
Swarms of Bouncing Robots

by

Eduardo Pacheco

A thesis submitted to the Faculty of Graduate Studies and Postdoctoral Affairs
in Partial Fullfilment of the Requirements for the Degree of

PHD IN COMPUTER SCIENCE

School Of Computer Science

at

Carleton University

Ottawa, Ontario
© Eduardo Pacheco, 2014



i

2





Abstract

We study models of mobile robots with limited capabilities that are deployed

either on a cycle or an infinite line or on a segment. Robots start moving at the

same time and when two robots collide their speeds and movement directions are

instantaneously updated. Each of them has a collision detector and a clock to

measure the times of its collisions. They do not have any knowledge on the total

number of robots and do not have a common sense of direction. Besides, they neither

have visibility nor control over their movements.

We investigate the feasibility of the localization task in the cycle and the segment

by bouncing robots: every robot should figure out the starting position and initial

velocity of all the other robots. We consider two different scenarios when robots

have common masses and speeds and robots of arbitrary masses and speeds. We give

complete characterizations of all feasible configurations for the cycle in both scenarios.

We study the survivability of bouncing robots. We say a robot survives if it never

returns to its starting position. Non-surviving robots disappear from the environment.

We provide sufficient and necessary conditions to have surviving robots in the cycle

and in the segment. Finally we investigate communication protocols for bouncing

robots that only communicate at the time of their collisions. We establish necessary

and sufficient conditions for bouncing robots to perform gossiping, broadcasting and

convergecast.
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CHAPTER 1

Introduction

For a long time, robots have been seen as a potential tool that might improve

our lives. The idea that some entity performs a task on our behalf has been very

attractive to us. Today, the use of robots has somewhat made our lives easier by

allowing us to explore unknown and hazardous environments and to perform daily

activities efficiently and safely. The Curiosity project [1] and bomb disposal robots

are some examples of this.

Sometimes, a task is more efficiently performed by a group of simple robots than

by just one complex robot. However, the use of a set of robots for performing a single

task raises some difficulties regarding coordination and communication. Overcoming

such difficulties is of great importance due to the increasing use of such systems in

relevant human activities. In this work, we aim to improve our understanding of

systems of mobile robots and we also aim to contribute to overcome such difficulties.

We study these systems from the algorithmic perspective of distributed computing,

i.e, in this thesis we design correct and efficient algorithms for systems of mobile

robots.

A Taste of History. Back in the 1970’s, Distributed Artificial Intelligence (DAI)

was introduced as the study, construction, and application of multi-agent systems

in which intelligent agents collaborate to perform some set of tasks [7, 56]. Due to

the emerging of new technologies together with the increasing use of complex com-

putational systems DAI rapidly evolved and diversified giving birth to other research

fields like mobile agent computing and computational organization. One of the main

contributions of this field was the introduction of the concept of agent in computer

science. An agent was conceived as an entity that can sense its environment and

1



2 1. INTRODUCTION

act upon it [56] as well as an entity that is rational, deliberative, and possesses some

sort of will [7]. In this work, we consider a mobile robot in its simplest form as an

agent that can sense, move within its environment, do computations and act upon its

environment. We use the words agent and robot interchangeably. As we said above,

our purpose is to study mobile agents from the perspective of distributed computing.

Distributed computing. Nowadays, computing systems are mainly distributed,

heterogeneous, larger, and much more complex than they used to be just few decades

ago. Some examples of distributed systems are multi-core machines, computer net-

works, swarms, and mobile sensors [28]. In all these modern computing systems,

computers behave more as independent agents to fulfill their purpose [38].

Distributed computing is the field of computer science that studies the compu-

tational issues that arise in distributed systems. Hence, distributed computing en-

compasses the field of mobile agent computing; mobile agent computing studies the

computational and complexity issues in distributed systems whose agents have the

ability of moving within their environment. It is important to notice that such an

ability is not restricted only to physical agents (like robots), but it also characterizes

some software. However, in this proposal, we will focus only on systems of mobile

agents which due to their lack of a central authority are also known as systems of

autonomous agents.

Recently, mobile agent computing has been the subject of increasing interest.

Researchers of different fields from artificial intelligence, software engineering, com-

putational economics, and robotics have investigated the set of tasks that can be

computed by mobile agents. Part of the reason for such an increasing interest is due

to the potential advantages that mobile agents seem to have.

Some advantages of systems of mobile agents are: efficiency, by doing a task

where a single agent solution may be expensive or even impossible; fault tolerance, in

the presence of the failure of one agent the remaining agents still can complete their

task; flexibility, it is usually easy for agents to adapt their behavior in the presence
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of changes of their environment [38]. For these reasons, mobile agents are used for

electronic commerce, robotic exploration, network maintenance, etc. So mobile agents

seem to be a useful tool to design, implement, and maintain distributed systems. Yet

they are not a panacea [39].

Our Assumptions and Goals. In this thesis, we are interested in studying systems

of autonomous robots from an algorithmic perspective. We think of a mobile robot

as an autonomous entity that has the ability to perceive some parameters of its en-

vironment (sensing); the ability to receive or transmit information to other robots

(communication); the ability to move within their environment (mobility); the ability

to remember previously collected data (storage) and the ability to process such data

(computing). We assume that robots are deployed in some environment with the pur-

pose of carrying out some specific task. In order to do so, robots have to coordinate

their actions with other robots. In some cases, robots will be able to communicate

among themselves, if such is the case robots will have restricted communication ca-

pabilities. We will discuss more about the different mechanisms for implementing

communication in a system of mobile robots in the following section.

We focus on studying how a system of autonomous robots can overcome some

difficulties while performing a task. We are also interested in understanding the algo-

rithmic limitations that their restricted capabilities impose on them. More precisely,

we try to comprehend which tasks can be performed by mobile robots, under what

conditions, and the cost of performing such tasks. To do so, we study models of

mobile robots that assume weak robots, i.e, robots with extremly limited capabilities.

An algorithm for a system of robots is a distributed algorithm, such that, given

a model robot, a model of environment, and a given task, it specifies the steps that

should be executed by the robots to successfully complete the given task. The mea-

sure of efficiency (complexity) of an algorithm is closely related to the models of robot

and environment. Bandwidth, memory, time, power consumption, and traveled dis-

tance, are examples of some measures taken into account when designing a distributed
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algorithm for a system of mobile robots. We will provide examples and discuss this

in the following chapters.

There are many intriguing and appealing research questions about mobile robots:

How should a group of robots coordinate in order to carry out a task? How simple

can robots be? how much knowledge should robots have access to in order to solve

a task? In this thesis, we aim to answer some of these questions. More specifically,

we address the second of these questions by proposing a new model of mobile robots

that mimic the behavior of gas particles moving in a one dimensional environment.

They neither have visibility nor have control of their movements. We show that such

robots are able to perform several tasks like self deployment, patrolling, and position

discovery. As far as we know, the model of our results is novel although it has some

similarities with some models of gas particles, for instance in [36]. We also address

related problems that we came to encounter after we proposed our model like the

salmon problem and study communications protocols performed by these robots.

Outline. In Chapter 2, we survey some models of mobile robots and we provide

an overview of the state of the art of the field. We also motivate the models that we

propose. In Chapter 3, we introduce our model of mobile robots that we call bouncing

robots in two different flavors. We then study the task of localization also known as

position discovery by bouncing robots. In our first model, robots move with the same

speed while in the second one they have arbitrary speeds. We study the localization

for one dimensional environments. We give algorithms to carry out localization and

provide full characterizations of all feasible configurations. In Chapter 4, we study

the survivability of bouncing robots that are deployed in a dangerous environment

with deadly locations. When a robot visits some of such locations it is destroyed.

In all those chapters we assume that robots can not communicate by any means

however in Chapter 5 we allow bouncing robots to communicate and study different

communication protocols carried out by them. We conclude our study in Chapter 6

by summarizing our results and stating some open problems.



CHAPTER 2

Mobile Agent Computing

In this section, we review some of the most relevant and related literature of

mobile robots. We discuss different models of mobile robots, their environment, and

the different timing assumptions in which robots are commonly assumed to operate.

Our goal in this section is briefly describe how all these assumptions impact the

efficiency of mobile robot algorithms and their feasibility. We also want to motivate

the model of mobile robots that we propose which is a model that assumes robots with

extremely limited capabilities. Our model turns out to be similar to some systems of

particles in classical mechanics. For this reason, we describe some of the work done

in physics for those systems. In the last section, we discuss some problems that have

received the attention of many researchers.

1. Classical Models

Robots. Most models of mobile robots assume homogeneity, i.e, all robots have

the same set of capabilities, and anonymity, meaning that robots are not labeled with

unique identifiers. These two restrictions impose on all robots the execution of the

same algorithm. On the other hand, heterogeneity assumes that robots do not have

the same capabilities. Thus, in heterogeneous systems, not all robots participate in

the same way while solving a task. Such a constraint raises a series of interesting

questions related to the assignment of tasks and modeling of robots [42, 43]. In this

thesis, however, we are interested in homogeneous systems only. Part of the reason

for this is the increasing use, due to the low cost production, of swarms. Swarms are

large collections heterogeneous simple robots with very restricted capabilities that are

able to replace a system of a few but complex robots. Swarms are becoming a very
5
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popular tool in distributed computing because they are able to show and exploit very

complex behavior [7].

Usually, robots are assumed to possess a system of coordinates and a compass

that allow them to navigate within their environment. A robot with such ability is

said to have a sense of direction [28]. The weakest models of mobile robots assume

no consistent sense of direction among the robots. Normally, researchers by sense of

direction assume that the robots are masters of their own movements, meaning that

robots have total control of their movements, so by using their compass and system

of coordinates they move as they wish within their environment of deployment.

On the other hand, in a few works, it is assumed that robots have sense of direction

but they do not have control of their movements. In those models, sense of direction

is more like a system that allows robots to have some knowledge of their position,

and robots move according to some pattern totally out of their control. This type

of movement is called passive mobility [3, 4]. Since we are interested in studying

extremely weak robots, we assume robots with passive mobility and no common

system of coordinates. An interesting research question is whether robots are able to

figure out the system of coordinates of all robots by performing a minimum number of

operations. Clearly, in a system of robots with common sense of direction coordination

is easier to obtain. Figure 2.1 depicts two robots, deployed in the plane, with different

sense of direction.

N

S

E W

N

SW

E

r1 r2

Figure 2.1. robots r1 and r2, deployed on the plane, have different
sense of direction. What is north for r1 is south east to r2.

Interaction. Robots should be able to interact among themselves to solve any

task. There are different ways to achieve this. For instance, robots can interact via

their environment by shared resources (like memory) [7]. However, the most common
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way of getting interaction is via sensing. In this case, robots have sensors that allow

them to sense other robots and some parameters of their environment. They do so

without explicit communication. In the literature, the most common assumed sensing

capability is visibility. Visibility might be either unlimited or limited. A robot with

unlimited visibility is able to get a snapshot of the entire system while one with a

limited visibility can only get the information within some bounded range. Sensing

assumptions have relevance because they establish limits on the collaboration among

robots. Visibility has been used to perform flocking and pattern formation [7, 52].

Another way of interaction among robots is via explicit communication, i.e, by ex-

changing messages. This type of interaction involves the design of communication

protocols similar to those in computer networks. We discuss more about communi-

cation protocols later on in this section. It suffices to say that we are only interested

in studying interaction that involves simple communication.

A closely related ability to visibility is the one concerning the amount of memory

that robots have. If robots have memory of constant size, they only can remember

a bounded number of past events. Such robots are called oblivious. So robots with

limited memory are not aware of all their actions in the past. This assumption is

very important when modeling the power of computing of robots. Oblivious robots

may be modeled as simple finite state automata [19] while, non-oblivious robots are

modeled as Turing machines. Besides this, in many applications, memory is always

of great concern. Hence, algorithms that use oblivious robots are frequently sought.

Robot Representation. In most of the theoretical works, robots are commonly

modeled as mere points. In such models, it is plausible that robots can gather (or

pile up) at one point. Examples of this might be found extensively (see [28, 29, 30,

38, 52]). There are few works that consider fat robots. Fat robots robots are not

dimensionless and they are frequently modeled with unit discs. In any case, there

are difficulties to overcome. In the former model, a robot can not distinguish if a
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location is occupied by one or by many robots; in the latter one, robots can block

their visibility. In Figure 2.2, fat robots ra and rb are not able to see each other.

ra
rb

Figure 2.2. Fat robots ra and rb can not see each other

In [17], Czyzowicz et.al studied the problem of gathering fat robots in the plane.

For this task, robots are required to get close enough to each other without colliding.

Czyzowicz et.al devised algorithms to gather up to four fat robots. However, if robots

are dimensionless, there exists a simple algorithm in which any number of robots can

gather at one point, for instance, at the center of mass of the system [9]. No algorithm

is known yet for gathering more than four fat robots. The gathering problem is an

example of a task that becomes very hard when a simple variation on the representa-

tion of a robot is introduced. For simplicity, in this thesis, we model robots as points

although we are aware that fat robots represent a more realistic setting.

Environment. Of great relevance, when defining a model of mobile robots, is

the description of the environment or universe in which robots are to be deployed.

We found in the literature two settings: robots operating in a discrete universe; in

this setting, robots are deployed on a communication network which is modeled by a

connected discrete graph. Agents hop between adjacent nodes of the graph collecting

information in each node and being able to resume their computations in the new

node. This setting is frequently used to study network maintenance, e-commerce,

etc. [38]; In the continuous model, robots freely move on a terrain or surface, some

examples that assume this model might be found in [16, 33]. The description of

the world in which robots move is important since it makes a difference in the way

that the efficiency of algorithms is measured. For instance, in discrete universes the

number of hops that a robot performs to complete its task might be a way to measure

the efficiency of the protocol while in a continuous setting the total distance traversed
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is of more interest. In this thesis, we focus on studying robots that move within a

one dimensional and continuous universe. We try to compensate the simplicity of the

universe by considering robots with extremely restricted capabilities.

Timing. In distributed computing, the assumptions on the timing within systems

operate are very important. It is well known that the timing assumptions affect the

feasibility of some problems. The most popular models are the synchronous, semi-

synchronous, and asynchronous.

In synchronous systems, it is assumed the existence of a global clock that allows

the agents of the system to execute their operations simultaneously in rounds. So the

less rounds the better an algorithm is. On the other hand, asynchronous systems are

commonly modeled by assuming an adversary that schedules the operations of the

agents of the system. Agents in asynchronous systems have to deal with some grade

of uncertainty which depends on the model of the adversary [5].

By describing the timing in which robots perform their operations we can extend

these timing concepts to mobile robot systems. There are different alternatives to

do so. To illustrate our discussion so far, we will briefly describe some popular and

important models of mobile robots in the literature.

Communication for Systems of Mobile Robots. The type of communication al-

lowed for a collection of mobile robots plays an important role in determining the way

that robots can interact. Moreover, communication enhances their capabilities and

effectiveness. Different models of communication for systems of mobile robots have

been studied (cf. [7, 22]) and they can be classified within any of the three following

categories: communication via their environment, for instance, via tokens or pebbles

that robots are allowed to drop on the environment (e.g. [6, 13]); communication

by sensing each other using, for instance, some visibility mechanism (e.g. [50, 9]);

and communication by passing messages. The latter type is the most common one

assumed for wireless sensor systems in which for a sensor to receive a message it has

to be within the range of transmission of another sensor. The main message passing
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communication problems concern broadcasting - when the message of one robot has

to reach all other ones, convergecast - when the initial information of all robots has

to reach one of them and gossiping - when each robot has to inform everybody else.

A Bit of History and Examples. The first model of mobile robots that was intro-

duced with the purpose of studying mobile robots from a theoretical point of view

was the semi-synchronous model (SSYNC) due to Suzuki and Yamashita in the 1990’s

[52]. Since then, several variations of the this model have been proposed. Possibly,

the most popular one is found in [30] due to Flochini et.al also known as Coordina-

tion and control of a set of Robots in a Distributed and Asynchronous environment

(CORDA).

SSYNC and CORDA differ in the timing at which their robots operate [44]. How-

ever, both models assume that robots execute look-compute-move cycles. A look-

compute-move cycle (lcm-cycle for short) is composed of three stages: look, compute,

and move. A robot, during its stage look, observes its environment and collects data

using its sensors. During the compute stage, a robot, based on its collected informa-

tion computes a new position. Finally, during its move stage a robot moves to the

new computed position.

In these models, it is assumed that robots have total control of their movements as

well as the ability to (potentially) interact with any other robot. Robots are deployed

on the plane and do not have a common sense of direction.

Regarding the timing assumptions of these models, we have three variations: the

synchronous one fully-synchronous model (FSYNC) assumes that all robots run in

fully synchronous rounds; all robots are activated at the beginning of each round; all

of them perform their operations atomically, such that, every robot gets the same

snapshot of the system. On the other hand, in the asynchronous version CORDA ,

robots are activated at different times and the duration of each stage is uncertain. An

intermediate model is the semi-synchronous model of Suzuki et.al in which robots act

in synchronized rounds, similarly as in FSYNC, but only some robots are activated
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in each round. There are several difficulties that arise in each of these models, for a

detailed discussion about them see [28, 44].

There are some models of robots where the timing assumptions are modeled dif-

ferently due to more restrictive capabilities of the robots. For instance, in [33], robots

do not execute lcm-cycles since they do not have any visibility sensor but a collision

sensor. Friedetzky et.al assumed that robots move within a continuous environment

represented by a ring of perimeter one. In their model, robots are synchronous in

the sense that they start moving at the same time at the beginning of each round,

however within each round robots do not synchronize their operations. While some

robots are collecting information others might be moving. The results we present in

the following chapters assume a similar model.

Some Conclusions. We have seen so far some assumptions on systems of mobile

robots, the way that they impact on the feasibility of some tasks and the different

complexity measures that they impose. In this thesis, we propose a model where

robots are totally blind, such that, they can not see each other nor can get any sort of

snapshot of the system at any time. Moreover, in the model that we propose, robots

do not have control of their movements, i.e, they have passive mobility. However,

they are equipped with a collision sensor that allows them to detect and measure

the time when a collision with another robot takes place. The environment on which

these robots are deployed is one dimensional, yet we believe that such model of robots

is interesting and may provide further understanding on the algorithmic limitations

of mobile robots. Toward this goal, in the next section, we discuss some tasks carried

out by mobile robots.

2. Tasks for Mobile Robots

Mobile robots can perform many interesting tasks. One of the most important

tasks is pattern formation introduced by Suzuki and Yamashita. In this task, robots

are to form some arbitrary pattern given in advance (for instance a circle) [2, 19, 32,
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50, 52]. Other interesting task is flocking, in which robots are to follow a leader while

keeping a predetermined formation [7, 34]. Another extensively studied problem is

rendezvous [17, 31, 38, 47] in which robots are to meet in a specific place of their

environment. Recently, patrolling [15], spreading [10], self deployment [24, 27],

motion coordination [51, 55], and localization [16, 18, 33] are being investigated.

Many of these problems had been studied for a long time by other communities like the

control and engineering communities but just recently from a theoretical perspective.

On the other hand, there is so much work done in this field that it would be impossible

to mention here all of it. Hence, in this thesis, we focus on a simplified version of the

localization problem.

While performing exploration with robots, the task of self localization is a basic

one. This task consists of a robot localizing itself in its environment of deployment by

performing minimum movements. Commonly it is assumed that robots know their

coordinates of deployment, however, this is not always the case. Due to its importance

for navigation and other tasks, the self localization problem has been of great interest

among researchers [23]. The environment of deployment is modeled as a polygon of

n vertices without obstacles. Once a robot knows its location, it can perform other

tasks like searching and patrolling. See Figure 2.3.

ri

Figure 2.3. ri is deployed within a polygon, its goal is to localize itself
in its environment

Regarding the robot capabilities, in this version of the problem, a robot is

assumed to have a compass and a range sensing device that allows it to sense the

walls or boundaries of its environment as well as their orientation. Besides finding

its position, a robot has to minimize its movements to figure out its location. The
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most important theoretical result that we are aware of is due to Dudek et.al who

proved that the problem of self localization is NP -hard [23].

Other variations of the problem include environments with obstacles and proba-

bilistic approximations. Other models, provide the robot with more capabilities like

an odometer, cameras, etc. [45]. Most of the recent work that has been done on this

problem comes from the robotics community.

Lawrence et.al in [25] consider an alternative model in which the deployed robot

has very limited sensing capabilities. The robot only has a clock and a contact sensor

in addition to the map of the environment. They experimentally show that the

localization problem is feasible in such circumstances by using probabilistic methods.

Notice that this problem is intended to be solved by a single robot that is

deployed in a polygon. It might be interesting to consider the self localization

problem addressed by a group of robots. If robots can collaborate in order to find

their initial positions in their environment, robots may later on perform several

coordination tasks.

The first paper that does this is due to Friedetzky et.al in [33]. They consider

a set of n anonymous robots deployed on a circle of perimeter one. Robots perform

their actions in synchronized rounds. At the beginning of a round they start moving

in either clockwise or anti clockwise direction. Robots are not allowed to overpass

each other, i.e, they preserve their initial order at any time. When two robots collide,

they bounce back. So they move in opposite direction and with the same speed

that they had before they collided. Robots are not allowed to perform any sort of

communication and are not allowed to leave any mark on the ring. Besides, robots

are blind in the sense that they can not see each other.

Robots are to find the initial position in the ring of every other robot without

performing explicit communication and only equipped with a collision sensor and a
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GPS. Friedetzky et.al devised a fully randomized algorithm that solves the location

discovery problem with high probability in O(log2 n) rounds.

The models of our results in [16, 18] are partly inspired by Friedetzky’s model but

we restrict even more the capabilities of the robots. We assume that robots do not

have control of their movements, they are only equipped with a clock to measure the

time of its collisions and have no GPS available. The resulting model is quite similar

to some models studied in physics. More specifically, the model of our results is

similar to some models of gas particles that slide on a frictionless surface. We discuss

more about these works in the following subsection. Moreover, all the algorithms that

we present are deterministic.

3. Classical Mechanics and Distributed Computing

The study of the dynamics of elastic particles sliding on a one dimensional envi-

ronment has been of great interest in physics for a long time. Much of the work done

on this topic has been motivated in order to understand the dynamical properties of

gas particles [48, 40, 53, 57]. The dynamics emerging from a collection of particles

sliding on an infinite line is very rich and not well understood yet [12]. There are,

however, some results concerning the total number of collisions for elastic collisions

of particles of arbitrary masses that move within an infinite line. Sevryuk [48] proved

that the number of collisions is upper bounded by 2 (8n2(n− 1)mmax/mmin)n−2, where

n is the total number of particles and mmax and mmin are the largest and smallest

masses of the particles, respectively. When all particles have equal masses the number

of collisions is upper bounded by n2. Other results regarding the number of collisions

for different dimensions can be found in [41].

The simplest model of a particle system, that we are aware of, is the one introduced

by Jepsen in [36], where he assumes particles of equal mass and arbitrary velocity

moving in a frictionless ring. In addition, [36] assumes elastic collisions, in other
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words, the momentum conservation and the preservation of energy principles are

assumed, such that, when two particles collide they simply exchange velocities.

In order to understand some gas equilibrium properties, Jepsen studied the dis-

tribution of the initial velocities on the particles. More precisely, for a given time t

and initial particle velocity v, he calculates the probability that a given particle has

velocity v at time t. Jepsen remarks the simplicity of the dynamics of his system of

particles. However, such a simplicity makes it attractive as a starting point in the

study of more complex particle systems.

Besides the very interesting physical properties that particle systems may have,

they have become attractive to researchers of other fields, among those are computer

scientists.

In the distributed computing community, researchers recently studied systems of

mobile robots whose dynamics are similar to those of particle systems. Susca et al.

[51], consider a system of mobile robots that imitate the impact behavior of particles

moving in a frictionless ring.

Susca et al. consider a system of n mobile robots moving at different speeds on a

ring and colliding elastically. The goal of the robots is to synchronize their movements

by synchronizing the times of their collisions and assigning to each of them a unique

sector of the ring to traverse. By doing so, robots are able to perform perimeter

surveillance. They assume that robots can communicate only with their neighbors

and only when they collide, they also assume that robots have control over their

speed which they modify at their times of collision, and finally that robots have an

absolute position on the ring of which they are aware of. For the case when n is even,

and exactly half of the robots move initially in the same direction, they provide a

distributed algorithm to perform motion synchronization within a finite amount of

time.

Wylie et al. in [55] study the motion synchronization task on a segment with

relaxed assumptions on the knowledge that robots have. They assume that robots do
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not know the total number of robots in the ring nor the length of the segment, robots

are allowed to communicate and have control over their speeds similarly as in [51].

They prove that robots can motion synchronize if they exchange information about

their times of collision. So within a finite amount of time, robots reach a state in

which each of them traverses a subsegment of the same length. Recently, Czyzowicz

et al. [15] proved that such a strategy is optimal to perform patrolling of a segment.

Similar works on motion synchronization can be found in [37].

In all these works, robots make use of the simple dynamics of the system in which

they move to adapt their speeds at the times of their collisions to eventually reach a

state in which they synchronize. Since communication is possible only at the times of

collisions, the amount of information exchanged depends on the number of the needed

collisions to reach synchronization which is not necessarily a small number. Therefore,

a model that assumes that robots perform less communication or no communication

at all would be of great interest. We show in chapters 2 and 3 that some information

might be obtained if no communication is allowed between the robots. Another strong

assumption in [55, 51] is the ability of robots to modify their speeds. We also show in

those chapters how to exploit the momentum conservation and energy preservation

principles to simulate an exchange of information at the time of collision between

two robots without having explicit communication and without having any control of

their velocities.

An interesting characteristic of particle systems is that the movements of particles

are totally out of their control. There is an external factor, like heating, that causes

their movements. We find in distributed computing similar assumptions on the move-

ments of robots. As we mentioned before, population protocols are an example of

similar behavior.

Another application of particle systems in computer science is described by Coo-

ley and Newton in [11, 12]. They show how to generate pseudo random numbers

efficiently by using particle systems.
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4. Survivability of Mobile robots

As we said above, mobile robots have been used to perform tasks that, other-

wise carried out by humans, would be dangerous, less efficient, and expensive, for

instance, environment exploration, perimeter patrolling, mapping, pattern formation

and localization.

Large collections of robots with limited capabilities are called swarms. Despite

their simplicity, they are used to perform complicated tasks like surveillance and

monitoring in hazardous or hard to access environments. Due to the nature of the

environments on which mobile robots are frequently deployed, they may get destroyed

in other words they may die while performing their task. For instance, while a robot

is exploring a terrain, it can be destroyed by enemy forces or by stepping on a mine.

Understanding their survivability will help us understand which measures could be

taken in order to ensure that they fulfill their purpose.

Some researchers have studied the destruction of mobile agents while visiting some

specific location of their environment. Dobrev et al. in [21] introduced the black hole

search task. They consider a set of mobile agents moving in a ring searching for

a highly harmful item called black hole. A black hole is a stationary process that

destroys any visiting agent upon its arrival without leaving any trace of it. This task

requires that at least one robot survives in order to report the location of the black

hole.

A somewhat similar problem for very simple mobile robots was introduced by

Moshe Rosenfeld in [46] in what he calls the salmon problem. The salmon problem is

inspired by the life cycle of salmons: a salmon after being hatched lives in the ocean

for a period of several years, then it returns to its place of birth to spawn and die.

The salmon problem is stated in [46] as follows: Consider n salmon fries distributed

on a ring, each fry moving with constant speed either clockwise or counterclockwise.

When two fries collide they reverse direction and when a fry returns to its initial
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position, it dies. Death has priority over collisions. Is it possible that some fries live

forever? Is there an efficient algorithm to decide whether all fries will die?

Rosenfeld gives an example of a configuration of five salmons of which one dies

and the remaining four live forever. However, Rosenfeld’s example has a flaw we show

this in Chapter 4 and we give the first correct example of a swarm with survivors.

Moreover we study the salmon problem in a more general setting.



CHAPTER 3

Localization

In this chapter we introduce our results on the problem of localization also known

as position discovery: a collection of n anonymous mobile robots is deployed on a

unit-perimeter cycle or a unit-length line segment. Every robot starts moving with

constant speed at the same time, and updates its speed, according to the laws of

classical mechanics for elastic collision, each time it meets any other robot or segment

endpoint. The goal of each robot is to detect the presence, the initial position, and

starting direction of each other robot.

The robots cannot communicate or perceive information about the environment

in any way other than by bouncing. Each robot has a clock allowing it to observe

the times of its bounces. The robots have no control on their walks, which are

determined by their initial positions, speeds, and the starting directions. Since robots

are anonymous, each robot executes the same algorithm, it receives input data in real-

time about the times of the bounces, and terminates when the robot is assured about

the existence and the positions of all the robots.

In Section 2 we study the localization task by robots of same masses and speeds

that are deployed either on a cycle or a segment. In Section 3, we present our results

concerning robots of arbitrary masses and speeds that are deployed on the cycle. In

the following section we establish the common set of assumptions and notation for

both Section 2 and Section 3. The results presented in this chapter were published

in [16, 18].

19
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1. Preliminaries

We consider a set of n synchronous and anonymous robots r0, r1, . . . , rn−1 deployed

on a continuous, one-dimensional environment which is represented either by a unit-

perimeter cycle or by a unit-length line segment. The cycle is modeled by a real

interval [0, 1) with 0 and 1 corresponding to the same point. The set of n robots

r0, r1, . . . , rn−1 is deployed in the environment and start moving at time t = 0 (where

the indexing of the robots is used for purposes of analysis, only). The robots are not

aware of the original positions and directions of other robots or the total number of

robots in the collection. The robots move at constant speed. Each robot is given

an initial direction (clockwise or counterclockwise in the cycle and left-to-right or

right-to-left on the segment) at which it starts its movement. Each robot knows the

perimeter of the cycle (or the length of the segment) and it has a clock permitting to

register the time of each of its collisions and store it in its memory.

By ri(t) ∈ [0, 1] we denote the position of robot ri at time t. We suppose that

originally each robot ri occupies point ri(0) of the environment and that 0 ≤ r0(0) <

r1(0) < . . . < rn−1(0) < 1. By diri we denote the starting direction of robot ri and

we set diri = 1 if ri starts its movement in the counterclockwise direction around the

cycle or the left-to-right direction along the segment. By diri = −1 we denote the

clockwise starting direction (on the cycle) or right-to-left (on the segment).

Throughout this thesis, we assume the principle of momentum conservation as

well as the conservation of energy and that in any collision no more than two robots

participate. When two robots meet they instantaneously update their velocities ac-

cording to the laws of classical mechanics for elastic collisions, i.e, if robots r1 and

r2 of masses m1 and m2, and velocities u1 and u2 respectively, collide, after their

collision they get new velocities v1 and v2 , respectively, where:

v1 = m1 −m2

m1 +m2
u1 + 2m2

m1 +m2
u2, v2 = 2m1

m1 +m2
u1 + m2 −m1

m1 +m2
u2.(1)



1. PRELIMINARIES 21

We call the trajectory of a robot a bouncing walk. The robots have no control

on their bouncing walks, which depend only on their initial positions and directions,

imposed to them by an adversary, and the bounces caused by meeting other robots.

Each robot has to report the coordinates of all robots of the collection, i.e., their

initial positions and their initial directions. The robots cannot communicate in any

other way except for observing their meeting times. Each robot is aware of the type

of the environment (cycle or segment). The only information available to each robot

is the bounce sequence, i.e. the series of time moments t1, t2, . . ., corresponding to its

bounces resulting from the meetings with other robots.

By localization algorithm we mean a procedure executed by each robot, during

which the robot performs its bouncing walk and uses its bounce sequence as the data

of the procedure, outputting the initial positions and directions of all robots.
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2. Bouncing Robots with Same Speeds

In this section we start to study the problem of localization in the cycle and in

the segment by our simplest model of bouncing robots. We assume that all robots

have the same masses and speeds thus when two of them collide they simply reverse

directions and keep moving with the same speed (see equations 1).

Our aim in this section, is to investigate whether or not is possible for each robot

to find out, after some time of its movement, what is the number of robots in the

collection and their relative positions in the environment. If not, what are the con-

figurations of robots’ initial positions and directions for which a position detection

algorithm exists (i.e. it is possible to report the initial configuration after a finite

time). As well as the smallest amount of time after which a robot is assured to

identify all other robots in the collection.

The dynamics of bouncing robots is simple and it is a good way to start their

study. Despite their limited capabilities in this section we prove that they are capable

to figure out the starting parameters of all the other robots in most cases. In the

following section we establish the specific assumptions on this model of bouncing

robots as well as some notation that we will use throughout this section.

2.1. Preliminaries. For simplicity we assume that all robots have unit-speed

then distance and time traveled by the robots are commensurable, so during time

t each robot travels distance t. Consequently, in this section we compare dis-

tances traveled to time intervals. When two robots meet, they bounce back, i.e.,

they reverse the directions of their movements. We call the sequence of pairs

(r0(0), dir0), . . . , (rn−1(0), dirn−1) the initial configuration of robots.

By the cost CA(n) of algorithm A we understand the smallest value, such that for

any feasible initial configuration of n robots in the environment, each robot executing

A can report the initial configuration while performing a bouncing walk of total

distance CA(n). As in some cases the cost of the algorithm varies, depending on the

robot initial directions, we denote by CA(n, k) the cost of A for the class of initial
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configurations such that 1 ≤ k ≤ n/2 robots start in one direction and n − k start

in the opposite one. We propose an algorithm to be executed by any robot, which

computes the original positions of all other robots of the collection. We say that such

an algorithm is optimal if the time interval after which the robot is assured to have

the knowledge of the positions of all other robots is the smallest possible.

2.2. Results. We characterize all the feasible configurations for the cycle and the

segment. For both cases we give optimal position detection algorithms for all feasible

configurations. Our algorithm for the segment requires O(n) robot’s memory, while

constant size memory is sufficient for robots bouncing on the cycle. We suppose that

in one memory word we may store a real value representing the robot’s position in

segment [0, 1].

For the case of the cycle, we show that all robot configurations with not all robots

given the same initial direction are feasible. We give a position detection algorithm

working for all feasible configurations. The cost of our algorithm is not constant, but

it depends on the number of robots starting their movement in each direction. When

k ≤ n/2 is the number of robots starting their walks in one direction with n−k given

the opposite direction we prove that our algorithm has cost 1
2d

n
k
e. We prove that this

algorithm is optimal.

For the case of the segment we prove that no position detection algorithm exists

for symmetric initial configurations. Each symmetric configuration is a configuration

of a subset of robots on a subsegment, concatenated alternately with its reflected

copy and itself. We give a position detection algorithm of cost 2 working for all

feasible (non-symmetric) configurations on the segment. This algorithm is proven to

be optimal.

In Subsection 2.3 we give the position detection algorithm for the cycle and prove

its correctness for all feasible configurations. Subsection 2.4 analyses the cost of the

position detection algorithm for the cycle and proves its optimality. The segment

environment is addressed in Subsection2.5. The argument for the segment proceeds
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by reduction to that for the cycle, but the criteria for a feasible configuration on the

segment take a different form, dependent on the symmetry of the configuration.

2.3. The Algorithm on the Cycle. As there is no system of coordinates on

the cycle common to all robots, each robot must compute the relative positions of

other robots with respect to its own starting position. We may then infer that each

robot assumes that its starting position is the point 0. We then suppose that 0 =

r0(0) < r1(0) < . . . < rn−1(0) < 1 and it is sufficient to produce the algorithm for

robot r0.

We assume in this chapter that all robot indices are taken modulo n. When two

robots meet, they reverse the directions of their movements, so the circular order of

the robots around the cycle never changes. When two robots ri and ri+1 meet at time

t, we have ri(t) = ri+1(t), and ri(t) was moving counterclockwise while ri+1(t) was

moving clockwise just before the meeting time t.

We denote by dist(x, y) the distance that x has to traverse in the counterclockwise

direction around the cycle to reach the position of y (we call it the counterclockwise

distance from x to y. Note that the clockwise distance from x to y equals 1−dist(x, y).

In order to analyze the cycle movement of the robots we consider an infinite line

L = (−∞,∞) and for each robot ri, 0 ≤ i ≤ n − 1 we create an infinite number of

its copies r(j)
i , all having the same initial direction, such that their initial positions

are r(j)
i (0) = j + ri(0) for all integer values of j ∈ Z (see Fig. 3.1). We show that,

when all copies of robots move along the infinite line while bouncing at the moments

of meeting, all copies r(j)
i of a robot ri bounce and reverse their movements at the

same time. More precisely we prove

Lemma 1. For all t ≥ 0, 0 ≤ i ≤ n− 1 and j ∈ Z we have r(j+1)
i (t) = r

(j)
i (t) + 1.

Proof. Since the claim of the lemma holds by construction at time t = 0 and at

any bounce moment all copies of the bouncing robots r(j)
b simultaneously reverse their

movement, the claim of the lemma holds by induction on the number of bounces.
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Figure 3.1. Example of a bouncing movement of four robots

We use the concept of a baton, applied recently in [33]. Suppose that each robot

initially has a virtual object (baton), that the robot carries during its movement, but

at the moment of meeting, two robots exchange their batons. By b(j)
i we denote the

baton originally held by robot r(j)
i and by b(j)

i (t) we denote the position of this baton

on the infinite line at time t. We can easily show the following lemma.

Lemma 2. For all t ≥ 0, 0 ≤ i ≤ n−1 and j ∈ Z we have b(j)
i (t) = b

(j)
i (0)+diri·t =

b
(0)
i (0) + j + diri · t.

Proof. Since the bouncing robots exchange their batons, the batons travel at

constant speed 1 in their original directions. Therefore, at time t each baton traveled

the distance t so we have b(j)
i (t) = b

(j)
i (0)+diri · t. On the other hand, by construction

we have b(j+1)
i (0) = b

(j)
i (0) + 1 and both batons b(j)

i , b
(j+1)
i travel at unit speed in the

same direction. Hence, we have by induction on j, that b(0)
i (t) = b

(j)
i (t)+j. The claim

of the lemma follows.

In Fig. 3.1 the trajectories of all the batons held originally by the robots going

in direction dir are the lines of slope dir. Each robot ri bounces while its trajectory

intersects a trajectory of some baton, since this baton is then held by one of the

robots ri−1, ri+1. For example, the trajectory of robot r(0)
0 , is represented by a red
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fat polyline on Fig. 3.1, while the trajectories of its neighbor robots r(−1)
3 and r

(0)
1

bouncing at r(0)
0 are given by dashed polyline.

Lemma 3. Consider robot ra, which at the time moment t, while traveling in

direction dir, meets some other robot. Suppose that, at the time of this meeting,

ra traveled the total distance d in direction dir (hence the total distance of t − d

in direction −dir). Then there exists a robot rb, which was originally positioned at

distance (2d mod 1) in direction dir on the cycle. More precisely, (2d mod 1) =

dist(ra, rb) if dir = 1 and (2d mod 1) = dist(rb, ra) = 1 − dist(ra, rb) if dir = −1.

Moreover rb started its movement in direction −dir.

Proof. Suppose that at time t robot ra traveling in direction dir meets some

other robot traveling in the opposite direction (e.g. on Fig. 3.1, see the intersection

of the trajectory of r(0)
0 with the trajectory of the baton b

(2)
2 originally held by r

(2)
2 ).

Suppose that the baton obtained by ra at the moment of the meeting was originally

held by some robot rb. Robot ra traveled the total distance d in direction dir and

the total distance t − d in direction −dir, while the baton obtained by ra at the

moment of the bounce traveled distance t in direction −dir. Hence during time t− d

robot ra and the baton stayed at the same distance and during time d they were

both traveling approaching each other (i.e. jointly covering total distance 2d while

approaching). Therefore, at time t = 0 the distance between robots ra and rb was

2d. Since rb may be a copy of a robot and all copies of the same robot are at integer

distance, the distance of ra to rb on the cycle is 2d mod 1. The initial direction of rb

equals the direction of its original baton, i.e. −dir.

Remark 1. The value (2d mod 1) may sometimes be equal to zero which cor-

responds to ra meeting the robot currently holding the original baton of ra (e.g. the

sixth bounce of r(0)
0 on Fig. 3.1). On the other hand, some meetings of robots may

correspond to the same computed value of (2d mod 1) (e.g. all odd-numbered bounces
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Algorithm RingBounce (dir : {−1, 1});

1. var left← 0, right← 0 : real;
2. reset clock to 0;
3. while true do
4. do walk in direction dir until
5. ((clock − left ≥ 1/2) and (clock − right ≥ 1/2)) or a meeting occurs;

6. if (clock − left ≥ 1/2) and (clock − right ≥ 1/2) then EXIT;
7. if dir = 1 then
8. right← clock − left;
9. if (0 < right < 1/2) then
10. OUTPUT robot at original position 2 · right and direction −dir;
11. else
12. left← clock − right;
13. if (0 < left < 1/2) then
14. OUTPUT robot at original position 1− 2 · left and direction dir;
15. dir ← −dir;

of r(0)
0 on Fig. 3.1), so some bounces do not have a new informative value about other

robot positions.

The algorithm RingBounce executed by a robot, which reports initial positions

and directions of all other robots on the cycle, uses Lemma 3. Each bounce results

in the output of information concerning one robot of the cycle. In this way, a robot

running such an algorithm needs only a constant-size memory. An additional test is

made in line 10 to avoid outputting the same robot position more than once.

The robot’s memory consists of two real variables right and left in which the

robot will store the total distance traveled, respectively, in the counterclockwise and

clockwise direction. The robot also accesses its system variable clock which automat-

ically increases proportionally to the time spent while traveling (i.e. to the distance

traveled).

Theorem 1. Suppose that among all robots bouncing on the cycle there is at

least one robot having initial clockwise direction and at least one robot with the initial

counterclockwise direction. The algorithm RingBounce, executed by any robot of the
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collection, correctly reports the initial positions and directions of all robots on the

cycle with respect to its initial position.

Proof. Suppose without loss of generality, that the robot executing RingBounce is

robot r0. Since there exists at least one other robot starting in the direction different

from dir0, robot r0 will alternately travel in both directions, indefinitely bouncing

against its neighbors r1 and rn−1 on the cycle.

We show by induction, that at the start of each iteration of the while loop from line

3, the variable left (resp. right) equals to the total distance traveled by r0 clockwise

(resp. counterclockwise). Suppose, by symmetry, that r0 walks counterclockwise in

the i-th iteration and the inductive hypothesis is true at the start of this iteration.

Since, by inductive hypothesis, variable left keeps the correct value through i-th

iteration, variable right is correctly modified at line 8, as clock value equals the total

distance traveled in both directions. Consequently, the inductive claim is true in the

(i+ 1)-th iteration.

We prove now that positions and directions of all robots are correctly reported

before the algorithm ends. Take any robot ri, 1 ≤ i ≤ n − 1. We consider first

the case when the initial direction of ri was clockwise. The trajectory of its original

baton b
(0)
i is then a line of slope 1 (cf. Fig. 3.1). Observe that robot r0 stays at the

same distance from baton bi when walking in the clockwise direction and approaches it

(reducing their counterclockwise distance dist(r0, bi)) when walking counterclockwise.

Since dist(r0, bi) ≤ 1, and r0 and bi walk towards each other, they approach at speed 2

during the counterclockwise movement of r0. Consequently, the trajectories of r0 and

bi intersect and r0 eventually meets robot r1 carrying baton bi. Indeed, in line 4 of

algorithm RingBounce, robot r0 continues its movement as long as its total distance

traveled in the counterclockwise direction is less than 1/2, which leads to the meeting

of r0 and r1 (carrying baton bi), before both robots finish their executions of the

algorithm. Consequently, at the moment of their meeting, r0 outputs at line 10 the

initial distance between r(0)
0 and r(0)

i on line L, which equals twice the time spent while
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the robots were approaching each other. As r0 may obtain a copy of the same baton

more than once (cf. r0 intersecting several trajectories of batons b(j)
2 on Fig. 3.1), the

condition (0 < right < 1/2) at line 9 permits to report the position of each other

robot once only. Indeed, only r
(0)
i - the copy of ri at the closest counterclockwise

distance to r0 verifies this condition.

Consider now the case when robot ri, 1 ≤ i ≤ n− 1, starts its walk on the cycle

in the counterclockwise direction. Then r0 obtains baton bi while walking clockwise,

i.e. at the moment of some bounce at rn−1, while rn−1 holds baton bi. In this case,

robot r0 stays at the same distance from baton bi when walking in counterclockwise

direction and approaches it (reducing their distance of dist(bi, r0) = 1 − dist(r0, bi))

when walking clockwise. At the moment when r0 meets rn−1 holding baton bi (whose

trajectory originates from segment [−1, 0] of L) the value of variable left equals half

the clockwise distance from r0(0) to ri(0). Indeed, at the moment of the meeting,

half of this distance was covered by r0 walking clockwise (the value of left) and the

other half was covered by the counterclockwise move of baton bi. Consequently the

clockwise distance from the initial position of r0 to the initial position of ri equals

1− 2 · left, correctly output at line 14.

Observe that, once the original positions and directions of all robots are reported,

it is easy to monitor all further movements of all robots of the collection, i.e. their

relative positions at any moment of time. However, this would require a linear memory

of the robot performing such task.

2.4. The Execution Time of Bouncing on the Cycle. As stated in the

introduction, we look for the algorithm of the optimal cost, i.e. the smallest possible

total distance traveled, needed to correctly report any initial configuration. We show

that the algorithm RingBounce is the optimal one, i.e. that the time moment, at

which the robot can be sure that the positions of all other robots have been reported,

is the time when the robot stops executing RingBounce. Observe that algorithm

RingBounce has cost at least 1, i.e. a robot executing it must travel at least distance
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1. Indeed, the loop from lines 4-5 continues unless robot’s walk distance in each

direction totals at least half the size of the cycle. On the other hand, the example

from Fig. 3.1 shows, that if the number of robots starting their walks in one direction

is different from the number of robots starting walking in the opposite direction, the

total cost of RingBounce may be higher. We have

Theorem 2. Consider a collection of n robots on the ring, such that k of them,

1 ≤ k ≤ n/2, have one initial direction and the remaining n−k robots have the other

initial direction. Then the cost of RingBounce is CRB(n, k) ≤ 1
2d

n
k
e.

Proof. If there are more robots starting in one direction, say positive direction dir,

than in direction −dir then ri gets more frequently dir-moving batons (cf. Fig. 3.1).

Since the route of ri, intersects the trajectory of each baton only once, ri must meet

copies of batons originating from other segments than [0, 1] of line L. By counting we

show that the last such segment is [d(n− k)/ke−1, d(n− k)/ke]. Hence, in the worst

case, ri walks distance 1/2 in direction dir and distance d(n− k)/2ke in direction

−dir.

By Lemma 1, we can translate the collection of robots and start their enumeration

so that any of them is at the point 0 of line L and, without loss of generality, it is

sufficient to consider the total walk length of r0. By symmetry we assume that r0

starts walking counterclockwise on the cycle.

Consider first the case when n − k robots from the claim of the theorem start

walking counterclockwise and k robots start walking clockwise on the cycle, with

k ≤ n − k. Note that r0 alternately changes its direction of walk and, according

to lines 4-5 of algorithm RingBounce, it has to travel a distance of at least 1/2 in

each direction. At the conclusion of each segment of the clockwise walk around the

cycle (i.e. left walk along line L), r0 bounces against rn−1, collecting one of the

n − k batons traveling counterclockwise. Denote by t2i, for i = 1, . . . , n − k the

sequence of the consecutive time moments of all bounces of r0 against robot rn−1

(recall that time equals the total distance traveled up to that moment). Suppose



2. BOUNCING ROBOTS WITH SAME SPEEDS 31

that r0 starts executing algorithm RingBounce at time t0 = 0 and denote by t2i+1,

for i = 0, . . . , n− k − 1 the sequence of the consecutive time moments of all bounces

of r0 against robot r1. At time t2(n−k), r0 gets originally held baton b0 and the total

length of its clockwise travel becomes exactly 1/2 (i.e. the value of variable left

becomes 1/2). Since t1 < t2 < . . . < t2(n−k), before time t2(n−k) r0 bounced also

n − k times against r1, each time getting a baton, which is traveling clockwise. If

k = n/2, there are k = n − k lines of slope 1 originating from segment [0, 1) of L,

which are trajectories of k batons traveling clockwise, see Fig. 3.2. Therefore, the

loop from lines 4-5 of algorithm RingBounce continues until variable right equals 1/2

and algorithm finishes through the exit condition at line 6. In this case the total walk

time equals to left+ right = 1 and 1
2d

n
k
e = 1 so the claim of the theorem holds.
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Figure 3.2. n − k (blue) batons travel in counterclockwise direction
while k (gray) batons travel in clockwise direction, the trajectory of
r0 appears in red. By time t2(n−k), robot r0 has discovered all n − k
batons traveling in counterclockwise direction as well as those traveling
in clockwise direction

In the case k < n/2 there are only k batons traveling clockwise (k < n − k),

so some of them are received more than once by r0 during the bounces at times

t1, t3, . . . , t2(n−k)−1. Therefore, only k copies of batons traveling clockwise originate

from each integer segment [i, i+ 1) on line L. Consequently, r0 obtains batons whose

trajectories originate from segments other than [0, 1) and its total traveling distance in
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the counterclockwise direction exceeds 1/2. More precisely, the (n−k)-th consecutive

copy of a baton traveling clockwise, obtained at time t2(n−k)−1 must originate from

the segment [i∗−1, i∗], where i∗ = dn−k
k
e. The distance from r0(0) the initial position

of r0 and the starting position of baton met at time t2(n−k)−1 does not exceed the

value of dn−k
k
e. Since robot r0 has to travel counterclockwise at most half of this

distance (the other half being covered by the moving baton), the total time spend by

r0 in both directions does not exceed

1/2 + 1
2

⌈
n− k
k

⌉
= 1

2

⌈
n

k

⌉

Consider now the second case in which n−k robots from the claim of the theorem

start walking clockwise and k robots start walking counterclockwise on the cycle, with

k < n − k. As in the previous case we can denote by t1 < t2 < . . . < t2(n−k)−1 the

consecutive bounce times, where ti for odd values of i denote the times of the bounces

of r0 against r1 and those for even values of i denote the times of the bounces against

rn−1. By symmetry to the first case, the bounce at time t2(n−k)−1, when r0 moves

counterclockwise, arises when the variable right does not exceed the value of 1/2 (i.e.

the total distance traveled counterclockwise by r0) and the value of left is already

greater than 1/2. At this time moment, robot r0 goes clockwise and after the last

bounce at time t2(n−k) continues counterclockwise and exits algorithm RingBounce

where variable right becomes equal to 1/2. Indeed, since only n − k batons travel

clockwise, the next bounce of robot r0 would imply getting a baton whose trajectory

originates at segment [1, 2] of line L, but this would make variable right exceed first

the value of 1/2 and cause the exit in line 6 of RingBounce.

Similarly to the previous case, as k < n − k, at some of the bounces at times

t2, t4, . . . , t2(n−k), robot r0 obtains the same batons. More precisely, during the

bounce at time t2(n−k) r0 obtains the baton whose trajectory originates at segment

[−dn−k
k
e,−dn−k

k
e + 1] of line L. Hence the total clockwise distance traveled by r0



2. BOUNCING ROBOTS WITH SAME SPEEDS 33

does not exceed 1
2d

n−k
k
e and the distance traveled in both directions does not exceed

1/2 + 1
2d

n−k
k
e = 1

2d
n
k
e proving the claim of the theorem.

From Theorem 2 we immediately have the following Corollary, which bounds the

worst-case walking time for a robot.

Corollary 1. Assuming that the collection of n robots admits robots starting

their movements in both directions around the cycle, Then the cost of RingBounce is

CRB(n) ≤ n−1
2 .

The algorithm RingBounce continues until the total lengths of walks in both

directions reach the values of at least 1/2, since this guarantees that the presence

of each robot is eventually detected. The following theorem proves that the cost of

RingBounce algorithm is optimal even if the (a priori) knowledge of the number of

robots is assumed.

Theorem 3. Suppose that there is a collection of n robots on the cycle, such that

k of them, 1 ≤ k < n/2, have one initial direction and the remaining n − k robots

have the other initial direction. Then for every ε > 0 there exists a distribution of

such robots on the cycle with their initial positions 0 ≤ r0 < r1 < . . . < rn−1 < 1, so

that a position detection algorithm terminating at time 1
2d

n
k
e− ε cannot determine the

initial positions of all robots on the cycle, even if the values of n and k are known in

advance.

Proof. Consider the following collection of n robots r0, r1, . . . , rk−1, rk, . . . , rn−1

on the cycle, where each ri has a counterclockwise starting direction for 0 ≤ i < k

and the clockwise starting direction for k ≤ i ≤ n − 1, with the initial positions of

the robots

r0 = 0, r1 = ε

2k−1 , r2 = ε

2k−2 , . . . , rk−1 = ε

2 ,

rk = 1− ε

2 , . . . , rn−1 = 1− ε

2n−k
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Suppose, by contradiction, that a position detection algorithm executed by robot r0

can determine the positions of all other robots with the total walking distance of

r0 at most 1
2d

n
k
e − ε. Robot r0, in order to determine positions of all other robots,

has to obtain each baton b1, . . . , bn−1. Robot r0 gets the clockwise-traveling batons

bk, bk+1, . . . , bn−1 in this order at the moments of its bounces against r1. On the

other hand, the remaining batons are obtained by r0 in order bk−1, bk−2, . . . , b1 at the

moments of its bounces against rn−1. However, since k < n, at least some of the

batons bk−1, bk−2, . . . , b1 are obtained repeatedly (in the same cyclic order) because

the left and right bounces are alternated. More precisely, baton bk−1 is obtained

d(n− k)/ke times by b0, hence this sequence of batons is

←−
bk ,
−−→
bk−1,

←−−
bk+1,

−−→
bk−2, . . . ,

←−−
b2k−1,

−→
b0 ,
←−
b2k,
−−→
bk−1,

←−−
b2k+1,

−−→
bk−2, . . . ,

←−−
b3k−1,

−→
b0 , . . . ,

←−−
bn−1,

−→
bf

where f = k(dn/ke+ 1)− (n+ 1) and ←−bi denotes baton bi traveling clockwise and
−→
bj denotes baton bj traveling counterclockwise. The copies of the last two batons of

this sequence are the most distant from r0 on line L. The trajectory of baton ←−−bn−1

origins in segment [0, 1) of line L and dist(r0
0(0), b0

n−1(0)) = 1 − ε
2n−k . On the other

hand, the trajectory of baton −−−−−−−−−−→bk(dn/ke+1)−(n+1) obtained by b0 starts in the segment

[−d(n− k)/ke,−d(n− k)/ke+ 1] and its original distance to b0 is

dist(b(−d(n−k)/ke)
f (0), b(0)

0 (0)) > d(n− k)/ke − ε

2

As in order to meet each of these batons, r0 has to travel half of its original distance

to each of them (the other half is covered by the corresponding baton itself) the total

travel time by r0 is bound by

1
2(1− ε

2n−k ) + 1
2(d(n− k)/ke − ε

2) >

1
2(1 + d(n− k)/ke − ε) > 1

2(dn/ke)− ε
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which contradicts the assumed claim and proves the theorem.

Clearly each configuration of robots with the same initial direction of all robots

is infeasible, because no robot ever bounces. Consequently from Theorem 2 and

Theorem 3 follows

Corollary 2. The family of infeasible initial configurations of robots on the cycle

contains all configurations with the same initial direction of all robots. RingBounce is

the optimal position detection algorithm for all feasible initial configurations of robots

on the cycle. This algorithm assumes constant-size memory of the robot running it.

Clearly, we can easily adapt algorithm RingBounce, so for infeasible initial configu-

ration the algorithm stops and reports the infeasibility. It is sufficient to test whether

the very first walk of the robot ends with a bounce before the robot traverses the

distance of 1/2.

2.5. Bouncing on the Line Segment. In this section we show how the algo-

rithm for bouncing robots may be used for the case of a segment. We suppose that

each robot walks along the unit segment changing its direction when bouncing from

another robot or from an endpoint of the segment. Robots have the same capabilities

as in the case of the cycle and they cannot distinguish between bouncing from another

robot and bouncing from a segment endpoint.

We consider the segment [0, 1) containing n robots, initially deployed at positions

0 ≤ r0(0) < r1(0), . . . , rn−1(0) < 1. Each robot ri, 0 ≤ i ≤ n − 1 is given an

initial direction diri, such that diri = 1 denotes the left to right initial movement and

diri = −1 denotes initial movement from right to left on segment [0, 1). The robots

start moving with unit speed at the same time moment t = 0 at the predefined

directions and they change direction upon meeting another robot or bumping at

the segment endpoint. The main difficulty of the segment case is that the robot r

executing the position detection algorithm for the cycle has to report the relative

locations of other robots, i.e. their distances to its own initial position r(0), while in
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the segment case the absolute distance from r(0) to the segment endpoint has to be

found.

We show in this section that the bouncing problem is feasible for all initial robot

configurations except a small set of symmetric ones. Intuitively, an initial configura-

tion of robots is symmetric if the unit segment may be partitioned into k subsegments

S0, S1, . . . , Sk−1, such that the positions and directions of robots in each subsegment

form a reflected copy of positions and directions of robots in a neighboring subsegment

(see Fig. 3.3). More formally we have the following

Definition 1. A configuration C = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) is sym-

metric if there exists a positive integer k < n, such that n mod k = 0 and the parti-

tion of segment S = [0, 1) into subsegments S0 = [0, 1
k
), S1 = [ 1

k
, 2
k
), . . . , S1 = [k−1

k
, 1)

with the following property. For each robot ri, 0 ≤ i < n, if ri(0) = p
n

+ x, for

0 ≤ x < 1
k
, (i.e. ri(0) ∈ Sp), 0 ≤ p < n, then, if p > 0, there exists a robot ri′, such

that ri′(0) = p
n
−x and diri′ = 1− diri and, if p < n− 1, there exists a robot ri′′, such

that ri′′(0) = p+2
n
− x and diri′′ = 1− diri.

S0 S1 S2

10 r0 r1 r2 r3 r8 r9 r10 r11r4 r6r5 r7
1
3

2
3

time

Figure 3.3. Example of a symmetric initial configuration of n = 12
robots containing k = 3 subsegments

Theorem 4. Every symmetric initial configuration of robots is infeasible.
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Proof. Let C1 = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) be a symmetric configura-

tion and k the number of consecutive subsegments, each one being the reflected copy of

its neighbor. Construct now configuration C2 = ((r′0(0), dir′0), . . . , (r′n−1(0), dir′n−1))

of n robots considering also a sequence of n equal size intervals and swapping the roles

of odd-numbered and even-numbered robots of C1. More precisely for each robot ri,

such that ri(0) ∈ Sp = [ p
n
, p+1

n
) there exists a robot r′j such that r′j(0) = 2p+1

n
− ri(0)

and dir′j = 1 − diri. Observe that, no robot ever crosses the boundary of any sub-

segment Sp, i.e. ri(0) ∈ Sp implies ri(t) ∈ Sp, for any t ≥ 0. Indeed, by construction,

for any robot reaching and endpoint of Sp, different from points 0 and 1, at the same

time moment there is another robot approaching this endpoint from the other side

within the reflected copy of Sp provoking a bounce (cf. Fig. 3.4). Therefore, within

each even-numbered subsegment S2n of a symmetric configuration the relative posi-

tions of robots and their directions are the same (similarly within each odd-numbered

subsegment). Consequently, no robot can distinguish whether it is, say, in an even-

numbered segment of C1 or in an odd-numbered segment of C2 so its position in

segment [0, 1) is unknown.

We show now how the position detection algorithm for the cycle may be used in

the case of the segment.

Let S be a unit segment containing n robots at initial positions r0(0) < r1(0) <

. . . < rn−1(0) and the initial directions dir0, . . . , dirn−1. Suppose that a segment

SR ⊂ [1, 2] is the reflected copy of S containing n robots rRn , . . . , rR2n−1 at the initial

positions rRn (0) = 2− rn(0) < rRn−1(0) = 2− rn−1(0) < . . . < rR0 (0) = 2− r0(0). The

initial directions of each robot rRi is 1 − diri for 0 ≤ i < n. Let R2 be the cycle of

perimeter 2 composed of segment S concatenated with segment SR, with points 0

and 2 identified.

Consider the walk of robots ri, for 0 ≤ i < n, within segment S and cycle R2.

Let t0 = 0 and 0 ≤ t1 < t2 . . . be the sequence of time moments during which some

bounces occur. Each such bounce takes place either between some pair of robots or
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0
1

r0 rR2 rR0r1 r2 r3 rR1rR3rR4r4

2

t = 2

Figure 3.4. Five robots on a segment [0, 1) and their reflected copy

when some robot bounces from an endpoint of S. It is easy to see by induction on

i that at any time moment t ∈ [ti, ti+1] each robot rj has the same positions in S

and R2 as well as the same direction of movement and that the SR part of R2 is a

reflected copy of S. Indeed, by construction, this condition is true for the interval

[t0, t1]. If robots rj, rj+1 bounce against each other in S at time ti, at the same time

robots rj, rj+1 bounce in R2, as well as, by symmetry rRj bounces against rRj+1. If in

time ti robot r0 (or rn−1) bounce from an endpoint of S, by inductive hypothesis r0

bounces against rR0 at point 0 ∈ R2 (or rn−1 bounces against rRn−1 at point 1 ∈ R2).

In each case, the inductive condition holds. We just showed

0 1

r′0

r′1 r′2
r′3

r0

r1 r2

r3

0 1
r0 r1 r2 r3

R2

S

Figure 3.5. Example of the corresponding ring, R2, of a segment, S,
of lenght 1 wherein RingBounce may be used to find the initial positions
of the robots on S
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Lemma 4. The bounce sequence of any robot ri on segment S is the same as the

bounce sequence of ri on ring R2.

To prove that only symmetric configurations of robots on the segment are infea-

sible we need the following lemma.

Lemma 5. Suppose that the initial configuration of robots C = ((r0(0), dir0), . . . ,

(rn−1(0), dirn−1)) on a unit segment is not symmetric. Then no internal robot ri, for

1 ≤ i ≤ n− 2, may have all its left bounces or all right bounces at the same point of

the unit segment.

Proof. Suppose, by contradiction that there exists an internal robot having all

its left bounces at the same point (the proof in the case of all right bounces falling at

the same point is similar, by symmetry). Let i be the smallest index 1 ≤ i ≤ n − 2

of a robot with this property and point x, 0 < x < 1, be the point of all left bounces

of ri. We show first that the initial configuration of robots belonging to segment

[0, x] is the reflected copy of the initial configuration of robots belonging to segment

[x, 2x] Then robot ri−1 has all its right bounces also at point x. Consequently, at

each moment of time after the first such bounce, the position and the direction of

robot ri−1 is a symmetric (reflected) copy of robot ri with respect to point x. Then, if

i ≥ 2, the trajectory of ri−2 is a reflected copy of the trajectory of ri+1. By induction

on i, for any q ≥ 0 the trajectory of rq is the reflected copy of the trajectory of

r2i−q−1 and finally the trajectory of r0 is the reflected copy of the trajectory of r2i−1.

Therefore, all right bounces of robot r2i−1 are at point 2x of the unit segment, so

initial configuration of robots belonging to segment [0, x] is the reflected copy of the

initial configuration of robots belonging to segment [x, 2x], as needed.

By induction on j we prove that each subsegment [(j− 1)x, jx] is a reflected copy

of subsegment [jx, (j + 1)x]. By minimality of x, no such subsegment contains a

point which is never crossed by any robot, hence, for some value of j, we have jx = 1,

concluding the proof.
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We can show now, that the set of configurations on the unit segment for which

no position detection algorithm exists is exactly the set of symmetric configurations.

For all other configurations we propose an optimal position detection algorithm. We

suppose that the robot assumes that its initial direction on the segment is positive.

Otherwise, the robot needs to be chirality aware, i.e. capable of identifying the

positive direction of the segment.

Theorem 5. For any collection of n robots not in a symmetric initial config-

uration on the unit segment there exist a position detection algorithm A with cost

CA(n) = 2. For any ε > 0 there exist collections of robots, such that some of them

cannot terminate the execution of any position detection algorithm before time 2− ε.

Proof.

To construct algorithm A adapt algorithm RingBounce in the following way. The

constant of 1/2 used in lines 5, 6, 9 and 13 is changed to 1. Moreover, the values of

original positions output in lines 10 and 14 are multiplied by a factor of 2 and put

in the list C instead of being directly output. By Lemma 4 the algorithm finds the

positions of 2n robots of ring R2 constructed from segment S. Note that, as cycle R2

has size 2, we needed to scale up the time and distance constants of the algorithm by

the factor of 2.

Since the robots of S are not in a symmetric initial configuration, by Lemma 5,

only the endpoints of S are the points which are never crossed by any robot in S.

Consequently there are only two points in R2, which are never crossed by any robot.

This unique pair of (antipodal) points split cycle R2 into two segments, segment S,

and it reflected copy SR. Since the positions of all robots are stored in list C, it is

possible to perform in algorithm A the generation of the bounce sequence of each

robot of C, in order to find which two robots bounce in one direction against the

same positions of the cycle. This way, the first and the last robot on the unit segment

as well as its left and right endpoints may be identified, which permits to determine
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the rank and the absolute initial position of the robot running the algorithm, as well

as those of all other robots.

In order to analyze the cost of such algorithm, observe that, since exactly half of

2n robots in R2 have the same initial direction, by Theorem 2, robot ri terminates

its walk at time 1
2d

2n
n
e · c = 2, where c = 2 is the scaling factor.

We prove now the second part of the claim of the theorem. For any ε > 0 we con-

struct two different configurations of robots C1, C2 on the unit segment, such that for

some robots from C1 and C2 the bounce sequence until time 2− ε is the same. Con-

sequently, the robot observing such bounce sequence cannot unambiguously report

positions of other robots.

Let C1 be the configuration of two robots r0, r1, such that dir0 = dir1 = 1 and

r0(0) = ε
5 , r1(0) = 2ε

5 . We find below the first two values t1, t2 of the bounce sequence

of robot r0. Robot r1 reaches point 1 of the segment and bounces at time t∗ = 1− 2ε
5 ,

while robot r0 is at point 1 − ε
5 of the segment. Since at time t∗ the robots start

to approach, they meet after additional time ε
10 , so t1 = 1 − 2ε

5 + ε
10 = 1 − 3ε

10 and

r0(t1) = 1− ε
5 + ε

10 = 1− ε
10 . At time t1 robot r0 starts moving left on the segment until

it bounces at its endpoint 0. This takes time 1− ε
10 , so t2 = t1 +1− ε

10 = 2− 2ε
5 > 2−ε.

Consider now configuration C2, containing two robots r0, r1, such that dir0 =

dir1 = 1 and r0(0) = ε
10 , r1(0) = ε

2 . The similar analysis reveals that t∗ = 1 − ε
2 ,

r1(t∗) = 1, and r0(t∗) = 1− 2ε
5 . At time t∗, r0 and r1 start approaching and meet at

time t1 = t∗ + ε
5 = 1− 3ε

10 , while r0(t1) = 1− ε
5 . After the bounce at time t1, r0 walks

left until it bounces at endpoint 0 at time t2 = t1 + 1− ε
5 = 2− ε

2 > 2− ε.

Since for both configurations C1, C2 we have t1 = 1 − 3ε
10 and t2 > 2 − ε, hence

robot r0 cannot unambiguously output the initial robots’ positions before time 2− ε.

As the algorithm for the segment, presented in the proof of Theorem 5 assumes

storing in robot’s memory the positions of all robots, from Theorems 4 and 5 follows
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Corollary 3. The family of infeasible initial configurations of robots on the

segment contains all symmetric initial configurations of robots. There exists an opti-

mal position detection algorithm for all feasible initial configurations of robots on the

segment. This algorithm assumes O(n)-size memory of the robot executing it.
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3. Bouncing Robots with Arbitrary Speeds

In this section we keep studying the localization task by bouncing robots. In

this section we assume that robots have arbitrary masses and speeds. The difference

with the model from the previous section is essentially that in this chapter we do not

assume that robots move at the same speed and have knowledge of the speeds of all

robots.

In this section, we show that the feasibility of any configuration and the required

time for solving it under such stronger constraints depend only on the collection of

velocities of the robots. More specifically, if v0, v1, . . . , vn−1 is the collection of veloci-

ties of a given robot configuration C, we prove that C is a feasible robot configuration

if and only if vi 6= v̄ for all 0 ≤ i ≤ n − 1, where v̄ = v0+...+vn−1
n

. To figure out the

initial position of all robots no more than 2
min0≤i≤n−1|vi−v̄| time is required.

The results of this section were published in [18].

3.1. Preliminaries. As in the previous section we assume the principle of mo-

mentum conservation as well as the conservation of energy, so robots exchange ve-

locities when they collide. The capabilities of each robot are limited to measuring

the times of its collisions, to be aware of its velocity at any time, and to process the

information that it collects. Robots do not have control of their walks nor of their

velocities. Their walks depend on their initial positions, velocities, and sequence of

collisions. In addition, robots are not equipped with any visibility mechanism.

In this section we only study the localization task by a collection of n robots

r0, r1, . . . , rn−1 deployed on a continuous, one-dimensional cycle of perimeter one.

Each robot ri starts moving at time t = 0 with velocity vi either in counterclock-

wise or in clockwise direction. As usual, we assume velocities indicate direction and

speed. For any non-zero velocity, v, we denote by |v| its speed. As before, by diri we

denote the starting direction of robot ri, where diri = 1 if ri starts its movement in

counterclockwise direction (denoted for simplicity by (+)) and diri = −1 if it starts
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moving in clockwise direction (denoted by (−)). Accordingly, we identify positive ve-

locity with the counterclockwise direction (+) and correspondingly negative velocity

with the clockwise direction (−). By |v| we denote the speed of velocity vi.

Let P denote the sequence p0, p1, . . . , pn−1 of initial positions of the robots, mean-

ing pi = ri(0), 0 ≤ i ≤ n − 1. Without loss of generality, we assume p0 = 0 as well

as a non-decreasing order in the counterclockwise direction of the initial positions of

the robots.

If robot ri moves freely along the cycle with velocity vi during the time interval

[t1, t2], then its position at time t ∈ [t1, t2] is given by ri(t) = ri(t1) + vi · (t − t1).

When two robots collide they exchange velocities following the principle of momentum

conservation and conservation of energy in classical mechanics for objects of equal

mass [35]. We assume that in any collision no more than two robots are involved.

Regarding the capabilities of the robots, we assume that each of them has a clock

which can measure time in a continuous way. Each robot is always aware of its clock,

current velocity and the time of any of its collisions. The movement of a robot is

beyond its control in that it depends solely on its initial position and velocity, as well

as the collisions with other robots along the way. At the time of deployment, no robot

is aware of the initial position and the velocity of any other robot nor of the total

number of robots deployed in the cycle. Moreover, robots do not have a common

sense of direction.

Let S = (P , V ) be a system of n mobile robots r0, r1, . . . , rn−1 with initial positions

P = (p0, p1, . . . , pn−1) and velocities V = (v0, v1, . . . , vn−1) respectively; we denote by

v̄ the average of the velocities in V . We say that the localization problem for S is

feasible if there exists a finite time T , such that each robot can determine the initial

positions, and the initial velocities of all robots in the system with respect to its own

starting position and its own orientation of the cycle. This should be accomplished by

each robot by observing the times of a sequence of collisions taking place within some
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time interval [0, T ]. Note that each collision is accompanied by the measurement of

collision time and a corresponding exchange of velocities.

3.2. Feasibility of the Localization Problem. For two points p, q in the cycle,

by d(+)(p, q) we denote the counterclockwise distance from p to q in the cycle, i.e. the

distance which needs to be traveled in the counterclockwise direction in order to

arrive at q starting from p. Note that for p 6= q we have 0 < d(+)(p, q) < 1, and

d(+)(p, q) = 1− d(+)(q, p).

Recall that in order to visualize the dynamics of the robots in the cycle, as we

did in the previous section, we may consider an infinite line L = (−∞,∞) and for

each robot ri we create an infinite number of its copies r(j)
i , all having the same initial

velocity, such that their initial positions in L are r(j)
i (0) = j + ri(0) for all integer

values of j ∈ Z.

We use the idea of baton, applied previously in [16, 33], in order to simplify our

arguments and to gain intuition of the dynamics of the robots. Assume that each

robot holds a virtual object, called baton, and when two robots collide they exchange

their batons. By b(j)
i we denote the baton originally held by robot r(j)

i and by b(j)
i (t)

we denote the position of this baton on L at time t. Notice that the velocity of baton

b
(j)
i is constant so its trajectory corresponds to the line of slope 1/vi.

By putting together the infinite line and the trajectories of batons, we can depict

the goal of the robots up to any given time. For instance, in Fig. 3.6 the dynamics

of a system of three mobile robots is depicted. The walk of robot r0 along the cycle

corresponds to the thick polyline.

When a robot moves from any given position p on line L to the position p + 1

(or p− 1) such a robot has completed a tour along the cycle in counterclockwise (or

respectively. clockwise) direction. For example r0 in Fig. 3.6 has completed two

counterclockwise tours along the cycle between time t0 and t3. We show first, that

the feasibility of the localization problem does not change when the initial speeds of

all robots are increased, or decreased by the same value.
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Figure 3.6. Trajectory of robot r0 corresponds to the thick polyline.
The times of its first four collisions are also shown

Definition 1. A translation of a system S = (P , (v0, . . . , vn−1)) is a system

Sc = (P , (v′0, . . . , v′n−1)), where v′i = vi − c, 0 ≤ i ≤ n− 1, for c ∈ R.

Lemma 6. Let S be a system of robots and let Sc be any of its translations. For

every time t, velocities vi and vj are exchanged in S at time t if, and only if at time

t velocities vi − c and vj − c are exchanged in Sc.

Proof. Since S is also a translation of Sc, it is enough to prove the lemma in

one direction. Consider any translation Sc of system S and let v′i and v′j be such that

v′i = vi−c and v′j = vj−c for some c ∈ R and let bi, bj, b′i, and b′j be the corresponding

batons of velocities vi, vj, v′i, and v′j respectively.

Since the times of exchange of velocities v′i and v′j coincide with the times of

exchange of batons b′i and b′j, it is enough to prove that for every time t in which

batons bi and bj are exchanged in S, so are batons b′i and b′j in Sc.

We prove first that the time of the first meeting of bi and bj in S is the same as the

time of the first meeting of b′i and b′j in Sc. The statement is clearly true when vi = vj,

since in both systems S and Sc batons bi and bj stay forever at the same distance on

the cycle and no meeting ever occurs. Suppose then, by symmetry, that vi ≥ 0 and

vi > vj. Let d be the initial counterclockwise distance (i.e. at time t = 0) from bi to

bj, i.e. d = d(+)(bi(0), bj(0)). Observe that the batons approach at the speed equal
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to |vi − vj|. (Note that this holds as well when robots have different directions, i.e.

vj < 0: then |vi− vj| = |vi|+ |vj|). Hence the first meeting of bi and bj occurs at time

t∗ = d
|vi−vj | . However in Sc we have v′i = vi− c > vj− c = v′j and again the two batons

approach reducing their original distance d with speed |v′i − v′j| = |vi − vj| meeting

eventually after the same time t∗.

A careful reader may observe that the above argument holds independently of the

directions that the batons bj, b′i and b′j may have.

Observe that the same analysis holds by induction for the k-th meeting of the

robots, for k = 2, 3, . . . Indeed, if i < j, i.e. pi < pj, and d = pj − pi, then the k-th

meeting of bi and bj corresponds to the intersection of the trajectory of the copy b(0)
i

of baton bi with the copy b
(k−1)
j of baton bj. As their initial distance on L equals

d + k − 1, this meeting occurs at time t∗ = d+k−1
|vi−vj | in both systems S and Sc. If

i > j we have d = 1− (pj − pi) and the k-th meeting of bi and bj corresponds to the

intersection of the trajectories of b(0)
i and b

(k)
j , which happens at time t∗ = d+k

|vi−vj | in

both systems S and Sc.

An example from Figure 3.7, illustrates Lemma 6. The walk of robot r1 is rep-

resented by a thick polyline to illustrate how the walk of a robot is affected in a

translation of a system.

Lemma 7. Let S be a system of robots and Sc any of its translations. If ti is the

time of the i-th collision of robot rq in S, and t′i the time of the i-th collision of robot

rq in Sc, then ti = t′i for i ≥ 1, where t0 = t′0 = 0. Moreover, if v(ti) is the velocity of

robot rq at time ti, then the velocity of rq at time t′i is v(ti)− c.

Proof. Assume the lemma holds for i, so at time ti robot rq obtains some baton

bj in S, while at the same time rq obtains the corresponding baton b′j in Sc. Let ti+1

denote the first time moment after ti when baton bj meets another baton in S, say
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Figure 3.7. a) depicts a system of three robots r0, r1, r2 whose veloc-
ities are 3, 2,−2 respectively, b) depicts a translation of a) with new
velocities 2, 1,−3 (after subtracting 1 to each original velocity). Notice
that the time at which each collision takes place does not get affected.

bk. By Lemma 6 at the same time ti+1 baton b′j meets b′k in Sc. As v′k = vk − c the

claim follows.

We show below, that every robot, by each of its collisions, acquires information

about the initial position (relative to its own initial position) and initial velocity

of some other robot of the system. We show later, that if S is feasible, at some

time moment the collision revealing the position and velocity of any other robot will

eventually arise. However it is worth noting that up to that time moment, some

collisions revealing the positions of the same robot may arise several times. We

assume that, at time t = 0 each robot learns about its initial velocity.

Lemma 8. Consider the collisions obtained by robot rq deployed at its initial po-

sition pq in the cycle. Suppose that the last collision of robot rq, at time ti revealed

some robot rs, of initial velocity vs and initial position at counterclockwise distance

ds from pq, i.e. ds = d(+)(pq, ps). Further assume that, at time ti+1, robot rq collides
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obtaining velocity vt. Then there exists in S a robot rt with initial velocity vt such

that d(+)(pq, pt) = ((vs − vt)ti+1 + ds) mod 1.

Proof. Between time ti and ti+1 robot rq moves with velocity vs so we may

assume that it holds baton bs. The time of collision ti+1 corresponds to the time of

intersection of the trajectory of some copy b(j)
s of this baton with the trajectory of some

copy b
(k)
t of the baton moving with velocity vt. The absolute distance in L between

the starting positions b(j)
s (0) and b

(k)
t (0) equals |vs − vt|ti+1. Therefore d(+)(ps, pt) =

(vs − vt)ti+1 mod 1. Since by the assumption of the Lemma d(+)(pq, ps) = ds, we

have d(+)(pq, pt) = (d(+)(pq, ps) + d(+)(ps, pt)) mod 1 = ((vs − vt)ti+1 + ds) mod 1.

Figure 3.8 illustrates Lemma 8 in which a robot rq during its times of collisions

localizes the starting configurations of other robots.
rsrrqrt

ti+1

ti

ds

vt · ti+1

Figure 3.8. Trajectory of robot rq corresponds to the thick polyline

It follows from Lemma 8 that for a robot to figure out the starting position of

every other robot it should acquire every velocity of the system in a finite amount of

time. Lemma 8 provides the core of an algorithm for robots to report the starting

position of every robot. We describe such an algorithm later on. The next lemma is

an immediate consequence of Lemma 3.7 and Lemma 8.

Lemma 9. For any system S and its translation Sc, the position discovery problem

is solvable for S, if and only if it is solvable for Sc.
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Given a fixed point ρ in the cycle, which we call the reference point and S a system

of robots, we associate with each robot ri an integer counter ci that we call cycle

counter. A cycle counter ci increases its value by one each time robot ri traverses

the reference point ρ in the counterclockwise direction and decreases by one when

traversing ρ in clockwise direction. We denote by ci(t) the value of cycle counter ci

at time t. The initial value of ci is set to 0, meaning ci(0) = 0.

Let D(+)
i (t) denote the total distance that robot ri traveled until time t in the

counterclockwise direction, and D
(−)
i (t) - the total distance traveled by ri in the

clockwise direction. Denote Di(t) = D
(+)
i (t) −D(+)

i (t). The following observation is

the immediate consequence of ∑n−1
i=0 vi = 0 for system Sv̄:

Observation 1. For any system Sv̄ at any time moment t we have ∑n−1
i=0 Di(t) =

0.

Lemma 10. Consider the translation Sv̄ of any system S. At any time t, no two

cycle counters differ by more than 1, i.e |ci(t)−cj(t)| ≤ 1, 0 ≤ i, j ≤ n−1. Moreover,

there should be a cycle counterck(t) such that ck(t)(t) = 0 for some 0 ≤ k(t) ≤ n− 1.

Proof. Let us observe that since robots can not overpass each other they always

keep their initial cyclic order. Therefore, we can simulate the traversals on ρ by the

robots by assuming that robots remain static while ρ is moving in one of the two

directions along the cycle; when ρ traverses a robot ri in clockwise direction, counter

ci increases by one and decreases by one if ρ traverses ri in counterclockwise direction.

We prove first that |ci(t)| ≤ 1, for each 0 ≤ i ≤ n − 1. Indeed, suppose to

the contrary, that |ci(t)| ≥ 2. Consider first the case when ci(t) ≥ 2. In such a

case, ri must have traversed point ρ at least two more times in the counterclockwise

direction than in the clockwise one. Since the robots do not change their relative order

around the cycle, each other robot rj must have traversed ρ at least once more in the

counterclockwise direction than in the clockwise one. Hence D(+)
i (t) > D

(−)
i (t) for
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each i = 0, . . . , n− 1. This contradicts ∑n−1
i=0 Di(t) = 0. The argument for ci(t) ≤ −2

is symmetric.

It is easy to see that there are no two robots ri, rj, such that ci(t) = 1 and

cj(t) = −1. Indeed in such a case these robots must have traversed point ρ in

opposite directions which would have forced them to overpass - a contradiction.

Hence the values of all cycle counters at time t belong to the set {0, 1} or to the

set {0,−1}. However ci(t) 6= 0, for all i = 0, . . . , n − 1 would imply Di(t) be all

positive or all negative, contradicting ∑n−1
i=0 Di(t) = 0, which concludes the proof.

We can conclude with the following Corollary:

Corollary 4. For each robot ri of Sv̄ and any time t we have |Di(t)| < 1.

Proof. Suppose to the contrary that |Di(t)| ≥ 1 or, by symmetry, that D(+)
i (t)−

D
(−)
i (t) ≥ 1. In such a case, ri at time t made a full counterclockwise tour around

the cycle. By putting the reference point ρ = ri(0), we notice that this forces each

other robot rj to have cj(t) ≥ 1, which contradicts Observation 1.

Fig. 3.9 depicts a system of mobile robots, where the average of the velocities is

equal to 0. Notice that every robot in the picture never completes more than one

round along the cycle in any direction. In the picture the movements of r0 are shown

with a thick polyline to illustrate this.

Theorem 6. For any system of n mobile robots S = (P , V ) the localization

problem is feasible if and only if vi 6= v̄, for every vi ∈ V , Moreover, if the problem is

feasible, then each robot knows the positions and the velocities of other robots before

time T = 2
min0≤i≤n−1|vi−v̄| .

Proof. By Lemma 9, it is sufficient to prove the theorem for Sv̄ = (P , Vv̄).

We prove first, that if some robot ri has the initial velocity vi = v̄ = 0, then the

system is not feasible. For the localization problem to be feasible in Sv̄, each robot

must hold every baton at some time within some finite time interval [0, T ]. We prove
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Figure 3.9. An example of a system of robots where the average of
the velocities is equal to 0. Notice that no robot completes more than
one round in any direction.

by contradiction that, if there is a baton bq of velocity 0, then there exists a robot

whose trajectory will not intersect the trajectory of bq. Thus, such a robot would not

obtain the information about the velocity and the position of robot rq.

Consider cycle counters cj(t) for each robot rj, 0 ≤ j ≤ n−1, where the reference

point is set to ρ = rq(0). Because vq = 0, there is always a robot of Sv̄ that remains

motionless at point ρ. In other words, each robot of Sv̄, in order to hold baton bq has

to move to position ρ and collide with the current robot at that position. Observe that

it is not possible that all robots arrive at point ρ from the same direction around the

cycle. Indeed, in such a case the robot velocities would be all positive or all negative

implying v̄ 6= 0. Consequently, observe that there must exist two time moments t1, t2

and two consecutive robots ri and ri+1 (where index i + 1 is taken modulo n) such

that one of these robots visited ρ at time t1 while walking in one direction and the

other robot visited ρ at time t2 while walking in the opposite direction. Notice that

t1 6= t2, since we supposed no three robots meeting simultaneously, and ρ coincides

with a stationary robot.
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Suppose, that ri arrived at ρ at time t1 while walking clockwise and ri+1 arrived

at ρ at time t2 while walking counterclockwise. As robots are arranged in the coun-

terclockwise order around the cycle it follows that within the time interval [t1, t2]

each other robot has to walk counterclockwise through ρ (or walk more times coun-

terclockwise than clockwise) increasing its cycle counter.

Let S ′ = (P ′, Vv̄), where P ′ = (r′0(t1), . . . , r′n−1(t1)) and let c′j be the respective

cycle counter of robot r′j for every 0 ≤ j ≤ n− 1. Notice that during the interval of

time [0, t2 − t1] every robot of S ′ behaves exactly the same way as does every robot

in Sv̄ in the interval of time [t1, t2]. Thus, at time t∗ = t2 − t1 we have c′j(t∗) > 0 for

all 0 ≤ j ≤ n− 1 which contradiction Lemma 10. This implies that there is at least

one robot that does not learn the initial position of all robots.

The cases where ri+1, rather than ri, arrived at ρ at time t1 and when the directions

of ri and ri+1 while walking through ρ are reversed, are symmetric.

Suppose now that no robot has the initial velocity v̄ = 0. Consider any robot ri

and the interval I2 = [ri(0)− 1, ri(0) + 1] of the infinite line L. By Corollary 4 robot

ri never leaves interval I2 during its movement, hence its trajectory is bound to the

vertical strip of width 2 (cf. Fig. 3.9). Consider any baton bj. Suppose, by symmetry,

that vj > 0. Take the trajectory of a copy of baton bj which origins from the left half

of I2, i.e. from the segment [ri(0)− 1, ri(0]. This trajectory will go across the vertical

strip of width 2 enclosing I2 and leave it before time 2
|vj | , forcing the meeting of robot

ri and baton bj. If vj < 0 we need to take a copy of bj starting at the right half of I2,

i.e. in [ri(0), ri(0) + 1] and the argument is the same. The time of 2
|vj | is maximized

for j minimizing |vj|.

An example of an infeasible robot configuration is shown in Fig. 3.10, in which

robot r0 never learns the initial position of robot r1 since it never acquires velocity v̄.

3.3. The Localization Algorithm. In this section we present an algorithm to

solve the localization problem. The algorithm is based on Lemma 8. According to

Theorem 6, if robots have knowledge of the velocities of other robots on the cycle,
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Figure 3.10. Example of an infeasible configuration. Robot r0 never
learns about r1.

it is possible for them to detect the in-feasibility of the system without even starting

to move, or stop it when the variable clock reaches the value of 2
min0≤i≤n−1|vi−v̄| . Oth-

erwise, the algorithm is designed to run indefinitely. However, we can also assume

that a central authority, perhaps having the knowledge of the velocities of the robots

in the system, may modify robot’s signal variable move to halt the execution. The

present algorithm may report the position of the same robot more than once; this may

be clearly avoided providing robots with linear-size memory to recall all previously

output robots.

The main theorem ensures that at this time all robots have discovered all the

initial positions if the system is feasible.

In algorithm RingLocalization we assume that a robot has at any time immedi-

ate access to its clock as well as to the information of its current velocity through the

variables clock and velocity, respectively. So the value of these variables can not be

modified by the robot and they get updated instantaneously as a collision happens.

We can assume that the values of these variables correspond to the readings of robots’

sensors. A robot uses auxiliary variables, namely old velocity and pos for recalling

the position and the velocity of the robot detected through its last collision.
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Algorithm RingLocalization
1. var pos← 0, old velocity ← velocity: real;

move← true : boolean;
2. reset clock to 0;
3. while move do
4. walk until collision;
5. pos← ((velocity − old velocity) · clock + pos) mod 1;
6. output("Robot of velocity" velocity

"detected at position" pos);
7. old velocity ← velocity;

A robot rq executing Algorithm RingLocalization moves until a collision with

another robot takes place. At the presence of a collision it acquires a new velocity

vs, using this velocity (and its previous velocity stored in old velocity ) it computes

the starting position ps (with respect to rq’s starting position) of the corresponding

robot qs. Notice that variable pos clearly keeps track of ds = d(+)(pq, ps) of Lemma

8. Because of this and Theorem 6 the next results follows immediately.

Corollary 5. Let S = (P , V ) be a system of robots. Suppose that no ro-

bot has initial velocity v̄, meaning vi 6= v̄ for all vi ∈ V , and that the algorithm

RingLocalization is executed by each robot for time 2
min0≤i≤n−1|vi−v̄| . Then, every

robot correctly reports the initial positions and directions of all robots on the cycle

with respect to its initial position.

For two robots at small distance ε, starting in opposite directions with small

velocities v1 and v2 = −v1 it takes time 1−ε
2v1

to get the first collision, so the worst-case

time of localization algorithm proportional to 1
min0≤i≤n−1|vi−v̄| is unavoidable. Observe

that without the knowledge of velocities, even if the number of robots in the system

is known, it is impossible for a robot to decide at any time if the system is infeasible.

Corollary 6. For any robot r in any system system, there is no time bound for

r to decide whether it has localized all the starting positions of all the robots.
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Proof. By Theorem 6 to any system S it is possible to add a new robot of

velocity equal to the average v̄, making S infeasible for at least some robot ri of S.

Consequently, given arbitrarily large time T ∗ it is also possible to add to S a robot

of velocity close to v̄, so the system stays feasible but not within the time bound of

T ∗.

4. Conclusions

Notice that the evenly spread problem of n robots on a cycle can be performed

using bouncing robots for all cases in which there is a majority on one of the two

starting directions of the robots, i.e, for all cases in which solving the localization

problem takes more than a constant time. After executing RingBounce, robots figure

out the system of coordinates of all robots, hence they simply agree upon an orien-

tation of the cycle. For instance, if the majority starts moving in counter clockwise

direction they agree upon such a direction as the clockwise direction of the cycle,

and then they execute the algorithm described in [27] to evenly spread themselves

in the cycle. Notice that we would also have to allow robots to have control of their

movements.

An open problem is investigating the localization problem by bouncing robots of

different masses this scenario seems to be challenging since the resulting dynamics of

the system of robots is much more complex. In this case, robots do not exchange ve-

locities any more so probably robots would need to be enhanced with new capabilities

for them to solve the task.



CHAPTER 4

Survivability of Bouncing Robots

In this section we study the survivability of swarms of bouncing robots. To do so,

we mark the starting position of every robot as deadly in the sense that if a robot

ever returns to its starting position it dies. A robot survives if it never returns to

its starting position. We investigate the necessary conditions for swarms of bouncing

robots to have surviving subsets in the cycle and in the segment. Since bouncing

robots do not have any control over their movements, it might seem that in most

configurations all the robots must die. We prove that this is not always the case, thus

answering an open question first posed in [46] for the case of robots of equal masses

and speeds.

1. Results

In Section 3, we prove some general properties regarding the dynamics of bouncing

robots that are crucial for understanding their survivability. In Section 4, we study

the survivability of swarms of robots of equal masses and speeds. We prove that if the

robots are deployed in a segment they all must die. In contrast, in the cycle we show

the existence of swarms with two survivors for a swarm of n ≥ 4 robots and we prove

that the smallest swarm with survivors has four robots with exactly two survivors.

We also prove a lower bound on the number of robots that die if not all robots have

the same initial direction. For the case of robots of arbitrary masses and velocities,

in Section 5, we prove that, if robots are deployed in a segment, the survivors, if any,

must become indefinitely immobile. However, this is not the case when the robots

are deployed in a cycle. We show that in the cycle at least one robot dies and that
57
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the maximum number of robots that can survive either in the cycle or in the segment

is n− 1. We conclude by listing some open problems in Section 5.

The results of this chapter were published in [14].

2. Preliminaries

Let Sn = (M,H,U) be a swarm of n bouncing robots r0, r1, . . . , rn−1 with masses

M = (m1,m1, . . . ,mn), starting positions or home bases H = (h1, h1, . . . , hn), and

non-zero initial velocities U = (u1, u2, . . . , un), respectively. We call the size of a

swarm the total number of robots.

We study the question concerning robots moving in a segment and in a cycle. We

assume that each robot starts moving at the same time with constant speed until a

collision takes place. When two robots collide, they update their velocities following

the conservation of momentum and conservation of energy principles. For the case

of the segment, its end points model walls in which robots can collide with. When a

robot collides with a wall it reverses direction but keeps moving with the same speed.

Recall that throughout this thesis, we assume that collisions are elastic and that in

any collision no more than two robots participate. Thus, if two robots of equal masses

collide, they simply exchange velocities. If robots r1 and r2 of masses m1 and m2, and

velocities u1 and u2 respectively, collide, after their collision they get new velocities

v1 and v2 , respectively following equations 1.

A cycle of perimeter l is modeled by the real interval [0, l], with 0 and l corre-

sponding to the same point. By ri(t) ∈ [0, l] we denote the position of robot ri at

time t. We suppose that originally each robot ri occupies the position ri(0) = hi of its

environment and that 0 ≤ r1(0) < r2(0) < · · · < rn(0). Each robot is given an initial

direction, clockwise (cw) or counterclockwise (ccw) in the cycle and left-to-right or

right-to-left on the segment, according to which it starts its movement. By diri we

denote the starting direction of robot ri and we set diri = 1 if ri starts its movement

in the counterclockwise direction around the cycle or the left-to-right direction along
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the segment. By diri = −1 we denote the clockwise starting direction (on the cycle)

or right-to-left (on the segment).

By S+ we denote the number of robots in the swarm S whose initial direction

is counterclockwise and by S the number of robots in the swarm S− whose initial

direction is clockwise. We identify the counterclockwise and left-to-right directions

as positive.

A robot dies if at some time it returns to its home base. If a robot ra dies, it

disappears from the environment and does not interact with any other robot any

more. On the other hand, we say that a robot survives if it does not die. If D is a

subset of robots of a swarm Sn that die at some time, Sn \ D denotes the resulting

swarm of survivors after the death of the robots in D.

The death of a robot takes priority over collisions, i.e, if two robots collide at the

home base of one of them, the death of the robot returning to its home base takes

place first and the other robot keeps moving without updating any of its parameters.

If the collisions of a swarm are not concurrent (no two different collisions take

place at the same time), we can enumerate the collisions. Notice that this is not

possible in most cases since it is plausible that two different pairs of robots may

collide at the same time. If collisions can be enumerated, we denote the i-th collision

of a given swarm by Ci = (a(dir), b(dir′)), where a and b are the robots involved in

the i-th collision, and dir, dir′ ∈ {+,−}, denote the directions that the robots had

before colliding. We use (+) to denote the ccw direction and (−) to denote the cw

direction. We use the notation u(j)
i to indicate the velocity of robot ri resulting after

the j-th collision of the swarm, where u(0)
i = ui denotes the initial velocity of robot

ri.

Since we use some properties of classical mechanics to prove our results, we define

some useful concepts that extend from the properties of systems of particles. Suppose

we have a swarm Sn of bouncing robots r1, r2, . . . , rn, of initial velocities u1, u2, . . . , un

and masses m1,m2, . . . ,mn, respectively. Analogously to systems of particles we
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define the momentum of the swarm as P (Sn) = ∑n
i=1miui, where miui is the linear

momentum of robot ri. The velocity of the swarm is defined as U(Sn) = P (Sn)
M

, where

M = ∑n
i mi. Finally, the kinetic energy of Sn is given by KE(Sn) = ∑n

i=1miu
2
i .

3. General Behavior of Swarms of Bouncing Robots

In this section we focus on studying the dynamics of bouncing robots as they are

deployed either in a segment or a cycle. In all these results, we do not assume that

robots die since we focus only on studying their dynamics. We denote the infinite line

by L = (−∞,∞), and the half positive semi-line by L+ = (0,∞), where 0 represents

the wall on which the leftmost robot may collide. We say that a swarm Sn deployed

on L, expands to the right (respectively to the left) if and only if:

(1) there exists t0 ≥ 0, such that for every t ≥ t0, no more collision takes place,

and

(2) for any b > 0, there exists some robot rm and time tm such that rm(tm) > b

(respectively rm(tm) < a, for arbitrary a < 0).

We say that Sn expands in both directions, if and only if Sn expands to the right and

to the left.

Theorem 1. Let Sn be any swarm of bouncing robots deployed on L, such that

KE(Sn) 6= 0. Then, for any finite segment [a, b] ⊂ L, there exists a time t?, such that

for any t′ > t? some robot rm(t′) /∈ [a, b]. Moreover, if the swarm has either positive

or negative or zero momentum, the swarm expands to the right or to the left or in

both directions, respectively.

Proof. Let Sn be a swarm of robots, such that KE(Sn) 6= 0, and let [a, b] ⊂ L be

any finite segment. We assume that hi ∈ [a, b], for i ≥ 1. Since the number of elastic

collisions in L for any system of particles is finite [48], and the robots of Sn behave

exactly as particles, the number of collisions in Sn is also finite. More precisely, there

exists some t0 ≥ 0, such that for any t ≥ t0 no more collisions take place among

the robots of the swarm. Because of the principle of conservation of kinetic energy,
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KE(Sn) 6= 0 at any time, meaning that at any time there exists one robot rm that is

still moving on the line. Let us assume that rm(t0) ∈ [a, b] and that rm is moving to

the right with velocity v, then rm(t′) > b for any time t′ > t?, where t? = |b−rm(t0)|
|v| , for

arbitrary b ∈ L. Analogously, if rm is moving to the left, t? = |a−rm(t0)|
|v| . This finishes

the proof of the first part of the theorem. Notice that since we are assuming the

principle of conservation of momentum, at any time bigger than t0 the momentum of

the system remains the same. Thus, if P (Sn) < 0, not all robots might have positive

velocities. Thus, Sn expands to the left. Analogously, if P (Sn) > 0, there must exist

some robot moving with positive velocity. If P (Sn) = 0, the swarm must expand in

both directions.

In the next corollary, we assume that robots are deployed on the half infinite line.

The origin models a wall, if the leftmost robot collides with the wall, it bounces back,

i.e, the robot reverses direction but keeps moving with the same speed.

Lemma 11. Let Sn be any swarm of bouncing robots deployed on L+. There exists

a swarm S2n of bouncing robots deployed on L, such that P (S2n) = 0 and half of its

robots mimic the dynamics of the robots in Sn.

Proof. We define S2n in the following way: for each ri ∈ Sn with initial position

ri(0) ∈ L+ and initial direction diri, we define robots rî and r−i in S2n, such that

rî(0) = ri(0), r−i(0) = −ri(0) , dirî = diri and dir−i = −diri. Consider the walk of

robots ri, for 0 ≤ i ≤ n, within the line L+. Let t1 < t2 < · · · be the sequence of

times when a collision takes place in Sn. It is easy to see by induction on i that at

any time t, r(t)î = ri(t) and that r(t)−i = −ri(t) in L+.

The following corollary follows from the Theorem 1 and Lemma 11.

Corollary 1. Any swarm Sn of bouncing robots of arbitrary masses and veloci-

ties that are deployed on L+, such that KE(Sn) 6= 0, expands to the right.
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Proof. Take swarm S2n of Lemma 11. Since P (S2n) = 0 and KE(S2n) 6= 0,

Theorem 1 implies that S2n expands in both directions. It follows that Sn expands

to the right.

Let D(+)
i (t) denote the total distance that robot ri traveled until time t in the ccw

direction, and D(−)
i (t) - the total distance traveled by ri in the cw direction. Denote

Di(t) = D
(+)
i (t) −D(−)

i (t). The next theorem establishes a relationship between the

momentum of a swarm and the total distance that any robot traverses.

Theorem 2. If Sn is a swarm of bouncing robots of same masses but arbitrary

speeds, such that P (Sn) 6= 0, then all robots eventually complete a full cycle.

Proof. Without loss of generality assume P (Sn) > 0, then we have that U(Sn) > 0

which implies that t ·(∑n
i=1 vi) > 0, for any t > 0. Therefore, there exists a big enough

t? > 0 such that Di(t?) ≥ 1 for any i ≥ 1.

4. Robots of equal masses and equal speeds

In this section, we study the survivability of bouncing robots of equal masses and

speeds that are deployed either in a segment or a cycle. The following result shows

that there are no swarms of equal masses and speeds in the segment that contain

surviving robots.

Theorem 3. All bouncing robots die of any swarm deployed in the segment.

Proof. Let Sn be a swarm of bouncing robots of same speeds and masses. Notice

that in Sn during a collision either with a robot or with a wall, robots simply reverse

direction, so if KE(Sn) 6= 0, no robot can remain static at any time even in the

presence of the death of a robot. We prove this theorem by induction on the size of

the swarm, so we assume that in any swarm of size n − 1 all robots die. Let Sn be

a swarm of size n. It is enough to prove that one of the extreme robots of Sn dies.

Let r1 and rn be the leftmost robot and the rightmost robot, respectively. Notice

that if dir1 = 1, r1 will die after reversing direction. Without loss of generality, let us
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assume that dir1 = −1. If no robot dies, robot r1 has to be bumping against the wall

and its neighbor r2 so that it never returns to its home base, for the same reason r2 is

bumping against r1 and r3 without reaching its home base and so on. This can only

happen if robots r1, . . . , rn−1 are at the left of their home bases indefinitely, however

this can not be true for rn which after colliding with rn−1 reverses direction and dies.

The remaining system has n − 1 robots and because of the induction hypothesis all

of them die.

Observation 2. An interested reader may notice that Theorem 3 also holds for

robots of equal masses but arbitrary non-zero speeds.

Theorem 4. There exist swarms of size four in a cycle containing two survivors.

Proof. Let S4 be a swarm of size four deployed in a cycle of perimeter 80.

Let h1 = 10, h2 = 25, h3 = 30, h4 = 80 and u1 = u2 = u3 = 1, u4 = −1 be the

corresponding home bases and initial velocities of the robots, respectively. We assume

that all the robots have unitary masses. It is easy to check that robots r1 and r2

survive while the other two robots die.

The configuration from Theorem 4 is the first correct example of surviving subset

of robots. We argue below that the example from [46], represented in Table 1, which

supposedly contains a swarm of five robots with four survivors is not correct. The

table describes the positions (in degrees) of the robots (in the cycle) at the given

time, where + and − indicate the current directions of the robots (+ for ccw and

− for cw). The time is given in seconds and it takes 128 seconds for a robot to

complete a full cycle. For instance, r1 has starting position at 120 degrees and cw

initial direction and it dies after 110 seconds while the remaining robots live eternally.

Although it is correct that the first robot to die is r1, it is easy to check that

robot r3 or robot r2 must die as well. This is because both of them have to reverse

direction and inevitably one of them must return to its home base. The following
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Figure 4.1. This figure depicts the walks, times of collision and the
death of the robots of Theorem 4. Robots r3 and r4 die while r1 and
r2 live eternally.

time r1 r2 r3 r4 r5
0 −120 −92 +55 +41 +51

110 die −102 +100 +0 −74
123 +115 −87 −115 +87

Table 1. Example given in [46]

theorem states that there are no swarms of smaller size than the swarm of Theorem

4 with survivors.
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Theorem 5. In the cycle any swarm of size less than four has no survivors.

Proof. The Theorem is clearly true for swarms of size less than three. Without

loss of generality, assume that 1,−1, and 1 are the initial velocities of robots r1, r2

and r3, respectively. Let us assume that d(+)(h3, h2) = x and d(+)(h1, h3) = y as Fig

4.2 depicts. Notice that C1 = (r(−)
2 , r

(+)
3 ), so let b be the point of the first collision

that takes place at time t1 = x
2 . Let a be the position of r1 at such a time. Following

Equation 1, r3 reverses direction after colliding with r2. In the best scenario, r3 reaches

its home base and dies together with r2 at time x. Thus, r1 completes a full cycle and

dies. If r3 does not die, collision C2 = (r(−)
2 , r

(+)
3 ) takes place at some point c at time

t2 = t1 + y
2 before r3 reaches its home base. Notice that d(+)(a, c) = d(+)(c, b) = y

2 (see

Fig 4.2). It is clear that at time 2t2, robot r1 reaches its home base, at the same time

r3 is at the home base of r2 which has already died. Even if h2 = h1, robot r1 dies

since the death of robots take priority over collisions. Therefore, the theorem holds.

r2

r1

r3

a

b

c

x
2

y
2

y
2

x
2

h2

h1

h3

Figure 4.2. This figure illustrate theorem 5. No robot survives

For two points p, q in the cycle, by d(+)(p, q) we denote the counterclockwise

distance from p to q in the cycle, i.e. the distance which needs to be traveled in the

counterclockwise direction in order to arrive at q starting from p. We denote the time

of the j-th collision of robot ri by t
(j)
i . For simplicity, we scale the perimeter of the

cycle of Theorem 4 so as to have a unitary cycle.
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Observation 3. The following observations are crucial to understand the sur-

vivability of the survivors of the swarm of Theorem 4.

(1) For i = 1, 2, 3, we have that:

(a) t(1)
i = d(+)(hi,h4)

2 . Thus for ri not to die after reversing direction in its

first collision, it should get its second hit before time 2t(1)
i . This can only

happen if, there exists some robot rc such that dirc = 1 and d(+)(hc, hi) <

2t(1)
i .

(b) robot ri after its first collision every time that it moves in cw direction

it does so by exactly 1
2 time.

(2) For r1 and r2 to survive, the second hit of r1 must take place within the

interval (h1, h2). To guarantee so, for each robot rl, such that dirl = 1,

2
(
t
(1)
1 − d(+)(h1, h2)

)
< d(+)(hl, h2), and

(3) If robot r3 participates in a fifth collision, its total distance traversed

would be 1 + t
(1)
3 −

d(+)(h2,h3)+d(+)(h1,h2)
2 . So it must hold that d(+)(h3, h4) −(

d(+)(h2, h3) + d(+)(h1, h2)
)
> 0, since robot r3 dies after its fourth collision.

The next theorem is an extension of Theorem 4.

Theorem 6. There exists a swarm in the cycle of size n of two survivors, for any

n ≥ 4.

Proof. The idea is to simply extend the swarm of Theorem 4 by inserting an

arbitrary number of robots ra that copy the behavior of r3, i.e, that die after their

fourth collision without disturbing the survivability of r1 and r2. Notice that if we

add a new robot ra between robots r2 and r3, we have that its first collision takes

place at time t(1)
a = d(+)(ha,h4)

2 > t
(1)
3 . Further, because of Observation 2, it holds that

t(1)
a −

(
d(+)(r2, ra) + d(+)(r1, r2)

)
> 0. Thus, at time t(5)

a , the total distance covered by

ra would be 1 + t(1)
a −

d(+)(h2,ha)+d(+)(h1,h2)
2 which is also bigger than one and therefore

ra would die after its fourth collision. Moreover, after inserting ra, robot r3 still dies
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since the total distance covered in ccw direction until its new fourth collision would

be d(+)(ha, h3) + d(+)(h2, ha) < d(+)(h2, h3). Finally, notice that the addition of ra

would not make the second hit of r1 to happen outside of d(+)(ha,h3)
2 since Observation

2 holds for r3. It is easy to check that Observation 1 holds after the insertion of ra.

We can repeat this procedure as many times as we want by adding new robots and

still having r1 and r2 as survivors. Therefore, the theorem holds.

The following corollary is an immediate consequence of Theorem 2.

Corollary 2. For any swarm S in the cycle at least |S+ − S−| robots die.

Proof. Let S be a swarm of bouncing robots of equal masses and speeds, we have

that P (S) = ms(S+ − S−), where s and m denote the values of the common speed

and mass of the robots, respectively. Theorem 2 guarantees that unless S+−S− = 0,

the swarm moves forward in the direction of the majority and thus there exists some

robot that returns to its home base and dies. It follows that in S at least |S+ − S−|

robots die.

5. Robots of Arbitrary Masses and Velocities

Recall that If the collisions of a swarm are not concurrent, Ci = (a(dir), b(dir′))

denotes the i-th collision in the swarm, where a and b are the robots involved in such

collision and dir, dir′ ∈ {+,−}, denote the directions that the robots had before they

collide.

Theorem 7. For any n ≥ 2 there exists a swarm Sn of bouncing robots of size n

in the segment, such that:

(1) u1 > 0 and ui < 0, for all 2 ≤ i ≤ n.

(2) Ci = (r(+)
i , r

(−)
i+1), for all 1 ≤ i ≤ n− 1, such that:

(a) u(i)
i = 0, robot ri stops.

(b) u(i)
i+1 > 0, robot ri+1 reverses direction.

(3) only rn dies.
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(4) ui+1 = mi+1−mi

2mi+1
u0

1
∏i
j=2

(
2mj−1

mj−1+mj
+ (mj−mj−1)2

(mj−1+mj)2mj

)
.

Proof. Let us assume that robots are deployed on the infinite line L, and let di

be the distance between robot ri and robot ri+1. Also, let Xi be the distance that

robot ri traverses until its first collision (with ri−1). We first define dn, the distance

between rn and rn+1, such that Cn takes place. Property 3 ensures that rn dies after

colliding with rn−1, so we set the Cn collision such that it happens before rn returns to

its home base. Also Cn should not interfere with the order of the previous collisions,

so it should take place after the time of the Cn−1 collision. Therefore, for arbitrary

given initial velocity un+1 of robot rn+1:

Xn

un
un+1 −Xn < dn <

(
Xn

un
+ Xn

u1
n

)
un+1, n ≥ 2.

Xn+1 =
(
Xn

un
+ Xn

u1
n

)
un+1, n ≥ 2.

X1 = u1
d1

|u1|+ |u2|
, d1 > 0.

Notice that after Cn takes place it is possible that rn keeps moving and that rn+1

does not reverse direction. So we set the value of un+1 equal to:

un+1 = mn+1 −mn

2mn+1
un−1
n , n ≥ 1.

where u(n−1)
n is the velocity that robot rn acquires at its first collision (the n − 1

collision of the entire swarm). Because of property 2b for Sn, u(n−1)
n > 0, it holds

that mn+1 −mn < 0. It is easy to verify in equations 1 and 1 that u(n)
n = 0 and that

u
(n)
n+1 > 0 and therefore robot rn+1 returns to its home base, thus properties 1-3 hold.

Notice that we can set the perimeter of the cycle equal to: da+db+∑n
i=1 di, where da

is the distance between the left wall and robot r1 and db the distance between rn+1

and the right wall.
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Finally, to show how to compute the velocities of the robots (property 4), observe

that:

ui = ai−1u
(i−2)
i−1 , for i ≥ 2,(2)

u
(i−1)
i = biu

(i−2)
i−1 + ciui, for i ≥ 2.(3)

where we used the abbreviations:

ai := mi+1 −mi

2mi+1
, bi := 2mi−1

mi−1 +mi

, ci := mi −mi−1

mi−1 +mi

.

Equation (3) is Equation 1 for the new velocity of ri after collision Ci−1 =

(r(+)
i−1, r

(−)
i ). Recurring over Equation (3) and recalling that u(0)

1 is an arbitrary positive

velocity we see that

u
(i−1)
i = u0

1

n∏
i=2

(bi + ciai−1)

Finally we have

ui+1 = aiu
(0)
1

i∏
j=2

(bj + cjaj−1)

dn

Xn

r1 rn−1 rn rn+1

time

Xn+1

. . .

Xn−1

Xn−1

Xn

Xn+1

dbda

Figure 4.3. Illustration of Theorem 7, where exactly n− 1 robots survive

Notice that Theorem 7 can be extended to the cycle since the construction is

independent of the environment.
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Corollary 3. For any n ≥ 2 there exists a swarm Sn of bouncing robots of size

n in the cycle in which exactly n − 1 robots survive, such that properties 1 − 4 in

Theorem 7 are valid.

Theorem 3 shows that in the segment all robots die if they have all the same

masses and speeds. This is because, the laws of classical mechanics for particles of

equal masses and speeds force each robot to have at any time a fraction of the total

kinetic energy of the swarm so they can never be static. However, if robots have

arbitrary masses and velocities, it is possible that some robot carrying all the kinetic

energy of the swarm dies, then all the remaining static robots would survive.

Theorem 8. Let Sn be any swarm of bouncing robots of different masses and

arbitrary velocities deployed in the segment and let D be the subset of robots of Sn

that do not survive. Therefore, the robots of the resulting swarm after the death of

the robots in D must be static, i.e, KE(Sn \D) = 0.

Proof. Let D be the set of robots of the swarm that have died so far and let

us assume that KE(Sn \D) 6= 0. We can relabel the robots in such a way that the

robots at the extremes of the segment are r1 and rm for some m ≤ n. Without loss

of generality assume that rm is static if not, we can consider the equivalent system in

which we substract ub (the velocity of rm ) from all the velocities.

Notice that if robot rm is at the left of its home base (respectively r1 at the right

of its home base), it is enough to prove that it will get hit by rm−1) (respectively by

r2), Equation 1 guarantees that rm must move left-to-right direction after a hit by

rm−1 and hence return to its home base. Corollary 1 guarantees that the hit exists.

So we assume that rn remains still at the right of its home base. Again Corollary 1

guarantees that rm will get hit by rm−1, however, it is possible that after colliding

with the right wall and before it returns to its home base it collides with rm−1 so it

would not die. Notice that for rm−1 not to die, it has to collide with rm−2 before it

reaches its home base, and so does rm−3 and so on. In general, robots r1, . . . , rn−1
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should be at the right of their home bases and ri must collide ri+1 before ri+1 reaches

its home base, for 1 ≤ i ≤ n. It follows that r1 must die after colliding with r2.

Notice that we can apply this argument as long as |D| < n or KE(Sn \D) 6= 0. In

both cases the lemma holds.

In contrast to the case of the segment in which all survivors must be static, in the

cycle there are swarms of non-static survivors.

Theorem 9. In the cycle there exist a swarm S3 of size three in which only one

robot dies and the kinetic energy of the survivors is different from zero.

Proof. Let ha = 0, hb = 20, hc = 16 be the home bases of robots ra, rb and rc,

respectively, and let ma = 1,mb = 3,mc = 3 and ua = 3, ub = 1, uc = −1 be the

values of their respective masses and velocities. The resulting swarm satisfies the

properties of the theorem.

The next theorem states that the number of survivors can never be larger than

n− 1 in any swarm of arbitrary masses and speeds deployed in the cycle.

Theorem 10. Any swarm Sn of bouncing robots of arbitrary masses and speeds

in the segment or a cycle has some robot that dies.

Proof. Consider first a segment environment. As the initial kinetic energy of

the swarm is positive and it stays the same after any bounce it must stay positive

until some robot dies. By Theorem 8, at least one robot has to die. Consider now

a cycle environment. Take the the segment representation of the cycle. It is enough

to prove that one of the two robots at the end points of the segment dies. Theorem

1 guarantees that if no robot dies, all the robots can not remain colliding among

themselves in the interval (h1, hn) for an indefinite period of time but that there

exists a time t? in which no more collisions take place and that some robot would

eventually leave the interval [h1, hn]. Notice that the first robots that can leave the

interval [h1, hn] can only be r1 or rn. Thus, whatever the direction of the expansion

of the swarm is, robot r1 or robot rn will die.
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6. Conclusions

One open problem is to study the survivability of robots when the deadly zones

are not just points but rather regions of the environment. It also remains open to

investigate the largest number of survivors for robots of equal masses and speeds.

Towards this goal, we wrote a program in Java to simulate the survivability of

bouncing robots in the cycle. Our program randomly generated positions and initial

directions for n robots of unitary masses and speeds and tested their survivability.

Our program could only find examples with two survivors for 1 ≤ n ≤ 10. It also

remains open to figure out the largest number of non-static survivors for swarms of

different masses and velocities. We only considered elastic collisions between robots,

so we think that it would be interesting to study the case of inelastic collisions and

different physical interactions among the robots.



CHAPTER 5

Communication with Bouncing Robots

In this Chapter we investigate communication protocols in a modified version

of the model of bouncing robots. As before each robot is given an initial direction

at which it starts its movement, the interaction among robots is limited to elasti-

cally colliding among themselves. Each bouncing robot has no knowledge about its

environment and about any other robot. When two of them collide, they instanta-

neously update their velocities according to the laws of classical mechanics for elastic

collisions. They neither have control on their movements nor have any visibility mech-

anism. However, we allow robots to communicate only when they come into contact

with each other.

We study collections of bouncing robots that are able to communicate in a limited

way. Each bouncing robot initially possesses a piece of data that is intended to be

transferred to other robots. During a collision, robots exchange all the data they

have collected until that moment. Our model of communication is similar to the ones

used for studying the spread of some diseases in the sense that certain information is

transmitted as long as an infected robot touches a non-infected one.

It was proven in [48] that the number of collisions of elastic particles sliding on an

infinite line is finite. Thus, there is a time after which bouncing robots stop colliding

among themselves, implying that the spreading of information can not last forever.

This raises some fundamental questions which we address in this thesis: For a robot r

transmitting some information, what are the robots that get the initial information of

r? Are bouncing robots able to perform broadcasting, convergecast, and gossiping?

One may relate our information spreading to infection propagation - when one robot

is infected and infection is transmitted by contact, we may be interested what is the

73
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portion of the population infected at time t. The results presented in this Chapter

have been submitted to a conference.

1. Preliminaries

Let Sn = (H,V) be a collection of n bouncing robots r1, . . . , rn, starting positions

H = (h1, h1, . . . , hn), and non-zero initial velocities V = (v1, v2, . . . , vn), respectively.

We assume that h1 < h2 < · · · < hn−1 < hn and that robots are deployed on an

infinite line,

glsli = (−∞,∞). Bouncing robots behave like elastic particles updating their veloc-

ities at the times of their collisions according to the laws of classical mechanics [35].

Similarly as in [48, 12, 40], we assume that no more than two robots may collide at

the same position and at the same time. We assume that all robots have equal masses

such that when two of them collide they simply exchange velocities. We denote by

νi(t), the velocity of robot ri at time t, thus νi(0) = vi.

Each robot ri initially holds some piece of data (or information) di which is in-

tended to be transmitted to other robots. When two robots collide, they exchange

all the data that each of them has collected up to that moment. So we assume that

every robot has enough memory to store all the information it collects. Robots do

not overpass each other thus preserving at all times their initial order.

We denote by ρ(t, i) the index of the rightmost robot holding di at time t, analo-

gously, λ(t, i) denotes the index of the leftmost robot carrying di at time t. For every

robot ri we define Mi = max{vj ∈ V| j ≤ i} analogously, mi = min{vk ∈ V| i ≤ k}.

Finally, Ri = |{vj < Mi| i < j}|, and Li = |{vj > mi| i < j}|.

The transmission range of any robot ri is an interval of robot indices [a, b] ⊆ [1, n]

such that for every j ∈ [a, b], robot rj receives di. A robot ri broadcasts di if and

only if its transmission range is [1, n]. We denote the set of robots of Sn that perform

broadcasting by B(Sn). A convergecast robot r is a robot that receives every di for

1 ≤ i ≤ n. Gossiping in Sn takes place if and only if B(Sn) = {r1, . . . , rn}.
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2. Transmission Range of Bouncing Robots

Sevryuk [48] proved that the number of collisions in a system of elastic particles

is finite. For any collection of robots Sn there exists a minimal time moment t? such

that for any t > t? no more collisions take place among the robots of Sn. We call t?

the expansion time of Sn. The following lemma follows immediately.

Lemma 12. After the time of expansion of any collection of bouncing robots all

the robots are sorted by their velocities.

Since after the time of expansion no more collision can take place, any transmission

of information among robots must happen before the system expands. The following

lemma is a consequence of Lemma 12.

Lemma 13. For any collection of bouncing robots Sn, if robot ri acquires initial

velocity vj for i ≥ j (j > i), then ri receives all information dk for j ≤ k ≤ i

(i ≤ k ≤ j).

Proof. For ri to get velocity vj there was a sequence of collisions among robots

s = rj, rj+1, . . . , ri−1, ri in which vj was transferred from rj to ri. Notice that together

with vj also dj was transferred. As vj is transferred from rj to ri, every robot rk also

transmits dk together with vj, for all j ≤ k ≤ i. Therefore, at the time ri received dj

it also received every dk. Analogously, if j > i.

The initial information di is spread through the bounces to successive robots left

and right to ri. In particular, at any time t, we may be interested what are the

leftmost and the rightmost robots (and their current speeds) which acquired di.

Lemma 14. The speeds of the rightmost robots rρ(t,i) holding di never decrease in

time, i.e. νρ(t1,i)(t1) ≤ νρ(t2,i)(t2) for t1 ≤ t2. Moreover, eventually it acquires velocity

Mi, i.e, there exists a time t′ such that νρ(t′,i)(t′) = Mi.

Proof. It is enough to look at the velocity of the rightmost robot holding di at

the times of its collisions. Let us assume that the next collision of rρ(t,i) is with its
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neighbor r which has velocity u before such a collision, say at time t′′. If u > νρ(t,i)(t),

clearly ρ(t, i) = ρ(t′′, i) and after the collision rρ(t′′,i) moves with velocity u. In case

of u < νρ(t,i)(t) this can only happen if r is to the right of rρ(t,i). Thus, at the time of

collision r gets di and starts moving with velocity νρ(t,i)(t), thus rρ(t′′,i) = r. Therefore,

the first part of the lemma holds. For the second part of the lemma, let us assume

that νρ(m,i)(m) 6= Mi for all m, in particular for m = t?, the time of expansion of the

system. Hence, there exists some robot rj such that νj(t?) = Mi, where j < ρ(t?, i).

This contradicts Lemma 12, since Mi ≥ νρ(t?,i)(t?). Fig. 5.1 illustrates this lemma.

Analogously for the leftmost robot we have that the following lemma holds

Lemma 15. The speeds of the leftmost robots rρ(t,i) holding di never increase in

time, i.e. νρ(t1,i)(t1) ≥ νρ(t2,i)(t2) for t1 ≤ t2. Moreover, eventually it acquires velocity

mi, i.e, there exists a time t′ such that νρ(t′,i)(t′) = mi.

time

∞−∞

distance

r1 r2 r3 r4 r5 r6 r7

Figure 5.1. The bold polylines depict the spread of d3 among robots.

Notice that ρ(t?, i) and λ(t?, i) will determine the transmission range of robot ri

since at the time of the expansion of the system no more collisions take place. We

denote by Maxi(t) the max{νj(t)| j ≤ i}, i.e., the maximum of the velocities of the

robots to the left (including νi(t)) of ri at time t. Analogously, Mini(t) denotes

min{νj(t)| j > i}.



2. TRANSMISSION RANGE OF BOUNCING ROBOTS 77

Lemma 16. rρ(t,j) (respectively rλ(t,j)) transfers dj to its neighbor rρ(t,j)+1 (respec-

tively rλ(t,j)−1) if and only if Minρ(t,j)(t) ≤ Maxρ(t,j)(t) (respectively Maxλ(t,i)(t) ≥

Minλ(t,i)(t)).

Proof. Lemma 14 ensures that the speed νρ(t1,i) never decreases. It is enough to

prove that rρ(t,j) will collide with rρ(t,j)+1 eventually. To do so, it is enough to prove

that rρ(t,j)+1 eventually moves at some velocity slow enough to be reached by rρ(t,j).

So we assume that no collision takes place between rρ(t,j) and rρ(t,j)+1. Lemma 14

ensures that νρ(t,i)(t0) = Maxi(t) and that νρ(t,i)+1(t1) = Mini(t) for some t0, t1 ≥ t.

By hypothesis we know that Maxi(t) ≥ Mini(t), therefore rρ(t,j) transfers dj to

rρ(t,j)+1 eventually. Clearly if dj is transferred by rρ(t,j) to rρ(t,j)+1 the lemma holds.

Analogously for rλ(t,j).

Recall that Ri = |{vj < Mi| i < j}| and Li = |{vj > mi| i < j}|. The following

theorem establishes the transmission range of a robot.

Lemma 17. Information di is transferred only to robots ri−Li
, . . . , ri+Ri

.

Proof. Notice that ri = rρ(0,i) and let us consider first the transmissions of di

to successive robots to the right of ri. Lemma 16 and Lemma 14 guarantee that

these changes of successive robots happen exactly Ri times. At time t of the Rith

transmission of di to some robot to the right of ri (which corresponds to the Rith

update of the rightmost robot), all robots rj such that j > i + Ri, it holds that

νj(t) ≥Mi, thus no more transmission of di can take place. Moreover ρ(t, i) = i+Ri.

Analogously, for the transmission of di to the left of ri.

Lemma 17, establishes the transmission range of ri as [i−Li, i+Ri]. The following

corollary establishes the necessary and sufficient conditions for a set of communication

primitives to take place in a collection of bouncing robots. Notice that they follow

immediately from Lemma 17.

Corollary 7 (Communication primitives). For any robot ri ∈ Sn:
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(1) ri ∈ B(Sn) if and only if Mi > vj and mi < vk for all j ≥ i and k ≤ i;

(2) ri is a convergecast robot if and only if R1 ≥ i and Ln ≥ n− i and

(3) Gossiping takes place in Sn if and only if v1 > vj and vn < vk, for all j > 1,

and k < n.

3. Deciding the Feasibility of Communication

Notice that the communication primitives in a collection of bouncing robots de-

pend on the order of their speeds but not on their initial positions on L. In this

section, we show what preprocessing, if any, should be done on the set of velocities

of a collection of robots and how to store such information so that we can efficiently

decide whether the aforementioned communication primitives happen.

Given any collection of bouncing robots Sn, we store the velocities of all the robots

into a table V, such that V[i] = vi, and for every robot ri, we define M ′
i = max{vj >

mi| i < j}, m′i = min{vk ∈ V| i ≤ k}. Note that Mi+1 ≥ Mi, mi+1 ≤ mi, M ′
i+1 ≥ M ′

i

and m′i+1 ≤ m′i. The next lemma follows immediately from the last observation.

Lemma 18. In O(n) time we can build tables M, m, M′, and m′ such that M[i] =

Mi, m[i] = mi, M′[i] = M ′
i , and m′[i] = m′i.

After constructing these tables in linear time, we can use them in order to decide

whether or not any robot can perform broadcasting. The following lemma states so.

Lemma 19. For any collection Sn of bouncing robots, there are data structures

that allow us to decide whether ri ∈ B(Sn) in O(1) time.

Proof. It suffices to check the tables of Lemma 18, more specifically we have to

check that M[i] > M′[i] and m[i] < m′[i] hold. Theorem 7 guarantees that if this is the

case then the transmission range of ri is [1, n].

The following lemma is an immediate consequence of Lemma 19.

Lemma 20. For any collection of bouncing robots Sn, we can decide in O(n) time

whether gossiping takes place.
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The following lemma establishes that the set of robots that are able to perform

broadcasting have consecutive indices.

Lemma 21. Let a and b be the minimum and maximum indices, respectively, of

all the robots in B(Sn). Then rj ∈ B(Sn) for every a ≤ j ≤ b.

Proof. Notice that a+Ra ≤ j+Rj and j−Lj ≤ b−Lb, therefore the transmission

range of rj is [1, n].

The next corollary is an immediate consequence of Lemma 19.

Corollary 8. For any collection of bouncing robots Sn, we can decide in O(n)

time whether broadcast is possible. Moreover, in O(n) time we can build a data

structure containing the range of indices [a, b] of the robots in B(Sn).

The following lemma establishes an interesting result about convergecast in a

collection of bouncing networks.

Theorem 7. For any collection of bouncing robots Sn, we can decide in O(1)

time whether there is a convergecast robot.

Proof. If v1 > vn, at the time of expansion then v1 and vn must be held by robots

rb and ra, respectively such that b > a. Thus there exists a robot rj, a ≤ j ≤ b that

acquired velocities v1 and vn. Because of Lemma 13, rj acquired every di, i ≤ j at

the time of getting v1; analogously, at the time of getting vn, rj got every dk, k ≥ j.

Therefore rj is a convergecast robot and it suffices to check that v1 > vn.

4. Time of Transmission

In this section we explore the necessary time for the robots to carry out the

communication primitives we have studied so far. It turns out that computing the

necessary time for the robots to complete their transmission of information is closely

related to a well known geometric problem, namely, computing the upper envelope of

an arrangement of lines.
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The concept of kth level is related to the concepts of k-set and Davenport-Schinzel

sequences [8, 49]. The kth level problem stated as in [8] follows: given n univariate

linear functions F = {f1, f2, . . . , fn}, fi : R → R and a number k ∈ {1, . . . , n} con-

struct G : R → R, where G(x) = the k-th smallest of the numbers f1(x), . . . , fn(x).

The k-level forms an x-monotone polygonal chain.The complexity of the k-level cor-

responds to the number of vertices of such a polygonal chain.

When k = 1, n, the function G corresponds to the lower envelope and the upper

envelope of F , respectively. When the functions define lines in the plane it is known

that the upper envelope of F can be optimally computed in O(n log n) time and in

O(n) time if the lines are sorted (this is because of its duality with computing the

convex hull of a set of points).

It is easy to see that our diagram of time× distance depicting the trajectories of

robots gives us an immediate way to relate the trajectories of bouncing robots with

the kth level problem. Recall that in this diagram, when a robot moves with velocity

v its trajectory corresponds to a line of slope 1/v. Thus, we can define L = {l1, . . . , ln}

such that li corresponds to the equation of the line passing through (0, hi) with slope

1/vi (recall hi stands for the initial position of ri). Fig. 5.1 depicts the trajectory of

r1 which corresponds to the lower envelope while the trajectory of r4 corresponds to

the upper envelope of L. We denote by lEnv(L) and uEnv(L) the lower (left) and

the upper (right) envelopes of L, respectively. Notice that the rightmost copy of di

at time t is carried by rρ(t,i). We denote by traj+
i (t) the trajectory of the rightmost

copy of di up to time t and by traj−i (t) the trajectory of the leftmost copy of di up

to time t.

Observation 4. Notice that:

(1) uEnv ({l1, . . . , li}) = traj+i(t)

(2) lEnv ({li, . . . , ln}) = traj−i(t)

(3) rj gets di when rρ(i,t) = rj for j ≥ i and some t

(4) rj gets di when rλ(i,t) = rj for j ≤ i and some t
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Lemma 22. For any collection of bouncing robots Sn, we can compute in O(n log n)

time the moment at which di is transferred to any robot rj in the transmission range

of ri.

Proof. Recall that the number of robots to the right of ri whose initial velocity is

less than Mi is exactly Ri. Thus there are associated to them Ri functions describing

lines in the plane time × distance. Let l(1) . . . , l(Ri) be such a set of lines sorted in

increasing order by the initial position of their associated robots. Let us assume that

j ∈ [i+1, i+Ri]. Because of Observation 4, there is a time t at which rρ(i,t) = rj. This

takes place exactly at the intersection of uEnv({l1, . . . , li}) with line l(j−i). Clearly,

the time to compute this intersection is dominated by the required time to compute

uEnv({l1, . . . , li}). Analogously, if j ∈ [i − Li, i], we define l(1), . . . , l(Li) the Li lines

whose slope is bigger than mi and sorted in decreasing order by the initial position

of their corresponding robots and we compute the intersection of line l(i−j) with

uEnv({li, . . . , ln})

Fig. 5.2 illustrates Lemma 22 showing how to compute the time transmission of

d3 to some robot.

time

∞−∞

distance

l1 l2 l3 l4 l5 l6 l7

Figure 5.2. The fat polyline is the upper envelope of lines l1, l2 and
l3. The transmission of d3 to r6 takes place at the intersection of
uEnv({l1, l2, l3}) and l7.

It turns out that the time when convergecast takes place can be easily computed.

The next theorem states so.
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Theorem 8. For any collection of bouncing robots Sn, in O(1) time is possible

to determine the earliest time when convergecast is completed.

Proof. By Lemma 7 in O(1) time we can decide if convergecast takes place in

Sn. If this is the case, it means that V[1] > V[n]. Assume that dist(h1, hn) = d (the

distance between the initial positions of robots r1 and rn). Then according to Lemma

7, convergecast takes place at time d
|v1|+|vn| the intersection point between lines l1 and

ln.

The next result follows immediately from Lemma 22.

Theorem 9. For any collection of bouncing robots, there are O(n log n) algorithms

computing the earliest time t at which:

(1) the broadcast from robot ri is completed

(2) gossiping in Sn is carried out

Proof. Because of Lemma 19 in O(1) time we decide whether ri ∈ B(Sn) (after

O(n) preprocessing). Lemma 22 guarantees that in O(n log n) time we can compute

the times t1 and t2 at which r1 and rn received di, respectively. Thus the completion

of the broadcasting of di by ri takes place at time max{t1, t2}. Notice that gossiping

in Sn is completed at the time that r1 has received dn and r1 has received d1. To

compute these times we use Lemma 22 again.

Computing the trajectory of the kth robot is equivalent to computing the kth

level of L, and the number of collisions of rk corresponds to the complexity of the

kth level of L. The next result follows immediately from the results for the k-level

problem (see [54, 20] for further details).

Corollary 9. In any system of bouncing robots Sn, the number of collisions of

rk does not exceed nk
1
3 and it is at least n2Ω(

√
log k). Moreover, the trajectory of rk

can be computed in O(nk 1
3 logcn) expected time, for some constant c.
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time

∞−∞
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3-level

Figure 5.3. The 3-level of {l1, . . . , l7} corresponds to the trajectory of r3.

Constructing the trajectories of the first k robots correspond to the construction

of all ith levels for 1 ≤ i ≤ k. Everett et.al [26] proved that this can be done in

O(n log n+ nk) time and that this is optimal.

5. Conclusions

Communication multiplies the capabilities of mobile robots, in this paper we stud-

ied a simple model of limited communication for bouncing robots. We proved that

robots enabled with such mechanism non-trivial protocols of communication can be

carried out by bouncing robots. However the type of communication we assumed

allows robots to perform these protocols just once. An open question is to investigate

long term communication mechanisms for bouncing robots as well as specific tasks

than can be carried out while information is being exchanged.





CHAPTER 6

Conclusions and Future Research

The area of mobile robot computing is an interesting, challenging, and relatively

new domain of distributed computing. Although some theoretical research has been

done in this area many questions remain open.

In this thesis, we gave a brief description of the most common models that have

been proposed to study systems of mobile robots. We also proposed models that

assume extremely weak robots, i.e, robots that have very restricted capabilities. In

all these models, robots do not have common sense of direction and do not have

control over their movements. In addition, they are only equipped with a collision

sensor and a clock that allow them to measure the times when they collide with each

other. The environments that we considered are one dimensional. We notice that

our model resembles some models of gas particles that have been previously studied

in the area of classical mechanics.

In these models, we studied the problem of localization: a collection of n

anonymous mobile robots are deployed in a continuous cycle of perimeter one. All

robots start moving at the same time along the cycle. The task of each robot is to

localize the initial position and starting direction of every deployed robot. All this

should be done within a finite amount of time. This problem had been previously

addressed from a non-deterministic point of view in [33].

We addressed the localization problem in Chapter 3, from a deterministic point

of view. We assumed that robots have equal speeds. When two robots collide they

85
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bounce back (maintaining their speed but moving in opposite direction). We proved

that all robot configurations in which not all the robots have the same initial direction

are feasible and we also provided a localization algorithm working for all feasible

configurations. The time complexity of our algorithm depends on the number of

robots starting their movement in each direction. If the less frequently used initial

direction is given to k ≤ n/2 robots, the time until completion of the algorithm by

the last robot is 1
2d

n
k
e, this time is optimal. We considered as well the case when

robots are deployed on a segment of length one. In this case, the necessary time to

solve the problem is O(1) for all non-symmetric cases.

In Chapter 3, we also considered a different situation in which robots have ar-

bitrary velocity and they are not aware of the velocities of the other robots. We

assumed the conservation of momentum and the conservation of energy principles, so

robots exchange velocities when they collide. The resulting dynamics of the robots

is quite similar to simple gas particle systems. The capabilities of each robot are

limited to measuring the times of its collisions, to being aware of its velocity at any

time, and to processing the information that it collects. Similarly as in Chapter 2,

robots neither have control of their walks nor of their velocities. Their walks depend

on their initial positions, velocities, and sequence of collisions while their velocities

at any time depend only on their sequence of collisions.

We show that the feasibility of any configuration and the required time for solving

the localization problem under such stronger constraints depend only on the collec-

tion of velocities of the robots. More specifically, if v0, v1, . . . , vn−1 is the collection of

velocities of a given robot configuration S, we prove that S is a feasible robot config-

uration if and only if vi 6= v̄ for all 0 ≤ i ≤ n− 1, where v̄ = v0+...+vn−1
n

. To figure out

the initial position of all robots no more than 2
min0≤i≤n−1|vi−v̄| time is required.

In Chapter 4, we study the survivability of swarms of bouncing robots that are

deployed on environments with deadly points. When a robot reaches such a point it

dies. We prove some general properties regarding the dynamics of bouncing robots
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that are crucial for their survivability and that can be extended to systems of elastic

particles. We studied this problem for different one dimensional environments as well

as for different models of robots. We show the existence of set of no dying robots for

all the environments.

Finally in Chapter 5, we studied a modified version of bouncing robots in which

each of them are capable to exchange messages during their times of collision. This

model of communication is similar to the spreading of some diseases. We establish

sufficient and necessary conditions for bouncing robots to perform several communi-

cation protocols like gossiping, broadcasting, and convergecast. We also established

a interesting connection with our model of bouncing robots with an old problem in

computational geometry, computing the kth level of a set of functions.

Computing the kth level of a set of functions is an extensively studied problem

in differential equations and computational geometry and has a close relationship

with solving the k-set problem and Davenport-Schinzel sequences [8, 49]. In this

Chapter, we show that computing the trajectory of the kth robot moving on an

infinite line is equivalent to computing the kth level of an arrangement of lines. The

number of collisions that a robot experiences and the time that a robot requires for its

information to be spread among other robots is related to bounding the complexity

of a level and computing the upper envelope of an arrangement of lines, respectively.

1. Future Research

There remain many open problems in this new area of bouncing robots. Many of

the open questions are closely related to challenging problems in physics that have

been studied for a long time. For instance, it is unknown the precise number of

collisions in a system of bouncing robots of arbitrary masses and speeds living in an

infinite line. As far as we are aware there are no examples that matches the upper

bound in [48].
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Understanding the dynamics of a system of particles of arbitrary masses that slide

on a cycle would be crucial for robots to do localization in the cycle. For the case

of three robots of arbitrary masses and speeds the dynamics of the corresponding

system can be studied using the dynamics of billiards [12]. Yet the resulting

dynamics is intricate and little is known about it.

Another open question is to investigate the use of bouncing robots in different

environments like planar graphs and two-dimensional environments. Further, it

would be interesting to study different synchronization models of bouncing robots.

For instance, asynchronous bouncing robots. Assuming non-frictionless environments

would also be attractive.

Regarding the survivability of bouncing robots it remains open to find, for the

case of equal masses, configurations in which there are more than two survivors.

Different models of communication for bouncing robots may be studied. In par-

ticular one that allows them to communicate for longer periods of time.
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