

Thomas Holterbach

ETH Zürich / CAIDA

SIGCOMM

24th August 2017

swift.ethz.ch

Joint work with

Stefano Vissicchio Alberto Dainotti Laurent Vanbever

UCLondon
CAIDA, UC San Diego
ETH Zürich

2.5 min

2.5 min

worst-case convergence time of a router upon an Internet failure

Let's consider first a simple example

pos.	prefix	NH
1	1.0.0.0/24	2
2	1.0.1.0/24	2
3	1.0.2.0/24	2
300K	100.0.0.0/24	2
• • •		
600K	200.0.0.0/24	2

pos.	prefix	NH
1	1.0.0.0/24	3
2	1.0.1.0/24	2
3	1.0.2.0/24	2
	•••	
300K	100.0.0.0/24	2
600K	200.0.0.0/24	2

pos.	prefix	NH
1	1.0.0.0/24	3
2	1.0.1.0/24	3
3	1.0.2.0/24	2
300K	100.0.0.0/24	2
600K	200.0.0.0/24	2

pos.	prefix	NH
1	1.0.0.0/24	3
2	1.0.1.0/24	3
3	1.0.2.0/24	3
300K	100.0.0.0/24	2
	•••	
600K	200.0.0.0/24	2

R3 primary next-hop

pos.	prefix	NH
1	1.0.0.0/24	3
2	1.0.1.0/24	3
3	1.0.2.0/24	3
	•••	
300K	100.0.0.0/24	3
600K	200.0.0.0/24	2

R3 backup next-hop R3 primary next-hop

pos.	prefix	NH
1	1.0.0.0/24	3
2	1.0.1.0/24	3
3	1.0.2.0/24	3
300K	100.0.0.0/24	3
600K	200.0.0.0/24	3

BGP Fast Reroute

About 3,710 results (0.08 sec)

In practice, multiple techniques are often used to speed up the convergence time

BGP Fast Reroute

About 3,710 results (0.08 sec)

none of them work upon remote outages

Current fast reroute techniques do not work upon remote outages

We analyzed BGP sessions from RouteViews and RIPE RIS collectors, and looked for **bursts of BGP withdrawals**

We found ~3,000 bursts of withdrawals in November 2016 and on 213 BGP sessions

Remote outages propagate slowly

Remote outages propagate slowly

Remote outages propagate slowly

SWIFT: Predictive Fast Reroute Framework

SWIFT: Predictive Fast Reroute Framework

works upon remote (and local) outages

1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

SWIFT predicts the extent of an outage using fast, yet precise Root Cause Analysis

Existing RCA techniques *

accuracy# vantage pointsdetection speed

* Lifeguard, SIGCOMM'14
Poiroot, SIGCOMM'13
Feldmann et al., SIGCOMM'04

Existing RCA techniques *

accuracy link/AS

vantage points multiple

detection speed O(minute)

Lifeguard, SIGCOMM'14
 Poiroot, SIGCOMM'13
 Feldmann et al., SIGCOMM'04

Existing RCA techniques *

SWIFT

accuracy link/AS region

vantage points multiple 1

detection speed O(minute) O(second)

Lifeguard, SIGCOMM'14
 Poiroot, SIGCOMM'13
 Feldmann et al., SIGCOMM'04

#2 detect and locate the outage

of BGP messages

#2 detect and locate the outage

#1 monitor the stream of BGP messages

SWIFT link failure inference algorithm leverages the affected and unaffected prefixes

candidates set

AS links (2,5) (5,6) (6,7) (6,8)

candidates set

AS links (2,5) (5,6) (6,7) (6,8)

affected prefixes

from AS7 (2,5) (5,6) (6,7) (6,8)

candidates set

AS links (2,5) (5,6) (6,7) (6,8)

affected prefixes

from AS7 (2,5) (5,6) (6,7) (6,8)

from AS8 (2,5) (5,6) (6,7) (6,8)

In practice, SWIFT uses two metrics Computed on a per AS-link basis

Withdrawals share
WS (1, t)

Fraction of withdrawals crossing link *l*

Path sharing

PS (l, t)

Proportion of prefixes withdrawn on link *l*

In practice, SWIFT uses two metrics Computed on a per AS-link basis

$$FS(l, t) =$$

Withdrawals share
WS (1, t)

X

Path sharing

PS (l, t)

Fit Score for link *l*

Fraction of withdrawals crossing link *l*

Proportion of prefixes withdrawn on link *l*

Theorem

Under perfect conditions, SWIFT always returns a set of links including the failed link

Theorem

Under perfect conditions, SWIFT always returns a set of links including the failed link

Challenge #1

To be fast, we can't wait for all the withdrawals

SWIFT runs the link inference **early** during the burst in order to predict future withdrawals

Theorem

Under perfect conditions, SWIFT always returns a set of links including the failed link

Challenge #1

To be fast, we can't wait for all the withdrawals

SWIFT runs the link inference **early** during the burst in order to predict future withdrawals

Challenge #2

An outage can affect multiple AS links

SWIFT link inference algorithm returns a set of links, all with a high fit score

SWIFT is much faster than BGP

BGP SWIFT

learning time (median)

13 sec

SWIFT is much faster than BGP

BGP SWIFT

learning time (median)

13 sec

2 sec

SWIFT: Predictive Fast Reroute

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

SWIFT: Predictive Fast Reroute

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

A remote outage can affect any set of prefixes

A remote outage can affect any set of prefixes

A remote outage can affect backup paths

A remote outage can affect any set of prefixes

A remote outage can affect backup paths

and we want to be fast

To solve these challenges, SWIFT relies on a hierarchical forwarding table

To solve these challenges, SWIFT relies on a hierarchical forwarding table

To solve these challenges, SWIFT relies on a hierarchical forwarding table

primary next-hop

primary next-hop

indicates this prefix is traversing link (5,6)

is traversing link (6,7)

traversing the link (5,6)

SWIFT reroutes the affected traffic to unaffected backup paths

SWIFT reroutes the affected traffic to unaffected backup paths

SWIFT reroutes the affected traffic to unaffected backup paths

indicates the backup next-hop to use if (5,6) fails

indicates the backup next-hop to use if (6,7) fails

fast reroutes the traffic towards a valid backup path

48 bits

pointer

as-path encoding

primary and backup next-hops

48 bits pointer primary and backup as-path encoding next-hops **SWIFT** only encodes the most important AS links

SWIFT as path encoding algorithm enables to reroute most of the affected prefixes, with few bits only

SWIFT as path encoding algorithm enables to reroute most of the affected prefixes, with few bits only

SWIFT as path encoding algorithm enables to reroute most of the affected prefixes, with few bits only

as-path encoding

primary and backup next-hops

SWIFT requires less than 100 forwarding updates to reroute (with 16 backups)

SWIFT requires less than 100 forwarding updates to reroute (with 16 backups)

40 ms

SWIFT: Predictive Fast Reroute

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

SWIFT: Predictive Fast Reroute

- 1. **SWIFT** reduces the learning time of a withdrawal from 13s to 2s using a control-plane prediction algorithm
- 2. **SWIFT** fast reroutes the affected traffic towards unaffected paths in 40ms using a hierarchical forwarding table

3. **SWIFT** is deployable on existing routers

SWIFT is deployable on existing routers equipped with a hierarchical forwarding table

SWIFT is deployable on existing routers equipped with a hierarchical forwarding table

what if we don't have one though?

Hierarchical Forwarding

IP Router

IP Router

SWIFT reduces the convergence time from ~110s to 2s

SWIFT reduces the convergence time from ~110s to 2s

SWIFT: Predictive Fast Reroute

Speeds up the learning phase by predicting the control-plane 85% accuracy early in the burst

Quickly fast reroutes the affected traffic to unaffected paths for 99% of the prefixes

Is deployable on existing routers

98% speed up improvement

swift.ethz.ch (source code, VM + demo!)

SWIFT: Predictive Fast Reroute

Thomas Holterbach

ETH Zürich / CAIDA

SIGCOMM

24th August 2017

swift.ethz.ch

Joint work with

Stefano Vissicchio Alberto Dainotti Laurent Vanbever

UCLondon
CAIDA, UC San Diego
ETH Zürich