and facts of nuclear chemistry	<u> </u>
Worksheet 53: Nuclear transmutations and equations	
Worksheet 54: Half-life calculations and Reference Table N	
i From "Surviving Chemistry: Workbook"	e3chemistry.com

Table of Contents

Multiple Choice Questions

Pg 117 - 359

Topic 1: Matter and Energy Topic 7: Solutions

Topic 2: The Periodic Table

Topic 3: The Atomic Structure

Topic 4: Chemical Bonding

Topic 4: Chemical Bonding

Topic 10: Organic Chemistry

Topic 5: Chemical Formulas and Equations Topic 11: Redox and Electrochemistry

Topic 6: Moles calculations Topic 12: Nuclear Chemistry

Constructed Response Questions Pg 360 - 415

Topic 1: Matter and Energy Topic 7: Solutions

Topic 2: The Periodic Table

Topic 3: The Atomic Structure

Topic 4: Chemical Bonding

Topic 4: Chemical Bonding

Topic 4: Chemical Bonding

Topic 5: Chemical Formulas and Equations Topic 11: Redox and Electrochemistry

Topic 6: Mole calculations Topic 12: Nuclear Chemistry

Reference Table Questions

Pg 416 - 429

Table A: Standard Temperature and Pressure

Table B: Physical Constants for Water

Table C: Selected Prefixes

Table D: Selected Units

Table E: Selected Polyatomic Ions

Table F: Solubility Guidelines

Table G: Solubility Curves

Table H: Vapor Pressure of Four Liquids

Table I: Heat of reactions at 101.3 KPa and 298 K

Table J: Activity Series

Table K: Common Acids

Table L: Common Bases

Table M: Common Acid-Base Indicators

Table N: Selected Radioisotopes

Table O: Symbols Used in Nuclear Chemistry

Table P: Organic Prefixes

Table Q: Homologous Series of Hydrocarbon

Table R: Organic Functional Groups

Table S: Properties of Selected Elements

Table T: Formulas and Equations

Worksheets Concept by Concept

Set A: Terms and definitions

Objective: By defining these words, you will become more familiar with types of matter related terms and their definitions

Define, neatly and clearly, types of matter related terms below.

- 1. Pure substance
- 2. Mixture
- 3. Element
- 4. Compound
- 5. Law of definite proportion
- 6. Homogeneous mixture
- 7. Heterogeneous mixture
- 8. Aqueous solution
- 9. Decantation
- 10. Filtration
- 11. Distillation

Set B: Facts related to matter

Objective: To test your ability to describe and explain differences and similarities between the types of matter.

Answer the following questions clearly and neatly.

- 12. What are the two types of pure substances?
- 13. What are the two classifications of mixtures?
- 14. Which methods are used to separate components of compounds?
- 15. Which methods are used to separate components of mixtures?
- 16. How are elements and compounds similar?
- 17. How are elements and compounds different?
- 18. How are compounds and mixtures similar?
- 19. How are compounds and mixtures different?

Set C: Classifying matter

Objective: To test your ability to classify different types of matter by symbols, names, and diagrams

Classify each of the followings with the comb	ination of terms listed below.
Pure substance – element	Mixture – homogenous
Pure substance – compound	Mixture – heterogeneous
20. HCl(aq)	26. Sugar
21. KBr (s)	27. Soil
22. Cl ₂ (g)	28. Water
23. CH ₂ (OH) ₂ aq)	29. Sodium
24. Hg(I)	30. Iron oxide
25. NH ₃ (I)	31. Salt water
Classify each diagram as: pure substance-ele	ement or pure substance–compound or Mixture
Atom Y: ♦ ••	** **
Atom Z: ◆◆	**
Кеу	
32	33 34

Set D: Drawing diagrams of matter:

Objective : To test your ability to use symbols to draw diagrams to represent the different types of matter

Symbols of two different atom	ns are given below.	
	Atom X: O	Atom Y: Δ
In the boxes provided for num	ber 35 to 37, draw diagrams to	represent the different types of matter.
35. Diatomic element X	36. Compound X ₂ Y ₂	37. A mixture of diatomic element Y and compound X ₂ Y
Draw at least five units	Draw at least five units	Draw at least five units
2 From "Sur	viving Chemistry: Workbook	" e3chemistry.com

Set A: Terms and definitions *Objective:* By defining these words, you will become more familiar with phase, temperature and energy related terms and their definitions.

Define the following phase, phase change, energy and temperature related terms. Be neat and clear.
1. Solid
2. Liquid
3. Gas
4. Fusion
5. Freezing
6. Condensation
7. Evaporation
8. Sublimation
9. Deposition
10. Exothermic
11. Endothermic
12. Temperature
13. Kinetic energy
14. Potential energy
15. Ice / liquid equilibrium
16. Water / steam equilibrium
17. Phase change diagram
18. Absolute Zero

Set B: Phases of matter and temperature:

Objective: To test you knowledge of facts related to phases, phase changes, energy and temperature.

Answer the following questions.

- 19. Which phase of matter have particles that are arranged in regular geometric?
- 20. In which phase of water can the molecules of water flow over each other?
- 21. How would you compare the forces of attraction between particles of a substance in the liquid phase to those in the gas phases?
- 22. Which three phase changes are endothermic?
- 23. Which three phase changes are exothermic?
- 24. How many reference temperature points are needed to create a thermometer scale?
- 25. Which temperatures are commonly used as reference points to create Celsius or Kelvin thermometer?
- 26. How is average kinetic energy of particles relates to temperature of a substance?

Set C: Relating phase change to energy

Objective: To test your ability to relate phase changes of matter to energy

Above each arrow write the phase change (fusion, condensation...etc) that is represented by the equation. Under each arrow, write "exothermic" or "endothermic" to indicate if the change releases or absorbs heat.

28.
$$C_{10}H_8(s)$$
 -----> $C_{10}H_8(g)$

28.
$$C_{10}H_8(s)$$
 -----> $C_{10}H_8(g)$ 30. $C_2H_3O_2(g)$ ----> $C_2H_3O_2(I)$

Set D: Temperature

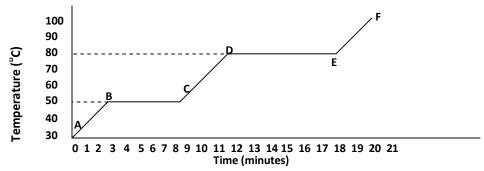
Objective: To test your understanding of temperature and kinetic energy.

Write "Highest KE" under the container or object that has particles with highest kinetic energy. Write "Lowest KE" under the container or object that has particles with lowest kinetic energy.

31.

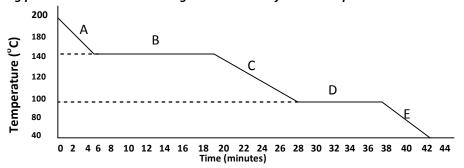
32.

300K


Convert the given temperatures to Kelvin.

Convert the given temperatures to Celsius.

Worksheet 2 Topic 1


Set E: Phase change diagram *Objective:* To test your ability to interpreted phase change diagrams.

The diagram below shows the heating of a substance starting with the substance below its melting point.

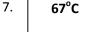
- 39. What is the boiling point of the substance?
- 40. At what temperature are the solid and liquid phases exist at equilibrium?
- 41. At which segment or segments is the substance average kinetic energy increasing?
- 42. At which segment or segments is the substance exists in two phases?
- 43. Potential energy of the substance remains constant during which segment or segments?
- 44. What is the total length of the time that the substance exists only as a liquid?
- 45. What is the total length of time that the substance undergoes fusion?
- 48. Is the diagram a heating curve of water or of a different substance? Explain your answer.

The diagram below shows the cooling of a substance starting with the substance at a temperature above it boiling point. The substance is losing heat at a rate of 155 Joules per minute.

- 49. What is boiling point of the substance?
- 50. What is the freezing point of the substance?
- 51. What is the melting point of the substance?
- 52. Which segment or segments represents a time when the substance is changing phase?
- 53. Which segment or segments represents a time when the substance is in one phase?
- 54. What is the phase or phases of the substance during segment C?
- 55. What is the total length of time it took for the substance to change from liquid to solid?
- 56. Describe the change in kinetic energy of the substance during segments A and segment B?
- 57. How much heat did the substance lose to completely change from gas to liquid?
- 58. How much heat did the substance lose to completely change from liquid to solid?

Set A: Terms and definitions

Objective: By defining these words, you should become more familiar with heat related terms and their definitions.


Define, neatly and clearly, the following heat related terms.

- 1. Heat
- 2. Joules
- 3. Specific heat capacity
- 4. Heat of fusion
- 5. Heat of vaporization
- 6. Calorimeter

Set B: Direction of heat flow

Objective: To test your ability to determine direction of heat flow between two objects.

For each question below, draw an arrow (---heat ----->) or (< -----heat-----) between the two objects to show the direction that heat will flow between them.

9.

250 K

8.

-65°C

10.

Set C. Heat calculation

Objective: To test your ability to set-up and solve heat problems.

For each question below: Write down heat equation to use, set up, and solve the heat problem. Show all work in the space to the right of the question.

- 11. How much heat is absorbed when a 10-g sample of water changes its temperature from 23°C to 32°C?
- 12. How much heat is released by a 15 gram sample of water to cool from 50°C to 46°C?

Worksheet 3 Topic 1

Set C continues

- 14. Calculate the number of joules of heat needed to change a 25 g sample of water to steam at its boiling point.
- 15. How much heat is absorbed by a 170 gram sample of ice to melt at 0°C?
- 16. The specific heat capacity of a substance is 15 J/g.°C. How much heat would be released by a 25 g sample of this substance to cool from 100°C to 90°C?
- 17. Substance Y has a heat of fusion of 3.5 KJ/g. How much heat would a 30 gram sample of substance Y absorbs to melt at its melting point?
- 18. Propane has a heat of vaporization of 356 Joules per gram. How much heat is needed to completely evaporate a 40 gram sample of propane at its boiling temperature of 230K?
- 19. If 5000 J is required to evaporate 36 grams of a liquid at constant temperature. What is the heat of vaporization of the liquid?
- 20. A student determined that a sample of water absorbed 2200 joules of heat when it changed its temperature from 47°C to 59°C. What is the mass of the water sample?
- 21. A 5.7 g sample of copper absorbed 1023 J of heat to melt at its melting point. What is the heat of fusion of copper?
- 22. What is the specific heat capacity of an unknown substance if 10 grams of the substance absorbed 550 J of heat to change from 26°C to 33°C?

Set A: Kinetic molecular theory

Objective: To test your knowledge of facts related to the kinetic molecular theory of ideal gas.

Read page 19 set 29 in the Guided Study Book. Fill in the m provided as you read.	nissing word or phase in the blank spaces	
Kinetic molecular theory of ideal gas.		
1. Behavior of gases is influenced by which three factors:	, and	
2. The kinetic molecular theory of ideal gas is used to expl	ain of gases.	
3. Gas is composed of part	icles.	
4. Distances between gas particles are	·	
5. Gas particles are in,,	, line motion	
6. When two particles of gas, energy is	from one particle to another.	
7. Particles of gases have	to each other.	
8. Volume of individual gas particle is	·	
Deviation from ideal gas model.		
9. Name four real gases that you know.		
10. Give two reasons why real gases do not behave exactly like ideal gas.		
11. Under what two conditions do real gases behave most	like an ideal gas?	
12. Under what two conditions do real gases behave least	like an ideal gas?	
13. Which two real gases behave most like (deviate least f	rom) an ideal gas?	

Set B: Avogadro's law

Objective: To test your understanding of Avogadro's law

- 15. Gas A in a container below has the following properties:

volume 300 ml
pressure 150 KPa
temperature 280 K

Gas A

Circle a gas below that will contain the same number of gas molecules as Gas A in the container.

	volume	pressure	temperature
Gas B:	300 ml	280 KPa	150 K
Gas C:	300 ml	150 KPa	280 K
Gas D:	600 ml	300 KPa	560 K

Set C: Gas law calculations

Objective: To test your ability to set-up and solve gas law problems

For each question below, write down the factors given, set-up the problem using the combined gas law equation, and solve for the unknown factor.

16. At constant pressure, a 3.5 L sample of oxygen gas is at 280 K. If the temperature is increased to 560 K, calculate the new volume of the gas.

Determine factors from question.

Write down the gas law equation, set-up and solve

$$P_1 =$$

$$P_2 =$$

$$V_2 =$$

$$T_1 = T_2 =$$

17. A 100 ml sample of a gas is at STP. What will be its new pressure if the volume is decreased to 50 ml and the temperature is increased to 480 K?

Determine factors from question.

Write down the gas law equation, set-up and solve

$$P_1 =$$

$$P_2 =$$

$$V_2 =$$

$$T_1 =$$

$$T_2 =$$

18. A gas at constant temperature has a volume of 2 L at 101.3 KPa. What will be the new volume if the pressure is increased to 303.9 KPa?

Determine factors from question.

Write down the gas law equation, set-up and solve

$$P_1 =$$

$$P_2 =$$

$$V_1 =$$

$$V_2 =$$

$$T_1 =$$

$$T_2 =$$

19. At constant volume, a gas at 300 K had its pressure changed from of 0.8 atm to 0.5 atm. What will be the new temperature of the gas?

Determine factors from question.

Write down the gas law equation, set-up and solve

$$P_1 =$$

$$P_2 =$$

$$V_2 =$$

$$T_2 =$$

20. A 0.8 L gas at STP had its temperature changed to 50°C and its pressure changed to 80 KPa. What is the new volume of the gas?

Determine factors from question.

Write down the gas law equation, set-up and solve

9

$$P_1 =$$

$$P_2 =$$

$$V_2 =$$

$$T_1 =$$

$$T_2 =$$

enhance

E3 Scholastic Publishing

7 MARNE AVE. NEWBURGH, NY 12550

Surviving Chemistry Books: Ordering Catalog for Schools and Teachers

Our Exam Preps		
Questions for Chemistry AP Exam Practice - 2013 ISBN: 978-1478324812	\$16.64	
Questions for Biology Regents Exam Practice ISBN: 978-1469979441	\$15.64	
Questions for Regents Chemistry Exam Practice ISBN: 978-0983132981	\$15.64	
Chemistry Regents Pocket Study Guide (Black Print) ISBN: 978-1460970874	\$13.82	
Chemistry Regents Pocket Study Guide (Color Print) ISBN: 978-1460980620	\$19.98	
Our Classroom Materials		
Surviving Chemistry Review Book – 2012 Revision* ISBN: 978-1478395409	\$15.64	
Review Book Student Answer Sheet Booklet ISBN: 978-1466319523	\$6.99	L
Surviving Chemistry Guided Study Book - 2012 Revision* ISBN: 978-1478257868	\$17.99	
Surviving Chemistry Workbook* ISBN: 978-1460942765	\$17.99	
*For Are a Booklete (a to A) - 'the Heleney's		

Cover colors: Each of our book titles is printed in three different cover colors.

Same book title, same great contents, same price, three different cover colors to choose from.

Visit our website e3chemistry.com to see all available cover colors for each title.

List Price: Visit our website for list price of each title

Catalog Price: Prices shown are discounted up to 25% from book list price.

Online Prices: Book prices on our website are lower (at a higher discount up to 35%) than our catalog prices.

We encourage schools and teachers to place orders on our website for bigger savings.

Book prices and discounts on other online sites like amazon.com and barnesandnoble.com may be different from our catalog and website prices.

Shipping: 10% shipping and handling charge on all class orders. Shipping discount is available for online orders.

Ordering Methods:

Online: e3chemistry.com Fax/Phone: (877) 224-0484

Mail: Send Purchase Order to above address

*Free Answer Booklets (up to 4) with all class-size orders

E3 Scholastic Publishing is a Print-On-Demand publisher. Books are printed only when an order is placed.

ALL pre-paid class orders are processed, printed and shipped within a couple of days.

Class-size orders that are not pre-paid may experience significant delays in processing and shipment.

We encourage schools and teachers to prepay for class-size orders to ensure that books are delivered when they are needed.

Three convenient ways to Pre-Pay for your class-size orders:

- 1. Place your order from our website. Save big and pay Securely with a credit card through *PayPal*.
- 2. Call us to request an online invoice. Just Click and Pay Securely with a credit card through **PayPal** (most convenient)
- 3. Send a check for Order Total with your completed Purchase Order form. We also accept pre-payment of half the order total. We will invoice you the remaining amount after delivery.

Please call or email us anytime with any questions or comments.