

Sustainable Production and Distribution of Bioenergy for the Central USA

Agro-ecosystem Approach to Sustainable Biofuels Production via the Pyrolysis-Biochar Platform (USDA-NIFA AFRI CAP) • Grant no. 2011-68005-30411

Presentation outline

- Introduction
- Previous research on switchgrass production costs
- Factors affecting feedstock costs
- Current production costs
- Take home lessons

Switchgrass: An energy crop for marginal lands

- EPA predicts 2.8 million acres will be in switchgrass by 2022.
- Switchgrass used in a rotational system.
- Provide ecosystem services.
- Positive energy flow.

Three main questions with cellulosic bioenergy

Feedstock Availability

Feedstock Costs

Sustainability

Northern Plains On-Farm Switchgrass Field Scale Trials

- Cooperating farmers were identified via assistance from USDA-NRCS state and district offices and University Extension Service staff.
- Fields were chosen based on characteristics for enrollment in CRP.
- Trial initiated in 2000 (2000-2005).
- Two farmers had previous experience growing switchgrass.

- USDA-ARS provided seed of adapted cultivar.
- •Fields were planted for Nebraska farmers, others used available drills.
- •Harvest dates were either at heading or after a killing frost.

Field Management

- Each farmer was provided with written instructions which included:
 - Field preparation
 - Planting
 - Weed control
 - Fertilization
 - Harvest timing
- No penalties for not following instructions which converted them into guidelines.

Establishment Year

- No-till establishment was used where feasible.
- Pre-emergence herbicide application.
- In NE in 2000, only atrazine was available.
- In 2001, research data for the use of Paramount herbicide (quinclorac) was available.

Fertilization

- Recommended rate was 20 lbs N per DT of biomass based on results of Vogel et al., 2004, Agronomy J. 94:413-420.
- Rates recommended for use changed based on previous year and current year precipitation.
 Rates actually used by farmers varied from recommendations.
- No P or K applications

Farm scale production cost of switchgrass for biomass

Switchgrass field in NE South Dakota. Field shown had a five year cumulative average cost of \$35/U.S. ton including land costs.

- Perrin et al., 2008
 BioEnergy Research
- On-average, farm gate costs (5 yr) were \$60 ton⁻¹ (\$0.68 per gallon of ethanol delivered).
- Extrapolated farm gate costs (10 yr) were \$54 ton⁻¹.

Producer Experience

Establishment year harvest

Weed Control

Production costs per ton over time

Conclusions from the on-farm trial

- Highest costs are in the establishment year.
- Establishment year harvest lowers overall costs.
- Effective weed control in the establishment year is essential.
- Stand duration.
- Proper management is critical (experience matters).
- High yielding sites had lowest costs per ton.

- Biomass supply schedules for Great Plains delivery points (2012) Perrin et al., Biomass and Bioenergy.
- Updated feedstock costs for switchgrass in Nebraska.
- Major differences between the two studies.
 - Custom rates prices have increased.
 - Land rental costs have increased.

- Switchgrass farm gate cost estimates are \$64/ton.
- Delivered costs were ≥ \$73/ton.
 - Amortized over 10 years.
 - Analysis assumed 3 tons/acre yield production.
 - 25% of total costs are fixed.

	Establishment (\$/acre)		
Operation	Perrin et al. 2012	Adjusted rent	
Tillage	\$ 22.00		
Seed	\$ 60.00		
Herbicides	\$ 43.00		
Land Rent	\$ 55.00	\$79 to \$165	
Reseeding	\$ 45.00		
Total	\$225.00	\$250 to \$335	

Post-establishment (\$/acre)

Operation	3 ton/acre	6 ton/acre	9 ton/acre
Fertilizer	\$30.00	\$ 30.00	\$ 30.00
Swath harvest	\$12.00	\$ 15.00	\$ 15.00
Baling	\$53.00	\$108.00	\$160.00
Bale transport	\$ 9.00	\$ 18.00	\$ 26.00
Loading	\$ 5.00	\$ 10.00	\$ 15.00
Land Rent	\$55 to \$165	\$55 to \$165	\$55 to \$165
Annualized estab. (10-yr)	\$34 to \$50	\$34 to \$50	\$34 to \$50
Total \$ per acre	\$198 to \$324	\$267 to \$393	\$335 to \$461
Total \$ per ton	\$66 to \$108	\$45 to \$66	\$37 to \$51

- Primary costs
 - Land rental costs
 - Baling
 - Establishment costs
- Doubling of fertilizer price?
 - Increases farmgate cost by \$3 to \$10 per ton
- Transportation costs to biorefinery
 - Adds \$3 to \$5 per ton

Switchgrass market price

- Market price has not been determined.
- Hay prices as a possible indicator.
- Contract
 - 5 yr contract
 - 10 yr contract
- Dependent on:
 - Region
 - Conversion efficiency and cost
 - Feedstock availability
 - Business models
- Other incentives
 - BCAP
 - Price on carbon

Farmer participation

- Profitability
- How will switchgrass fit in their farming enterprise?
 - Crop diversification
 - Wildlife habitat
 - Soil improvements
- Rural improvement
- Time management

Feedstock costs and availability

- Agricultural residues are expected to have lower initial costs than dedicated energy crops.
- Dedicated energy crops will become more important as the cellulosic industry matures.
 - Provide higher yields with lower energy inputs.
 - Reduce risks in feedstock availability.
 - High yielding switchgrass is similar to residue harvest costs (\$37-\$51 per ton)

Take Home Lessons

- Herbaceous energy crops such as switchgrass will be a new crop and there will be learning curve.
- Farmer education and training will be critical.
- Economic production efficiency can be improved via research and producer training.

Take Home Lessons

- Establishment Year Economically Critical
 - Weed Control
 - Use high quality seed
 - No-till establishment
 - Previous crop
- Cultivar selection
 - Next generation varieties

References

- Perrin et al., Switchgrass cost of production: data from on-farm trials, 2000-2005 available at http://digitalcommons.unl.edu/ageconfacpub/37/
- Perrin et al., 2012. Biomass supply schedules for Great Plains delivery points Biomass and Bioenergy.

Thank You

Marty Schmer
USDA-ARS
Agroecosystem Management Research Unit
Lincoln, NE
marty.schmer@ars.usda.gov

