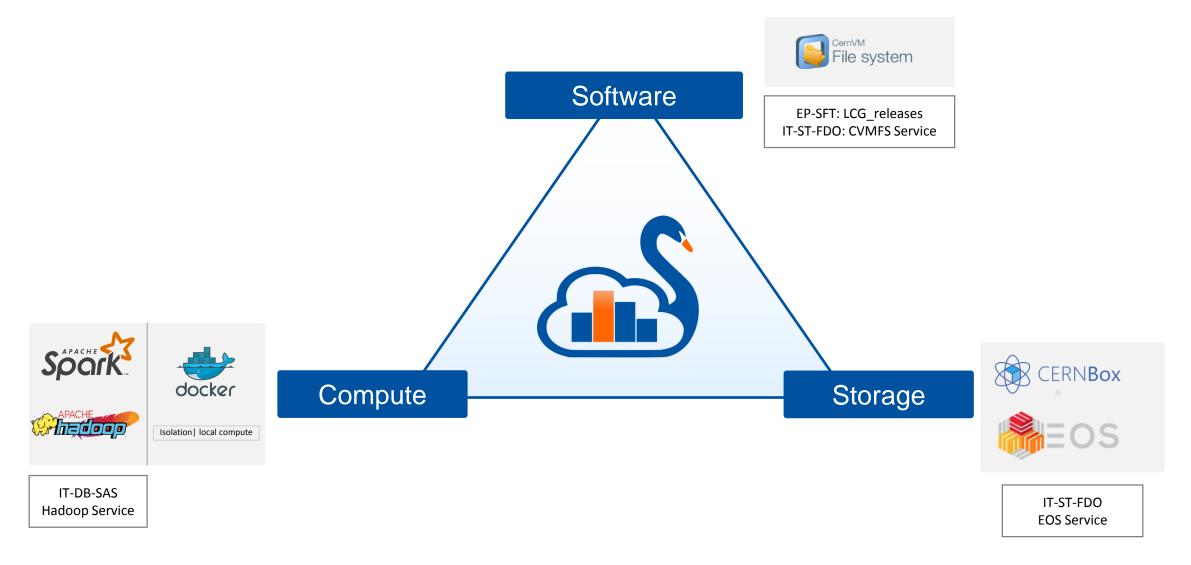
SWAN and Spark on Kubernetes discussion

IT-DB-SAS, 10th Oct 2018 Prasanth Kothuri

Hosted notebook service


- Why?
 - Interactive data analysis
 - Data exploration
 - Prototyping ETL, ML workflows
 - Unified (integrations with analysis ecosystems)
 - Reduce the complexity of working with distributed systems
- What?
 - use and share notebooks with others without having to download, install, or run anything on your own computer other than a browser
 - Integrations with CERN core services (e.g. SSO, Idap, egroups)
 - Storage to store notebooks and share notebooks
 - Software: HEP packages and widely used analysis ecosystems (python, R)
- Who?
 - NxCALS
 - WLCG and IT Monitoring
 - BE Industrial Controls
 - Experiments (depending on ROOT RDataFrame)

SWAN – Introduction

SMAN

- SWAN <u>Service for Web based AN</u>alysis
 - collaboration between <u>EP-SFT, IT-ST and IT-DB</u>
- Analysis from a web browser
 - Integrated with other analysis ecosystems: ROOT C++, Python and R
 - Ideal for exploration, reproducibility, collaboration
 - Available everywhere and at any time
- Integrated with CERN services [1]
 - <u>Software</u>: CVMFS
 - <u>Storage</u>: CERNBox, EOS
 - <u>Compute</u>: local (docker)
 - <u>Scalable Analytics</u>: Fully Integrated with IT Spark and Hadoop Clusters
 - powerful and scalable platform for data analysis
 - Python on Spark (PySpark) at scale

SWAN - Integrating Services

SWAN – Jupyter notebooks on demand

- A web-based interactive interface and platform that combines code, equations, text and visualisations
- Many supported languages (kernels)
 - In SWAN: Python, ROOT C++, R and Octave
- Interactive, usually lightweight computations and now distributed parallel processing capability with the integration of mass processing system (Apache Spark)
- Very useful for multiple use cases
 - Analysis, Exploration, Teaching, Documentation and Reproducibility

SWAN Interface

Starting your session

Configure Environment

Specify the parameters that will be used to contextualise the container which is created for you. See the online SWAN guide for more details.

Software stack more...

Platform more...

x86_64-slc6-gcc62-opt

 \sim

Environment script more...

e.g. \$CERNBOX_HOME/MySWAN/myscript.sh

Number of cores more...

2 ~

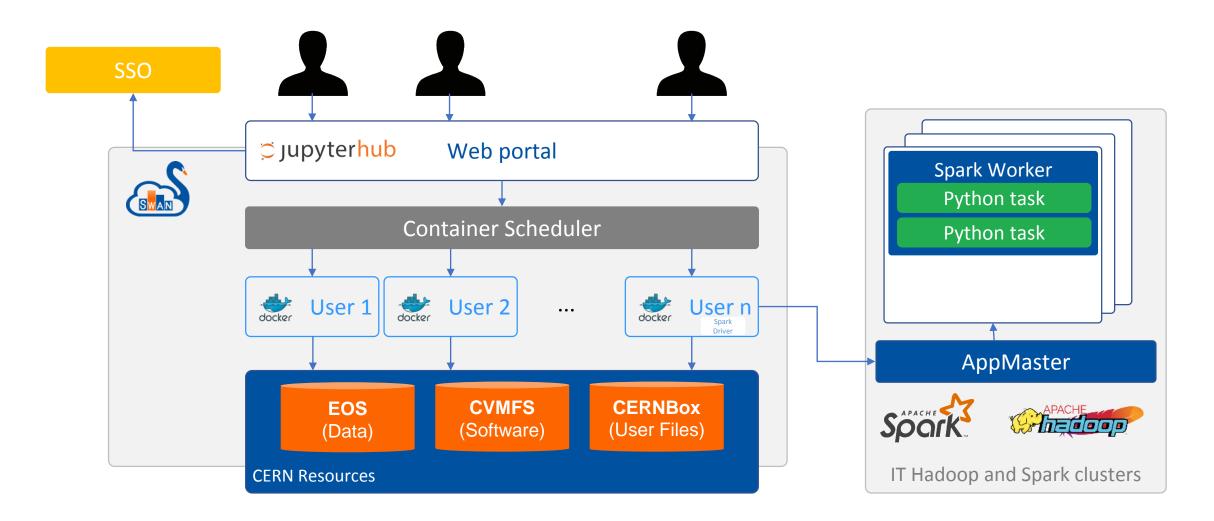
Memory more...

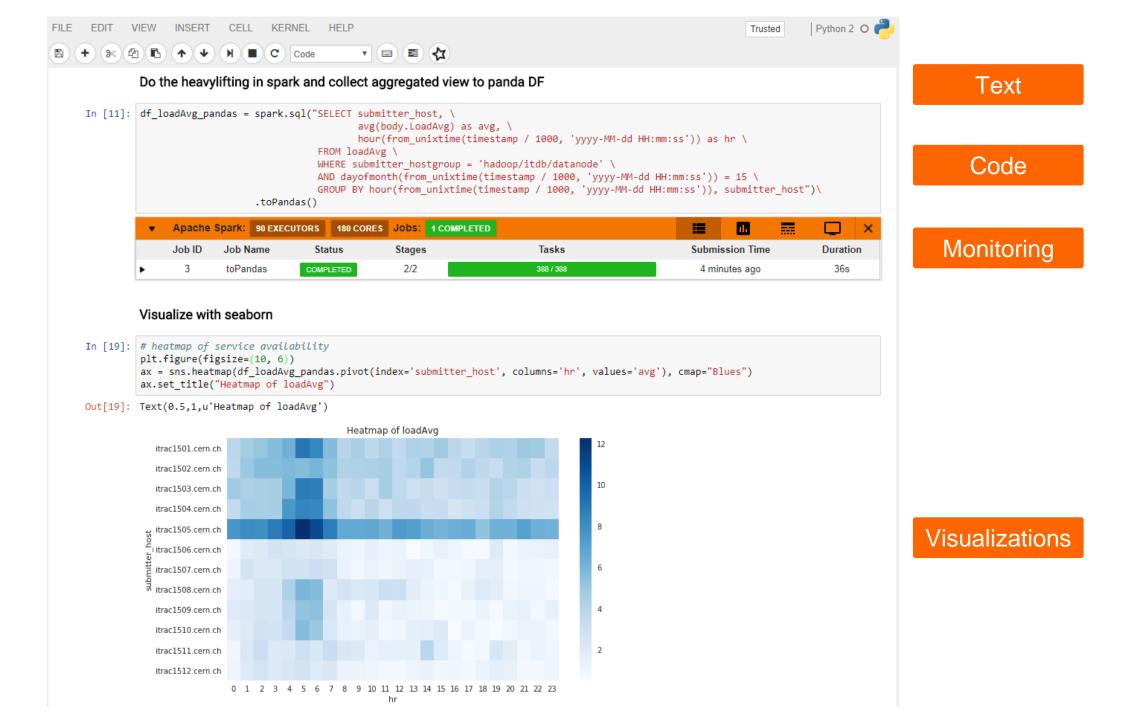
8 GB ~

Spark cluster more...

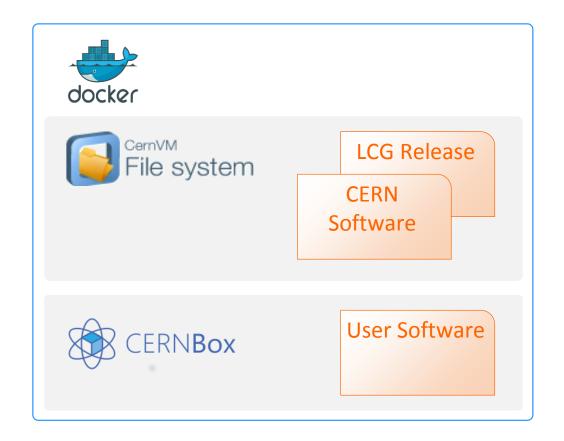
None	
Hadalytic	
Analytix	
NXCals	

□ Always start with this configuration

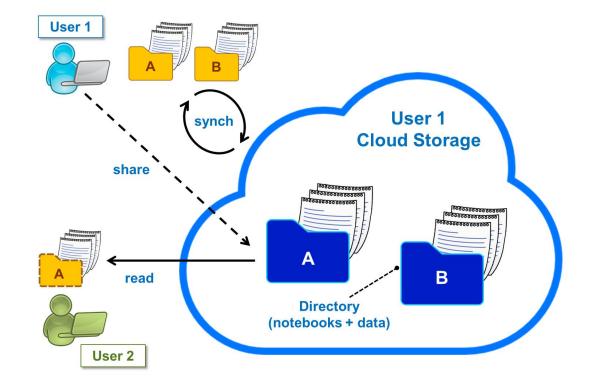

Start my Session


SWAN © Copyright CERN 2016-2018. All rights reserved. Home | Contact | Support | Report a bug

•


SWAN – Architecture

Software - CVMFS


- <u>Docker</u>: single thin image, managed by the service
- <u>CVMFS</u>: delivery of experiments and beams software
 - "LCG Releases"[1] hundreds of packages coherently built
 - Software used by researchers is available
- <u>CERNBox</u>: possibility to further customize user environment by installing additional libraries in user local storage

Storage - EOS

- Uses EOS mass storage system All experiment data potentially available
- User personal space, synchronized through CERNBox

All files synced across devices, the cloud and other users

Scalable Analytics: Spark-clusters with SWAN integration

- Apache Spark is a highly scalable, unified analytics engine for large-scale data processing
- Built for complex analytics, streaming analytics and machine learning
- Usage of Apache Spark is growing at CERN

Cluster Name	Configuration	Primary Usage
nxcals	20 nodes (Cores 480, Mem - 8 TB, Storage – 5 PB, 96GB in SSD)	Accelerator logging (NXCALS) project dedicated cluster
analytix	48 nodes (Cores – 892,Mem – 7.5TB,Storage – 6 PB)	General Purpose
hadalytic	14 nodes (Cores – 196,Mem – 768GB,Storage – 2.15 PB)	Development cluster

SWAN_Spark features

- <u>Spark Connector</u> handling the spark configuration complexity
 - User is presented with Spark Session (Spark) and Spark Context (sc)
 - Ability to bundle configurations specific to user communities
 - Ability to specify additional configuration

spark.driver.	×
Application Properties	Í
spark.driver.cores	
spark.driver.maxResultSize	
spark.driver.memory	
spark.driver.supervise	
Runtime Environment	
spark.driver.extraClassPath	
spark.driver.extraJavaOptions	
spark.driver.extraLibraryPath	
spark.driver.userClassPathFirst	

Bundled configurations

Include NXCALS options
 Include CMSSpark options

Selected configuration

- NXCALS
 - spark.driver.extraJavaOptions
 -Dservice.url=https://cs-ccr-nxcals6.cern.ch:19093

Djavax.net.ssl.trustStore=/etc/pki/tls/certs/truststore.jks -Djavax.net.ssl.trustStorePassword=password


spark.jars

{LCG VIEW}/lib/nxcals/dependency/activation-1.1.jar,{LCG VIEW}/lib/nxcals/dependency/animalsniffer-annotation-1.0.jar, {LCG VIEW}/lib/nxcals/dependency/annotations-2.0.0.jar, {LCG VIEW}/lib/nxcals/dependency/antlr4runtime-4.5.3.jar. {LCG VIEW}/lib/nxcals/dependency/aopalliancerepackaged-2.4.0-b34.jar, {LCG VIEW}/lib/nxcals/dependency/apachedsi18n-2.0.0-M15.jar, {LCG VIEW}/lib/nxcals/dependency/apachedskerberos-codec-2.0.0-M15.jar, {LCG VIEW}/lib/nxcals/dependency/api-asn1-api-1.0.0-M20.jar. {LCG VIEW}/lib/nxcals/dependency/api-util-1.0.0-M20.jar. {LCG VIEW}/lib/nxcals/dependency/archaiuscore-0.6.6.jar.

SWAN_Spark features

- <u>Spark Monitor</u> jupyter notebook extension
 - For live monitoring of spark jobs spawned from the notebook
 - Access to Spark WEB UI from the notebook
 - Several other features to debug and troubleshoot Spark application
 - Developed in the context of HSF Google Summer of Code program [1]

[1] http://hepsoftwarefoundation.org/gsoc/2017/proposal_ROOTspark.html

Authentication and Encryption

- Authentication
 - spark.authenticate : authentication via shared secret, ensures that all the actors (driver, executor, AppMaster) share the same secret
- Encryption
 - encryption is enabled for all spark application services (block transfer, RPC etc)
- Further details on SWAN_Spark security model
 - <u>https://cernbox.cern.ch/index.php/s/B4IdwuuhJ0TWgtH</u>

Industry focus – Unified Big Data analytics platforms

databricks

Databricks Unified Platform

- Simplifying Big Data and AI

cloudera

Cloudera Data Science Workbench

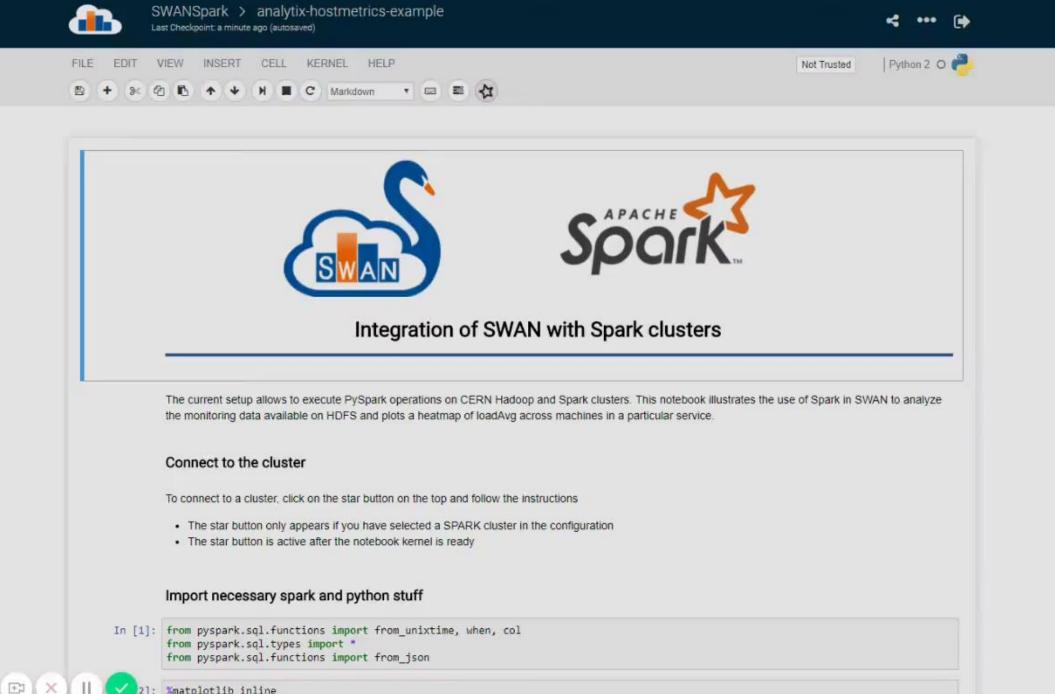
- Enables fast, easy and secure self-service data science

Google Colaboratory 💿

Colaboratory is a research tool for machine learning education and research. It's a Jupyter notebook environment that requires no setup to use.

Seattle, WA Seattle, WA https://research.google.com/colaborato...

<u>Comparable to industry offerings with integrations for CERN /</u> <u>HEP data and compute</u>


Growing usage and reliance on SWAN

Further growth in usage expected with the integration of SPARK clusters and onboarding of BE NXCALS users

Contribution from IT-DB-SAS

Development of Spark Connector Development of Spark Monitor under GSoC project Development of solution of publish hadoop/spark configuration to CVMFS Development of hdfsBrowser jupyter extension Publishing of software to CVMFS Supporting NXCals team to adapt SWAN solution SWAN_Spark – Demo

%matplotlib inline
import pandas as pd

Future work and outlook

Ability to spawn and attach to disposable containerized Spark clusters

Improving the authentication mechanism to access spark clusters

• Avoids (double) typing of password to access spark clusters

HDFS browser & Datasets

- ability to browse HDFS from SWAN
- abstraction to create and share datasets

Job submission to Spark clusters

• SWAN user session is a full-fledged Hadoop-Spark client

Support and evolution of Spark aspects of the service

Takeover of SWAN service as it better fits the mandate of IT-DB-SAS ?

Moving Forward

Continue collaboration on SWAN Service with the following improvements

- Build the knowledge and documentation on SWAN service
- Open the service to allow support and contributions from IT-DB-SAS

Run a separate instance of SWAN of NxCALS

- Gives a good starting point
- Evolve based on big data / distributed computing needs

Develop (yet another) notebook service

- possible duplication of work?

SWAN support channels

- Support ticket via SNOW (FE: SWAN), general feedback welcome to
 - swan-admins@cern.ch
 - <u>swan-talk@cern.ch</u>

Hadoop and Spark support channels

- Support ticket via SNOW (FE: Hadoop and Spark support), general feedback welcome to
 - ai-hadoop-admins@cern.ch

Spark on Kubernetes

Spark on Kubernetes service

• Why?

- Physics Analysis using Spark and ML using Spark
- Storage is external (EOS, Kafka)
- Elasticity & Isolation
- Cloud Native (shared environments, custom flavors)

• What?

- Integrations with CERN infrastructure (OpenStack, Magnum)
- Ease of job submission and management (SparkOperator)
- Integration with Data Analysis Platform (SWAN)
- Hadoop-XrootD connector to integrate with mainstream analysis tools
- Integrate with physics analysis framework (ROOT RDataFrame)
- Who?
 - Physics Analysis with ROOT RDataframe
 - Spark Streaming
 - CMS Data Reduction (in future possibility ATLAS)

Investing for future!

Current Status

- Development of Spark on Kubernetes
 - Work with IT-CM Container service to discover and finalize the configuration required to deploy Spark on Kubernetes
 - Contribute to the upstream spark on kubernetes operator to add the functionality required for CERN usecases
 - Work with the users to help them productionize Spark workloads on Kubernetes
 - Contribute to the development of spark administrative guide and user guide
 - Train service managers and prospective users on Spark on Kubernetes technology

Future work and outlook

Integrate with Data Analysis platform (SWAN)

Investigate the integration of spark-on-kube interactive client mode with SWAN

Coherent monitoring of Spark workloads on Kubernetes

Develop curated examples for user communities

- Spark Streaming (for IT-CM-MM)
- TOTEM Analysis (ROOT RDataFrame)

Work with the users on adaption of new physics analysis model

Integration of Spark with HTCondor