

SVG Tutorial

David Duce *, Ivan Herman +, Bob Hopgood *

* Oxford Brookes University, + World Wide Web Consortium

Contents

¡ 1. Introduction
n 1.1 Images on the Web
n 1.2 Supported Image Formats
n 1.3 Images are not Computer Graphics
n 1.4 Multimedia is not Computer Graphics

¡ 2. Early Vector Graphics on the Web
n 2.1 CGM
n 2.2 CGM on the Web
n 2.3 WebCGM Profile
n 2.4 WebCGM Viewers

¡ 3. SVG: An Introduction
n 3.1 Scalable Vector Graphics
n 3.2 An XML Application
n 3.3 Submissions to W3C
n 3.4 SVG: an XML Application
n 3.5 Getting Started with SVG

¡ 4. Coordinates and Rendering
n 4.1 Rectangles and Text
n 4.2 Coordinates
n 4.3 Rendering Model
n 4.4 Rendering Attributes and Styling Properties
n 4.5 Following Examples

¡ 5. SVG Drawing Elements
n 5.1 Path and Text
n 5.2 Path
n 5.3 Text
n 5.4 Basic Shapes

¡ 6. Grouping
n 6.1 Introduction
n 6.2 Coordinate Transformations
n 6.3 Clipping

¡ 7. Filling
n 7.1 Fill Properties
n 7.2 Colour
n 7.3 Fill Rule
n 7.4 Opacity
n 7.5 Colour Gradients

¡ 8. Stroking
n 8.1 Stroke Properties
n 8.2 Width and Style
n 8.3 Line Termination and Joining

¡ 9. Text
n 9.1 Rendering Text
n 9.2 Font Properties
n 9.3 Text Properties

-- ii --

¡ 10. Animation
n 10.1 Simple Animation
n 10.2 How the Animation takes Place
n 10.3 Animation along a Path
n 10.4 When the Animation takes Place

¡ 11. Linking and Templates
n 11.1 Linking
n 11.2 Symbols and their Use
n 11.3 Images
n 11.4 Maskings

¡ 12. Interaction
n 12.1 Scripting and the DOM
n 12.2 Interaction Events
n 12.3 Interaction Methods

¡ 13. Filter Effects
n 13.1 Motivation
n 13.2 Filter Data Flow
n 13.3 Filter Primitives

¡ 14. Current State and the Future
n 14.1 Implementations
n 14.2 Metadata
n 14.3 Extensions to SVG

Appendices

¡ A. SVG Colours
¡ B. SVG Elements and their Attributes

n B.1 Attribute Value Types
n B.2 SVG Elements Described in this Document
n B.3 SVG Global Attributes
n B.4 SVG Style Properties and Attributes
n B.5 Filtering Elements
n B.6 Font Elements
n B.7 Other Elements

¡ C. References

-- 1 --

1. Introduction

¡ 1.1 Images on the Web
¡ 1.2 Supported Image Formats
¡ 1.3 Images are not Computer Graphics
¡ 1.4 Multimedia is not Computer Graphics

1.1 Images on the Web
The early browsers for the Web were predominantly aimed at retrieval of textual information. Tim
Berners-Lee's original browser for the NeXT computer did allow images to be viewed but they popped
up in a separate window and were not an integral part of the Web page. In January 1993, the Mosaic
browser was released by NCSA. The browser was simple to download and, by the Autumn of 1993,
was available for X workstations, PCs and the Mac. From 50 Web servers at the start of 1993, Web
traffic had risen to 1% of internet traffic by October and 2.5% by the end of the year. About a million
downloads of the Mosaic browser took place that year. In February of 1993, Mark Andreessen
proposed the element as an extension to Mosaic's HTML to provide a way of adding images to
Web pages. In 1994, Dave Raggett developed an X-browser that allowed text to flow around images
and tables and from then on images were an accepted part of the Web page. Web pages became
glossier and the enormous growth of the Web started [1] [2]. Organisations could customise their
home pages with the company logo. Maps, albeit images, could be added to show how to reach the
organisation. Its products could be displayed on the Web. Eventually, the Web would become a major
commercial outlet.

1.2 Supported Image Formats
The only image format supported by all the early browsers was the GIF format developed by
CompuServe. The original GIF format only supported 256 colours. By 1995, the possibility of JPEG
also being supported was growing and the lossy compression available with JPEG meant that real
world images could be half or a third of the size of the same image stored in GIF format without loss of
information for the designated use. Also, JPEG was a full 24-bit format allowing the possibility of 16
million colours [3].

The ability to add images of various types (maps, drawings, photographs etc) to Web pages enhanced
the capabilities and made them more exciting. The downside was that the inclusion of images slowed
the download time of the Web page by an order of magnitude. Browsers provided the option of turning
off the images thus negating their use for core information. Browsers opened multiple channels to
improve the download speed but, at the same time, congested the Internet for others even more.

In December 1994, CompuServe and Unisys announced that developers would need to pay a license
fee to use the GIF format as the technique used to compress the image data, called LZW (after
Lempel-Ziv-Welch), was patented by Unisys. In consequence (although in the end license fees were
not charged to end users), a new image format, PNG (Portable Network Graphics) [4] was developed
that does not have the patent problems associated with GIF. It provides an efficient lossless format for
greyscale, true colour and palette-based images [5].

The latest versions of the main browsers provide reasonable support for GIF, PNG and JPEG images.
The GIF format is being overtaken by PNG (especially where good colour representation of
transparency is required) but quite slowly and JPEG 2000 will give that format a new lease of life with
its improved compression techniques. The very latest mobile phones are likely to provide
hardware/software support for the JPEG 2000 format.

1.3 Images are not Computer Graphics
But images are not computer graphics. The Oxford Dictionary of Computing has the following
definition of computer graphics: the creation, manipulation of, analysis of, and interaction with
pictorial representations of objects and data using computers. A digital image on the other hand
is usually a 2-dimensional regular grid of pixels. The ability to interact with it is limited. Being just an
array of pixels, most of the information that existed in the original object is lost. All that remains is what
the eye can see. Figure 1.1 shows the difference between zooming in on the plane if the original is an
image compared with what is seen if the drawing is defined as lines and areas.

The aim of this paper is to look at 2-dimensional computer graphics on the Web and to give some
insight into why the Web has come so far without computer graphics being an integral part (given the
importance of computer graphics in many applications).

-- 2 --

Figure 1.1: Images versus Vector Graphics

The image formats all share many disadvantages that are serious obstacles to the development and
adoption of new technologies on the Web. Some of the major problems are listed below.
Bandwidth

Images are large. Improvements in network bandwidth have helped to hide this. Also image
compression techniques have improved. Even so, images are a major bottleneck to accessing Web
sites. This creates significant problems when designers want to follow their own style in creating
new Web pages.

Flexibility
Images inherently have a fixed resolution. In consequence, an application destined to run on a
range of PCs, PDAs and mobile phones is unable to adapt to the constraints of the device. Colour,
resolution, aspect ratio and bandwidth often differ significantly between devices.

Hyperlinking
Hyperlinking is a fundamental requirement on the Web. However, to link to different places,
dependent on where the user clicks on an image, is not simple. Early on, image maps were added
to HTML. This allowed the coordinates of where the user clicked to be returned to the server where
a program was run to determine which page to link to. Server side image maps are not efficient
adding another round trip from client to server. The map is separate from the HTML page and is
dependent on the server for translation. Different servers used different map file formats so that
pages often could only be read by certain browsers. Client side image maps were added in HTML
3.0 and these allowed rectangular, elliptical or polygonal areas to be defined. Clicking on an area
causes the link defined for that area to be taken. Creating image maps is cumbersome and is not
related to the real objects being viewed but their image on the display.

Animation and Interaction
Many applications profit from the use of animation and interaction (cartography, CAD, remote
teaching, etc). Image formats only provide crude animation limited to the sequential playback of a
sequence of images combined into a single file. Interaction is limited to the use of image maps.

Separation of Style from Content
The same drawing in terms of meaning can be represented in many different ways dependent on
the capabilities of the device. Dotted line on a mono display might be rendered as a different colour
on a colour display. Images do not have the ability to make such changes.

-- 3 --
Integration

In the early days of the Web, an HTML page was transmitted across the Internet using the HTTP
protocol and there was a 1-1 relationship between documents and downloads. Today, the Web is
much more complex. Separating style and content meant that a style sheet might be transmitted as
well as the Web page. The move to XML [6] allows appropriate markup for different information in
the Web page. No longer is it necessary to force the HTML elements defined for textual documents
to be used for other purposes. Mathematical markup [7], multimedia [8], and chemical markup, for
example, each use their own XML application. Any computer graphics on the Web should be
integrated with this model of the Web. In consequence, the transmission of images as a final form
rendering of something that has semantic content is likely to decrease. The image formats will be
used for their primary purpose of transmitting real-world images where the photograph is the
content.

This tutorial will concentrate on the way 2D vector computer graphics is being made a more integral
part of the Web, in particular through open as opposed to vendor specific standards.

1.4 Multimedia is not Computer Graphics
Just as images are not computer graphics so multimedia presentations are not computer graphics.
That is not to say that combining a variety of resources to create a meaningful presentation does not
have merit. It is just that the emphasis is on integration and timing rather that the graphical content.

For example, SMIL is an open standard whose main aim is integrating a set of disparate resources
scattered across the Web into a synchronised multimedia integration. Many problems arise such as
layout, timing and bandwidth. Such systems are not considered further in this paper which
concentrates on 2D graphics system in use on the Web.

Proprietary multimedia systems also exist that at times give the impression of being 2D graphics file
formats. A good example is Macromedia Flash. Here we have two problems. It is neither multimedia or
computer graphics in the strict sense as far as the Web is concerned. The multimedia integration
occurs external to the Web. As far as the web is concerned, there is not a great deal of difference
between a Flash presentation downloaded to a browser and the playback of an MPG video. Both
show images that change over time. Neither make use of the Web as a distributed resource or the
special features of high quality 2D graphics. A tutorial on Flash would start with the basic principle of a
timeline followed by animation relative to that timeline and would eventually come round to describing
the computer graphics and other objects to be integrated and animated.

At the other end of the spectra are proprietary systems such as Adobe Illustrator and its associated
proprietary file format which have a much closer affinity to vector graphics. However, Illustrator is more
the creation tool for the production of the computer graphics. Adobe has been a significant supported
for the Scalable Vector Graphics (SVG) file format for the Web and Adobe Illustrator performs well as
the creator of such files. For these reasons, this paper will concentrate on the open file format
standards for the Web, WebCGM and SVG.

-- 4 --

2. Early Vector Graphics on the Web

¡ 2.1 CGM
¡ 2.2 CGM on the Web
¡ 2.3 WebCGM Profile
¡ 2.4 WebCGM Viewers

2.1 CGM
The ISO Computer Graphics Metafile (CGM) Standard [9] is a format for describing vector graphic
pictures compactly. It has proven to be a very good format for a whole range of demanding 2-
dimensional graphics presentation applications [10]. CGM first became an ISO standard in 1987 and
has been enhanced over the years by enriching the drawing primitive set and providing more
structural information. As it became richer, the concept of CGM Profiles for specific application sectors
evolved.

In 1997, an analysis was done by W3C to see if it would be possible to define a CGM Web Profile that
could satisfy the requirements for computer graphics on the Web. It passed most of the necessary
criteria. CGM was an open specification that had been widely implemented. CGM separated abstract
syntax from the concrete representation allowing multiple encodings to be defined. The vector drawing
facilities were more than what was required. The HTML <OBJECT> element could be used to add
CGM diagrams to a Web page. However, styling in CGM was provided by the bundle table approach
also used in the ISO standards, PHIGS and GKS. This was a different approach to the one adopted in
Cascading Style Sheets (CSS) on the Web to separate style and content. A major drawback was that
linkage between drawings in the manner of the Web was not provided.

2.2 CGM on the Web
The CGM community saw major advantages in using CGM rather than images on the Web for
schematic drawings:

¡ Vector graphics can be zoomed in and out while retaining the quality of the picture, unlike
images.

¡ Vector graphics files are smaller and can be downloaded and viewed faster than images.
¡ Vector graphics can be interacted with in a meaningful way.
¡ Text in a CGM vector graphics drawing can be searched as easily as text in an HTML page.

These considerations in no way try to denigrate the use of image formats where they are appropriate.

In consequence, CGM suppliers provided CGM plug-ins to access CGM vector graphics on the Web
using the existing encodings. A CGM MIME type was agreed in 1995. The only problem was that the
CGMs produced by one vendor could not be read by viewers produced by another as different Profiles
were implemented and the hyperlinking mechanisms introduced differed from one supplier to another.

A joint activity between the World Wide Web Consortium (W3C) and the CGM Open Consortium [11]
(launched in May 1998) was initiated to define a common Web Profile for CGM that would be
accepted both by ISO and W3C. This resulted in the WebCGM Profile, completed in January 1999
[12].

2.3 WebCGM Profile
WebCGM was based on the ATA CGM Profile for graphics interchange (GREXCHANGE). The
Graphics Working Group (ATA 2100) of ATA, the Air Transport Association, had defined this CGM
Profile for the aerospace industry. It was also working towards an intelligent graphics exchange profile
(IGEXCHANGE) that associated semantic information to aid query, searching and navigation.

The structure of a WebCGM file is shown in Figure 2.1. Picture size and scaling and properties such
as line width and background colour are defined in the Picture Descriptor. This is equivalent to styling
provided for the <body> element in an HTML page.

Each picture contains CGM graphic elements. There are 4 groupings of graphical elements provided:

¡ grobject: a graphical object with a unique id and possibly linkURI and tooltip attributes. It is
used to identify sources and destinations of hyperlinks. It is also possible to define the region of
the group for picking and the initial view when the group is linked to. For example, more than
the group may need to be visible to indicate the context.

¡ layer: this has a name and a list of objects. It allows a picture to be divided into a set of
graphical layers that can be used to switch display to parts of an illustration.

¡ para: defines a paragraph as the grouping of several text drawing elements. The elements may
be scattered across the drawing but for searching purposes are similar to an HTML paragraph.

¡ sub-para: a sub-paragraph used to identify fragments of text (for example as hotspots within a
paragraph).

-- 5 --

These provide the basis for searching and linking within and between CGM pictures. An object may be
the target of a link. Browsers are expected to move the object into view and scale it to fit into the
viewport. If the object has a ViewContext attribute the rectangle defining the view context must be
within the viewport.

Links from WebCGM objects are defined by linkURI elements that are modelled on the XLink facilities
[13]. Objects may have multiple links. Links can be bi-directional. Linkage can be from places outside
the CGM and links from the CGM can be to any destination defined by a URL. Following a link can
display the new picture in a separate window, load the picture into the current frame, load it over the
parent of the current frame or replace the current picture.

Figure 2.1: CGM Architecture

WebCGM is a reasonably full profile of CGM containing a rich set of graphics elements:

¡ Polylines, disjoint polylines, polygons, polygon sets.
¡ Rectangles, circles, ellipses, circular and elliptical arcs, pie slices.
¡ Text: both the Restricted Text primitive of CGM (which defines its extent box) and the Append

Text element (continuation of a text string with a change of attributes).
¡ Closed Figure and Compound Line: allows complex paths to be defined as a sequence of other

primitives.
¡ Polysymbol: placement of a sequence of symbols defined in the Symbol Library (another valid

WebCGM metafile).
¡ Smooth curves: the smooth piece-wise cubic Bezier defined by CGM's Polybezier element.
¡ Cell Array and Tile Array allow PNG, and JPEG images to be integrated with the vector

drawing.

Most of the line and fill attributes of CGM are included but only as INDIVIDUAL attributes. The bundled
attribute functionality of CGM is omitted. Thus, WebCGM diagrams consider properties such as
linestyle, color, fill types etc as content rather than styling.

The full set of CGM colour models is provided including sRGB and sRGB-alpha. International text is
defined by selecting either Unicode UTF-8 or UTF-16.

-- 6 --

2.4 WebCGM Viewers
Probably the most widely used Viewer is the Micrografx free ActiveCGM plug-in [14]. SDI has also
released a CGM Plug-in [15] while Tech Illustrator has a TI/WebCGM Hotspot Plug-in module [16] to
author hotspots for exporting to CGMs. There is good industrial support for WebCGM and it is widely
used in the CAD and aerospace industries. A major interoperability demonstration took place at XML
Open in Granada in May 1999.

A good source of further information on CGM is CGM Open [11], an organisation dedicated to open
and interoperable standards for the exchange of graphical information. The W3C Web site is also a
valuable source of news and reference information.

-- 7 --

3. Introduction

¡ 3.1 Scalable Vector Graphics
¡ 3.2 An XML Application
¡ 3.3 Submissions to W3C
¡ 3.4 SVG: an XML Application
¡ 3.5 Getting Started with SVG

3.1 Scalable Vector Graphics
Using an image format for evctor graphics has some major major drawbacks:

1. Image size: The size of an image is defined by the width and height of the image (in pixels)
and the number of bits allocated to each pixel in the image. For example, a 100 by 100 pixel
image with 8 bits defining the Red, Green and Blue components of each pixel results in an
image that takes up over 30 Kbytes before compression. For simple line drawings this is a large
amount of information that needs to be moved across the internet for possibly very little content.
Also, it is not possible to interact with the image without generating and sending the new image.

2. Fixed resolution: Once the image has been defined at a specific resolution, that is the only
resolution available. Zooming in on the image just makes the pixels bigger. To get higher
resolution, the original schematic drawing has to be reconverted to an image with, say, 500
pixels in each direction.

3. Binary format: Image formats store the image data in some binary format which makes it
difficult to embed rich metadata about the graphic to help search engines. Also, specialized
applications are needed to make even the slightest changes to the image.

4. Minimal animation: The GIF format allows several images to be defined in one image file
("animated gifs"), but each image is essentially static. More lively presentations require a video
format such as MPEG and this is large, requires a separate plugin and is even more difficult to
edit.

5. No inherent hyperlinking: Web pages depend on hyperlinking. To do this is with images
requires the use of image maps defined as part of the enclosing HTML page. They are difficult
to generate and only allow linkage from a region of the image and not from a specific element in
the image.

Using CGM was a solution on the Web prior to the arrival of XML. However it is aimed primarily at the
CAD rather than graphics arts industry and is of the same generation as SGML. In consequence,
there was interest within the World Wide Web Consortium (W3C) for a W3C Recommendation for
defining 2-dimensional schematic drawings such that the size is more directly dependent on the
content in the drawing and the resolution is whatever the user requires. Zooming in on such a drawing
allows greater and greater detail to be seen if the drawing is complex.

3.2 An XML Application
By 1997, it was becoming clear that the Extensible Markup Language (XML) [6] would make a
profound difference to the way that the Web would develop. The first edition became a W3C
Recommendation in February 1998 but by then its impact was already being felt. XML is a meta-
language for defining markup languages. An XML application is a document format for storing
structured information in an unambiguous and appropriate manner.

An XML application consists of a set of elements, rather like HTML, and the elements can have
attributes associated with them. For example:

<text x="20" y="20">Abracadabra</text>

The text element has a start and end tag written as <text> and </text> and the content of the element
is the string Abracadabra. The text element has two attributes, x and y. These are defined as part of
the start tag. Being an XML application, several rules have to be obeyed:

-- 8 --

¡ There can only be one outer element (the root element) that encloses the complete drawing
definition.

¡ Every start tag must have a correctly nested end tag
¡ The form of the start and end tags must be identical. If the start tag is upper case so must be

the end tag.
¡ Attributes must be enclosed in quotes (either single or double)

If the content of the element is null, a shorthand can be used:

<rect x="10" y="10" width="50" height="30"></rect>
<rect x="10" y="10" width="50" height="30" />

The slash before the closing > in the second line indicates that the element does not have any
content. Effectively, all the content is encapsulated in the name of the element and its attributes. The
two examples of the rect element given above are equivalent.

3.3 Submissions to W3C
The question now arose: could XML markup be used to express vector graphics? In 1998, there were
four Submissions to W3C proposing an XML-based vector graphics markup language for the Web. In
order, these were:

¡ Web Schematics [17]: similar to the troff pic language, it defined objects with anchor points
that could be composed into pictures. This submission was made by Bob hopgood and david
Duce of the Rutherford Appleton Laboratory and Vincent Quint of INRIA.

¡ Precision Graphics Markup Language (PGML) [18]: a lower level language that could be
described as an XML-based version of PostScript.

¡ Vector Markup Language (VML) [19]: just as PGML has a relationship to Postscript, VML had
a similar relationship to PowerPoint.

¡ DrawML [20]: a constraint-based higher level language that allowed the drawing to adjust to
the content. Changing the text in a box would increase the size of the box and adjust the box
surrounding that box etc.

In retrospect, it is surprising that the CGM community did not put forward a proposal for a CGM Profile
defined using XML notation.

These submissions resulted in a Working Group being formed to define a single language for vector
drawings on the Web called Scalable Vector Graphics (SVG) [21]. The Candidate Recommendation
stage within the W3C process exists just before the full Recommendation stage and is to allow trial
implementations to test the quality of the specification. The strong interest in SVG meant that there
were implementations of the Candidate Recommendation early in 2001 even though the Candidate
Recommendation was not issued until November 2000. SVG became a W3C Recommendation in
September 2001. The W3C Recommendation is the subject of this Tutorial.

Of the four Submissions, PGML probably had the most impact on the functionality of SVG. Even so,
SVG has evolved into a standard significantly different from all of the initial Submissions.

3.4 SVG: an Application of XML
SVG is an application of XML. This has the benefit that the overall syntactic structure of SVG is known
and parsers exist to handle it. It also means that SVG can benefit from the other activities within W3C
concerned with the XML Family of standards. In many cases, this is a strong plus but occasionally the
constraints imposed by the other standards will mean that the functionality provided within SVG may
be less elegant or have different characteristics from the form it would have taken if it had not been
part of the XML Family. However the advantages far outweigh the disadvantages. Some examples of
the influences on SVG are:

-- 9 --

¡ Cascading Style Sheets (CSS) [22]: CSS is used to separate style from content initially in an
HTML document. A CSS style sheet consists of a set of commands that specify the styling to
be associated with a specific element. As CSS is not restricted to HTML elements, it can also
be used to style an XML application.

¡ Namespaces in XML [23]: with many XML applications emerging, it is more likely that several
will be used together in which case it is necessary to identify which elements belong to which
application. XML achieves this by defining a prefix that identifies the namespace. For example,
<svg:text> defines the start of the SVG text element. The prefix may be anything the user wants
it to be as long as the appropriate namespace declaration identifies the application.

¡ XML Linking Language (XLink) [13]: as all XML applications are likely to require hyperlinking,
a separate Recommendation, XLink, defines a flexible hyperlinking mechanism. Rather than
define its own, SVG is able to use the XLink hyperlinking functionality via the XLink namespace.

¡ XSL Transformations (XSLT) [24]: XSLT defines a transformation functionality to be applied
to XML documents. CSS effectively performs a single pass through an HTML document
transforming the elements by defining their styling. XSLT provides similar functionality in terms
of styling but also allows complex transformations of the XML documents. For SVG, higher-
level functionality can be realised by defining an XSLT transformation down into SVG. In
consequence, SVG need not define such functionality within the core version of SVG.

¡ Synchronised Multimedia Integration Language (SMIL) [8]: the SVG Working Group
included animation functionality within its design objectives. SMIL was also considering similar
functionality for multi-media presentations. The two Working Groups have, therefore, produced
a single suite of animation functionality that can be used by both SMIL and SVG.

¡ Document Object Model (DOM) [25]: The DOM provides a standard method of interacting
with an XML application. In consequence, SVG can use this functionality as the basis for
interaction between a user and an SVG drawing.

3.5 Getting Started with SVG
Figure 3.1 shows the result that an SVG-enabled browser or viewer would make of the SVG document
defined below.

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC " -//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/REC-SVG-
20010904/DTD/svg10.dtd">
<svg width="320" height="220">
<rect width="320" height="220" fill="white" stroke="black" />
<g transform="translate(10 10)">
<g stroke="none" fill="lime">
<path d="M 0 112
L 20 124 L 40 129 L 60 126 L 80 120 L 100 111 L 120 104
L 140 101 L 164 106 L 170 103 L 173 80 L 178 60 L 185 39
L 200 30 L 220 30 L 240 40 L 260 61 L 280 69 L 290 68
L 288 77 L 272 85 L 250 85 L 230 85 L 215 88 L 211 95
L 215 110 L 228 120 L 241 130 L 251 149 L 252 164 L 242 181
L 221 189 L 200 191 L 180 193 L 160 192 L 140 190 L 120 190
L 100 188 L 80 182 L 61 179 L 42 171 L 30 159 L 13 140Z"/>
</g>
</g>
</svg>

The initial XML declaration and the Document Type Declaration for SVG 1.0 can be omitted and future
examples will do this.

-- 10 --

Figure 3.1: Simple SVG Drawing

This simple example reveals some of the basic characteristics of SVG:
SVG is an XML application

The root element is svg. All the elements are correctly nested. The attributes are enclosed in
quotes and the path and rect elements do not have any content and so use the shorthand format.

SVG has a hierarchical structure
The g element in the example groups a set of elements. In this case there is just a single path
element but normally there would be a sequence of drawing elements making up an object.
Attributes can be defined on the g element that apply to the whole group. The hierarchical structure
in SVG is similar to the scene graph approach used in systems like OpenInventor, PostScript and
most graphics editors.

The simplest way to use SVG is to open an SVG file with an SVG-enabled web browser (either via an
SVG plug-in or providing local support). An SVG diagram can be incorporated into a web page defined
in HTML. The SVG document is defined and stored in a file with '.svg' as the file extension. To add it
to the web page then requires, for example:

<p>This can be shown in the following diagram:</p>
<object width="320" height="220" data="myfirstsvg.svg" type="image/svg+xml">
Please download Adobe Plug-in to see SVG diagram </object>

The object element in HTML 4.0 is similar to the img element in that it allows the user to insert an
external object (myfirstsvg.svg in this case) into a web page. It differs in that it allows you to insert
applets and other HTML pages as well as graphics and images. The user can specify a number of
alternatives. Here we have given a text message to indicate that the SVG could not be rendered but
we could have had an element that defines a png image of the diagram as an alternative.
Providing some alternative is useful at the moment as not everybody has an SVG plug-in installed in
their browser. The recommended SVG plug-in at the moment is the one from Adobe which can be
installed in most of the modern browsers. It is free. You should add it to your favourite browser before
you start using SVG. Visit the Adobe site [39] and follow the instructions.

There are a number of stand-alone viewers for SVG that can also be used [40] [41] [42]. You just open
the SVG file and it will be displayed in the viewer's window. There are also support tools for
constructing SVG diagrams just as there are tools for constructing web pages. Some of these also
have the ability to view a previously defined SVG file. A complete list of the tools and viewers available
is maintained on the W3C web site [29].

-- 11 --

4. Coordinates and Rendering

¡ 4.1 Rectangles and Text
¡ 4.2 Coordinates
¡ 4.3 Rendering Model
¡ 4.4 Rendering Attributes and Styling Properties
¡ 4.5 Following Examples

4.1 Rectangles and Text
It is difficult to talk about either coordinates or rendering in a vacuum so we first need to specify two
SVG drawing elements so that we can illustrate the points being made. The two we will use for the
moment are text and rect. We will come back and talk about the drawing primitives in more detail later.
The rect element has a large number of attributes but we shall consider just a few for the moment:

<rect x="20" y="30" width="300" height="200" rx="10" ry="10" style="fill:yellow;stroke:black" />
<text x="40" y="130" style="fill:black;stroke:none">Abracadabra</text>

Figure 4.1: SVG Coordinates

The first two attributes, x and y, of the rect element define the origin of the rectangle. The second two
define its width and height. The rx and ry attributes define the radius to be used in rounding the
corners. Finally, the style attribute defines its rendering. For the text element, the first two attributes, x
and y, define the origin of the text string while the third attribute defines the rendering.

The first thing to notice is that the Y-axis in SVG points downwards. This can be a source of error
when defining SVG diagrams so take extra care to remember this fact! The X-axis does go from left to
right. The origin of the text by default is at the left-hand end of the text on the baseline. By convention
the height of the text when used in an HTML page is the same as the medium size text in the HTML
page. The font used is at the choice of the browser and plug-in.

-- 12 --

4.2 Coordinates
All graphics elements are rendered conceptually on to an SVG infinite canvas. A viewport can be
established that defines a finite rectangular region within the canvas. Rendering uses the painter's
model; elements later in the document are rendered on top of the preceding ones.

The viewport is specified by attributes of the svg element. Explicit width and height attributes can be
set as in the example in Section 3.5. An alternative is to use the viewBox attribute which specifies the
lower and upper bounds of the viewport in bot the X and Y directions.

The coordinate system used by the SVG diagram as a whole, when displayed as part of a web page,
is a negotiation between the SVG plug-in, what the user would like and the real estate available from
the browser.

A complete SVG document containing the drawing defined above could be:

<svg viewBox="0 0 500 300">
<rect x="20" y="30" width="300" height="200" rx="10" ry="10" style="fill:yellow;stroke:black" />
<text x="40" y="130" style="fill:black;stroke:none">Abracadabra</text>
</svg>

This could be embedded in an HTML page by the object element:

<p> <object width="500" height="300" data="figure.svg" type="image/svg+xml">

</object>
</p>

This situation is reasonably straightforward. The svg element has a viewBox attribute that requests
that the area from (0,0) to (500,300) in user coordinates is visible in the browser window. The object
element requests an area 500 wide and 300 high to put the diagram in. As no units are specified, the
assumption is that the units requested are the browser's view of what a pixel width is. Assuming this
area is available, the diagram will appear 500 pixels wide and 300 pixels high. A unit in the diagram
will be equivalent to a pixel as specified by the browser.

The two approaches (width/height and viewport) are subtly different. In the first example using width
and height, no units have been specified so pixels are the assumed coordinate system. The viewport
required is 320 pixels wide and 220 pixels high. The local user coordinate system for the duck is also
set to be 320 by 220 with one pixel equal to one local user coordinate. In the second case, the local
user coordinate is set to 500 wide and 300 high and this is to be mapped to fit in the viewport. A small
viewport would have the mapping from user coordinate to pixels different from a large viewport. If the
aspect ratio of the viewport is different from that of the viewBox then various options are provided as
to how the user would like the mapping to take place.

In SVG, if no units are specified the assumption is that the coordinates are defined in the local
coordinate system. However, in defining the viewport size and in specifying the drawing, the complete
set of units defined in CSS are available to the user (em, ex, px, pt, pc, cm, mm, in, %).

If the drawing is to be displayed as part of a Web page, a complex negotiation takes place between
the SVG plug-in and the browser taking into account any constraints imposed by the user on inserting
the drawing in the Web page or by the styling applied to the page as a whole. As a result of this
negotiation, part of the image could be clipped, scaled or distorted, depending on how the constraints
are resolved. The user can control the effect somewhat through a preserveAspectRatio attribute and
by specifying whether all the drawing must be visible or whether some parts can be obscured.

We shall assume in our examples that the size of the SVG diagram is defined by the viewBox
attribute and that the object element achieves a mapping of this into an equivalent area on the web
page. There are other ways of defining the size of the SVG diagram and it can be specified in units
other than pixels. The negotiation can be quite complex if the area required is unavailable or the units
are real world ones (centimetres, say) and if the aspect ratio of the requested area is different from the
area used by the SVG document.

-- 13 --

4.3 Rendering Model
Most of the drawing elements in SVG define an area to be rendered. Both rect and text elements
define areas. In the case of rect it is the area inside the defined rectangle while for text it is the area
inside the glyphs making up the individual characters.

The rendering model used by SVG is the one called the painter's model which is similar to the way
an artist would paint an oil painting. In a simple SVG diagram, the painter starts at the first element to
be rendered and paints an area defined by the element. The artist then paints the second element and
so on. If the second element is painted in the area occupied by the first element than it will obscure the
first element unless the paint being applied is semi-transparent. Both the interior and the edge have to
be painted. In SVG, the interior is painted followed by the edge. Consequently, the edge is visible and
not partly obscured by the interior. In our example diagram, if the rect element had been after the text
element, nothing would have been seen of the text element as the rect element would have been
painted completely over it.

4.4 Rendering Attributes and Styling Properties
The separation of style and content has been an issue in text processing and computer graphics for
many years. In the Unix typesetting system, troff, for example, the raw text of a document could be
"marked up" to indicate headings, paragraphs, enumerated lists, tables etc. The precise way in which
these documents elements were to be presented was described through a macro language. Typically
a set of macros (for example, the "ms" macro set) would be constructed to impart a particular
appearance or "house style" to a collection of documents. The LaTeX document production system
took a similar approach, essentially extending the TeX typesetting system with a particular markup
command language. The task of constructing a document using LaTex was reduced (as Lamport puts
it) to a "logical design" task. The LaTeX system provided typographic design, through particular style
files, and the document's author provided the logical design. A whole class of documents (for example
the papers in a journal) can thus be given a uniform appearance; an appearance furthermore, that is
controlled by a design expert. Word processing systems such as MSWord and Framemaker provide
stylesheets that can be used in a similar way.

Conceptual separation is, however, rarely so clean, and both text and word processing systems also
provide functionality that enable the overall style rules to be modified (for example, functionality to
change to a bold or italic font at a particular point in a document). One author might use bold text
directly to emphasise a word while another might use italic for the same purpose, even though an
emphasis style is provided. This might be laziness on the part of the document author, though
sometimes bold and italic are used directly because bold and italic are intrinsic aspects of the
presentation of the text, for example, a trademark might be set in a particular font and weight of text.

A similar separation between style and content in Web documents has been achieved by CSS [22].
The page author defines the content and structure (the logical design) of the Web document using
HTML elements such as h1, h2, ul, etc. A separate style sheet controls the visual appearance (the
visual design) of these elements when rendering in a Web browser or printed. Such style sheets can
be embedded directly into Web pages or can be linked to the pages through an appropriate URL. This
basic approach provides a mechanism to control the consistency of the visual rendering of a collection
of Web documents. Advantages of this approach include:

¡ Easy maintenance: changing the colour of all h1 elements can be done by changing just the
style sheet, instead of scanning through the whole document.

¡ House style: can be defined by a collection of separate style sheet files.
¡ Clarity: pages using style sheets are usually structurally cleaner and hence easier to maintain.
¡ Adaptation to the end-user: style sheets may include special statements for audio browsers;

browsers may allow the end user to use personal style sheets to adapt to personal disabilities
or operating environment.

¡ Design control: style sheets may be prepared by professional designers, thus improving the
overall visual quality and representation of the Web pages.

-- 14 --

The use of style sheets is not limited to HTML; style sheets may also be used with XML documents in
a similar way.

There are some parallels in the development of style control in computer graphics. In early graphics
systems it was commonplace to control the visual appearance of graphical output primitives by
attributes, for example to control properties such as linestyle, line width, colour, text font, etc.
Attributes were typically set modally, for example by a set_colour function, the value remaining in force
until a new value was set. If a particular attribute value was not supported by a particular device, it was
permissible to simulate the effect of that value using other values for that attribute, other attributes and
other primitives. A particular dashed linestyle could, for example, be simulated by a sequence of
individual lines. The essence of this approach was that the application provided a precise specification
of the required appearance and the system did its best to achieve the specified effect.
During the development of the Graphical Kernel System (GKS) it became clear that visual appearance
could be either styling or an intrinsic part of the information to be presented. In architecture, different
patterns denote different types of building material in a precise way; indiscriminate substitution may
result in a house of sand rather than of stone! At other times, patterns are used purely to achieve
differentiation between different types of object, the precise pattern used is unimportant, what matters
is that pattern A should be visually distinguishable from pattern B. GKS [26] distinguished between
global attributes which have the same value on all devices and attributes defined indirectly by a
pointer into a table located on the device. The attribute values in the table could be different for
different devices. Some attributes were always specified globally while others could be defined
globally or indirectly depending on the application usage.

SVG is defined as an XML language and makes use of the styling functionality provided by CSS for
XML documents. However, as hinted at above, styling for graphics is potentially more complex than
for text (or at least more complex than the styling model for Web documents). Is colour in graphics, for
example, style or content? If colour is used on a map to differentiate different countries, it is probably
style. What is important is that the colour of one country should be distinguishable from that of
another. Styling can be very valuable in this situation: the best choice of colour might depend on the
context in which the map is used, specifying colour through the style mechanism makes it
straightforward to change colours from one context to another.

However colour is not always style. The colour chosen in a logo, or in an artistic image, or in the
precise representation of real world objects is inherently a part of the content of the picture. In GKS:94
terms [27], colour here is an attribute completely defined in the NDC picture, to be rendered exactly
(so far as is possible) in every view of the picture. Changing colour through a style sheet mechanism
in such a picture in a Web document would be fundamentally wrong.
These cases: colour as style and colour as an intrinsic property of a primitive, are recognised in SVG
and two different mechanisms for setting visual attributes are provided. One method is to set rendering
attributes directly. For example:

<rect fill="yellow" stroke="black" x="20" y="30" width="300" height="200"/>
<rect fill="none" stroke="red" x="20" y="330" width="300" height="200"/>

This defines two rectangles, the first is yellow with a black border; the second is hollow with a red
border.

-- 15 --

The second method using styling is illustrated by:

<svg viewbox= "0 0 500 300" >
<style type="text/css"> <![CDATA[
rect {stroke:black; fill:yellow}
rect.different {stroke:red; fill:none}
]]>
</style>
...
<rect x="20" y="30" width="300" height="200"/>
<rect class="different" x="20" y="330" width="300" height="200"/>
</svg>

This achieves the same visual result as the first approach. The "style" element encloses a style sheet
expressed in the CSS syntax. (The CDATA annotation is used in order to escape the style language
from the XML syntax checker.) Two styles are defined, the first for rectangles in general (filled in
yellow with a black border) and a second for rectangles belonging to the class "different" defining
rectangles with a red border and hollow interior.

The same effect could be achieved by defining an external sheet in the file mystyle.css as:

rect {stroke:black; fill:yellow}
rect.different {stroke:red; fill:none}

and attaching it to the SVG document by:

<?xml-stylesheet type="text/css" href="mystyle.css" ?>
<svg viewbox= "0 0 500 300" >
<rect x="20" y="30" width="300" height="200"/>
<rect class="different" x="20" y="330" width="300" height="200"/>
</svg>

Style can also be associated directly with an element through the style attribute. The example above
could also be written:

<rect style="stroke:black;fill:yellow" x="20" y="30" width="300" height="200"/>
<rect style="stroke:red; fill:none" x="20" y="330" width="300" height="200"/>

SVG allows pictures to have arbitrary hierarchical structure. CSS provides powerful mechanisms for
controlling appearance, both on the basis of the values of attributes (usually the class attribute, but
other attributes could be used also) and the actual structure of the SVG element tree. It is also
possible to write:

rect [class ~="different"] {stroke:red; fill:none}

which would select rectangles whose class attribute contains the value different in a set of space
separated class attribute values. The "." notation introduced earlier in fact corresponds to the "~="
construct. A more complex example is shown below.

-- 16 --

<svg width="400" height="250" >
<style type="text/css"> <![CDATA[
rect {stroke:black; fill:white}
rect.different {stroke:red; stroke-width:4; fill:none}
rect.different.again {stroke:none; fill:white}
rect.different.again.encore {stroke:blue; stroke-width:8; fill:none}
]]>
</style>
<rect x="20" y="20" width="100" height="100"/>
<rect class="different" x="20" y="140" width="100" height="100"/>
<rect class="different again" x="140" y="20" width="100" height="100"/>
<rect class="different again encore" x="140" y="140" width="100" height="100" />
</svg>

Figure 4.2 shows the result.

Figure 4.2: Class selection

The CSS functionality for matching the structure of the document tree is quite powerful, though slanted
more towards the structures found in text documents than the more general structures found in
graphics. A full discussion of this functionality is beyond the scope of this paper, but the example
below illustrates the general idea.

<svg width="600" height="400" >
<style type="text/css"> <![CDATA[
rect {stroke:black; fill:yellow}
g > rect:first-child {stroke:red; fill:none}
]]>
</style>
<g>
<rect x="20" y="20" width="100" height="100"/>
<rect x="140" y="20" width="100" height="100"/>
</g>
</svg>

The selector '>' matches any rect element that is the first child of a g element.

-- 17 --

One of the important concepts in CSS is the notion of cascade. Three different types of style sheet
can be associated with a document: author, user and user agent. The author of a document can
supply style information, so can the user and so can the user agent (usually a browser). In general,
style sheets from these three sources may overlap in the styling they specify for a particular element
(indeed there may be overlap from within a single style sheet - there is an example of this in Figure
4.4) and so the notion of cascade is introduced to define the effect. In essence, weights are assigned
to each style rule and when several rules apply, the one with the greatest weight takes precedence.
The details are quite involved and go beyond the scope of this paper. The interested reader is referred
to the CSS2 specification [22]. One of the consequences though of this general mechanism is that
presentation attributes attached to SVG elements have lower priority than other CSS style rules
specified in author style sheets or style attributes. SVG and CSS do not have the equivalent of the
GKS Aspect Source Flags [26], so there is no general way to ensure that the analogues of individual
attribute specification (presentation attributes) will actually apply in all contexts in which SVG is used.
From a graphics perspective this might be considered unfortunate, but it is the price paid for
embedding graphics in a context where different priorities normally pertain.

SVG is now looking at the requirements of mobile devices. One of the problems that has arisen is that
for some devices it would be useful if the attributes could be tailored to the particular device. Zooming
in on an SVG diagram using a mobile phone soon results in a single line covering the whole display.
One option being considered by the Working Group is the possibility of attributes being defined
indirectly with the values pointed at being set differently on different devices. So it is possible that the
final attribute model for SVG will be quite similar to the one used in GKS.

Recall that HTML is a markup language for marking up the content of a textual document. The styling
of that document is achieved by defining the style to be applied to each of the markup elements. For
example, the <p> element produces justified text, the <h1> element is bold and in red etc. Similarly,
SVG defines the content of a diagram which may be styled in different ways. However, in graphics it is
less clear what is style and what is content. For example, a pie chart might use colours to differentiate
between individual segments. As long as it provides that differentiation, the specific colour chosen is
normally not very relevant. On the other hand, if the diagram depicts a traffic light, interchanging the
area to be drawn in green with the one in red would not be a good idea. This applies to most of the
rendering attributes in SVG. Consequently the decision was made to allow all the rendering attributes
to either be regarded as styling or as an integral part of the content of the diagram.

The use of styling is an extension of the use of styling in HTML. Styling can be achieved by adding a
style element to the SVG file:

<svg viewbox= "0 0 500 300" >
<style type="text/css">
<![CDATA[
rect {stroke:black;fill:yellow}
rect.different {stroke:red; fill:none}
]]>
</style>
<rect x="20" y="30" width="300" height="200" rx="10" ry="10" />
<rect class="different" x="20" y="330" width="300" height="200" rx="10" ry="10" />
</svg>

In this example, the first rectangle will be drawn in yellow with a black boundary whereas the second
will be drawn with a red boundary and no internal fill as it belongs to the class different which has a
more precise styling than rectangles in general. The stylesheet is enclosed within a CDATA construct
to ensure that XML does not do any processing on the style rules. The same effect could be achieved
by defining an external sheet in the file mystyle.css as:

rect {stroke:black;fill:yellow}
rect.different {stroke:red; fill:none}

-- 18 --

and attaching it to the SVG document by:

<?xml-stylesheet type="text/css" href="mystyle.css" ?>
<svg viewbox= "0 0 500 300" >
<rect x="20" y="30" width="300" height="200" rx="10" ry="10" />
<rect class="different" x="20" y="330" width="300" height="200" rx="10" ry="10" />
</svg>

Finally, each element may use the style attribute directly:

<rect style="stroke:black;fill:yellow" x="20" y="30" width="300" height="200" rx="10" ry="10" />
<rect style="stroke:red; fill:none" x="20" y="330" width="300" height="200" rx="10" ry="10" />
</svg>

The rules of precedence between linking to an external style sheet, embedding and importing style
sheets, attaching styling to an element and user defined style sheets are the same as for CSS when
used with HTML.
The alternative method of controlling the rendering of an element is to use the rendering attributes
directly:

<rect x="20" y="30" width="300" height="200" rx="10" ry="10" fill="yellow" stroke="black" />
<rect stroke="red" fill="none" x="20" y="330" width="300" height="200" rx="10" ry="10" />

Each property that can be defined as part of the style attribute associated with the element can also
be defined as a separate attribute. The local effect is the same in both cases. Rather than switch
between the two approaches, in this Primer we will define all the local and global rendering via styling.
Readers should be aware that they have the choice. A good basis for making a global choice is to use
styling when the rendering is not content and use the individual attributes when the rendering is part of
the content. Mixing the two does not give the effect that a graphics programmer might anticipate. If
you use a rendering attribute, it has lower precedence than any styling introduced by a style sheet. In
consequence, if you use rendering attributes do not use style sheets at all.

4.5 Following Examples
To avoid a great deal of duplication, the following examples are assumed to have an outer svg
element as follows:

<svg viewbox= "0 0 512 320" >
<title>Slide Title</title>
<rect x="2" y="2" width="508" height="318"/>
<!-- ************** Coloured Screen Area 512 by 320 ******************** -->
<!-- ************** Examples added here ******************** -->
</svg>

The title element is normally added straight after the svg element and it may be made available to the
user by the browser. Similarly, the desc element can be used to provide comments throughout a
document. Normally it is the first element after a g element.

-- 19 --

This produces the background for a set of diagrams defined on the (0,0) to (512,320) space as
follows:

Figure 4.3: Slide background, 512 by 320

The rectangle is set two pixes in from the edge to make sure all the border is visible.

-- 20 --

5: SVG Drawing Elements

¡ 5.1 Path and Text
¡ 5.2 Path
¡ 5.3 Text
¡ 5.4 Basic Shapes

5.1 Path and Text
The two main drawing elements in SVG are path and text. There is a set of basic shape drawing
elements like rect that are essentially shorthand forms for the path element. We will discuss these
later. SVG is designed as a transmission format for schematic diagrams in the widest sense. Thus it
should be applicable to simple graphs and flow diagrams but also be efficient for CAD diagrams,
maps, etc. This means that the main drawing elements must be efficient in quite a wide set of areas.
Attention needs to be paid to efficient transmission of complex paths and demanding text.

5.2 Path
The path element defines a shape that can be open or closed. A path consists of a sequence of path
segments and in many cases this is a single path segment in which case path and path segment are
synonymous. Each path segment consists of a sequence of commands where the first defines a new
current position and the remainder define a line or curve from the current position to some new
position which becomes the current position for the next part of the curve and so on. The form of the
path element is as follows:

<path d="M 0 0 L 100 100">

The d attribute defines the path. In the example above it defines a path that consists of establishing a
current position at the origin (Move to 0,0) and the path goes from there to the point (100,100) as a
straight Line. This would be the new current position if there were subsequent commands in the
sequence. The following path is a triangle:

<path d="M 0 0 L 100 0 L50 100 Z">

Here the first line is horizontal from the origin to the point (100,0) and then a straight line goes to the
point (50,100). The command Z closes the path with a straight line from (50,100) back to (0,0), the
starting position for the path segment.

A path with two path segments would have the form:

<path d="M 0 0 L 100 0 L50 100 Z M300,300 L400,300 L350,400 Z">

SVG is designed for a wide range of applications on the Web. The drawings may be complex and
download times are important. In consequence, the conciseness of path expressions is of fundamental
importance. It is for this reason that the path expressions themselves are not defined using a more
verbose XML syntax. Every attempt is made to keep the number of characters in path expressions to
the minimum. For this reason, paths are not restricted to polylines. Quadratic and cubic Bezier splines
and elliptical arcs are also provided.

White space has been used to separate the coordinates in the first path segment. Commas can also
be used as is shown in the second path segment. For transmission efficiency, surplus separation can
be removed. Some of the condensing rules are:

-- 21 --

¡ The coordinate follows the command letter with no intervening space
¡ Negative coordinates have no separation from the previous coordinate
¡ Numbers starting with a decimal point need no white space if it is unambiguous
¡ If the next command is the same as the previous one, the command letter can be omitted

For example:

<path d="M0,0L.5.5.8.2Z">

This is equivalent to:

<path d="M 0, 0 L 0.5, 0.5 L 0.8, 0.2 Z">

The basic commands are:

If the path being specified consists of many short paths, it may well be more efficient to define the path
as relative positions from the previous current position. If the command uses a lower case letter, this
indicates that the coordinates defined for this command are relative to the previous current position.
Figure 5.2 shows some more complex examples.

Figure 5.1: Path line commands

Command Meaning Parameters

M Establish origin at point specified Two parameters giving absolute (x,y)
current position

L
Straight line path from current position to point
specified

Two parameters giving absolute (x,y)
position of the line end point which
becomes the current position.

H Horizontal line path from current position to point
specified

Single parameter giving absolute X-
coordinate of the line end point. The Y-
coordinate is the same as that of the
previous current position. The new point
becomes the current position.

V Vertical line path from current position to point
specified

Single parameter giving absolute Y-
coordinate of the line end point. The X-
coordinate is the same as that of the
previous current position. The new point
becomes the current position.

Z Straight line back to original Move origin No parameters.

-- 22 --

The path depicted at the top of the diagram could have been written:

<path d="M 150, 50 L 200, 100 L 250, 100 L 250, 50 L 300, 50 L 300, 10 L350, 60">

Paths can also be defined as curves (quadratic and cubic bezier, and elliptical arcs). Probably the
most useful is the cubic bezier. This has the initial letter C and has three coordinates as its
parameters. A curved path is defined from the current position (either established by a Move
command or a previous line or curve command) to the third point defined in the cubic bezier. The first
two points define the bezier control points that give the shape of the curve (Figure 5.2). The
positioning of the control points change the shape of the curve under the user's control as can be seen
in Figure 5.3. The coordinates used position the curves as they appear on the diagram.

Figure 5.2: Path cubic bezier command

Figure 5.3: Path cubic bezier examples

-- 23 --

A real world example is the creation of a duck as shown in Figure 5.4. In the top left the duck has been
defined by a set of points and the path is a sequence of straight lines between those points (the points
are marked by circles):

<path d="M 0 112
L 20 124 L 40 129 L 60 126 L 80 120 L 100 111 L 120 104 L 140 101 L 164 106 L 170 103 L
173 80 L 178 60 L 185 39
L 200 30 L 220 30 L 240 40 L 260 61 L 280 69 L 290 68 L 288 77 L 272 85 L 250 85 L 230 85
L 215 88 L 211 95
L 215 110 L 228 120 L 241 130 L 251 149 L 252 164 L 242 181 L 221 189 L 200 191 L 180
193 L 160 192 L 140 190 L 120 190
L 100 188 L 80 182 L 61 179 L 42 171 L 30 159 L 13 140 Z"/>

Figure 5.4: Path defined by lines and cubic beziers

The duck without point markers is shown in the top right. In the bottom left the duck has been defined
by a set of cubic bezier curves (the control points are end points are marked by circles and lines from
the first point to the two control points and then the end point) and the duck without the markers is
shown bottom right. The duck defined by bezier curves is:

<path d="M 0 312
C 40 360 120 280 160 306 C 160 306 165 310 170 303
C 180 200 220 220 260 261 C 260 261 280 273 290 268
C 288 280 272 285 250 285 C 195 283 210 310 230 320
C 260 340 265 385 200 391 C 150 395 30 395 0 312 Z"/>

SVG includes a number of semantic and syntactic measures to reduce the size of path expressions
even further:
Using relative coordinates

Using relative instead of absolute coordinates can reduce the number of characters per coordinate
significantly. Each command has a lower case equivalent which defines the coordinate values as
relative to the current position.

Smooth curves
Often adjacent curves need to be joined smoothly, that is by sharing a tangential direction at the
joint. This is achieved by defining the first control point of the second curve as the reflection of the
second control point of the first curve. By defining separate commands for smooth joining curves (T
and S for the quadratic and cubic splines) a number of coordinate pairs can be omitted.

-- 24 --
Syntactic simplifications

White space can be omitted when the result is unambiguous. For example, no space is required
between the command letter and the coordinate value; negative coordinates do not need a
separation from the previous one; if the next command is the same as the previous one, the
command letter can be omitted.

The number of points in the path defined by lines is 43 while the bezier definition uses 25. The path
could also be defined using relative coordinates in which case it would be:

<path d="M 0 312
c 40 48 120 -32 160 -6
c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42
c 0 0 20 12 30 7 c -2 12 -18 17 -40 17
c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71
c -50 4 -170 4 -200 -79 z"/>

Note that it does not really make any difference whether you complete the closed curve with upper or
lowercase Z as the effect is identical. Removing unnecessary spaces reduces the path definition to
160 characters compared with the 443 characters in the initial line path representation:

<path d="M 0 312c40 48 120-32 160-6c0 0 5 4 10-3c10-103 50-83 90-42c0 0 20 12 30 7c-2
12-18 17-40 17c-55-2-40 25-20 35c30 20 35 65-30 71c-50 4-170 4-200-79 z"/>

SVG files can also be compressed using the gzip compression algorithms. The viewer decompresses
the SVG picture on the fly. The SVG element definitions can be significantly compressed by this
approach.

5.3 Text
The second most important drawing element is text. It has a large number of styling properties that we
will discuss later. Here, we will just define the three main elements. Figure 5.5 shows the three main
types of text that can be generated:

¡ Text defined just using the text element
¡ Text that uses the tspan element to vary the properties and attributes being used in the text

presentation
¡ Text where the path is defined by the textPath element

Figure 5.5: Different text elements

-- 25 --

<text x="220" y="20">
<tspan x="220" dy="30">This is multi-line</tspan>
<tspan x="220" dy="30">text or text</tspan>
<tspan x="220" dy="30" style="fill:white;stroke:green">with different properties</tspan>
<tspan x="20" dy="30" rotate="10 20 30 40 0 50 60 70 0 80 90 0 100 110 120 140 150 160 170
180">
that can be produced</tspan>
<tspan x="220" dy="30">using the tspan element</tspan>
</text>

<path id="duck" d="M 0 312 C 40 360 120 280 160 306 C 160 306 165 310 170 303
C 180 200 220 220 260 261 C 260 261 280 273 290 268 C 288 280 272 285 250 285
C 195 283 210 310 230 320 C 260 340 265 385 200 391 C 150 395 30 395 0 312 Z"/>

<text style="font-size:10">
<textPath xlink:href="#duck">
We go up, then we go down, then up again around his head. Now we are upside down as we
go round his neck and along the bottom to the tail.
</textPath>
</text>

<text>
<tspan x="30" dy="30" font-size="16">This </tspan>
<tspan x="330" dy="30" fill="red">is </tspan>
<tspan x="530" dy="30" font-weight="normal">a </tspan>
<tspan x="130" dy="30" font-family="Courier" font-size="28">single </tspan>
<tspan x="330" dy="30" fill="green">text </tspan>
<tspan x="30" dy="60" font-style="italic">string </tspan>
<tspan x="430" dy="30" font-size="18">that </tspan>
<tspan x="330" dy="30" font-size="20">has </tspan>
<tspan x="230" dy="30" font-size="24">been </tspan>
<tspan x="130" dy="30" font-size="28">distributed <</tspan>
<tspan dx="30" dy="30">across </tspan>
<tspan dx="130" dy="30">the </tspan>
<tspan dx="-230" dy="30">canvas</tspan>
</text>

The use of the text element by itself has attributes x and y that define the origin for the text. The origin
is by default at the bottom left of the first character and the characters are displayed from left to right.
Attributes associated with the text can change the start position, the characteristics of the text and the
drawing direction. We will discuss these later.
If the position of parts of the text or the text's attributes need to change from that which is available
using the text element, these can be adjusted by including within the text element a tspan element.
The text within a tspan may have its origin specified either by absolute x and y attributes or relative dx
and dy attributes. The current text position is incremented by the amount specified in the case of the
relative attribute. For both dx and dy, the attribute can be a list in which case the first number defines
the increment for the first character, the second defines the increment from that character for the
second character and so on. The characters in the text string within the tspan element can each be
rotated by a defined number of degrees by using the rotate attribute. Again, a list of numbers can be
provided to define the orientation of each character in the text sequence.

-- 26 --

5.4 Basic Shapes
Path expressions are extremely versatile but can be unnecessarily powerful when defining simple
shapes. As a consequence, SVG includes a number of basic shapes in its specification, such as
rectangles (with optional rounded corners) circles, ellipses, single lines, simple polylines and polygons.
These shapes are all equivalent to a particular path, and can be considered as simple shorthands.

As well as text, SVG also includes another drawing elements which cannot easily be derived from a
path: image. Images can be included in an SVG drawing by using an external jpg, gif, or png image, in
much the same way as it is done in HTML. Images can be positioned anywhere on the canvas and
can also be transformed like any other geometric shape.

The six basic shape elements in SVG are shorthands for the path element. They are line, polyline,
polygon, rect, circle and ellipse. The main attributes of each are given in this example (see Figure
5.7) and the meaning of the attributes in the following table.

<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
<line x1="325" y1="150" x2="375" y2="50" />
<polyline points="50, 250 75, 350 100, 250 125, 350 150, 250 175, 350" />
<polygon points=" 250, 250 297, 284 279, 340 220, 340 202, 284" />
<ellipse cx="400" cy="300" rx="72" ry="50" />

Figure 5.6: Basic elements

Command Meaning Parameters

line Renders a line between two points x1 and y1 define first point
x2 and y2 define second point

polyline Renders a sequence of lines between
points

points defines a sequence of x,y coordinates

polygon Renders an area defined by a sequence
of lines

points defines a sequence of x,y coordinates

rect Renders a rectangular area

x and y define top left corner
width and height define size of rectangle
rx and ry define the radii of the elliptic arc that
rounds the corners

circle Renders a circle
cx and cy define the centre
r defines the radius

ellipse Renders an ellipse
cx and cy define the centre
rx and ry define the two radii

-- 27 --

6. Grouping

¡ 6.1 Introduction
¡ 6.2 Coordinate Transformations
¡ 6.3 Clipping
¡ 6.4 Masking

6.1 Introduction
Frequently there is a need to group drawing elements together for one reason or another. One reason
is if a set of elements share the same attribute. However, probably the major use is to define a new
coordinate system for a set of elements by applying a transformation to each coordinate specified in a
set of elements. Grouping is also useful as the source or destination of a reference.

Grouping in SVG is achieved by the g element. A set of elements can be defined as a group by
enclosing them within a g element. For example:

<g style="fill:red;stroke:black">
<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
<line x1="325" y1="150" x2="375" y2="50" />
<polyline points="50, 250 75, 350 100, 250 125, 350 150, 250 175, 350" />
<polygon points=" 250, 250 297, 284 279, 340 220, 340 202, 284" />
<ellipse cx="400" cy="300" rx="72" ry="50" />
</g>

The g element can have any of the attributes or style properties defined for it that are generally
applicable to individual drawing elements. In the example above, all the basic shapes will be rendered
with the interior red and the border black.

6.2 Coordinate Transformations
The transform attribute applied to a g element defines a transformation to be applied to all the
coordinates in the group. For example:

<g transform="translate(100,0)">
<circle cx="70" cy="100" r="50" />
<rect x="150" y="50" rx="20" ry="20" width="135" height="100" />
</g>

Instead of the circle being drawn centred on the point (70,100) it will now be drawn centred on the
point (170,100). The rectangle will have a top left corner of (250,50) instead of (150,50).
Consequently, a useful method of defining a composition made up of a number of graphical objects is
to define each object as a group using the most appropriate coordinate system and then use the
transformations applied to the group to construct the graphic as a whole. Groups can be nested to any
depth and transformations applied to each. In consequence, a diagram can be constructed out of sub-
assemblies that come together to produce objects that are then composed to produce the diagram.

-- 28 --

The possible transformations are:

It is also possible to define a matrix that performs a composite set of transformations.

The transform attribute can consist of a sequence of individual transformations in which case they are
performed in the order right to left. The same effect can be achieved in a much more readable way by
nesting several g elements, each with a single transformation. It is recommended that the nested
approach is the one taken.

Figure 6.1 gives a montage of various transformations where the text defining the transformation is
also transformed.

Figure 6.1: Transformations

The transform attribute can also be applied to the various drawing elements directly but it tends to be
most useful when applied to a group.

Transformation Meaning Parameters

translate Defines a translation of the coordinates x and y defining the x and y translation

scale Defines a scaling of the X and Y coordinates

sx and sy defining the scaling in the X
and Y directions
s defining the same scaling in the X
and Y directions

rotate Defines a rotation about a point

angle, x and y defining a clock-wise
rotation of angle degrees about the
point (x,y)
angle defining a clock-wise rotation of
angle degrees about the origin

skewX Defines a skew along the X axis angle degrees defining a skew of the X
position by Y*tan(angle)

skewY Defines a skew along the Y axis angle degrees defining a skew of the Y
position by X*tan(angle)

-- 29 --

6.3 Clipping
A group of elements can be clipped against a clip path which is defined by a clipPath element:

<clipPath id="myClip">
<circle cx="350" cy="100" r="50"/>
</clipPath>

<g style="stroke:none;clip-path:url(#myClip)">
<rect style="fill:red" x="0" y="0" width="500" height="20" />
<rect style="fill:white" x="0" y="20" width="500" height="20" />
<rect style="fill:blue" x="0" y="40" width="500" height="20" />
<rect style="fill:red" x="0" y="60" width="500" height="20" />
<rect style="fill:white" x="0" y="80" width="500" height="20" />
<rect style="fill:blue" x="0" y="100" width="500" height="20" />
<rect style="fill:white" x="0" y="120" width="500" height="20" />
<rect style="fill:blue" x="0" y="160" width="500" height="20" />
<rect style="fill:red" x="0" y="180" width="500" height="20" />
<rect style="fill:white" x="0" y="200" width="500" height="20" />
<rect style="fill:blue" x="0" y="220" width="500" height="20" />
<rect style="fill:red" x="0" y="240" width="500" height="20" />
<rect style="fill:white" x="0" y="260" width="500" height="20" />
<rect style="fill:blue" x="0" y="280" width="500" height="20" />
<rect style="fill:red" x="0" y="300" width="500" height="20" />
<rect style="fill:white" x="0" y="320" width="500" height="20" />
</g>

The group of rectangles are clipped against the circle basic shape. The clipPath element has an id
attribute and the g element has a style or attribute clip-path that specifies the path to be used for
clipping. It is also possible to clip against a path or even text:

<clipPath id="myClip">
<path d="M 0 112 C 40 160 120 80 160 106 C 160 106 165 110 170 103 C 180 0 220 20 260
61 C 260 61 280 73 290 68 C 288 80 272 85 250 85 C 195 83 210 110 230 120 C 260 140 265
185 200 191 C 150 195 30 195 0 112 Z"/> </clipPath>

<clipPath id="myClip">
<text x="10" y="310" style="font-size:150">DUCK</text>
</clipPath>

For referenced items, such as clip paths, it is considered good practice to surround them with a defs
element to emphasise that they are not rendered directly. The defs element acts rather like a g
element that has the visibility attribute set to hidden.

-- 30 --

Figure 6.2 shows the results of the three clipping paths defined above.

Figure 6.2: Clipping

7. Filling

¡ 7.1 Fill Properties
¡ 7.2 Colour
¡ 7.3 Fill Rule
¡ 7.4 Opacity
¡ 7.5 Colour Gradients

7.1 Fill Properties
The geometry of an SVG element is largely controlled by the specific attributes associated with the
element. The geometry can be transformed either on an element basis or as a group. It is also
necessary to define the visual aspects of the drawing elements (colour, line styles, polygon fills, text
size, etc).

SVG defines most of the aspects that are common in computer graphics:

¡ colour of the interior and the border of shapes both as RGB values and as 149 different colour
names.

¡ opacity of the border and interior of shapes from opaque to transparent.
¡ clipping (any path or closed drawing element can serve as a clipping path).
¡ line width, style, join and end characteristics.
¡ fill rules (even-odd or non-zero).
¡ painting borders and areas using gradients or patterns.

The main fill properties that can be defined as either attributes or properties of SVG basic shapes,
paths, text or groups are:

¡ fill: the method of filling the area with a solid colour or gradient. The value none indicates that
the area is not to be filled.

¡ opacity: how opaque the paint is that fills the area
¡ fill-rule: for complex paths, the definition of the area to be filled

An example setting all three might be:

<path style="fill:red;opacity:0.5;fill-rule:evenodd" d="M10,20h100v50h-80v-70h-20v20z" />

The fill property can either define a colour to be used to paint the area or it can define a colour
gradient. We will discuss how colours are specified first and leave the specification of gradients until
later.

-- 31 --

7.2 Colour
Colour values are used for various operations in SVG including filling and stroking. Colour can be
defined in the same set of ways that it can be defined in CSS:

¡ A colour name such as red, blue, green etc.
¡ A numerical RGB specification defining the red, green and blue components of the colour in

one of three ways:
n rgb(r,g,b) where r, g and b are values in the range 0 to 255
n #rgb where r, g and b are hexadecimal values (for example #f00)
n #rrggbb where rr, gg and bb define a value in the range 0 to 255 as two hexadecimal

values

The four rectangles defined below will all be filled with approximately the same colour (the short
hexadecimal form does not quite have the required accuracy).

<rect width="10" height="10" style="fill:coral" />
<rect width="10" height="10" style="fill:rgb(255,127,80)" />
<rect width="10" height="10" style="fill:#f75" />
<rect width="10" height="10" style="fill:#ff7f50" />

There are over 140 colour names defined in SVG and these are given in Appendix A. Figure 7.1
shows a sample of the colours available.

Figure 7.1: Some SVG Colours

7.3 Fill Rule
Filling an area defined by a path, basic shape or text requires there to be a clear definition of what is
inside the path and should be filled and what is outside. For simple paths that do not cross, the inside
is fairly obvious. However, for a path that intersects itself or is made up of a number of segments
(such as a donut shape), the definition of inside and outside is less clear. SVG defines two different
methods of defining inside and the user may use either:

¡ evenodd: the number of intersections that a line between a point and infinity makes with the
path are counted. If the number is odd, the point is inside the area and should be filled.

¡ nonzero: the number of times the path winds around a point is counted. If the number is non-
zero, the point is inside.

-- 32 --

Figure 7.2 shows the different results obtained for two paths. Note that it is necessary to know the
order in which the two triangles are drawn in order to define the area. If the second triangle had been
drawn in the order 5, 4, 6 the area inside for both the evenodd and nonzero methods would have been
the same. For simple shapes, staying with the evenodd rule is a good bet.

Figure 7.2: Fill Rules

7.4 Opacity
Graphics in SVG are not restricted to being invisble or opaque. It is possible for any area to be filled at
an opacity that varies between 1.0 (opaque) and 0.0 (transparent). Properties are available for
specifying the opacity of filling and stroking separately but for simple examples it is sufficient to use
the opacity to control both stroke and fill opacity together. Rules exist for combining two semi-
transparent objects that overlap each other. Figure 7.3 shows various objects of different levels of
transparency overlapping.

Figure 7.3: Opacity

-- 33 --

7.5 Colour Gradients
As mentioned earlier, the fill property can have more exotic values than a simple colour specification.
One of these is to specify a colour gradient that defines a gradation of colour across the area to be
filled and that gradient can change from one colour to another or range across a whole gamut of
colours. It is possible also to specify whether the gradient is a linear transformation from one point to
another or radiates from some origin.

The colour specification in the fill property points to a URL where the gradient is defined:

<rect x="20" y="20" width="290" height="120" style="fill:url(#MyGradient)"/>

Here the fill property is defined by pointing at the definition MyGradient. The gradient specification has
the form:

<linearGradient id="MyGradient" gradientUnits="userSpaceOnUse" x1="80" y1="44" x2="260"
y2="116">
<stop offset="0" style="stop-color:blue"/>
<stop offset="0.5" style="stop-color:white"/>
<stop offset="1" style="stop-color:green"/>
</linearGradient>

This is the one used at the top right hand side of Figure 7.4. The element is either a linearGradient or
a radialGradient. Note the use of Camel case with each word separating the previous one by
capitalising the first character. This is used throughout SVG. The main element defines the major
parameters of the gradient and the offset element defines the way the gradient is rendered in more
detail.

In this particular example, the main attributes of the linear gradient are the id used to associate it with
its use, the point (x1,y1) that defines the start of the gradation and the point (x2,y2) that defines where
the gradation ends. Outside this range, the first and last values are retained. This allows the user to
define a middle part of the fill as being graded while the remainder has the solid colours defined at the
start and end. In the top left part of the Figure, the start, middle and end offset positions are identified
by circles.

In the example above, positions are defined between (x1,y1) and (x2,y2) where certain colours will
appear. In this example, the colour at (x1,y1) (offset=0.0, the starting position) will be blue and at
(x2,y2) (offset=1.0, the finishing position) it will be green. Half way between, the colour will be white
(offset=0.5). The number of offsets can be as many as you like as can be seen in the top right where
the duck has a large number of offsets specified.

Defining radial gradients is slightly more complex:

<radialGradient id="MyGradient2" gradientUnits="userSpaceOnUse" cx="130" cy="270"
r="100" fx="70" fy="270">
<stop offset="0" style="stop-color:blue"/>
<stop offset="0.5" style="stop-color:white"/>
<stop offset="1" style="stop-color:green"/>
</radialGradient>
<rect x="20" y="160" width="290" height="220" style="fill:url(#MyGradient2)"/>

-- 34 --

The radialGradient specifies a circumference where the offset=1.0 value is defined by defining its
centre (cx,cy) and the radius r. The easy option would have been to define the centre (cx,cy) as the
offset=0.0 position. instead, a separate offset=0.0 position is defined separately as (fx,fy). The
offset=1.0 position is shown in the diagram by the yellow circle and the circle shows the position of the
focus. Again, the offset elements define the colours at inbetween positions.

Figure 7.4: Colour Gradients

Once more, a simple example is shown on the lower left and a more complex radial gradient is shown
on the lower right.

-- 35 --

8. Stroking

¡ 8.1 Stroke Properties
¡ 8.2 Width and Style
¡ 8.3 Line Termination and Joining

8.1 Stroke Properties
A subset of the complete set of stroke properties is:

¡ stroke: the method of rendering the outline with a solid colour or gradient. The possible values
are the same as for the fill property. A value of none indicates that no outline is to be drawn.

¡ stroke-width: defines the width of the outline.
¡ stroke-dasharray: defines the style of the line (dotted, solid, dashed etc).
¡ stroke-dashoffset: for a dashed line, indicates where the dash pattern should start.
¡ stroke-linecap: defines the way the end of a line is rendered.
¡ stroke-linejoin: defines how the join between two lines is rendered.
¡ stroke-linemiterlimit: places some constraints on mitered line joins.

The set of stroke properties are illustrated in Figure 8.1.

Figure 8.1: Stroke Properties

8.2 Width and Style
The property stroke -width property defines the width of the line in the units specified. All the
transformations that apply to the graphic object also apply to the stroke-width. So scaling an object by
a factor 2 will also double the stroke width. A value of zero is equivalent to setting the value of the
property stroke to none.

-- 36 --

Outlines are normally rendered as solid lines. To render them dashed or dotted, the stroke -dasharray
property has to be set. Its value is either none to indicate a solid line or is a set of numbers that
specify the length of a line segment followed by the length of the space before the next segment
followed by the next line segment and so on. Figure 8.1 shows two examples. The first (stroke-
dasharray:10 10) defines a dashed line where the dashes and spaces between are 10 units long. The
second example (stroke-dasharray:9 5 15 5) defines a line consisting of short and long dashes with a
5-unit space between each. If an odd number of values is given, these are repeated to give an even
number. So 9 5 15 is equivalent to 9 5 15 9 5 15. Commas rather than spaces can be used to
separate the values.

Normally the rendering of the outline will start with the first value in the stroke-dasharray list. If this is
not what is required, the stroke-dashoffset property specifies how far into the dash pattern to start
the rendering. For example, a value of 16 in the example 9 5 15 9 5 15 above would mean the stroke
rendering would start 13 9 5 15 etc, that is the first dash and space plus the first 2 units of the second
dash.

8.3 Line Termination and Joining
When a line or path is terminated, the normal result is to butt the end of the line (the line finishes at
the end point and the end of the line is perpendicular to the direction of the line).

In Figure 8.1, the poor rendering this achieves when two lines are drawn from the same point is
shown. To combat this, two other values can be specified by the stroke-linecap property. If set to the
value round, a semi-circle is added to the end of the line while the value square extends the line by
the width of the line. In both cases the rendering of two lines or paths coincident at a point will be
improved.
A similar problem occurs at intermediate points in a path made up of straight line segments. The
normal result is to miter the two lines (the outer edges are extended until they meet). This is not
always the most pleasing effect. Two other values can be specified by the stroke-linejoin property. A
value of round rounds off the join and bevel squares off the join of the two lines.

The miter line join looks particularly unattractive when the two line segments are at a small angle to
each other (see Figure 8.1). For the miter value of stroke-linejoin, it is possible to control the extent
that the miter extends beyond the end of the line. The property stroke-miterlimit defines a value
greater than 1 which is the maximum ratio allowed between the miter length and the stroke width. If
this ratio is exceeded, the line join has a bevel applied to it. In Figure 8.1, the value of 4 bevels off the
worst of the three joins while the value of 1 bevels all of the three joins.

-- 37 --

9. Text

¡ 9.1 Rendering Text
¡ 9.2 Font Properties
¡ 9.3 Text Properties

9.1 Rendering Text
There are more properties associated with the text element than any other. Many are still to be fully
implemented in the products currently on the market. Many are concerned with achieving good results
when the text is non-European requiring a different writing direction from left-to-right and even bi-
directional text (in Hebrew, for example, the writing direction is normally right-to-left but embedded
European words are written left-to-right).

The properties are a superset of the ones defined in CSS.

9.2 Font Properties
Figure 9.1 shows some of the properties that are primarily concerned with how individual characters
are rendered.

The font-family property defines the font to be used for the text. The font-size property defines the
size of the characters using one of the SVG unit measures.

The font-style property has the values normal, italic and oblique .
The font-weight property defines the boldness of the rendering and has the same set of possible
values as those used in CSS. Similarly, the text-decoration property has the same possible values as
those used in CSS.
Text is rendered in a similar way to paths and both the interior fill of the characters and the stroke to
be used for the outline can be specified by the fill and stroke properties.

Figure 9.1: Font Properties

9.3 Text Properties
One of the most useful properties associated with the whole text string is the text-anchor property
(Figure 9.2) which specifies where in the text string the text origin is located. This is particularly useful
when trying to centre text, say, within a rectangle. In this case defining the origin at the middle position
in the x-direction and defining the value as middle will achieve the desired result.

Simple formulae can be rendered using the baseline-shift property. The example in Figure 9.2
requires the following:

-- 38 --

<text x="10" y="240" style="fill:blue" >x
<tspan style="baseline-shift:super">super</tspan>
+y
<tspan style="baseline-shift:sub">sub</tspan>
+1
</text>

The writing-mode property defines the direction that the text is drawn. The possible values are lr, tb ,
and rl.

Figure 9.2: Text Properties

-- 39 --

10. Animation

¡ 10.1 Simple Animation
¡ 10.2 How the Animation takes Place
¡ 10.3 Animation along a Path
¡ 10.4 When the Animation takes Place

10.1 Simple Animation
The facilities of SVG described until now are comparable to a "classical" 2D graphics environment,
such as GKS or PostScript. However, SVG also includes some so-called animation objects, which
give a very different flavour to the system.

Animation in terms of SVG means the possibility to dynamically change of most of the attributes (both
in XML in CSS) of SVG elements. For example, one might dynamically change the position, the
geometry, various style elements (colour, linestyle, etc).

Here is a very simple example to get started with:

<rect x="20" y="10" width="120" height="40" >
<animate attributeName="width" from="120" to="40" begin="0s" dur="8s" fill="freeze" />
<animate attributeName="height" from="40" to="82" begin="6s" dur="7s" fill="freeze" />
</rect>

Figure 10.1: Simple Animation

The animate element defines animation to be applied to any of the attributes of the rect element. In
this example, two animations are performed on the element. The first starts the animation at the time
the SVG is drawn (0s) and the width of the rectangle is changed from 120 to 40 over the next 8
seconds. Independently, the second animation waits until 6 seconds have elapsed and then increases
the height of the rectangle from 40 to 82 over the next 7 seconds. At 8 seconds into the animation, the
width stops increasing and stays at the final value (that is what the freeze value indicates). After 13
seconds the height stops increasing, and from then on there is a static rectangle displayed with height
81 and width 40. This is illustrated in Figure 10.1 where the rectangle is displayed at times 0 to 15
seconds.

It is worth noting that the animation concepts of SVG have not been defined by the SVG Working
Group in isolation; instead, the functionality defined by another W3C document, called SMIL2.0, has
been incorporated.

-- 40 --

SMIL2.0 is concerned about multimedia synchronisation and presentation; it concentrates on
specifying how various media presentation (audio, still or moving images, video, etc) can be
presented. (In terms of SMIL2.0 an SVG image is but another type of media.) SMIL2.0 is a
coordinating language in the sense that the various media objects are considered as black boxes for
SMIL2.0, and the specification concentrates on the (two dimensional) layout, on the timing and
synchronisation among media objects, on transition control, etc. SMIL2.0 also defines animation
facilities (for example, moving objects around on the screen, changing their attributes); in terms of
SMIL2.0, animation objects are yet another type of media objects, subject to the same timing and
synchronisation constraints as other types of media objects. SVG took over the exact specification of
the animation objects including their related timing; it is a nice example of interoperability among W3C
recommendations.

When defining animation objects the author has to decide the following aspects:
1. What is animated?
2. How should the animation take place?
3. When should the animation take place and for how long?

Each of these issues is now considered separately.
As noted above, almost all attributes and CSS properties can be animated. There are five different
types of animation objects in SVG:
animate

to animate general attributes, as in the example above
set

a shorthand notation for cases when attributes are 'discrete'(for example, visibility)
animateTransform

an animation object tailored to the transform attribute
animateMotion

to specify movement of an object along a specified path
animateColor

an animation object tailored to colour changes

The semantics of the different animation objects, in terms of timing, animation control, etc, are
identical; the differences reside solely in the way the target attributes are described.
The animate element has a slightly different format when the aim is to animate a property defined as
part of the style attribute. The element then has the form:

<circle cx="50" cy="50" r="20" style="fill:red;opacity:1">
<animate attributeType="CSS" attributeName="opacity" from="1" to="0" dur="4s"
repeatCount="indefinite" end="15s fill="freeze""/>
<set attributeType="CSS" attributeName="fill" to="blue" begin="8s" />
<animate attributeName="r" from="20" to="46" dur="13s" />
</circle>

Note the attributeType attribute, which differentiates whether the target is XML (this is the default) or
CSS.

-- 41 --

To animate a property, the attributeType is given the value CSS and the CSS name is defined by the
attributeName attribute. The results of this animation are shown in Figure 10.2.

Figure 10.2: Animating Style properties

For values that do not have continuous ranges, these can be changed by the set element. The set
element can be used as follows:

<circle cx="50" cy="50" r="20" style="fill:red; opacity:1">
<set attributeName="visibility" from="visible" to="invisible"/>
</circle>

There is no dur attribute: the effect of set is instantaneous. Note also that the values for from and to
are not necessarily numerical, as shown in the example.
An example for the animateTransform element is:

<circle cx="50" cy="50" r="20">
<animateTransform attributeName="transform" type="translate" from="0,0" to="40,20"
dur="3s"/>
</circle>

which will move the centre of the circle from its initial position to the point (90,70) in 3 seconds.

-- 42 --

The animateTransform element animates the transformation to be applied to a graphical object. In
the example below, the scaling, rotation and translation of the duck are animated. Note that only a
single transformation can be animated per element so to achieve this compound effect the path
element is enclosed within two grouping elements and one transformation animation is applied to
each. The result is shown in Figure 10.3.

<g>
<g>
<path d="M 20 100 c 40 48 120 -32 160 -6 c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42 c 0 0 20 12
30 7 c -2 12 -18 17 -40 17 c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71 c -50 4 -170 4 -200 -79
z">
<animateTransform attributeName="transform" attributeType="XML" type="scale" from="0.4"
to="0.3" begin="0s" dur="4s" fill="freeze" />
</path>
<animateTransform attributeName="transform" attributeType="XML" type="rotate" from="0"
to="21" begin="4s" dur="7s" fill="freeze" />
</g>
<animateTransform attributeName="transform" attributeType="XML" type="translate"
from="0,0" to="40,20" begin="11s" dur="4s" fill="freeze" />
</g>

Figure 10.3: Animating Transforms

To animate a colour, the animateColor element is used. For example:

<animateColor attributeType="CSS" attributeName="fill" from="aqua" to="crimson" begin="0s"
dur="10s" fill="freeze"/>

The to and from attributes can have the colour specified in any of the usual ways.

-- 43 --

10.2 How the Animation Takes Place
By default animation is linear. This means that a linear function is calculated between the from and
the to values within the specific time duration. It is, however, possible to have finer control over the
animation function through:

¡ specifying intermediate key time values
¡ replacing the linear animation functions by (cubic) splines

Objects that have been animated so far have had linear movement in terms of parameter changes
over the duration of the animation. Objects start and stop abruptly.

The first possibility is shown in the following example:

<rect x="20" y="10" width="120" height="200">
<animate attributeName="width" begin="0s" fill="freeze"
values="120; 180; 190; 200" keyTimes="0; 2; 4; 8"/>
</rect>

This also specifies that the rectangle width should change in 8 seconds from 120 to 200, but in this
case intermediate values that must be reached at 2 and 4 seconds (a very fast change at the
beginning, but slowing down at the end) are also specified.

To achieve a somewhat similar (but much smoother) effect one can also define a spline function for
the time change:

<rect x="20" y="10" width="120" height="200">
<animate attributeName="width" begin="0s" fill="freeze"
values="120; 200" keySplines="0 0.75 0.25 1"/>
</rect>

The spline used (defined in the [0,1] interval) is shown at the bottom left of Figure 6.3. The change of
values is relatively fast at the beginning of the 8 second animation and slows down towards the end.
Finally, the two control methods can be combined: a separate key spline could be defined for each key
time interval.

For the animation elements described so far it is possible to define an attribute calcMode that
specifies how the animation proceeds over time. One of its possible values is linear which is the
default. A more interesting value is spline. In this case, a values attribute defines a list of values and
a spline function which defines the intermediate value to be used at a specific point in time. The spline
function to be used is defined by the keySplines attribute. For example:

<circle cx="10" cy="90" r="5" style="fill:black">
<animate attributeName="cy" values="90;10" calcMode="spline" keySplines="1 0 0 1"
dur="10s"/>
<animate attributeName="cx" values="10;140" calcMode="spline" keySplines="0 .75 .25 1"
dur="10s"/>
<animate attributeName="cy" values="10;90" calcMode="spline" keySplines="1 0 0 1"
begin="10s" dur="6s"/>
<animate attributeName="cx" values="140;10" calcMode="spline" keySplines="0 .75 .25 1"
begin="10s" dur="6s"/>
</circle>

The first animate element animates the cy value from 90 to 10 over 10 seconds but with the
intermediate positions defined by a cubic bezier which goes from (0,0) to (1,1) with control points (1,0)
and (0,1). The four coordinates of the two control points are the four values defined by the keySplines
attribute. The X-axis defines the fraction of the duration passed while the Y-axis gives the fraction of
the distance travelled.

In Figure 10.4, the shape of the change for various values of keySplines is shown. The top left shows
that if the first control point (in grey) coincides with the start point and the second control point in green
coincides with the second control point then the result is a linear change.

-- 44 --

In the example, the (0 .75 .25 1) value defines a curve where there rapid change earlier on followed by
very little change near the end. The value (1 0 0 1) has little change early and late but very rapid
change in the middle period.

Figure 10.4: Spline Control

The animation of the circle defined above is shown in Figure 10.5 with the last image showing all the
intermediate positions of the animated circle. The set for the first 10 seconds are in blue and the
remainder in green.

Figure 10.5: Animation Control

-- 45 --

The data associated with a path element can also be animated although there is a constraint that the
various path segments making up the path must be the same in structure in both the start and finish
positions. Effectively each individual value is interpolated between the start and end value. For
example:

<path>
<animate attributeName="d" from="M 20 100 c 40 48 120 -32 160 -6 c 0 0 5 4 10 -3 c 10 -103
50 -83 90 -42 c 0 0 20 12 30 7 c -2 12 -18 17 -40 17 c -55 -2 -40 25 -20 35 c 30 20 35 65 -30
71 c -50 4 -170 4 -200 -79"
to="M 80 100 c 40 48 120 -2 160 -36 c 0 0 5 -11 10 -18 c 10 -73 50 -23 90 -12 c 0 0 20 -48 30
22 c -2 12 -18 47 -40 17 c 5 -2 20 -5 -20 35 c 30 20 35 95 -30 86 c -80 -116 -260 94 -200 -94"
fill="freeze" dur="1s"/>
</path>

The overall result is shown in Figure 10.6.

Figure 10.6: Animate path data

10.3 Animation along a Path
The animateMotion object can be used to move an object along a general path, rather than specifying
a series of transformation objects. For example:

<path d="M0 0 v -2.5 h10 v-5 l5 7.5 l-5 7.5 v-5 h-10 v-2.5" style="fill:red">
<animateMotion dur="6s" repeatCount="indefinite" path="M 100 150 c 0 -40 120 -80 120 -40 c
0 40 120 80 120 40 c 0 -60 -120 -100 -120 -40 c 0 60 -120 100 -120 40" rotate="auto" />
</path>

-- 46 --

The object consists of an arrow and the animateMotion element animates along a figure of eight path
defined by the cubic beziers and starting on the left side. The rotate attribute defines the orientation of
the arrow as it proceeds along the path. The value auto keeps the orientation of the arrow so that it
always points along the path. A value specified as a number indicates that the arrow should stay at
that constant rotation from its initial position irrespective of where it is on the curve. The value auto-
reverse positions the arrow so that it always points away from the direction of motion. Figure 10.7
shows four examples of the rotate attribute with the positions of the arrow as the animation takes
place in each case. The latest position is opaque and the earlier positions are displayed with
decreasing opacity.

Figure 10.7: Animate along a path

10.4 When the Animation Takes Place
In its simplest form, animation objects define a time range in which they operate. The attributes begin,
dur, end, repeatCount and repeatDuration are the most important ones in this respect, and they all
have a clear intuitive meaning. All these attributes can refer to time values in different formats (in
practice, seconds and miliseconds are probably the most useful, but minutes or even hours can be
used, too). Semantic conflicts can occur (for example, what happens if both duration and end times
are defined and the values do not match?) and the SMIL2.0 document gives a very detailed account
of these. However, in practice, authors use either one or the other. It is important to note that all the
time count values are relative to the load time of an object, ie, begin="3s" means 3 seconds after
the object has been loaded by the viewer.

Describing the animation solely on the basis of time is tedious and it also lacks the possibility for user
interaction. However, the full specification of the begin (and end) attributes allows for event based
interaction, too. These can be used for different purposes. Animation objects can be "chained", as in
the following example:

<animate id="a1" begin="0s"/>
<animate id="a2" begin"a1.end" />
<animate id="a3" begin="a2.begin+8s" ... />

The second animation object would begin when the first one ends, while the third animation begins 8
seconds after the beginning of the second. Animation objects can be bound to user interactions:

<circle id="a1" ... />
...
<animate begin="a1.click"/>

-- 47 --

Here the animation begins when the user clicks on the circle. While "click" is probably the most useful
event type in this respect, one can also use "focusin", "focusout" (for example, when a text is
selected).

The combination of the timing and the interaction facilities to control animation is quite powerful; it is
possible to build up complex animated, and possibly interactive objects without using scripting (which
is the "traditional" way of programming interaction on, for example, an HTML page). However, the
animation objects also have their limitations: it is not possible to include complex calculations as part
of attributes, nor can animation objects change over time. For this reason scripting is also included in
the SVG specification, offering an alternative way of producing dynamic SVG images.

-- 48 --

11. Linking and Templates

¡ 11.1 Linking
¡ 11.2 Symbols and their Use
¡ 11.3 Images
¡ 11.4 Masking

11.1 Linking
Linking in SVG is much the same as in HTML. SVG has an a element that indicates the hyperlink and
defines where the link goes. For example:

<a xlink:href="http://www.w3.org">
<rect width="200" height="40" /> <text x=100" y="30" style="text-anchor:middle">My
button</text>

This example consists of a rectangle with the word My button in the middle. Clicking on any part of
the rectangle causes the browser to link to the W3C home page. Note that the URL is defined by
xlink:href rather than href. This is because the aim is to use all the functionality of XLink when it is
finalised. At the moment this acts just the same as the href attribute in HTML. The user should be
careful to enclose both the rectangle and the text within the a element. Otherwise, clicking on the part
of the rectangle where the text is would not cause the link to take place. The text appears later than
the rectangle and so sits on top of the rectangle.

11.2 Symbols and their Use
Many drawings consist of the same object appearing a number of times in different places with
possible minor variations. An example would be symbols on a map. SVG provides a rather simple
minded symbol facility that is useful on occasions. However, by providing no parameterisation of the
symbol, the times it is useful are limited.
A symbol can contain any of the usual drawing elements. For example:

<symbol id="duck">
<path d="M 10 90
c 40 48 120 -32 160 -6
c 0 0 5 4 10 -3 c 10 -103 50 -83 90 -42
c 0 0 20 12 30 7 c -2 12 -18 17 -40 17
c -55 -2 -40 25 -20 35 c 30 20 35 65 -30 71
c -50 4 -170 4 -200 -79 z"/>
<text x="150" y="120" style="text-anchor:middle">The Duck</text>
</symbol>

The symbol consists of the path defining the duck and the text The Duck positioned in its centre. An
instance of the symbol is created by the use element as follows:

<use x="0" y="0" xlink:href="#duck" style="stroke:black;stroke-width:2;fill:none;font-size:48" />

The use element is effectively replaced by a g element with any attributes associated with the use
element being transfered to the g element except that the origin specified by the attributes x and y
become a transform attribute appended to the end of any transformations defined on the g element.
This is a rather bizarre way of doing it and requires some careful thought before understanding what
the result is likely to be. Figure 11.1 shows various examples of the use element:

-- 49 --

<use x="0" y="0" xlink:href="#duck" style="stroke:black;stroke-width:2;fill:none;font-size:48" />
<use x="300" y="0" xlink:href="#duck" style="stroke:black;fill:red;font-size:40;font-
family:Verdana" />
<use x="0" y="400" xlink:href="#duck" transform="scale(0.5)" style="stroke:none;fill:red;font-
size:64" />
<use x="0" y="0" xlink:href="#duck" transform="translate(0,300) scale(0.5)"
style="stroke:white;stroke-width:3;fill:blue;font-size:40" />
<use x="300" y="200" xlink:href="#duck" style="stroke:black;fill:none;font-size:16;writing-
mode:tb;" />

The first use is quite straightforward. The duck and associated text are drawn in outline (top left) and
the font size is specified by the font-size property to be 40. The second use in the top right sets the
fill property to be red and changes the font to Verdana. Notice that if the text is filled so is the path. It
would have been better if the two could have been defined separately either by having separate fill
properties for text and path or being able to parameterise the symbol.

The third use illustrates the problem as no outline is drawn and it is only by making the text overflow
the duck that it can be seen at all. This small duck also illustrates the problem with the way the use is
executed. The transform to be applied is changed (by the x, y positioning attributes) to:

transform="scale(0.5) translate(0,400)"

Multiple transforms are applied right to left. In this case this results in the object being scaled but the
translate is also scaled. So the translation applied is only (0,200) which is why the red duck appears
where it does.

In the fourth use, the x and y values are set to zero resulting in no additional transformation being
generated. The scaling is done first followed by the translation in this case. A good rule is therefore if
you are going to transform the symbol, do all the transformation using the transform property.
The final example shows how the writing direction can be changed.

Figure 11.1: Symbols and their Use

-- 50 --

11.3 Images
Sometimes it is useful to include bitmap images in an SVG document. These can be PNG, GIF and
JPG images and are included in much the same way that images are included in an HTML document:

<image x="20" y="40" width="100" height="200" xlink:href="mypicture.gif">

The image is positioned with the top left corner at the position specified and fitted into the width and
height given.

Note that a valid image type is SVG so that an SVG diagram can be embedded in another. The logo at
the head of this document is an embedded SVG drawing.

11.4 Masking
SVG also provides a facility called masking. The mask object effectively defines the transparency
value to be applied to the drawing at each position defined by the mask. For example:

<linearGradient id="Gradient" gradientUnits="userSpaceOnUse" x1="0" y1="0" x2="500"
y2="0">
<stop offset="0" style="stop-color:white; stop-opacity:0"/>
<stop offset="1" style="stop-color:white; stop-opacity:1"/>
</linearGradient>

<rect x="0" y="0" width="500" height="60" style="fill:#FF8080"/>

<mask maskContentUnits="userSpaceOnUse" id="Mask">
<rect x="0" y="0" width="500" height="60" style="fill:url(#Gradient)" />
</mask>
<text x="250" y="50" style="font-family:Verdana; font-size:60; text-anchor:middle;fill:blue;
mask:url(#Mask)">
MASKED TEXT
</text>
<text x="250" y="50" style="font-family:Verdana; font-size:60; text-anchor:middle;fill:none;
stroke:black; stroke-width:2">
MASKED TEXT
</text>

First a pink rectangle is drawn and then the text is drawn twice. The first one fills the text in blue but
the transparency value of the text comes from the mask which is a gradient that is fully transparent on
the left and fully opaque on the right. The second draws the black outline.

Figure 11.2 shows the masked text at the top followed by a blue rectangle masked in a similar way
and finally the duck masked by a circle with transparency varying from opaque on the right to
transparent on the left.

-- 51 --

Figure 11.2: Masking

-- 52 --

12. Interaction

¡ 12.1 Scripting and the DOM
¡ 12.2 Interaction Events
¡ 12.3 Interaction Methods

12.1 Scripting and the DOM
When a Web document (be it HTML, XHTML, or some other XML language) is loaded into a browser,
the document is parsed and internal structures to represent the document are created. The Document
Object Model (DOM) is an API that can be used to manipulate these internal structures, as if the
document were represented as a hierarchically structured collection of objects. The DOM does not
mandate that the browser implement a document representation as a hierarchy of objects, though it
might. Using a scripting language, the DOM permits the presentation of a Web document to be
modified dynamically within a browser. This interface also permits content to be created dynamically
within the browser. It should be noted that the copy of the Web document held on the server is not
modified, it is purely the representation within the browser that is modified.

Modification to a document via the DOM is usually triggered by a browser event, the mouse being
moved over a particular region of the document, a mouse click over a particular region, etc. The
example below illustrates the main ideas.

<svg width="500" height = "500">
<script language="JavaScript"
type="text/javascript">
<![CDATA[
function onmouseover(evt) {
var elem = evt.target;
var style = elem.getStyle();
style.setProperty("fill-opacity", 0.5);
}
function onmouseout(evt) {
var elem = evt.target;
var style = elem.getStyle();
style.setProperty("fill-opacity", 1.0);
}
]]></script>
<rect x="20" y="20" width="250" height="250" style="fill:red; stroke:none"
onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)" />
<rect x="210" y="210" width="250" height="250" style="fill:green; stroke:none"
onmouseover="onmouseover(evt)" onmouseout="onmouseout(evt)" />
</svg>

The attributes onmouseover and onmouseout on the two rect specify the names of script functions
to be invoked when the corresponding event occurs. The parameter passed to the function enables
the corresponding element to be located in the document object tree.

The function onmouseover changes the fill-opacity property of the element to the value 0.5. This
function is invoked when the mouse moves onto the region covered by the rectangle. The function
onmouseout resets the fill-opacity property of the element to the value 1.0. This function is invoked
when the mouse moves out of the region.

The functionality provided by CGM and SVG is very similar. In consequence, there is some work
underway attempting to provide a common Document Object Model [25] for interacting with
documents in both WebCGM and SVG formats. There are some minor differences that would not be
accommodated by this common DOM. Disjoint polylines, pie slices, predefined dash styles are
available with the WebCGM Profile but not available in SVG. SVG provides transformable symbols
instantiated by the use element, bundled attribute styling using the g element, pattern and gradient
fills. These facilities are available in CGM but not the WebCGM Profile.

-- 53 --

12.2 Interaction Events
Some of the events that can be handled by SVG are:

¡ onclick
¡ onactivate
¡ onmousedown
¡ onmouseover
¡ onmousemove
¡ onmouseout
¡ onload

For example:

<svg viewbox= "0 0 600 400" >
<script type="text/ecmascript"><![CDATA[
function changerect(evt)
{
var svgobj=evt.target;
svgstyle = svgobj.getStyle();
svgstyle.setProperty ('opacity', 0.3);
svgobj.setAttribute ('x', 300);
}
]]>
</script>
<rect onclick="changerect(evt)" style="fill:blue;opacity:1" x="10" y="30" width="100"
height="100" />
</svg>

This defines a diagram consisting of a single opaque blue rectangle close to the left hand edge. When
the mouse or pointing device is clicked over it, the rectangle is repositioned further to the right and
becomes semi-transparent.

As scripting languages vary in their capabilities and browsers vary in their support of them, the user
may need some trial and error to get started. A general point is that the SVG script element behaves
in much the same way as the one in HTML. In consequence, following the style used for HTML
scripting will usually work for SVG as well.

In the example, the onclick attribute calls the script function changerect when the mouse click occurs.
The variable evt passed as parameter to the changerect function enables the object over which the
mouse was clicked to be identified. The property target of evt gives a reference to the object clicked.
The variable svgobj is set to the object that was clicked. The ECMAScript method getStyle gives a
reference to the object's style attribute, setProperty sets the value of a style property. The method
setAttribute sets an attribute value.

The event onactivate is more general than onclick and will work with devices other than mouse-like
devices. The onload event gives a general method of invoking a script when an SVG document is
loaded. For example:

<svg viewbox= "0 0 600 400" onload="changerect(evt)">
<script type="text/ecmascript"><![CDATA[
function changerect(evt)
{
var svgdoc = evt.getCurrentNode().getOwnerDocument();
svgobj = svgdoc.getElementByID ('MyRect')
svgstyle = svgobj.getStyle();
svgstyle.setProperty ('opacity', 0.3);
svgobj.setAttribute ('x', 300);
}
]]>
</script>
<rect id="MyRect" style="fill:blue;opacity:1" x="10" y="30" width="100" height="100" />
</svg>

-- 54 --

In this example, the variable svgdoc is set to point to the SVG document as a whole and svgobj is set
to the rect object with id equal to MyRect. In this case, the rectangle will appear semi-transparent and
on the right as soon as the SVG document is loaded.

It can be seen from these examples that the starting point for any interaction with an SVG document is
obtaining a reference to the object tree (at an appropriate node) that represents the document. There
are several ways to do this and different browsers may support different approaches. In designing an
interactive SVG application, it is wise to start by thinking carefully about where modification will be
required, and design the SVG document to facilitate this (for example, by including id attributes on
appropriate elements).

12.3 Interaction Methods
The most useful methods for modifying an SVG document are:

¡ getElementById
¡ getStyle
¡ setProperty
¡ setAttribute
¡ getAttribute
¡ cloneNode

To create new elements, a useful method is cloneNode. For example:

<svg viewbox= "0 0 600 400" >
<script type="text/ecmascript"><![CDATA[
function addrect(evt)
{ var svgobj=evt.target;
var svgdoc = svgobj.getOwnerDocument();
var newnode = svgobj.cloneNode(false);
svgstyle = newnode.getStyle();
var colors = new Array('red', 'blue', 'yellow', 'cyan', 'green', 'lime', 'magenta', 'brown', 'azure',
'burlywood', 'blueviolet', 'crimson');
var x = 10+480*Math.random();
var y = 10+330*Math.random();
var width = 10+100*Math.random();
var height = 10+50*Math.random();
var fill = Math.floor(colors.length*Math.random());
if (fill == colors.length) fill = colors.length -1;
fill = colors[fill];
svgstyle.setProperty ('opacity', 0.3+0.7*Math.random());
svgstyle.setProperty ('fill', fill);
newnode.setAttribute ('x', x);
newnode.setAttribute ('y', y);
newnode.setAttribute ('width', width);
newnode.setAttribute ('height', height);
var contents = svgdoc.getElementById ('contents');
newnode = contents.appendChild (newnode);
}]]></script>
<rect x="1" y="1" style="fill:#bbffbb" width="598" height="398"/>
<g id="contents">
<rect onclick="addrect(evt)" style="fill:blue;opacity:1" x="250" y="100" width="20"
height="20" />
</g>
</svg>

-- 55 --

Hitting the single blue square rectangle in the middle of the diagram causes the function addrect to be
invoked. This sets svgobj to point at the rectangle and svgdoc to point at the SVG document as a
whole. The variable newnode is a new rectangle object (initially a copy of the element hit) that has its
fill colour, position, size and opacity defined by resetting the attrributes and properties. The enclosing
group with id set to contents has this new element appended to it as a new child. So after the first
click on the blue rectangle the diagram will consist of two rectangles where the second has its
position, size and properties randomly defined. After many clicks, the diagram might be as shown in
Figure 12.1. This example illustrates a general style, namely creating new elements within an SVG
document and then incorporating them into the SVG structure at the appropriate places.

Figure 12.1: Cloning Rectangles

-- 56 --

13 Filter Effects

¡ 13.1 Motivation
¡ 13.2 Filter Data Flow
¡ 13.3 Filter Primitives

13.1 Motivation
One important use for graphics on the Web is to include various types of artwork on the Web pages.
These can be company logos, sophisticated advertisement images, computer arts, etc. In general,
such images are produced by complex image processing tools resulting in images rich in shades and
colours. SVG includes a number of tools, collectively called filter primitives, which can be used to
achieve similar effects. The filters are obviously executed on the client side and that usually means
that even very complex visual images can be described through relatively small files, rather than
transmitting large pixel images. Also, the combination of filter effects with the more traditional graphics
described in the earlier sections opens up rich possibilities for artwork creation.

As noted earlier, an SVG agent produces an image, conceptually, into a canvas. If no filter processing
occurs, this image is then transmitted to the screen directly, using the painters' model. Filtering in SVG
can occur between these two steps: the user can define filters which will operate on the output of the
image generation on the canvas and it is the output of this filter which will, eventually, appear on the
screen itself.

13.2 Filter Data Flow
The filtering operation follows a dataflow model used in other image processing environments such as
Khoros [28] or the pbm toolkit widely used in Unix. A filter is a combination of filter primitives; each
primitive can have one or more inputs and an output. The inputs to a primitive are either the source
image (ie, produced by previous SVG operations) or the output of another primitive; the output of the
last primitive is displayed on the screen. The RGB values of the source image or the alpha (opacity)
values can be separated for the input to a primitive, for example a filter primitive might operate on the
opacity values only.
Figure 13.1 shows the result of applying some filter operations to the duck.

Figure 13.1: Filtered Duck

-- 57 --

Figure 13.2 shows the dataflow network that creates the image.

Figure 13.2: Data Flow of Filter Operations

13.3 Filter Primitives
An informal description of each filter primitive is:

1. A Gaussian Blur filter receives the opacity value of the source image and blurs it
2. An offset filter creates a slight offset in both the x and y direction of the blurred opacity value

(this will be the dropped shadow of the final image)
3. The specular highlight will create a simulated highlight image on the blurred opacity image
4. The highlight image will be combined with the original opacity image to "cut off" the highlight so

that the resulting image is no bigger than the original graphics
5. The original image is combined with the highlight to produce the original graphics with highlight

(but without the shadow)
6. The shadow is combined with the previous step to produce the final image

The approximate SVG equivalent (trimming some of the details) is:

<defs>
<g transform="translate(10,-190)" id="theDuck" stroke="none" fill="sandybrown">
<path d="M 0 312 ... z"/>
</g>
<filter id="MyFilter">
<feGaussianBlur in="SourceAlpha" stdDeviation="4" result="blur"/>
<feOffset in="blur" dx="4" dy="4" result="offsetBlur"/>
<feSpecularLighting in="blur" surfaceScale="5" specularConstant="1"
specularExponent="10" lightColor="green" result="specOut">
<fePointLight x="-5000" y="-10000" z="20000"/>
</feSpecularLighting>
<feComposite in="specOut" in2="SourceAlpha" operator="in" result="specOut" />
<feComposite in="SourceGraphic" in2="specOut" operator="arithmetic"
k1="0" k2="1" k3="1" k4="0" result="litPaint"/>
<feMerge>
<feMergeNode in="offsetBlur"/>
<feMergeNode in="litPaint"/>
</feMerge>
</filter>
</defs>
<use xlink:href="#theDuck" filter="#MyFilter"/>

-- 58 --

Given the complex visual effects of the result, the size of the SVG source is not particularly large
compared to the original image of the duck.

The specification of each filter is quite complicated and relies on an intimate knowledge of various
image processing techniques. However, it can be expected that authoring tools that can export SVG
will hide the details from the casual user. Appendix A lists the filter primitives available in SVG with a
short description of their functionalities.

-- 59 --

14. Current State and the Future

¡ 14.1 Implementations
¡ 14.2 Metadata
¡ 14.3 Extensions to SVG

14.1 Implementations
Current information concerning the state of browser plug-ins, stand-alone viewers, editors and
converters is kept at the W3C SVG Working Group Home Page [29].
In October 2001, Adobe released the 3.0 version of their plug-in that works with most browsers
(Opera, IE and Netscape at least) on Mac and PC platforms. Mozilla has a project for native support of
SVG but the timescales keep slipping. Stand-alone viewers are available from IBM, Apache (Batik)
and CSIRO . Toolkits are available from Apache and CSIRO. Editors are available from JASC
(WebDraw), Mayura (Mayura Draw) and support for SVG is included in Adobe Illustrator and Corel
Draw. This is not a definitive list but just gives an indication of the level of support. Many existing
graphics design packages have added an SVG export or import function.

To help implementers debug their applications, W3C maintains an SVG Test Suite [30] of over 100
basic functionality tests for SVG. Each test comes with a PNG image that shows what the test should
produce in terms of output.

14.2 Metadata
Searching for content is a major function on the Web. SVG attempts to make the textual content of a
picture easy to find by allowing international text to appear as a sequence of text characters
irrespective of writing direction. A search engine that is aware of the tspan element can search for
multi-line text and text that may be scattered around the diagram.

SVG also provides a metadata element whose contents should be elements from other XML
namespaces. In particular, the metadata could be expressed in RDF [31]. An ontology such as the
Dublin Core [32] could be used to express information concerning the creator, the date it was
produced etc. For CAD applications, the metadata might point into the application database to define
the parts and materials to which the diagram refers.

SVG provides the mechanisms to allow rich metadata to be added to SVG diagrams. It will be
interesting to see how this is used in practice.

14.3 Extensions to SVG
The W3C SVG Working Group does not believe that its job is done and early in 2001 they started
collecting requirements for a new SVG 2.0.

SVG is seen as a basic platform which existing packages, such as Adobe Illustrator, can use as a
Web delivery system. There has also been interest in extending SVG by defining richer languages that
map down into SVG.

One example is CSVG [33] [34]. This is a constraint extension to SVG that defines a picture as a set
of graphical objects. The properties of these objects including their position can be constrained by
properties of other objects. For example, a rectangle can be specified to be above another rectangle,
and a line can be constrained to connect the bottom of the top one to the top of the bottom one. To
avoid over-constraining the system, each constraint can have its strength specified. Constraints are
satisfied starting from the most important until a unique solution is found.

As XML applications become more common, there will be a need to define their inter-relationships
more precisely. For example, MathML [7] is an XML application that renders mathematics correctly.
The user may require mathematics to be included as text in an SVG diagram. SMIL [8] defines the
layout and timing of a set of media objects. SVG is a specification that uses the SMIL animation
facilities to create a media object. SVG allows media objects to be embedded within an SVG diagram.
At some stage the relationships between these various specifications need to be more precisely
defined.

SVG is a major advance in replacing images by vector graphics on the Web. However, it is just the
first step and there is still a great deal of work to be done before the graphics environment on the Web
reaches the maturity of existing computer graphics systems.

-- i --

A. SVG Colours

Colour Name RGB Value Colour Name RGB Value

aliceblue (240, 248, 255) darkslategrey (47, 79, 79)

antiquewhite (250, 235, 215) darkturquoise (0, 206, 209)

aqua (0, 255, 255) darkviolet (148, 0, 211)

aquamarine (127, 255, 212) deeppink (255, 20, 147)

azure (240, 255, 255) deepskyblue (0, 191, 255)

beige (245, 245, 220) dimgray (105, 105, 105)

bisque (255, 228, 196) dimgrey (105, 105, 105)

black (0, 0, 0) dodgerblue (30, 144, 255)

blanchedalmond (255, 235, 205) firebrick (178, 34, 34)

blue (0, 0, 255) floralwhite (255, 250, 240)

blueviolet (138, 43, 226) forestgreen (34, 139, 34)

brown (165, 42, 42) fuchsia (255, 0, 255)

burlywood (222, 184, 135) gainsboro (220, 220, 220)

cadetblue (95, 158, 160) ghostwhite (248, 248, 255)

chartreuse (127, 255, 0) gold (255, 215, 0)

chocolate (210, 105, 30) goldenrod (218, 165, 32)

coral (255, 127, 80) gray (128, 128, 128)

cornflowerblue (100, 149, 237) grey (128, 128, 128)

cornsilk (255, 248, 220) green (0, 128, 0)

crimson (220, 20, 60) greenyellow (173, 255, 47)

cyan (0, 255, 255) honeydew (240, 255, 240)

darkblue (0, 0, 139) hotpink (255, 105, 180)

darkcyan (0, 139, 139) indianred (205, 92, 92)

darkgoldenrod (184, 134, 11) indigo (75, 0, 130)

darkgray (169, 169, 169) ivory (255, 255, 240)

darkgreen (0, 100, 0) khaki (240, 230, 140)

darkgrey (169, 169, 169) lavender (230, 230, 250)

darkkhaki (189, 183, 107) lavenderblush (255, 240, 245)

darkmagenta (139, 0, 139) lawngreen (124, 252, 0)

darkolivegreen (85, 107, 47) lemonchiffon (255, 250, 205)

darkorange (255, 140, 0) lightblue (173, 216, 230)

darkorchid (153, 50, 204) lightcoral (240, 128, 128)

darkred (139, 0, 0) lightcyan (224, 255, 255)

darksalmon (233, 150, 122) lightgoldenrodyellow (250, 250, 210)

darkseagreen (143, 188, 143) lightgray (211, 211, 211)

darkslateblue (72, 61, 139) lightgreen (144, 238, 144)

darkslategray (47, 79, 79) lightgrey (211, 211, 211)

-- ii --

Colour Name RGB Value Colour Name RGB Value

lightpink (255, 182, 193) paleturquoise (175, 238, 238)

lightsalmon (255, 160, 122) palevioletred (219, 112, 147)

lightseagreen (32, 178, 170) papayawhip (255, 239, 213)

lightskyblue (135, 206, 250) peachpuff (255, 218, 185)

lightslategray (119, 136, 153) peru (205, 133, 63)

lightslategrey (119, 136, 153) pink (255, 192, 203)

lightsteelblue (176, 196, 222) plum (221, 160, 221)

lightyellow (255, 255, 224) powderblue (176, 224, 230)

lime (0, 255, 0) purple (128, 0, 128)

limegreen (50, 205, 50) red (255, 0, 0)

linen (250, 240, 230) rosybrown (188, 143, 143)

magenta (255, 0, 255) royalblue (65, 105, 225)

maroon (128, 0, 0) saddlebrown (139, 69, 19)

mediumaquamarine (102, 205, 170) salmon (250, 128, 114)

mediumblue (0, 0, 205) sandybrown (244, 164, 96)

mediumorchid (186, 85, 211) seagreen (46, 139, 87)

mediumpurple (147, 112, 219) seashell (255, 245, 238)

mediumseagreen (60, 179, 113) sienna (160, 82, 45)

mediumslateblue (123, 104, 238) silver (192, 192, 192)

mediumspringgreen (0, 250, 154) skyblue (135, 206, 235)

mediumturquoise (72, 209, 204) slateblue (106, 90, 205)

mediumvioletred (199, 21, 133) slategray (112, 128, 144)

midnightblue (25, 25, 112) slategrey (112, 128, 144)

mintcream (245, 255, 250) snow (255, 250, 250)

mistyrose (255, 228, 225) springgreen (0, 255, 127)

moccasin (255, 228, 181) steelblue (70, 130, 180)

navajowhite (255, 222, 173) tan (210, 180, 140)

navy (0, 0, 128) teal (0, 128, 128)

oldlace (253, 245, 230) thistle (216, 191, 216)

olive (128, 128, 0) tomato (255, 99, 71)

olivedrab (107, 142, 35) turquoise (64, 224, 208)

orange (255, 165, 0) violet (238, 130, 238)

orangered (255, 69, 0) wheat (245, 222, 179)

orchid (218, 112, 214) white (255, 255, 255)

palegoldenrod (238, 232, 170) whitesmoke (245, 245, 245)

palegreen (152, 251, 152) yellow (255, 255, 0)

 yellowgreen (154, 205, 50)

-- iii --

B. SVG Elements and their Attributes

B.1 Attribute Value Types
The types of the attribute values in the following element tables are either listed as a set of possible
alternatives or the type of the value. The default value is in maroon.

Type Value

align
Possible values are:
none xMinYMin xMidYMin xMaxYMin xMinYMid xMidYMid xMaxYMid xMinYMax
xMidYMax xMaxYMax

bzlist A list of four fraction values between 0 and 1, each set of four (x1, y1, x2, y2)
defines a pair of cubic Bezier control points for one interval.

clock
Clock value. Some examples are:
3s 4min 2.5h 100ms 6:45:33.2 45:33.2. If no units are specified, seconds are
assumed.

color A CSS colour value (for example, red, #F00, #FF0000, rgb(255,0,0)).

colorlist A list of colour values

coord Coordinate position in the current coordinate system. It will be transformed.

coordfr Value is either a coordinate (useSpaceOnUse) or a fraction of the bounding box
(objectBoundingBox) of the object to which the element is applied.

coordlist A list of coordinate positions possibly only one.

degree A rotation value in the clock-wise direction in degrees.

deglist A list of rotation values in the clock-wise direction in degrees.

evencoordlist A list of coordinate pairs.

fr A fraction between 0 and 1.

frlist A list of fraction values between 0 and 1.

idref Reference to an id attribute such as xyz.begin in a time definition where xyz is an
id of another element.

legal Legal values for the attribute specified.

legallist List of legal values for the attribute specified.

length Length in the current coordinate system. It will be transformed.

meetOrSlice Possible values are: meet and slice.

mediatype media type as in RFC2045.

name Any legal identifier as in CSS.

num Any number, does not have a metric.

percent A per centage value between 0% and 100%.

text Any text string.

time

Some possible values are:
+[clock] -[clock]
[idref].begin + [clock]
[idref].begin - [clock]
[idref].end + [clock]
[idref].end - [clock]

timelist List of [time].

transformlist List of transformations (for example: scale(2) translate(100,100)).

url A legal URL.

-- iv --

B.2 SVG Elements Described in this Document
The table below gives a list of the elements in SVG described in this document. For each element,
both the attributes that have been described and those omitted are listed. The style attributes are not
listed here but have a separate table, see Section B.4. The attributes in bold are the main or unique
ones for the element. The complete set of xlink attributes are allowed for simple links. For attributes
that can have a set of values, the default value is shown in red and bold

Element Attributes Comment

a
xmlns:xlink target
xlink:href etc

The a element
acts like a g
element so most
of those
attributes are
also allowed.

animate

attributeName=[legal] attributeType=[legal]
begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
fill=[remove | freeze]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
from=[legal] to=[legal] by=[legal]
additive=[replace | sum]
accumulate=[none | sum]
onbegin onend onrepeat

keySplines list is
one less than
the keyTimes
list.

animateColor

begin=[timelist] end=[timelist]
dur=[[clock] | indefinite]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
fill=[freeze | remove]
from=[legal] to=[legal] by=[legal]
values=[colorlist]

animateMotion

begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
aditive=[replace | sum]
from=[[coord],[coord]] to=[[coord],[coord]] by=[[coord],[coord]]
keyPoints=[frlist] path=[pathdata]
rotate=[[degree] | auto | auto-reverse]
values=[coordlist]

keySplines list is
one less than
the keyTimes
list.

animateTransform

begin=[timelist] end=[timelist] dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
calcMode=[linear | discrete | paced | spline]
keyTimes=[frlist] keySplines=[bzlist]
additive=[replace | sum]
from=[legal] to=[legal] by=[legal]
type=[translate | scale | rotate | skewX | skewY]
values=[legallist]

keySplines list is
one less than
the keyTimes
list.

-- v --

Element Attributes Comment

circle cx=[coord] cy=[coord] r=[length]
Draws circle with centre and
radius specified. r="0" stops
rendering.

clipPath clipPathUnits=[objectBoundingBox | userSpaceOnUse]

defs

Encloses elements not to be
displayed such as style
sheets and symbol
definitions. It can have all the
attributes of a g element.

desc xmlns

Description of the drawing.
May have class and style
attributes. Could contain
XML fragment.

ellipse cx=[coord] cy=[coord] rx=[length] ry=[length]

Draws ellipse defined by
centre and two axes. Either
rx="0" or ry="0" stops the
rendering

g

All the styling attributes plus
id
requiredFeatures requiredExtensions
systemLanguage
xml:lang xml:space externalResourcesRequired
class style enable-background
flood-color flood-opacity
clip overflow transform
onfocusin etc

The g element can take
almost any attribute that an
element inside it can have.

image
preserveAspectRatio=[align] [meetOrSlice]
x=[coord] y=[coord] width=[length] height=[length]
xlink:href=[url]

line x1=[coord] y1=[coord] x2=[coord] y2=[coord]
Defines line between two
points. Default for all four
values is 0

linearGradient

x1=[coordfr] y1=[coordfr] x2=[coordfr] y2=[coordfr]
gradientTransform=[transformlist]
gradientUnits=[objectBoundingBox |
userSpaceOnUse]
spreadMethod=[pad | reflect | repeat]
xlink:href=[url]

Defines a gradient to be
applied between (x1,y1) and
(x2,y2). If object is larger
than this line, pad continues
the end values of the
gradient outwards, reflect
reflects the gradient and
repeat repeats it. The linked
url can be another gradient
whose values are inherited
by this one.

mask

height=[length] width=[length]
maskContentUnits=[objectBoundingBox |
userSpaceOnUse]
maskUnits=[objectBoundingBox |
userSpaceOnUse]
x=[coord] y=[coord]

-- vi --

Element Attributes Comment

path d=[pathdata] pathLength=[length]

Defines a path where author gives
estimate of pathLength. Values
dependent on path length are
scaled up to the actual length, for
example offset of text on a path.

polygon points=[evencoordlist]

Equivalent to a path that does
moveto to first point and absolute
lineto to the other points in
sequence finishing with a
closepath command.

polyline points=[evencoordlist]

Equivalent to a path that does
moveto to first point and absolute
lineto to the other points in
sequence.

radialGradient

cx=[coordfr] cy=[coordfr]
fx=[coordfr] fy=[coordfr]
r= gradientTransform=[transformlist]
gradientUnits=[objectBoundingBox |
userSpaceOnUse]
spreadMethod=[pad | reflect | repeat]

rect
x=[coord] y=[coord]
width=[length] height=[length]
rx=[length] ry=[length]

x and y default to 0. rx,ry define
the radii that round the corners of
the rectangle.

script type=[mediatype]

set

begin=[timelist] end=[timelist]
dur=[[clock] | indefinite]
min=[clock] max=[clock]
restart=[always | never | whenNotActive]
repeatCount=[[clock] | indefinite]
repeatDur=[[clock] | indefinite]
to=[legal]

stop offset=[[fr] | [percent]]
stop-color=[color] stop-opacity=[fr]

style
media=[comma separated list of media
descriptors] title=[text] type=[mediatype]

Usual to have the style sheet at
the top of the document and
surrounded by a defs element.

svg

contentScriptType="text/ecamscript"
contentStyleType="text/css"
x=[coord] y=[coord]
height=[length] width=[length]
preserveAspectRatio=[align] [meetOrSlice]
xmlns=[resource]
zoomAndPan=[magnify | disable | zoom]
overflow=[visible | hidden | scroll | auto | inherit]

The default media type are given
as examples for
contentScriptType and
contentStyleType.

-- vii --

Element Attributes Comment

switch

requireFeatures=[org.w3c.svg.static |
org.w3c.svg.dynamic | org.w3c.dom.svg |
org.w3c.svg.lang | org.w3c.svg.animation etc]
systemLanguage=[comma separated list of
languages such as en]

symbol
All the presentation attributes
preserveAspectRatio=[align] [meetOrSlice]
viewBox=[coord] [coord] [length] [length]

Symbol is a container element for
a set of graphics elements
including use elements.

text

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[degree] textLength=[length]
transform=[transformlist]

Draws text with origin of text string
or origin of individual characters
defined by (x,y) offset by (dx,dy).
Additional rotation can be
specified for the text string or
individual characters. The
expected length of the text can be
defined. If actual length is
different, lengthAdjust decides
whether it gets padded by just
varying the spacing.

textPath

lengthAdjust=[spacing | spacingAndGlyphs]
method=[align | stretch] spacing=[auto |
exact]
startOffset=[length] textLength=[length]

title Normally none

Title for document or element.
Wise to only have one per
element or document as browser
may only look for first.

tref

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[deglist] textLength=[length]
xlink:href=[url]

Similar to tspan but text to be
drawn is pointed at by the url
rather than enclosed by the
element as in tspan.

tspan

dx=[lengthlist] dy=[lengthlist]
x=[coordlist] y=[coordlist]
lengthAdjust=[spacing | spacingAndGlyphs]
rotate=[deglist] textLength=[length]

Draws a substring within a text
element with origin of substring or
origin of individual characters
defined by (x,y) offset by (dx,dy).
Additional rotation can be
specified and the expected length
of the substring. If actual length is
different, lengthAdjust decides
whether it gets padded by just
varying the spacing.

use
All the presentation attributes
height=[length] width=[length] x=[coord] y=[coord]
xlink:href=[url]

The use element can point either
to a symbol, SVG document or a
group. The use is effectively
replaced by a group.

-- viii --

B.3 SVG Global Attributes
The table below gives a list of the attributes in SVG that can be used by most drawing elements etc.

B.4 SVG Style Properties and Attributes
The table below gives a list of the style properties in SVG that can also be used as style attributes.

Attribute Possible Values Comment

id =[name] The name must be unique in the
document.

class =[name]
The name is used to style sub
classes of a set of drawing
elements in their own way.

style
Style attribute as in CSS. List of
styling declarations separated by
semicolons.

Attribute Possible Values Comment

alignment-baseline

=[auto | baseline | before-edge | text -before -edge
| middle | after-edge | text -after -edge |
ideographic | alphabetic | hanging | mathematical
| inherit]

baseline-shift
=[baseline | sub | super | [percent] | [length] |
inherit]

clip =[[shape] | auto | inherit]

clip-path =[[url] | none | inherit]
References the clipPath
element that defines the
clipping.

clip-rule =[nonzero | evenodd | inherit] Same as for fill-rule.

color =[[color] | inherit]

CSS colour, better to use fill
and stroke properties unless
you need a common style
across the SVG document
and the page in which it is
embedded.

color-interpolation

color-rendering =[auto | optimizeSpeed | optimizeQuality | inherit]

direction =[ltr | rtl | inherit] Defines the base writing
direction of the text.

dominant-baseline
=[auto | use-script | no-change | reset-size |
ideographic | alphabetic | hanging | mathematical
| inherit]

fill =[none | [color] | [url]]
The url points to a patten or
gradient definition.

fill-opacity =[fr] Initial value is 1.

fill-rule =[nonzero | evenodd | inherit]

font-family =[list of generic or font names as in CSS] See CSS.

font-size =[[length] | larger | smaller | [percent] | inherit] See CSS.

-- ix --

Attribute Possible Values Comment

font-size-
adjust =[[num] | none | inherit]

Adjusts the font size to retain
legibility. The number defines the
required aspect ratio (for example,
0.58 for Verdana). If another font
is used instead (for example,
Times New Roman with an aspect
ratio of 0.46, the font is scaled up
in size by 0.58/0.46.

font-stretch

=[normal |wider | narrower | ultra-condensed |
extra-condensed | condensed | semi-condensed |
semi-expanded | expanded | extra-expanded |
ultra-expanded | inherit]

font-style =[normal | italic | oblique | inherit]

font-variant =[normal | small -caps | inherit]

font-weight =[normal | bold | bolder | lighter | 100 | 200 ! 300 |
400 | 500 | 600 | 700 | 800 | 900 | inherit]

glyph-
orientaion-
vertical

=[auto | [degree] | inherit]
Top-down Latin text will be
orientated 90 degrees unless this
is set to 0.

glyph-
orientation-
horizontal

=[[degree] | inherit] Default value is 0. Allowed values
are 0, 90, 180, and 270.

kerning =[auto | [length] | inherit]
kerning length is added to the
inter -character spacing.

letter-spacing =[normal | [length] | inherit]

mask =[[url] | none | inherit] Defines the mask element to be
used for masking.

onclick,
onload etc Script function call

opacity =[[fr] | inherit] Initial value is 1.

shape-
rendering

=[auto | optimizeSpeed | crispEdges |
geometricPrecision | inherit]

A hint as to how to render the
SVG document.

stroke =[none | [color] | [url]] The url points to a patten or
gradient definition.

stroke-
dasharrary

=[[length],[length],[length],[length], ...]

A list of lengths that should be
even giving the dash and space
lengths in order. If an odd number
is specified, the list is repeated to
make it even.

stroke-
dashoffset =[[length] | none] Initial value is 0.

stroke-linecap = [butt | round | square | inherit] Defined for the end of paths and
lines.

-- x --

B.5 Filtering Elements
SVG has a range of image filtering operations that can be performed on the vector graphics image
generated before it is displayed. These have not been described in this document.

Attribute Possible Values Comment

stroke-linejoin = [miter | round | bevel | inherit]
Specifies the shape to be used at
the corners of paths and polylines.

stroke-
miterlimit =[[num] | inherit]

Initial value is 4. Limits the ratio of
the miter length to the width of the
lines joined by a miter.

stroke-opacity =[fr] Initial value is 1.

stroke-width =[[length] | inherit] Initial value is 1.

text-anchor =[start | middle | end | inherit] Starting position of the text string.

text-
decoration

=[none | underline | overline | line-through | blink |
inherit] See CSS.

text-rendering
=[auto | optimizeSpeed | optimizeLegibility |
geometricPrecision | inherit]

Allows renderer to make decisions
on whether to anti -alias or use
font hinting.

transform

unicode-bidi =[normal | embed | bidi-override | inherit] See CSS for meaning.

visibility =[visible | hidden | collapse | inherit]

word-spacing =[normal | [length] | inherit]

writing-mode =[lr -tb | rl-tb | tb-rl | lr | rl | tb | inherit]

Element Attributes Comment

definition-src

feBlend in2 mode=[normal | multiply | screen | darken
| lighten]

feColorMatrix type=[matrix | saturate | hueRotate |
luminanceToAlpha] values

feComponentTransfer

feComposite in2 k1 k2 k3 k4 operator=[over | in | out | atop
| xor | arithmetic]

feConvolveMatrix
bias divisor edgeMode kernelMatrix
kernelUnitLength order preserveAlpha
targetX targetY

feDiffuseLighting diffuseConstant surfaceScale

feDisplacementMap
in2 scale
xChannelSelector=[R | G | B | A]
yChannelSelector=[R | G | B | A]

feDistantLight azimuth elevation

-- xi --

Here is a brief description of the various filter primitives in SVG.
Blend

Pixel-wide combination of two images using various blending modes (normal, darken, lighten,
multiply, screen).

Color Matrix
A general transformation of RGB and alpha values (using a 5x4 matrix). Some predefined matrices
for, for example, hue rotation or saturation are also available.

Component Transfer
A component level remapping of the R, G, B, and alpha values. It allows operations like brightness
or contrast adjustment, colour thresholding, etc. The transfer functions can be linear, table driven or
gamma (for gamma correction).

Composition
Combination of two input images pixel-wise in image space using one of the [35] compositing
operations or a simple arithmetic combination.

Convolution
A convolution matrix can be specified to perform convolution on the source image (used in edge
detection, sharpening, etc)

Diffuse and Specular Lighting
The filters use the alpha channel as a bump map, ie, an imaginary surface is created in 3D with the
alpha values. Lighting (using the usual Phong model) is then used to simulate lighting effects. Light
sources can be distant, point, or spot.

Element Attributes Comment

feFlood

feFuncA

feFuncB

feFuncG

feFuncR

feGaussianBlur stdDeviation

feImage

feMerge

feMergeNode in out

feMorphology operator=[erode | dilate] radius

feOffset dx dy

fePointLight x y z

feSpecularLighting specularConstant specularExponent
surfaceScale

feSpotLight limitingConeAngle pointsAtX pointsAtY
pointsAtZ x y z

feTile

feTurbulence
baseFrequency numOctaves seed
stitchTiles=[stitch | noStitch]
type=[fractalNoise | turbulence]

filter

animate feColorMatrix feComposite
feGaussianBlur
feMorphology feTile filterRes
filterUnits=[objectBoundingBox |
userSpaceOnUse]
height width
primitiveUnits=[objectBoundingBox |
userSpaceOnUse] x y

-- xii --
Displacement maps

The pixel values of one image are displaced in function of the pixel values of another image.
Flood

Creation of a rectangle filled with a specific colour and opacity; to be used with other filter
primitives.

Gaussian Blur
The effect is clear; the standard deviation of the blur can be controlled by special attributes.

Image
Refers to an external image which can then be used by other primitives as an input

Merge
Merge a number of input images.

Morphology
Performs "fattening" or "thinning" of an artwork.

Offset
Displacement of an image in x and y directions.

Tile
Fill a rectangle repeating an input image in a tiled pattern

Turbulence
It creates an image using the Perlin turbulence function [36], it allows the synthesis of various
artificial textures.

B.6 Font Elements
SVG has a range of font and glyph definitional facilities that have not been described in this
document.

Element Attributes Comment

altGlyph dx dy format glyphRef rotate=[degree]

altGlyphDef

altGlyphItem

font horiz -adv-x horiz -origin-x horiz -origin-y vert-adv-
y vert-origin-x vert-origin-y

font-face

accent-height ascent bbox cap-height descent
font-stretch font-style font-variant font-weight
hanging ideographic mathematical overline-
position overline-thickness panose-1 slope
stemh stemv strikethrough-position
strikethrough-thickness underline-position
underline-thickness unicode-range units-per-em
v-alphabetic widths x-height

font-face-
format

font-face-
name

font-face-src

font-face-uri

glyph
arabic-form d glyph-name horiz-adv-x lang
orientation unicode vert-adv-y vert-origin-x vert-
origin-y

glyphRef dx dy format glyphRef

hkern g1 g2 k u1 u2

missing-
glyph

d horiz-adv-x vert-adv-y vert-origin-x vert-origin-
y

vkern g1 g2 k u1 u2

-- xiii --

B.7 Other Elements
SVG has some other more specific elements that have not been described in this document.

Element Attributes Comment

color-profile
local name rendering-intent=[auto | perceptual |
relative-colorimetric | saturation | absolute-
colorimetric]

cursor x y

definition-src

foreignObject x y

marker

markerHeight=[length] markerWidth=[length]
markerUnits=[strokeWidth |
userSpaceOnUse]
orient=[auto | [degree]]
preserveAspectRatio=[align] [meetOrSlice]
refX=[coord] refY=[coord]
viewBox=[coord] [coord] [length] [length]

Defines a marker where
(refX,refY) is the reference point
of the marker. If attribute orient
is set to auto, the marker is
oriented in the current direction
of the path (for example an arrow
head).

metadata

mpath
xmlns:xlink etc
xlink:href
externalResourcesRequired=[false | true]

Sub-element used by
animateMotion to define a path
instead of its path attribute.

pattern

patternContentUnits=[objectBoundingBox |
userSpaceOnUse]
patternTransform=[transformlist]
patternUnits=[objectBoundingBox |
userSpaceOnUse]
preserveAspectRatio=[align] [meetOrSlice]
viewBox=[coord] [coord] [length] [length]
x=[coord] y=[coord] width=[length] height=
[length]

switch

requireFeatures=[org.w3c.svg.static |
org.w3c.svg.dynamic | org.w3c.dom.svg |
org.w3c.svg.lang | org.w3c.svg.animation
etc]
systemLanguage=[comma separated list of
languages such as en]

view

preserveAspectRatio=[align] [meetOrSlice]
viewBox=[coord] [coord] [length] [length]
viewTarget zoomAndPan=[disable | magnify |
zoom]

-- xiv --

C. References

[1] 'How the Web was Born'. James Gillies , Robert Cailliau. Oxford University Press, 2000.

[2] 'Weaving the Web'. Tim Berners-lee with Mark Fischetti. HarperCollins, 1999.

[3] 'Spinning the Web'. Andrew Ford. Thomson, 1995.

[4] 'http://www.w3.org/TR/REC-png: PNG (Portable Network Graphics) Specification'. World Wide
Web Consortium, 1996.

[5] 'PNG, The Definitive Guide'. Greg Roelofs. O'Reilly, 1999.

[6] 'http://www.w3.org/TR/REC-xml : Extensible Markup Language (XML) 1.0 (Second Edition) '.
World Wide Web Consortium, 2000.
[7] 'http://www.w3.org/TR/MathML2: Mathematical Markup Language (MathML) Version 2.0'. World
Wide Web Consortium, 2001.

[8] 'http://www.w3.org/TR/smil20: Synchronized Multimedia Integration Language (SMIL 2.0)
Specification'. World Wide Web Consortium, 2001.

[9] 'ISO/IEC 8632:1999: Information technology -- Computer graphics -- Metafile for the storage and
transfer of picture description information

[10] 'The CGM Handbook'. Lofton Henderson, Anne Mumford. Academic Press, 1992.

[11] 'http://www.cgmopen.org'. CGM Open.

[12] 'http://www.w3.org/TR/REC-WebCGM: WebCGM Profile' World Wide Web Consortium, 1999.
[13] 'http://www.w3.org/TR/xlink/: XML Linking Language (XLink) Version 1.0'. World Wide Web
Consortium, 2000.

[14] 'http://www.micrografx.com/resources/activeCGM.asp'. Micrografx ActiveCGM plug-in.

[15] 'http://www.sysdev.com/plugins/default.htm'. SDI CGM plug-in.

[16] 'http://www.tech-illustrator.com/'. Tech Illustrator WebCGM Hotspot Plug-in.
[17] 'http://www.w3.org/Submission/1998/05/: Web Schematics'. Submission to W3C, March 1998.

[18] 'http://www.w3.org/Submission/1998/06/: Precision Graphics Markup Language (PGML)'.
Submission to W3C, April 1998.

[19] 'http://www.w3.org/Submission/1998/08/: Vector Markup Language (VML) '. Submission to
W3C, May 1998.

[20] 'http://www.w3.org/Submission/1998/20/: DrawML'. Submission to W3C, December 1998

[21] 'http://www.w3.org/TR/SVG/ : Scalable Vector Graphics (SVG) 1.0 Specification'. World Wide
Web Consortium, 2000.

[22] 'http://www.w3.org/TR/REC-CSS2: Cascading Style Sheets, level 2 (CSS2) Specification'.
World Wide Web Consortium, 1998.

[23] 'http://www.w3.org/TR/REC-xml-names : Namespaces in XML'. World Wide Web Consortium,
1999.

[24] 'http://www.w3.org/TR/xslt: XSL Transformations (XSLT) Version 1.0' World Wide Web
Consortium, 1999.

[25] 'http://www.w3.org/TR/DOM-Level-2-Core : Document Object Model (DOM) Level 2 Core
Specification'. World Wide Web Consortium, 2000.

[26] 'ISO Standards for Computer Graphics - The First Generation'. D.B. Arnold, D.A. Duce.
Butterworths, 1990

[27] 'GKS-94: An Overview'. K.W. Brodlie, L.B. Damnjanovic, D.A. Duce, F.R.A. Hopgood. IEEE
Computer Graphics and Applications, pp. 64-71, 1995.

[28] 'http://www.khoral.com/'. Khoros.
[29] 'http://www.w3.org/Graphics/SVG/'. W3C SVG Overview.

[30] 'http://www.w3.org/Graphics/SVG/Test/'. SVG Test Suite.

-- xv --

[31] 'http://www.w3.org/TR/REC-rdf-syntax/: Resource Description Framework (RDF) Model and
Syntax Specification', 1999.

[32] 'http://dublincore.org/'. Dublin Core.
[33] 'http://www.cs.washington.edu/homes/gjb/CSVG/'. CSVG Home Page

[34] 'A Constraint Extension to Scalable Vector Graphics'. G. J. Badros, J.J Tirtowidjojo, K.Marriott,
B Meyer, W. Portnoy, A. Borning. Tenth International World Wide Web Conference, Hong Kong,
may 2001, pp 489-498.
[35] 'Compositing Digital Images'. T. Porter and T. Duff. Computer Graphics, 1984. 18(3): p. 253-
259.

[36] 'Texturing and Modeling, A Procedural Approach'. David Ebert, et al (Chapter by Ken Perlin).
AP Professional, Cambridge, 1994.
[37] 'http://www.w3.org/Graphics/SVG/'. Overview of SVG Activity.

[38] 'http://www.w3.org/Graphics/SVG/Group/'. SVG Working Group Home Page.

[39] 'http://www.adobe.com/svg/'. Adobe SVG Plug-in plus tutorial information and demonstrations.

[40] 'http://sis.cmis.csiro.au/svg/'. CSIRO SVG Tool Kit. Can display SVGs and convert SVGs to
JPEG.
[41] 'http://www.alphaworks.ibm.com/tech/svgview'. IBM SVG Viewer.

[42] 'http://xml.apache.org/batik/'. Apache's Batik which derives from Jackaroo.

[43] 'http://www.jasc.com/webdraw.asp'. Jasc WebDraw SVG Editor.

[44] 'http://www.mayura.com/'. Mayura Draw Editor.

[45] 'http://www.levien.com/svg/'. Gill: Gnome Illustration Application.

[46] 'http://www.digapp.com/newpages/svg2pdf.html'. Converts SVGs to PDF.

[47] 'http://www.padc.mmpc.is.tsukuba.ac.jp/member/morik/fdssvg/'. Converts bitmap images to
SVG.

[48] 'http://broadway.cs.nott.ac.uk/projects/SVG/svgpl/'. .

[49] ''. SVG-PL, a Perl library for creating legal SVG documents.

[50] 'http://www.w3.org/Graphics/SVG/Test/'. SVG Conformance Test Suite.

[51] 'http://www.savagesoftware.com/products/svgtoolkit.html'. Savage Software SVG Toolkit.

[52] 'http://www.square1.nl/index.htm'. Graphics Connection Conversion Tools.
[53] 'http://www.celinea.com/'. CR2V, Raster to Vector Converter.

[54] 'http://www.graphicservlets.com/wmf2svg.htm'. WMF to SVG Converter.

[55] ''. .

[56] ''. .

[57] ''. .

[58] ''. .

[59] ''. .

[60] ''. .
[61] ''. .

