
SVN to Git
Why teams are migrating and
how to prepare for success

Learn Git | Try Bitbucket | Contact us

Contents

Part 1 Why Git? For the whole organization 3

 Git For Developers 4

 Git For Marketing 8

 Git For Product Management 9

 Git For Designers 9

 Git For Customer Support 10

 Git For Human Resources 11

 Git For Anyone Managing a Budget 11

Part 2 SVN to Git: Prepping your
 team for the migration 13

 For Administrators 13

 For Developers 19

 Conclusion 21

Part 3 Tutorials: Migrating 22

 Overview 22

 Prepare 25

 Convert 28

 Synchronize 32

 Share 35

 Migrate 42

Part 4 Bitbucket Data Center 45

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact

Learn Git | Try Bitbucket | Contact us

Part 1: Why Git?

For the whole
organization

Switching from a centralized version control system to Git changes the way your
development team creates software. And, if you’re a company that relies on its
software for mission-critical applications, altering your development workflow
impacts your entire business.

In this article, we’ll discuss how Git benefits each aspect of your organization,
from your development team to your marketing team, and everything in between.
By the end of this article, it should be clear that Git isn’t just for agile software
development—it’s for agile business.

UX/UI

Human
resources

Marketing

Customer
support

Product
management

Development

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact

4 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Git For Developers

Feature Branch Workflow

One of the biggest advantages of Git is its branching capabilities. Unlike centralized
version control systems, Git branches are cheap and easy to merge. This facilitates
the feature branch workflow popular with many Git users.

Feature

Master

Feature branches provide an isolated environment for every change to your
codebase. When a developer wants to start working on something—no matter how
big or small—they create a new branch. This ensures that the master branch always
contains production-quality code.

Using feature branches is not only more reliable than directly editing production
code, but it also provides organizational benefits. They let you represent develop-
ment work at the same granularity as the your agile backlog. For example, you might
implement a policy where each JIRA ticket is addressed in its own feature branch.

Distributed Development

In SVN, each developer gets a working copy that points back to a single central
repository. Git, however, is a distributed version control system. Instead of a working
copy, each developer gets their own local repository, complete with a full history of
commits.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

5 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Having a full local history makes Git fast, since it means you don’t need a network
connection to create commits, inspect previous versions of a file, or perform diffs
between commits.

Distributed development also makes it easier to scale your engineering team. If
someone breaks the production branch in SVN, other developers can’t check in their
changes until it’s fixed. With Git, this kind of blocking doesn’t exist. Everybody can
continue going about their business in their own local repositories.

And, similar to feature branches, distributed development creates a more reliable
environment. Even if a developer obliterates their own repository, they can simply
clone someone else’s and start anew.

Pull Requests

Many source code management tools such as Bitbucket or Stash enhance core Git
functionality with pull requests. A pull request is a way to ask another developer to
merge one of your branches into their repository. This not only makes it easier for
project leads to keep track of changes, but also lets developers initiate discussions
around their work before integrating it with the rest of the codebase.

CENTRALIZED

Central Repo

Working
Copy

Working
Copy

Full Repo Full Repo

DISTRIBUTED

Full Repo

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

6 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Feature

Master

Since they’re essentially a comment thread attached to a feature branch, pull
requests are extremely versatile. When a developer gets stuck with a hard problem,
they can open a pull request to ask for help from the rest of the team. Alternatively,
junior developers can be confident that they aren’t destroying the entire project by
treating pull requests as a formal code review.

Community

In many circles, Git has come to be the expected version control system for new
projects. If your team is using Git, odds are you won’t have to train new hires on
your workflow, because they’ll already be familiar with distributed development.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

7 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

In addition, Git is very popular among open source projects. This means it’s easy
to leverage 3rd-party libraries and encourage others to fork your own open source
code.

Faster Release Cycle

The ultimate result of feature branches, distributed development, pull requests,
and a stable community is a faster release cycle. These capabilities facilitate an
agile workflow where developers are encouraged to share smaller changes more
frequently. In turn, changes can get pushed down the deployment pipeline faster
than the monolithic releases common with centralized version control systems.

As you might expect, Git works very well with continuous integration and continuous
delivery environments. Git hooks allow you to run scripts when certain events occur
inside of a repository, which lets you automate deployment to your heart’s content.
You can even build or deploy code from specific branches to different servers.

For example, you might want to configure Git to deploy the most recent commit
from the develop branch to a test server whenever anyone merges a pull request

Product

Feedback

You Customers

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

8 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

into it. Combining this kind of build automation with peer review means you have the
highest possible confidence in your code as it moves from development to staging
to production.

Git For Marketing

To understand how switching to Git affects your company’s marketing activities,
imagine your development team has three distinct changes scheduled for
completion in the next few weeks:

• The entire team is finishing up a game-changing feature that they’ve been
working on for the last 6 months.

• Mary is implementing a smaller, unrelated feature that only impacts existing
customers.

• Rick is making some much-needed updates to the user interface.

If you’re using a traditional development workflow that relies on a centralized VCS,
all of these changes would probably be rolled up into a single release. Marketing can
only make one announcement that focuses primarily on the game-changing feature,
and the marketing potential of the other two updates is effectively ignored.

The shorter development cycle facilitated by Git makes it much easier to divide
these into individual releases. This gives marketers more to talk about, more often.
In the above scenario, marketing can build out three campaigns that revolve around
each feature, and thus target very specific market segments.

For instance, they might prepare a big PR push for the game changing feature, a
corporate blog post and newsletter blurb for Mary’s feature, and some guest posts

MONOLITHIC RELEASE

Release

Audience A, B, and C

AGILE RELEASES

Feature A Feature B

Release B

Audience B

Feature B

Release A

Audience A

Feature A

Release C

Audience C

Feature BFeature B

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

9 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

about Rick’s underlying UX theory for sending to external design blogs. All of these
activities can be synchronized with a separate release.

Git For Product Management

The benefits of Git for product management is much the same as for marketing.
More frequent releases means more frequent customer feedback and faster updates
in reaction to that feedback. Instead of waiting for the next release 8 weeks from
now, you can push a solution out to customers as quickly as your developers can
write the code.

The feature branch workflow also provides flexibility when priorities change. For
instance, if you’re halfway through a release cycle and you want to postpone one
feature in lieu of another time-critical one, it’s no problem. That initial feature can sit
around in its own branch until engineering has time to come back to it.

This same functionality makes it easy to manage innovation projects, beta tests, and
rapid prototypes as independent codebases.

Git For Designers

Feature branches lend themselves to rapid prototyping. Whether your UX/UI
designers want to implement an entirely new user flow or simply replace some
icons, checking out a new branch gives them a sandboxed environment to play with.
This lets designers see how their changes will look in a real working copy of the
product without the threat of breaking existing functionality.

Paused Feature

Critical Feature

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

10 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Encapsulating user interface changes like this makes it easy to present updates to
other stakeholders. For example, if the director of engineering wants to see what the
design team has been working on, all they have to do is tell the director to check out
the corresponding branch.

Pull requests take this one step further and provide a formal place for interested
parties to discuss the new interface. Designers can make any necessary changes,
and the resulting commits will show up in the pull request. This invites everybody to
participate in the iteration process.

Perhaps the best part of prototyping with branches is that it’s just as easy to merge
the changes into production as it is to throw them away. There’s no pressure to
do either one. This encourages designers and UI developers to experiment while
ensuring that only the best ideas make it through to the customer.

Git For Customer Support

Customer support and customer success often have a different take on updates
than product managers. When a customer calls them up, they’re usually
experiencing some kind of problem. If that problem is caused by your company’s
software, a bug fix needs to be pushed out as soon as possible.

Git’s streamlined development cycle avoids postponing bug fixes until the next
monolithic release. A developer can patch the problem and push it directly to
production. Faster fixes means happier customers and fewer repeat support tickets.
Instead of being stuck with, “Sorry, we’ll get right on that” your customer support
team can start responding with “We’ve already fixed it!

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

11 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Git For Human Resources

To a certain extent, your software development workflow determines who you
hire. It always helps to hire engineers that are familiar with your technologies and
workflows, but using Git also provides other advantages.

Employees are drawn to companies that provide career growth opportunities, and
understanding how to leverage Git in both large and small organizations is a boon to
any programmer. By choosing Git as your version control system, you’re making the
decision to attract forward-looking developers.

Git For Anyone Managing a Budget

Git is all about efficiency. For developers, it eliminates everything from the time
wasted passing commits over a network connection to the man hours required to
integrate changes in a centralized version control system. It even makes better use
of junior developers by giving them a safe environment to work in. All of this affects
the bottom line of your engineering department.

But, don’t forget that these efficiencies also extend outside your development team.
They prevent marketing from pouring energy into collateral for features that aren’t
popular. They let designers test new interfaces on the actual product with little
overhead. They let you react to customer complaints immediately.

UX/UI

Human
resources

Marketing

Customer
support

Dev

Product
management

Git

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

12 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Being agile is all about finding out what works as quickly as possible, magnifying
efforts that are successful, and eliminating ones that aren’t. Git serves as a multiplier
for all your business activities by making sure every department is doing their job
more efficiently.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

Learn Git | Try Bitbucket | Contact us

Part 2: SVN to Git

Prepping your team
for the migration

In Part 1, we discussed the many ways that Git can help your team become more
agile. Once you’ve decided to make the switch, your next step is to figure out how
to migrate your existing development workflow to Git.

This article explains some of the biggest changes you’ll encounter while transitioning
your team from SVN to Git. The most important thing to remember during the
migration process is that Git is not SVN. To realize the full potential of Git, try your
best to open up to new ways of thinking about version control.

For administrators

Adopting Git can take anywhere from a few days to several months depending
on the size of your team. This section addresses some of the main concerns for
engineering managers when it comes to training employees on Git and migrating
repositories from SVN to Git.

Learning Git & basic Git commands

Git once had a reputation for a steep learning curve. However the Git maintainers
have been steadily releasing new improvements like sensible defaults and contextual
help messages that have made the on-boarding process a lot more pleasant.

Atlassian offers a comprehensive series of self-paced Git tutorials, as well as
webinars and live training sessions. Together, these should provide all the training
options your team needs to get started with Git. To get you started, here are a list of
some basic Git commands to get you going with Git:

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact
https://atlassian.com/git

14 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Git task Notes Git commands

Tell Git who you are Configure the author name and email
address to be used with your commits.
Note that Git strips some characters
(for example trailing periods) from user.
name.

git config --global user.name
\”Sam Smith\”git config --global
user.email sam@example.com

Create a new local
repository

git init

Check out a repository Create a working copy of a local
repository:

git clone /path/to/repository

For a remote server, use: git clone username@host:/path/to/
repository

Add files Add one or more files to staging
(index):

git add <filename>

git add *

Commit Commit changes to head (but not yet
to the remote repository):

git commit -m \”Commit
message\”

Commit any files you’ve added with git
add, and also commit any files you’ve
changed since then:

git commit -a

Push Send changes to the master branch of
your remote repository:

git push origin master

Status List the files you’ve changed and those
you still need to add or commit:

git status

Connect to a remote
repository

If you haven’t connected your local
repository to a remote server, add the
server to be able to push to it:

git remote add origin <server>

List all currently configured remote
repositories:

git remote -v

Branches Create a new branch and switch to it: git checkout -b <branchname>

Switch from one branch to another: git checkout <branchname>

List all the branches in your repo,
and also tell you what branch you’re
currently in:

git branch

Delete the feature branch: git branch -d <branchname>

Push the branch to your remote
repository, so others can use it:

git push origin <branchname>

Push all branches to your remote
repository:

git push --all origin

Delete a branch on your remote
repository:

git push origin :<branchname>

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
https://www.atlassian.com/git/tutorials/setting-up-a-repository/git-config
http://stackoverflow.com/questions/26159274/is-it-possible-to-have-a-trailing-period-in-user-name-in-git/26219423#26219423
http://atlassian.com/git/tutorial/git-basics#!init
http://atlassian.com/git/tutorial/git-basics#!init
http://atlassian.com/git/tutorial/git-basics#!clone
http://atlassian.com/git/tutorial/git-basics#!add
http://atlassian.com/git/tutorial/git-basics#!commit
http://atlassian.com/git/tutorial/remote-repositories#!push
http://atlassian.com/git/tutorial/git-basics#!status
http://atlassian.com/git/tutorial/remote-repositories#!remote
http://atlassian.com/git/tutorial/remote-repositories#!remote
http://atlassian.com/git/tutorial/git-branches

15 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Git task Notes Git commands

Update from the remote
repository

Fetch and merge changes on the
remote server to your working
directory:

git pull

To merge a different branch into your
active branch:

git merge <branchname>

View all the merge conflicts:View the
conflicts against the base file:Preview
changes, before merging:

git diffgit diff --base <filename>git
diff <sourcebranch>
<targetbranch>

After you have manually resolved any
conflicts, you mark the changed file:

git add <filename>

Tags You can use tagging to mark a
significant changeset, such as a
release:

git tag 1.0.0 <commitID>

CommitId is the leading characters of
the changeset ID, up to 10, but must
be unique. Get the ID using:

git log

Push all tags to remote repository: git push --tags origin

Undo local changes If you mess up, you can replace the
changes in your working tree with the
last content in head:Changes already
added to the index, as well as new
files, will be kept.

git checkout -- <filename>

Instead, to drop all your local changes
and commits, fetch the latest history
from the server and point your local
master branch at it, do this:

git fetch origin

git reset --hard origin/master

Search Search the working directory for foo(): git grep \”foo()\”

Migration tools

There’s a number of tools available to help you migrate your existing projects from
SVN to Git, but before you decide what tools to use, you need to figure out how you
want to migrate your code. Your options are:

• Migrate your entire codebase to Git and stop using SVN altogether.
• Don’t migrate any existing projects to Git, but use Git for all new projects.
• Migrate some of your projects to Git while continuing to use SVN for other

projects.
• Use SVN and Git simultaneously on the same projects.

An complete transition to Git limits the complexity in your development workflow, so
this is the preferred option. However, this isn’t always possible in larger companies
with dozens of development teams and potentially hundreds of projects. In these

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
http://atlassian.com/git/tutorial/remote-repositories
http://atlassian.com/git/tutorial/remote-repositories
http://atlassian.com/git/tutorial/undoing-changes

16 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

situations, a hybrid approach is a safer option.

Your choice of migration tool(s) depends largely on which of the above strategies
you choose. Some of the most common SVN-to-Git migration tools are introduced
below.

Atlassian’s migration scripts

If you’re interested in making an abrupt transition to Git, Atlassian’s migration scripts
are a good choice for you. These scripts provide all the tools you need to reliably
convert your existing SVN repositories to Git repositories. The resulting native-Git
history ensures you won’t need to deal with any SVN-to-Git interoperability issues
after the conversion process.

We’ve provided a complete technical walkthrough for using these scripts to convert
your entire codebase to a collection of Git repositories. This walkthrough explains
everything from extracting SVN author information to re-organizing non-standard
SVN repository structures.

SVN Mirror for Stash (now Bitbucket Server) plugin

SVN Mirror for Stash is a Bitbucket Server plugin that lets you easily maintain a
hybrid codebase that works with both SVN and Git. Unlike Atlassian’s migration
scripts, SVN Mirror for Stash lets you use Git and SVN simultaneously on the same
project for as long as you like.

This compromise solution is a great option for larger companies. It enables
incremental Git adoption by letting different teams migrate workflows at their
convenience.

Git-SVN

The git svn tool that comes with Git serves as an interface between a local Git
repository and a remote SVN repository. It lets developers write code and create
commits locally with Git, then push them up to a central SVN repository with svn
commit-style behavior.

git svn is a good option if you’re not sure about making the switch to Git and
want to let some of your developers explore Git commands without committing
to a full-on migration. It’s also perfect for the training phase—instead of an abrupt
transition, your team can ease into it with local Git commands before worrying about

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
https://atlassian.com/git/tutorials/migrating-overview/
https://marketplace.atlassian.com/plugins/org.tmatesoft.subgit.stash-svn-importer
https://bitbucket.org/product/server

17 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

collaboration workflows.

Note that git svn should only be a temporary phase of your migration process. Since
it still depends on SVN for the “backend,” it can’t leverage the more powerful Git
features like branching or advanced collaboration workflows.

Rollout Strategies

Migrating your codebase is only one aspect of adopting Git. You also need to
consider how to introduce Git to the people behind that codebase. External
consultants, internal Git champions, and pilots teams are the three main strategies
for moving your development team over to Git.

External Git Consultants

Git consultants can essentially handle the migration process for you for a nominal
fee. This has the advantage of creating a Git workflow that’s perfectly suited to
your team without investing the time to figure it out on your own. It also makes
expert training resources available to you while your team is learning Git. Atlassian
Experts are pros when it comes to SVN to Git migration and are a good resource for
sourcing a Git consultant.

On the other hand, designing and implementing a Git workflow on your own is a
great way for your team to understand the inner workings of their new development
process. This avoids the risk of your team being left in the dark when your
consultant leaves.

Internal Git Champions

A Git champion is a developer inside of your company who’s excited to start using
Git. Leveraging a Git champion is a good option for companies with a strong
developer culture and eager programmers comfortable being early adopters. The
idea is to enable one of your engineers to become a Git expert so they can design a
Git workflow tailored to your company and serve as an internal consultant when it’s
time to transition the rest of the team to Git.

Compared to an external consultant, this has the advantage of keeping your Git
expertise in-house. However, it requires a larger time investment to train that Git
champion, and it runs the risk of choosing the wrong Git workflow or implementing it
incorrectly.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
https://www.atlassian.com/resources/experts/?tab=find-an-expert&expertskills=SVNtoGitmigration&products=*&expertlocation=
https://www.atlassian.com/resources/experts/?tab=find-an-expert&expertskills=SVNtoGitmigration&products=*&expertlocation=

18 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Pilot Teams

The third option for transitioning to Git is to test it out on a pilot team. This works
best if you have a small team working on a relatively isolated project. This could
work even better by combining external consultants with internal Git champions in
the pilot team for a winning combo.

This has the advantage of requiring buy-in from your entire team, and also limits the
risk of choosing the wrong workflow, since it gets input from the entire team while
designing the new development process. In other words, it ensures any missing
pieces are caught sooner than when a consultant or champion designs the new
workflow on their own.

On the other hand, using a pilot team means more initial training and setup time:
instead of one developer figuring out a new workflow, there’s a whole team that
could potentially be temporarily less productive while they’re getting comfortable
with their new workflow. However, this short term pain is absolutely worth the long
term gain.

Security and Permissions

Access control is an aspect of Git where you need to fundamentally re-think how
you manage your codebase.

In SVN, you typically store your entire codebase in a single central repository, then
limit access to different teams or individuals by folder. In Git, this is not possible:
developers must retrieve the entire repository to work with it. You typically can not
retrieve a subset of the repository, as you can with SVN. permissions can only be
granted to entire Git repositories.

This means you have to split up your large, monolithic SVN repository into several
small Git repositories. We actually experienced this first hand here at Atlassian when
our JIRA development team migrated to Git. All of our JIRA plugins used to be
stored in a single SVN repository, but after the migration, each plugin ended up in its
own repository.

Keep in mind that Git was designed to securely integrate code contributions from
thousands of independent Linux developers, so it definitely provides some way to
set up whatever kind of access control your team needs. This may, however, require
a fresh look at your build cycle.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

19 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

If you’re concerned about maintaining dependencies between your new collection
of Git repositories, you may find a dependency management layer on top of Git
helpful. A dependency management layer will help with build times because as a
project grows, you need “caching” in order to speed up your build time. A list of
recommended dependency management layer tools for every technology stack can
be found in this helpful article: “Git and project dependencies.”

For Developers

A Repository for Every Developer

As a developer, the biggest change you’ll need to adjust to is the distributed nature
of Git. Instead of a single central repository, every developer has their own copy of
the entire repository. This dramatically changes the way you collaborate with your
fellow programmers.

Instead of checking out an SVN repository with svn checkout and getting a working
copy, you clone the entire Git repository to your local machine with git clone.

Collaboration occurs by moving branches between repositories with either git push,
git fetch, or git pull. Sharing is commonly done on the branch level in Git but can be
done on the commit level, similar to SVN. But in Git, a commit represents the entire
state of the whole project instead rather than file modifications. Since you can use
branches in both Git and SVN, the important distinction here is that you can commit
locally with Git, without sharing your work. This enables you to experiment more
freely, work more effectively offline and speeds up almost all version control related
commands.

However, it’s important to understand that a remote repository is not a direct link into
somebody else’s repository. It’s simply a bookmark that prevents you from having
to re-type the full URL each time you interact with a remote repository. Until you
explicitly pull or push a branch to a remote repository, you’re working in an isolated
environment.

The other big adjustment for SVN users is the notion of “local” and “remote”
repositories. Local repositories are on your local machine, and all other repositories
are referred to as remote repositories. The main purpose of a remote repository is to
make your code accessible to the rest of the team, and thus no active development
takes place in them. Local repositories reside on your local machine, and it’s where
you do all of your software development.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
http://blogs.atlassian.com/2014/04/git-project-dependencies/

20 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Don’t Be Scared of Branching or Merging

In SVN, you commit code by editing files in your working copy, then running svn
commit to send the code to the central repository. Everybody else can then pull
those changes into their own working copies with svn update. SVN branches are
usually reserved for large, long-running aspects of a project because merging is a
dangerous procedure that has the potential to break the project.

Git’s basic development workflow is much different. Instead of being bound to a
single line of development (e.g., trunk/), life revolves around branching and merging.

When you want to start working on anything in Git, you create and check out a
new branch with git checkout -b <branch-name>. This gives you a dedicated line
of development where you can write code without worrying about affecting anyone
else on your team. If you break something beyond repair, you simply throw the
branch away with git branch -d <branch-name>. If you build something useful, you
file a pull request asking to merge it into the master branch.

Potential Git Workflows

When choosing a Git workflow it is important to consider your team’s needs. A
simple workflow can maximise development speed and flexibility, while a more
complex workflow can ensure greater consistency and control of work in progress.
You can adapt and combine the general approaches listed below to suit your needs
and the different roles on your team. A core developer might use feature branches
while a contractor works from a fork, for example.

• A centralized workflow provides the closest match to common SVN processes,
so it’s a good option to get started.

• Building on that idea, using a feature branch workflow lets developers keep their
work in progress isolated and important shared branches protected. Feature
branches also form the basis for managing changes via pull requests.

• A Gitflow workflow is a more formal, structured extension to feature branching,
making it a great option for larger teams with well-defined release cycles.

• Finally, consider a forking workflow if you need maximum isolation and control
over changes, or have many developers contributing to one repository.

But, if you really want to get the most out of Git as a professional team, you should

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
https://www.atlassian.com/git/tutorials/comparing-workflows/centralized-workflow/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

21 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

consider the feature branch workflow. This is a truly distributed workflow that is
highly secure, incredibly scalable, and quintessentially agile.

Conclusion

Transitioning your team to Git can be a daunting task, but it doesn’t have to be.
This article introduced some of the common options for migrating your existing
codebase, rolling out Git to your development teams, and dealing with security and
permissions. We also introduced the biggest challenges that your developers should
be prepared for during the migration process.

Hopefully, you now have a solid foundation for introducing distributed development
to your company, regardless of its size or current development practices.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

Learn Git | Try Bitbucket | Contact us

Part 3: Tutorials

Migrate to Git from SVN

Overview

We’ve broken down the SVN-to-Git migration process into 5 simple steps:

1. Prepare your environment for the migration.
2. Convert the SVN repository to a local Git repository.
3. Synchronize the local Git repository when the SVN repository changes.
4. Share the Git repository with your developers via Bitbucket.
5. Migrate your development efforts from SVN to Git.

The prepare, convert, and synchronize steps take a SVN commit history and turn it
into a Git repository. The best way to manage these first 3 steps is to designate one
of your team members as the migration lead (if you’re reading this guide, that person
is probably you). All 3 of these steps should be performed on the migration lead’s
local computer.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact

23 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

After the synchronize phase, the migration lead should have no trouble keeping a
local Git repository up-to-date with an SVN counterpart. To share the Git repository,
the migration lead can share his local Git repository with other developers by
pushing it to Bitbucket, a Git hosting service.

Once it’s on Bitbucket, other developers can clone the converted Git repository to
their local machines, explore its history with Git commands, and begin integrating it
into their build processes. However, we advocate a one-way synchronization from

1. PREPARE THE LOCAL ENVIRONMENT 2. CLONE THE SVN REPO 3. SYNC WITH ACTIVE DEVELOPMENT

Migration
lead

Local
machine

Central
SVN repo

Local Git
repo

Migration
lead

Dev team
(active)

Central
SVN repo

Local Git
repo

Migration
lead

Dev team
(active)

Central
SVN repo

Dev team
(active)

Central
SVN repo

Local Git
repo

Migration
lead

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
http://bitbucket.org/

24 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

SVN to Git until your team is ready to switch to a pure Git workflow. This means that
everybody should treat their Git repository as read-only and continue committing to
the original SVN repository. The only changes to the Git repository should happen
when the migration lead synchronizes it and pushes the updates to Bitbucket.

This provides a clear-cut transition period where your team can get comfortable with
Git without interrupting your existing SVN-based workflow. Once you’re confident
that your developers are ready to make the switch, the final step in the migration
process is to freeze your SVN repository and begin committing with Git instead.

This switch should be a very natural process, as the entire Git workflow is already in
place and your developers have had all the time they need to get comfortable with it.
By this point, you have successfully migrated your project from SVN to Git.

Dev team
(active)

Bitbucket
Git repo

Central
SVN repo
(retired)

Local Git
repo

Migration
lead

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

25 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Prepare

The first step to migrating a project from SVN to Git-based version control is
to prepare the migration lead’s local machine. In this phase, you’ll download a
convenient utility script, mount a case-sensitive filesystem (if necessary), and map
author information from SVN to Git.

All of the the following steps should be performed on the migration lead’s local
machine.

Download the migration script

Git comes with most of the necessary tools for importing an SVN repository;
however, there are a few missing bits of functionality that Atlassian has rolled into
a handy JAR file. This file will be integral to the migration, so be sure to download
svn-migration-scripts.jar from Atlassian’s Bitbucket account. This guide
assumes that you’ve saved it in your home directory.

Once you’ve downloaded it, it’s a good idea to verify the scripts to make sure you
have the Java Runtime Environment, Git, Subversion, and the git-svn utility installed.
Open a command prompt and run the following:

java -jar ~/svn-migration-scripts.jar verify

This will display an error message in the console if you don’t have the necessary
programs for the migration process. Make sure that any missing software is installed

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
http://www.java.com/en/download/help/download_options.xml
http://git-scm.com/downloads
http://subversion.apache.org/packages.html
https://www.kernel.org/pub/software/scm/git/docs/git-svn.html

26 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

before moving on.

If you get a warning about being unable to determine a version, run export LANG=C
(*nix) or SET LANG=C (Windows) and try again.

If you’re performing the migration on a computer running OS X, you’ll also see the
following warning:

You appear to be running on a case-insensitive file-system. This is

unsupported, and can result in data loss.

We’ll address this in the next section.

Mount a case-sensitive disk image

Migrating to Git should be done on a case-sensitive file system to avoid corrupting
the repository. This is a problem if you’re performing the migration on an OS X
computer, as the OS X filesystem isn’t case-sensitive.

If you’re not running OS X, all you need to do is create a directory on your local
machine called ~/GitMigration. This is where you will perform the conversion.
After that, you can skip to the next section.

If you are running OS X, you need to mount a case-sensitive disk image with
the create-disk-image script included in svn-migration-scripts.jar. It
takes two parameters:

1. The size of the disk image to create in gigabytes. You can use any size you like,
as long as it’s bigger than the SVN repository that you’re trying to migrate.

2. The name of the disk image. This guide uses GitMigration for this value.

For example, the following command creates a 5GB disk image called
GitMigration:

Local OS X
machine

Mounted case-sensitive

le system

Local Git
repo

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

27 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

java -jar ~/svn-migration-scripts.jar create-disk-image 5 GitMigration

The disk image is mounted in your home directory, so you should now see a
directory called ~/GitMigration on your local machine. This serves as a virtual
case-sensitive filesystem, and it’s where you’ll store the converted Git repository.

Extract the author information

SVN only records the username of the author for each revision. Git, however, stores
the full name and email address of the author. This means that you need to create a
text file that maps SVN usernames to their Git counterparts.

Run the following commands to automatically generate this text file:

cd ~/GitMigration

java -jar ~/svn-migration-scripts.jar authors <svn-repo> > authors.txt

Be sure to replace <svn-repo> with the URI of the SVN repository that you want to
migrate. For example, if your repository resided at https://svn.example.com,
you would run the following:

java -jar ~/svn-migration-scripts.jar authors https://svn.example.com >

authors.txt

This creates a text file called authors.txt that contains the username of every

SVN USERS GIT USERS

j.doe John Doe
<john@atlassian.com>

m.smith Mary Smith
<mary@atlassian.com>

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

28 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

author in the SVN repository along with a generated name and email address. It
should look something like this:

j.doe = j.doe <j.doe@mycompany.com>

 m.smith = m.smith <m.smith@mycompany.com>

Change the portion to the right of the equal sign to the full name and email address
of the corresponding user. For example, you might change the above authors to:

j.doe = John Doe <john.doe@atlassian.com>

 m.smith = Mary Smith <mary.smith@atlassian.com>

Summary

Now that you have your migration scripts, disk image (OS X only), and author
information, you’re ready to import your SVN history into a new Git repository. The
next phase explains how this conversion works.

Convert

The next step in the migration from SVN to Git is to import the contents of the
SVN repository into a new Git repository. We’ll do this with the git svn utility
that is included with most Git distributions, then we’ll clean up the results with
svn-migration-scripts.jar.

Beware that the conversion process can take a significant amount of time for larger
repositories, even when cloning from a local SVN repository. As a benchmark,

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

29 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

converting a 400MB repository with 33,000 commits on master took around 12
hours to complete.

For reasonably sized repositories, the following steps should be run on the migration
lead’s local computer. However, if you have a very large SVN repository and want to
cut down on the conversion time, you can run git svn clone on the SVN server
instead of on the migration lead’s local machine. This will avoid the overhead of
cloning via a network connection.

Clone the SVN repository

The git svn clone command transforms the trunk, branches, and tags in your SVN
repository into a new Git repository. Depending on the structure of your SVN repo,
the command needs to be configured differently.

Standard SVN layouts

If your SVN project uses the standard /trunk, /branches, and /tags directory
layout, you can use the --stdlayout option instead of manually specifying
the repository’s structure. Run the following command in the ~/GitMigration
directory:

git svn clone --stdlayout --authors-file=authors.txt

 <svn-repo>/<project> <git-repo-name>

Where <svn-repo> is the URI of the SVN repository that you want to migrate
and, <project> is the name of the project that you want to import, and
<git-repo-name> is the directory name of the new Git repository.

For example, if you were migrating a project called Confluence, hosted on

CLONE WITH --stdlay- out OPTION

Standard
SVN repo

branches

trunk

tags

CLONE WITH --trunk, --branches,
and --tags OPTIONS

Non-standard
SVN repo

trunk

branches

bug�xes

tags

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

30 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

https://svn.atlassian.com, you might run the following:

git svn clone --stdlayout --authors-file=authors.txt

 https://svn.atlassian.com/Confluence ConfluenceAsGit

Non-standard SVN layouts

If your SVN repository doesn’t have a standard layout, you need to provide the
locations of your trunk, branches, and tags using the --trunk, --branches,
and --tags command line options. For example, if you have branches stored in
both the /branches directory and the /bugfixes directories, you would use the
following command:

git svn clone --trunk=/trunk --branches=/branches

 --branches=/bugfixes --tags=/tags --authors-file=authors.txt

 <svn-repo>/<project> <git-repo-name>

Inspect the new Git repository

After git svn clone has finished (this might take a while), you’ll find a new
directory called <git-repo-name> in ~/GitMigration. This is the converted Git
repository. You should be able to switch into <git-repo-name> and run any of the
standard Git commands to explore your project.

Branches and tags are not imported into the new Git repository as you might
expect. You won’t find any of your SVN branches in the git branch output,
nor will you find any of your SVN tags in the git tag output. But, if you run
git branch -r, you’ll find all of the branches and tags from your SVN repository.
The git svn clone command imports your SVN branches as remote branches
and imports your SVN tags as remote branches prefixed with tags/.

STRUCTURE OF ORIGINAL SVN REPO

SVN

trunk

branches

some-feature

v1.0

v1.1

tags

STRUCTURE OF CLONED GIT REPO

Git

master

trunk

some-feature

tags/v1.0

tags/v1.1

remote branches

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

31 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

This behavior makes certain two-way synchronization procedures easier, but it can
be very confusing when trying to make a one-way migration Git. That’s why our next
step will be to convert these remote branches to local branches and actual Git tags.

Clean the new Git repository

The clean-git script included in svn-migration-scripts.jar turns the SVN
branches into local Git branches and the SVN tags into full-fledged Git tags. Note
that this is a destructive operation, and you will not be able to move commits from
the Git repository back into the SVN repository.

If you’re following this migration guide, this isn’t a problem, as it advocates a one-
way sync from SVN to Git (the Git repository is considered read-only until after
the Migrate step). However, if you’re planning on committing to the Git repository
and the SVN repository during the migration process, you should not perform the
following commands. This is an advanced task, as is not recommended for the
typical project.

To see what can be cleaned up, run the following command in
~/GitMigration/<git-repo-name>:

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git

This will output all of the changes the script wants to make, but it won’t actually make
any of them. To execute these changes, you need to use the --force option, like so:

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git

--force

You should now see all of your SVN branches in the git branch output, along
with your SVN tags in the git tag output. This means that you’ve successfully
converted your SVN project to a Git repository.

Summary

In this step, you turned an SVN repository into a new Git repository with the
git svn clone command, then cleaned up the structure of the resulting
repository with svn-migration-scripts.jar. In the next step, you’ll learn how
to keep this new Git repo in sync with any new commits to the SVN repository. This
will be a similar process to the conversion, but there are some important workflow
considerations during this transition period.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

32 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Synchronize

It’s very easy to synchronize your Git repository with new commits in the original
SVN repository. This makes for a comfortable transition period in the migration
process where you can continue to use your existing SVN workflow, but begin to
experiment with Git.

It’s possible to synchronize in both directions. However, we recommend a one-way
sync from SVN to Git. During your transition period, you should only commit to your
SVN repository, not your Git repo. Once you’re confident that your team is ready
to make the switch, you can complete the migration process and begin to commit
changes with Git instead of SVN.

Dev team
(active)

Central
SVN repo

Local Git
repo

Migration
lead

Continue committing
to SVN repo as usual

Experiment with Git
repo and synchronize
as necessary

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

33 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

In the meantime, you should continue to commit to your SVN repository and
synchronize your Git repository whenever necessary. This process is similar to the
Convert phase, but since you’re only dealing with incremental changes, it should be
much more efficient.

Update the authors file

The authors.txt file that we used to map SVN usernames to full names and email
addresses is essential to the synchronization process. If it has been moved from the
~/GitMigration/authors.txt location that we’ve been using thus far, you need
to update its location with:

git config svn.authorsfile <path-to-authors-file>

If new developers have committed to the SVN repository since the last sync (or
the initial clone), the authors file needs to be updated accordingly. You can do
this by manually appending new users to authors.txt, or you can use the
--authors-prog option, as discussed in the next section.

For one-off synchronizations it’s often easier to directly edit the authors file; however,
the --authors-prog option is preferred if you’re performing unsupervised syncs
(i.e. in a scheduled task).

Automatically generating Git authors

If your authors file doesn’t need to be updated, you can skip to the next section.

The git svn command includes an option called --authors-prog, which points
to a script that automatically transforms SVN usernames into Git authors. You’ll
need to configure this script to accept the SVN username as its only argument and
return a single line in the form of Name <email> (just like the right hand side of the
existing authors file). This option can be very useful if you need to periodically add
new developers to your project.

If you want to use the --authors-prog option, create a file called authors.sh
option in ~/GitMigration. Add the following line to authors.sh to return a dummy
Git name and email for any authors that aren’t found in authors.txt:

echo “$1 <$1@example.com>”

Again, this will only generate a dummy name and email based on the SVN

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

34 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

username, so feel free to alter it if you can provide a more meaningful mapping.

Fetch the new SVN commits

Unlike SVN, Git makes a distinction between downloading upstream commits and
integrating them into the project. The former is called “fetching”, while the latter
can be done via merging or rebasing. In the ~/GitMigration directory, run the
following command to fetch any new commits from the original SVN repository.

git svn fetch

This is similar to the git svn clone command from the previous phase in that
it only updates the Git repository’s remote branches—the local branches will not
reflect any of the updates yet. Your remote branches, on the other hand, should
exactly match your SVN repo’s history.

If you’re using the --authors-prog option, you need include it in the above
command, like so:

git svn fetch --authors-prog=authors.sh

Synchronize with the fetched commits

To apply the downloaded commits to the repository, run the following command:

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar sync-rebase

This will rebase the fetched commits onto your local branches so that they match
their remote counterparts. You should now be able to see the new commits in your
git log output.

Clean up the Git repo (again)

It’s also a good idea to run the git-clean script again to remove any obsolete tags
or branches that were deleted from the original SVN repository since the last sync:

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git

 --force

Your local Git repository should now be synchronized with your SVN repository.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

35 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Summary

During this transition period, it’s very important that your developers only commit to
the original SVN repository. The only time the Git repository should be updated is via
the synchronization process discussed above. This is much easier than managing a
two-way synchronization workflow, but it still allows you to start integrating Git into
your build process.

Share

In SVN, developers share contributions by committing changes from a working copy
on their local computer to a central repository. Then, other developers pull these
updates from the central repo into their own local working copies.

Git’s collaboration workflow is much different. Instead of differentiating between
working copies and the central repository, Git gives each developer their own local
copy of the entire repository. Changes are committed to this local repository instead
of a central one. To share updates with other developers, you need to push these
local changes to a public Git repository on a server. Then, the other developers can
pull your new commits from the public repo into their own local repositories.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

36 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Giving each developer their own complete repository is the heart of distributed
version control, and it opens up a wide array of potential workflows. You can read
more about these workflows from our Git Workflows section.

So far, you’ve only been working with a local Git repository. This page explains how
to push this local repo to a public repository hosted on Bitbucket. Sharing the Git
repository during the migration allows your team to experiment with Git commands
without affecting their active SVN development. Until you’re ready to make the
switch, it’s very important to treat the shared Git repositories as read-only. All
development should continue to be committed to the original SVN repository.

Create a Bitbucket account

If you don’t already have a Bitbucket account, you’ll need to create one. Hosting is
free for up to 5 users, so you can start experimenting with new Git workflows right
away.

Create a Bitbucket repository

Next, you’ll need to create a Bitbucket repository. Bitbucket makes it very easy to
administer your hosted repositories via a web interface. All you have to do is click
the Create repository button after you’ve logged in.

CENTRALIZED SVN DEVELOPMENT DISTRIBUTED GIT DEVELOPMENT

Central
SVN repo

Working
copy

Working
copy

Dev #1 Dev #2

Public Git
repo

Local Git
repo

Dev #1

Public Git
repo

Local Git
repo

Dev #2

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration
http://www.bitbucket.com

37 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

In the resulting form, add a name and description for your repository. If your project
is private, keep the Access level option checked so that only designated developers
are allowed to clone it. For the Forking field, use Allow only private forks. Use Git
for the Repository type, select any project management tools you want to use, and
select the primary programming language of your project in the Language field.

To create the hosted repository, submit the form by clicking the Create repository
button. After your repository is set up, you’ll see a Next steps page that describes
some useful commands for importing an existing project. The rest of this page will
walk you through those instructions step-by-step.

Add an origin remote

To make it easier to push commits from your local Git repository to the Bitbucket
repository you just created, you should record the Bitbucket repo’s URL in a remote.
A remote is just a convenient shortcut for a URL. Technically, you can use anything

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

38 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

you like for the shortcut, but if the remote repository serves as the official codebase
for the project, it’s conventionally referred to as origin. Run the following in your
local Git repository to add your new Bitbucket repository as the origin remote.

git remote add origin https://<user>@bitbucket.org/<user>/<repo>.git

Be sure to change <user> to your Bitbucket username and <repo> to the name of
the Bitbucket repository. You should also be able to copy and paste the complete
URL from the Bitbucket web interface.

After running the above command, you can use origin in other Git commands to
refer to your Bitbucket repository.

Push the local repository to Bitbucket

Next, you need to populate your Bitbucket repository with the contents of your local
Git repository. This is called “pushing,” and can be accomplished with the following
command:

git push -u origin --all

The -u option tells Git to track the upstream branches. This enables Git to tell you
if the remote repo’s commit history is ahead or behind your local ones. The --all
option pushes all of the local branches to the remote repository.

You also need to push your local tags to the Bitbucket repository with the --tags
option:

git push --tags

origin

Local Git
repo

Bitbucket
Git repo

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

39 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Your Bitbucket repository is now essentially a clone of your local repository. In the
Bitbucket web interface, you should be able to explore the entire commit history of
all of your branches.

Share the repository with your team

All you have to do now is share the URL of your Bitbucket repository with any other
developers that need access to the repository. The URL for any Git repository can
be copy-and-pasted from the repository home page on Bitbucket:

If your repository is private, you’ll also need to grant access to your team members
in the Administration tab of the Bitbucket web interface. Users and groups can be
managed by clicking the Access management link the left sidebar.

PUSHING TO THE BITPUCKET REPO

Bitbucket Git
repo

master

some-feature

v1.0

v1.1

Local Git
repo

master

some-feature

v1.0

v1.1

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

40 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

As an alternative, you can use Bitbucket’s built-in invitation feature to invite other
developers to fork the repository. The invited users will automatically be given
access to the repository, so you don’t need to worry about granting permissions.

Once they have the URL of your repository, another developer can copy the
repository to their local machine with git clone and begin working with the
project. For example, after running the following command on their local machine,
another developer would find a new Git repository containing the project in the
<destination> directory.

git clone https://<user>@bitbucket.org/<user>/<project>.git <destination>

Continue committing with SVN, not Git

You should now be able to push your local project to a remote repository, and your
team should be able to use that remote repository to clone the project onto their
local machines. These are all the tools you need to start collaborating with Git.
However, you and your team should continue to commit changes using SVN until
everybody is ready to make the switch.

The only changes to the Git repository should come from the original SVN repository
using the synchronization process discussed on the previous page. For all intents
and purposes, this means that all of your Git repositories (both local and remote)
are read-only. Your developers can experiment with them, and you can begin
to integrate them into your build process, but you should avoid committing any
permanent changes using Git.

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

41 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Summary

In this step, you set up a Bitbucket repository to share your converted Git repository
with other developers. You should now have all the tools you need to implement any
of the git workflows described in Git Workflows. You can continue synchronizing
with the SVN repository and sharing the resulting Git commits via Bitbucket for as
long as it takes to get your development team comfortable with Git. Then, you can
complete the migration process by retiring your SVN repository.

Dev team
(active SVN development)

Central
SVN repo

Dev team
(experimental Git integration)

Bitbucket
Git repo

Local Git
repo

Migration
lead

Commit

Sync

Pull

Push

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

42 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

Migrate

This migration guide advocates a one-way synchronization from SVN to Git during
the transition period. This means that while your team is getting comfortable with
Git, they should still only be committing to the original SVN repository. When you’re
ready to make the switch, the SVN repository should freeze at whatever state it’s in.
Then, developers should begin committing to their local Git repositories and sharing
them via Bitbucket.

Public Git
repo

Local Git
repo

Dev #1

Public Git
repo

Local Git
repo

Dev #2

Central
SVN repo
(retired)

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

43 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

The discrete switch from SVN to Git makes for a very intuitive migration. All of your
developers should already understand the new Git workflows that they’ll be using,
and they should have had plenty of time to practice using Git commands on the
local repositories they cloned from Bitbucket.

This page guides you through the final step of the migration.

Synchronize the Git repository

Before finalizing your migration to Git, you should make sure that your Git repository
contains any new changes that have been committed to your SVN repository. You
can do this with the same process described in the Synchronize phase.

git svn fetch

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar sync-rebase

java -Dfile.encoding=utf-8 -jar ~/svn-migration-scripts.jar clean-git --force

Back up the SVN repository

While you can still see your pre-Git project history in the migrated repository, it’s a
good idea to backup the SVN repository just in case you ever need to explore the
raw SVN data. An easy way to backup an SVN repo is to run the following on the
machine that hosts the central SVN repository. If your SVN repo is hosted on a Linux
machine, you can use the following:

svnadmin dump <svn-repo> | gzip -9 > <backup-file>

Replace <svn-repo> with the file path of the SVN repository that you’re backing
up, and replace <backup-file> with the file path of the compressed file containing
the backup.

Make the SVN repository read-only

All of your developers should now be committing with Git. To enforce this
convention, you can make your SVN repository read-only. This process can vary
depending on your server setup, but if you’re using the svnserve daemon, you
can accomplish this by editing your SVN repo’s conf/svnserve.conf file. It’s
[general] section should contain the following lines:

anon-access = read

auth-access = read

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

44 of 45SVN to Git: Why teams are migrating and how to prepare for success

Learn Git | Try Bitbucket | Contact us

This tells svnserve that both anonymous and authenticated users only have read
permissions.

Summary

And that’s all there is to migrating a project to Git. Your team should now be
developing with a pure Git workflow and enjoying all of the benefits of distributed
development. Good job!

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact?utm_source=whitepaper&utm_medium=whitepaper&utm_content=svntogitmigrationguide&utm_campaign=bitbucketdatacenter_whitepaper_svntogitmigration

Learn Git | Try Bitbucket | Contact us

Bitbucket Data Center

Git that grows
with you
The Data Center deployment option is designed for high availability
and performance at scale when hosting our applications in your
own data center.

Next generation Git

Bitbucket Data Center offers true
active-active clustering for high
availability, and Git mirroring for
performance across distributed
teams. Plus, strong security with
LDAP support, permissions at the
branch level, and workflow control.

Code collaboration at scale

With innovative features like pull
requests, smart commits, code
search, Git mirroring, and Git LFS
(Large File Storage), teams can
stretch Git to support a growing
business at the speed of LAN.

Integrations that matter

Teams can customize their
development platform using
integrations and add-ons.
Integrations with other Atlassian
tools come out-of-the-box while
the Atlassian Marketplace offers
hundreds of useful add-ons.

With Git and Bitbucket, we’re able to complete 3x as many
code reviews, which ultimately results in fewer bugs, fewer
support tickets, and better software.
—Kurt Chase, Director of Release Engineering, Splunk

Disaster recovery

Deploy an offsite disaster
recovery system in the event
of a complete system outage
with index replication and
database synchronization.

Code smarter, faster

Use inline comments to
collaborate on code right
where it lives. Control code
reviews and pull requests
with ease.

Performance at scale

Intelligently share load
between nodes to bolster
concurrent user and
build capacity and avoid
performance degradation.

Continuous integration

Monitor your builds and
detect issues before they
become a problem by linking
to CI and issue tracking
tools without impacting
performance.

Instant scalability

Add nodes to your cluster
without downtime or
additional license cost to
maximize resilience and
uptime as you grow.

Enterprise support
and services

Premier Support for 24/7
help and Technical Account
Management for proactive
analysis and advice.

Learn more

http://www.atlassian.com/git
http://www.atlassian.com/software/bitbucket/enterprise/data-center
https://www.atlassian.com/enterprise/contact
http://www.atlassian.com/software/bitbucket/enterprise/data-center
http://www.atlassian.com/software/bitbucket/enterprise/data-center

