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Chapter 1

Introduction

The objective of this chapter is to give an overview of the inverted pendulum
system and its stabilization and optimization tasks, as well as a description of each
part of the studied system.

The Inverted Pendulum Structure

Inverted pendulum systems are a classic control theory problem and many dif-
ferent versions of it exist. In this report has been considered, among the most
familiar types, the cart inverted pendulum. This type of system consists of three
basic elements:

• A slid consisting of two parallel rails;

• A cart moving horizontally along the sled;

• A rotating single-arm pendulum, mounted on the cart.

External Force

Cart

Rail

Pendulum

Figure 1.1: System setup
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2 Chapter 1. Introduction

When the bob stands in the upright position, the system is in an unstable
equilibrium. Therefore, it naturally tends to fall over in the downward position
swinging back and forth. To bring the pendulum upright and maintain it there, a
stabilizing action is performed by an external force acting on the cart. The actual
system is then composed by the cart pendulum system itself and a subsystem con-
trolling the given input force. Setup has two degree of freedom: the horizontally
movement of the cart on a sled and the rotation of the pendulum rod. The cart can
be directly driven back and forth by the actuator, while the pendulum can freely
rotate around its axis.

Project Background

Since 1960s, this kind of systems are used to explain ideas in linear control. By
means of their nonlinear nature, from 1990s, pendulums continued to be used to
illustrate ideas in nonlinear control domain such as passivity based control, back-
stepping or nonlinear model reduction as well as task oriented control as swinging
up [18]. Among the different controlling approaches present in the literature, those
considered more relevant writing this report are shown below. Wei et al. [20] pro-
posed a swing up strategy when the cart has a restricted horizontal travel. Chung
and Hausen [5] presented a control law to swing up considering the energy of the
pendulum while regulating the cart position. Spong and Praly [17] proposed a
swing up where in the stability analysis is taken into account the Lyapunov theory.
Fantoni and Lozano [7], inspired by [17], presented an approach where the total
energy of the inverted pendulum is considered in the control algorithm. Issues
due to the friction in the pendulum, not considered in [7], have been contemplate
by Ishitobi et al. [9]. For theoretical concepts allover the report, has been essential
the work of Kahlil [12].

Problem Statement

The main focus of this project is to develop and apply a control strategy to swing
up the pendulum and then stabilize it in the upright vertical position. An energy
control strategy is applied for this purpose. Close to the unstable point, pendulum
is kept standing by means of changing the controller from the non linear to a linear
one. Modifications are applied to the original non linear controller due to issues
caused by frictions and singularities. Then, an extended Kalman filter is introduced
to obtain a better estimation of the states.
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The objectives of this project are expected to address the following points:

• Detailed description of electrical and mechanical parts of the system

• Develop and simulate a stabilizing non-linear control strategy for the system
model

• Develop and simulate an extended Kalman filter to remove uncertainties in
the states estimations

• System Analysis of the controller on the real system in the laboratory facili-
ties.

Overview This paper is organized as follows: In Chapter Two the description
of the system is given; in Chapter Three the mathematical model of the system is
shown; in Chapter Four the energy control method is presented and the problem
of Lyapunov function is discussed. Moreover the complete control law is designed
and simulations using Matlab are shown, while in Chapter Five the laboratory
implementation is presented. In Chapter Six an extended Kalman filter is designed
and applied to the system. Finally, Chapter Seven is devoted to presenting the
conclusions.





Chapter 2

System Description

Introduction

Input force to move the inverted pendulum is provided from a DC motor (the actu-
ator) through a belt; pendulum cart system’s outputs are cart horizontal position
and pendulum angular position. An encoder mounted on the actuator measures
the cart displacement, while another encoder measures the pendulum leaning. DC
motor is piloted by the current coming from a pulsed power amplifier (servoamplifier)
according to the voltage reference sent from a microcontroller board. Measurements
received from the encoders are used by the microcontroller to set the reference.
The setup is connected to a PC via an USB-port: the program to run the setup
is loaded to the microcontroller and measured data are then sent back to the PC.
Components of the overall system are illustrated in figure 2.1 and described in the
following sections.

PC Controller
Cart

pendulum
Power

amplifier DC Motor

Encoders

Figure 2.1: Block diagram of the laboratory setup

Microcontroller board

In the studied setup, an Arduino Due board [1] is used to implement the de-
signed controller. Arduino consists of both a physical programmable board and a

5



6 Chapter 2. System Description

software, called IDE (Integrated Development Environment), used to program the
board. It allows to write programs, read sensors and control motors. The Arduino
Due board:

• features an Atmel SAM3X8E ARM Cortex-M3 CPU microcontroller;

• operates at 3.3[V], unlike other commonly used Arduino boards operating at
5[V];

• stores programs in the available 512 [KB]of RAM;

• executes many hundred thousands lines of C code per second having a clock
speed of 84 [MHz];

• presents a micro-USB port to be connected to a computer;

• can be connected with a battery or an AC-to-DC adapter, when more power
is required.

• has 54 digital input/output pins;

• owns 12 analog input pins;

• carries 2 DAC (digital to analog) pins providing analog output with 12-bit
resolution (4096 levels).

Real DAC output range is only from 0.55[V] to 2.75[V]: output current from those
pins is not enough to run a motor directly (the one used in this project has a nomi-
nal voltage of 48[V] and a nominal current of 4.58[A]), with the result of damaging
the board. Other boards can be fitted on top of Arduino to provide additional
capabilities.
Therefore, to obtain a reference voltage enough to drive the motor, an interface of
a shield and a voltage amplifier (−10[V],+10[V]) is used. In this way a reference
voltage is sent to a power amplifier which eventually supplies and drives the dc
motor with its nominal values.

As any automatic system, tasks in the Arduino board can be divided in three
main parts: Signal Inputs, Software Decisions and Signal Outputs. In this project they
are described as follows:

• Inputs (cart position and pendulum angular position) are sent by two en-
coders to digital pins.They are read as bytes and converted to integers using
an embedded library.

• Once inputs arrive, the controller in Arduino computes the suitable input to
reach the setpoint.
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• Output is sent to a Digital to Analog pin (DAC0): it sets the voltage reference
for the power amplifier.

Arduino IDE The Arduino Integrated Development Environment is the software
used to write the code for the Arduino board. Software libraries are used to main-
tain the main code simple. A brief description of those libraries used in this project
follows:

• Joint library manages data coming from the encoders. It also estimates the
cart velocity from its position and compensates Coulomb and linear viscous
frictions;

• looptime library;

• Utility library defines functions sign and saturation.

Servoamplifier

A reference signal is set by an Arduino board. This signal is adapted with a ser-
voamplifier (Maxon 4-Q-DC ADS 50/10) [13] to drive the DC motor accordingly.
Moreover, the servoamplifier sets the reference to be given to the DC motor, which
aims to control the current in the motor. Hence controlling its speed and torque.

Accordingly, the mechanical torque (TM) of the DC motor results:

TM = kM ∗ IM (2.1)

where kM is the torque constant of the motor defined in [14] and IM is the motor
current.

DC Motor

The DC motor Maxon 370356 RE 50, 200W [14] is a permanent magnet motor
which moves the cart of the inverted pendulum system. The supplied voltage (Va)
of the motor armature corresponds to the motor current IM that flows inside the
armature. The DC motor converts this electrical current to a mechanical torque TM

according to (2.1) that characterizes the motion of the motor shaft. The electrical
diagram of the used DC motor is shown in figure 2.2.
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Figure 2.2: Electrical circuit of the DC motor

The armature of the motor is characterized by a resistance Ra and an inductance
La. In general, during the operation of a DC motor:

• The current IM flows in presence of the magnetic field and produces the
rotation of a shaft which is connected with the armature.

• The armature-shaft is attached to a load to which is applied the mechanical
torque TM of the motor.

An opposite electromotive force (back-electromotive-force, EMF) e is produced due
to the changes of the magnetic field that passes through the armature.

Cart Pendulum

The cart pendulum structure is the mechanical part of the investigated system. As
it has been described in section 1.1 this structure consist of an aluminium rail, a
cart that slides on it as well as a rotating pendulum attached on the cart. Through
the horizontal back and forth motion of the cart, the pendulum rotates accordingly.
Cart is belt driven from a controlled DC motor, while the pendulum is actuated
from the cart. The rotational axis of the cart is attached on the shaft of a second
non functional DC motor. Such a structure is convenient to implement the sensor
for the pendulum feedback signals.

Encoders

During the control procedure of the system, feedback signals for the position of the
cart and pendulum are needed. Therefore, two rotary encoders, AVAGO HEDS-
5540 [2], are used to obtain the positions feedback for the cart and pendulum. The
encoders are attached to the driven motors of the cart and pendulum. The DC
motor attached on pendulum rotational axis is not used and not controlled in the
present application.
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Figure 2.3 shows the main parts of an optical incremental encoder. A light
source (LED diode) sends a light beam which passes through a disc plate that is
attached in the DC motor shaft.

Figure 2.3: A simplified structure of the optical incremental encoder [16].

This plate has spaced dark and transparent segments on its surface that forms a
simple radial pattern for the angular position of the shaft. The load to be measured
is connected in the shaft of the encoder. With the shaft rotation, a series of light
exposures is created which is tracked by a photo sensor (detector).

More specifically, the disc plate contains a grid diaphragm which split the in-
cident light beam into a second beam of light 90o out of phase. In this way two
outputs from the sensing channels A and B are produced whose phase difference
(90o) is used to define the rotational direction of the shaft. Afterwards, the beams
A and B are received by two separate photo detector components and are trans-
formed into two square wave signals via a signal processor. This processor analyses
the signals to obtain the position information. Figure 2.4 demonstrates the square
waves that are exported from an encoder for different rotations of its shaft.

Figure 2.4: The produced quadrature signals of the optical encoder.

Resolution is a characteristic of an optical encoder that is considered according
to the field of implementation of the encoder. For the incremental rotary encoders
it is defined as counts per revolution. The resolution of the encoder is related with
the segments (the transparent and black segments) of the disk plate and is one of
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the characteristics that define the performance of the encoder. The used encoders,
AVAGO HEDS-5540 [2], have a high resolution, that is 1024 counts per revolution.
For the measurement of the pendulum displacement this resolution is expressed
in radians/count while for the cart displacement in meters/count.
Information related with the resolution of the used encoders can be found in the
Arduino library joint.cpp that includes the algorithm for the estimation of an-
gular and linear displacement of the system by differentiating the position mea-
surements. The available information which are used to define the resolution of
encoders are:

Length of the sled where the cart moves 0.769[m]
Pendulum displacement per revolution 2π[rad]
Total counts within the overall length of sled 8737
Total counts per pendulum revolution 2000

the resolutions for the used encoders are defined as:

• Rescart = 0.769[m]
8737counts = 8 ∗ 10−6[m]/count the resolution of the encoder that

measures the cart displacement

• Respen = 2π[rad]
2000counts = 0.0031[rad]/count or 0.18[degrees]/count the resolution

of the encoder that measures the pendulum displacement

In combination with the small sampling time (Ts = 0.005[s]) of the Arduino
board microprocessor a quite good measurements for the cart and the pendulum
displacements of the system is obtained. However, these resolutions that define the
quantization error of the encoders can introduce a small measurement uncertainty.
This small uncertainty is considered in Chapter 6 where an EKF is designed for the
inverted pendulum system.



Chapter 3

System Dynamics

Introduction

The purpose of this chapter is to present a formulation of the mathematical model
of the system. One of the objectives in this thesis, is the development of a proper
control strategy such that the system has a desired behaviour. A proper mathemat-
ical model is required for the design of this control. As previously mentioned, an
inverted pendulum is under investigation. The physical system available at AAU
laboratory facilities consists mainly of two subsystems:

• The electrical subsystem which creates a desired force according to a refer-
ence

• The mechanical subsystem that receives this force

Electrical 
Subsystem

Mechanical 
Subsystem

Servo-
Amplifier

Figure 3.1: Electrical and Mechanical Subsystems

In figure 3.1, these parts of the studied physical system are shown, while in
Chapter 2 are described briefly. For both subsystems a dynamical analysis is per-
formed. In this way it is expected the development of a mathematical model that
represents the real system in a large extend. Consequently, the applied control

11



12 Chapter 3. System Dynamics

in the system can be designed with more accuracy. In the following sections, a
dynamical analysis for the components included in each subsystem is presented.
Finally, the response of these two subsystems is compared.

Electrical Subsystem

The electrical subsystem consists of a power amplifier and a DC motor. These
dynamics are combined such that to formulate the electrical subsystem dynamics.

Power Amplifier Dynamics

Internally, the servoamplifier performs a current control whose purpose is to make
the actual current IM to follow a reference a value. This is ensured through a high
gain β in the current feedback. Afterwards the error signal is amplified and the
controlled current IM that supplies the DC motor is obtained as shows figure 3.2.

Figure 3.2: Simplified schematic diagram of the servoamplifier.

With the block A is represented the open loop gain while with β the feedback
gain which is applied in the signal IM.

DC Motor Dynamics

The electric circuit of the DC motor (figure 2.2) is characterized by

Va(t) = La
dIM

dt
+ Ra IM + e (3.1)

which represents the supplied voltage to the motor armature including the back
EMF voltage e [Zaccarian].
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This voltage e is considered as a disturbance during the operation of the DC
motor. By Laplace transformation of (3.1) it is obtained the current IM(s) that flows
in the motor.

IM(s) =
1

Ra

1 + La
Ra

s
(Va(s)− e(s)) (3.2)

and
IM(s)

Va(s)− e(s)
=

1
Ra

LA
Ra

s + 1
=

Ka

τs + 1
(3.3)

that express the transfer function of the motor circuit (figure 2.2), as a first order
system. Term Ka =

1
Ra

is the motor gain and τa =
La
Ra

the time constant of the motor.
In the following section, the dynamical response of the DC motor will be investi-
gated in order to see if the electrical dynamics should be considered when studying
the inverted pendulum.

Power Amplifier-DC Motor Subsystem Dynamics

The response of the inverted pendulum is defined from the operational behaviour
of all the components that are included in the system. The DC motor that moves
the pendulum cart consists of some mechanical parts whose operation may af-
fect the response and consequently the satisfactory control of the inverted pendu-
lum. Power electronic components included in the servoamplifier to regulate the
motor current IM, with their operational characteristics, might have an influence
in the response of the overall system. Therefore, the dynamical response of the
servoamplifier-DC motor subsystem has been investigated. Ideally, it should be
much faster compared with the response of the inverted pendulum such that to
not have any influence in the control of the system.

Figure 3.3 shows the generalized block diagram of the servoamplifier in connec-
tion with the DC motor. For the present analysis the function of the servoamplifier
has been considered as a simple and fast enough amplification of the processed
signals through the gains A and β, while the block H represents the transfer func-
tion of the motor (2.2). The back electromotive voltage e that is generated during
the operation of the DC motor is considered as a disturbance in this subsystem. To
simplify the dynamical analysis, the effect of the voltage e is ignored.

As it is referred in section 2.3 the servoamplifier performs a current control
such that to keep the motor current IM close to a reference value that is set in the
Arduino board. The transfer function of the closed loop system in figure 3.3 is
defined as:

IM

Vre f
=

A ∗ H
1 + β ∗ A ∗ H

(3.4)
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Figure 3.3: Simplified diagram of the servoamplifier connected with the electrical part of the dc
motor

Substituting (3.3) in (3.4) it is obtained:

IM

Vre f
=

A
1

Ra
La
Ra s+1

1 + βA
1

Ra
La
Ra s+1

=

A
Ra

La
Ra s+1

La
Ra s+1+βA 1

Ra
La
Ra s+1

=
A
Ra

La
Ra

s + βA 1
Ra

+ 1
(3.5)

which is brought in the form of the transfer function of a first order system, divid-
ing the nominator and denominator of (3.5) with 1

βA
Ra +1

IM

Vre f
=

A
Ra(

βA
Ra +1)

La

Ra(
βA
Ra +1)

s + 1
(3.6)

With the aim of a small current error between the current flowing inside the
motor (IM) and the reference signal, gain (β) in the servoamplifier is assumed high
enough. This results to:

Ra(
βA
Ra

+ 1) ≈ βA (3.7)

Thus, considering (3.7), equation (3.6) is approximated as:

IM

Vre f
≈

1
β

La
βA s + 1

(3.8)

which expresses the first order subsystem of the servoamplifier-DC motor with
time constant τSaM = La

βA and dc-gain KSaM = 1
β .

By observation of the subsystem response, characteristics τSaM and KSaM have
been estimated. A square wave has been generated with the purpose to move
the cart on the sled back and forth with a force of 1[N]. A corresponding volt-
age Vre f = 33.3051mV has been measured as output from the microcontroller. So,
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generating a square wave of peak amplitude Vre f = 33.3051mV within a period of
T = 1.2[s], the motor current input IM has been measured with a current probe and
an oscilloscope. As it can be seen in figure 3.4, the received signal (blue) is very
noisy due to the motor ripples. To estimate gain KSaM, mean values (±1.43[A]) of
the square wave response are been considered.
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Figure 3.4: Response of the servoamplifier-dc motor system (top) with the zoomed area of interest
(bottom).

The resolution of oscilloscope is 0.001 [s]: the zoom in figure 3.4 shows that
within a sample time step (from t = 0.599[s] to t = 0.6[s]), the input pulse switches
from −30.3051[V] to +30.3051[V] and current IM is almost as fast as the input.
Estimation of the time constant can not be then obtained by computation. Even
though, in the worst case, it could be considered equal to the resolution step, it
has been assumed to evaluate the time constant as 10 times faster. Summarizing,
multiplying the motor’s input current by the sensitivity of the probe it is obtained:

VM = ±1.43[A] ∗ 100[mV/A] = ±143[mV] (3.9)

Consequently,

KSaM =
143[mV]

33.3051[mV]
= 4.2936 (3.10)

while
τSaM = 0.0001[s]. (3.11)

Substituting (3.10) and (3.11) in (3.8) is obtained the transfer function of the
servoamplifier-DC motor system in the Laplace domain:

IM

Vre f
=

4.2936
0.0001s + 1

(3.12)
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Mechanical Subsystem

In this section, the mathematical model of the inverted pendulum presented in
figure 3.5 is obtained from the Euler-Lagrangian equation, based on the energy
of the system. A more detailed description of the system model formulation is
presented in [4].

Figure 3.5: Set up of the mechanical subsystem of the inverted pendulum

The mass of the pendulum rod (l) is considered neglectable, while the attached
mass (m) at the end of the pendulum rod is considered a point mass. Therefore,
the pendulum centre of gravity (G) is placed in the geometrical centre of the mass
(m) and its position is defined by

xG = x + lsinθ

yG = lcosθ (3.13)

The differential equations of motion of the inverted pendulum are derived from
the Euler Lagrangian equations

d
dt

(
∂L
∂q̇

(q, q̇)
)
− ∂L

∂q
(q, q̇) = τ

where q = (q1 . . . qn)T represents the generalized coordinates of the system and τ =

(τ1 . . . τn)T defines the external as well as the non conservative (friction) forces that
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are applied to the system. The Lagrangian function L is defined as the difference
of kinetic (K) and potential (P) energy of the system (L = K− P).
Firstly, the kinetic and potential energies of the system used in the Lagrangian
formulation are defined. Both cart and pendulum have kinetic energy and thus,
considering the pendulum in figure 3.5, the total kinetic energy of the system is

K =Kcart + Kpen

=
1
2

Mẋ2 +
1
2

m
(

d
dt

(x + l sin θ)

)2

+
1
2

m
(

d
dt

(l cos θ)

)2

=
1
2
(M + m)ẋ2 + mlẋθ̇ cos θ +

1
2

ml2θ̇2

and the potential energy
P = mglcos(θ − 1)

is defined only from the pendulum position, since the cart moves only horizontally.
Secondly, the Lagrangian function is given by

L =K− P

=
1
2
(M + m)ẋ2 + mlẋθ̇ cos θ +

1
2

ml2θ̇2 −mgl cos θ. (3.14)

In the cart pendulum system, the chosen coordinates are the cart (x) and the
pendulum (θ) displacement, which leads to the following Euler-Lagrangian equa-
tion with the corresponding partial derivatives:

d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
= τ1

d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= τ2. (3.15)

Since the Lagrangian function L does not depend on x, it follows

∂L
∂x

= 0

while

d
dt

(
∂L
∂ẋ

)
=

d
dt
(
(M + m)ẋ + mlθ̇ cos θ

)
= (M + m)ẍ + mlθ̈ cos θ −mlθ̇2 sin θ. (3.16)

For the θ coordinate
∂L
∂θ

= −mlẋθ̇ sin θ + mgl sin θ
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and
∂L
∂θ̇

= mlẋ cos θ + ml2θ̇

that gives
d
dt

(
∂L
∂θ̇

)
− ∂L

∂θ
= mlẍ cos θ + ml2θ̈ −mgl sin θ. (3.17)

Friction is the non conservative force of the system. Both, Coulomb and viscous
friction are defined as: Fcsign(ẋ) + γẋ for the cart, while only viscous friction
is considered in the pendulum: γr θ̇. From this point, Coulomb friction force
Fcsign(ẋ) is referred as Fc for simplicity.

Combining also the control input (FM) that is applied to the cart, the external
forces which are implemented in the system are:

τ1 = FM − Fc − γẋ (3.18)

τ2 = −γr θ̇ (3.19)

Substituting (3.16), (3.17) and (3.18), (3.19) in (3.15) the model of the cart pendulum
system is obtained as

(M + m)ẍ−mlθ̇2 sin θ + mlθ̈ cos θ = FM − Fc − γẋ (3.20a)

ml2θ̈ −mgl sin θ + ml cos θẍ = −γr θ̇ (3.20b)

where FM is the controlled applied force from the DC motor that moves the cart.
From now on, the input force will be referred as a unique term u = FM − Fc, since
Coulomb friction is compensated by software.

System parameters contained in model (3.20) were estimated through experi-
mental processes conducted with the available inverted pendulum system located
in the laboratory facilities of AAU. In Appendix A, the used estimation methods
as well as the values of the estimated parameters are presented. For this reason,
through the report any reference to the system parameters is related with the con-
tent of Appendix A.

Response Comparison of Electrical and Mechanical Subsys-
tem

This section presents a dynamical analysis of the previous referred subsystems, as
well as the comparison between the response behaviour of both subsystems.

A demanding point during the control of the system is when the pendulum is
close to the upright vertical position and should be stabilized there via a linear
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controller. At this point the motor, driven from the servoamplifier, should respond
much faster compared with the inverted pendulum response. The comparison be-
tween the response time of the linearised inverted pendulum [4] and the response
time of the servoamplifier-DC motor system is based on the position of the poles
of each system. Figure 3.6 shows the system (3.12) pole (blue one) to be very far on
the left with respect to the linearised inverted pendulum system poles (red ones).
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Figure 3.6: Pole location for the linearized inverted pendulum and the servoamplifier-DC motor
system.

It can be clearly seen that the subsystem of the servoamplifier-DC motor re-
sponds much faster than the overall system. Therefore, the control of the inverted
pendulum can be assumed to be not affected from the electrical subsystem. Con-
sequently, the control design will be based on the mechanical subsystem dynamics
(3.3).

The Underactuated System of Cart Pendulum

In this section, nonlinear state equations for the cart pendulum system are derived
from the state space form.

A general form of a second order controllable dynamical system is:

q̈ = f1(q, q̇) + f2(q)u (3.21)

where q is the state vector, f1(q, q̇) represents the system dynamics, f2(q) the input
matrix and u the control vector. The inverted pendulum system is an underactu-
ated mechanical system because its control actuators are less than the degrees of
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freedom to be controlled. More specifically, the displacements of cart (x) and pen-
dulum (θ) of the system are the parameters to be controlled. Using the generalized
coordinate q, system (3.20) can be presented in the state space form:

M(q)q̈ + C(q, q̇)q̇ + Dq̇ + G(q) = τ (3.22)

where

q =

[
x
θ

]
, M(q) =

[
M + m mlcosθ

mlcosθ ml2

]
(3.23)

C(q, q̇) =
[

0 −mlsinθθ̇

0 0

]
(3.24)

D =

[
γ 0
0 γr

]
(3.25)

G(q) =
[

0
−mgl sin θ

]
, τ =

[
u
0

]
(3.26)

Matrix M(q) is a symmetric inertia matrix with determinant

det(M(q)) = (M + m)ml2 −m2l2 cos2 θ

= ml2(M + m sin2 θ) > 0 (3.27)

that shows it is positive definite for all q. C(q, q̇) represents centrifugal and Coriolis
forces. In term D there are viscous damping coefficients while G(q) accounts for
gravitational forces and is given as the derivative with respect to q of the potential
energy P(q) [12]. Moreover, through equations (3.23), (3.24) is defined

Ṁ(q)− 2C(q, q̇) =
[

0 ml sin θθ̇

−ml sin θθ̇ 0

]
(3.28)

that is a skew-symmetric matrix,that follows

zT(Ṁ(q)− 2C(q, q̇))z = 0 ∀z ∈ R2 (3.29)

Using the system (3.22) the term (q̈) can be obtained from

q̈ = M(q)−1(−C(q, q̇)q̇−Dq̇− G(q) + τ)

The term M−1 can be attained using (3.23), (3.24), (3.27) and is defined as

M−1 =
1

det(M)

[
ml2 −ml cos θ

−ml cos θ M + m

]
. (3.30)

Thus, the non linear state space model is reached:
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[
ẍ
θ̈

]
=

1
det(M)

[
ml2 −ml cos θ

−ml cos θ M + m

] [
(−C)

[
ẋ
θ̇

]
+(−D)

[
ẋ
θ̇

]
+(−G)+ τ

]

[
ẍ
θ̈

]
=

1
det(M)

(

[
0 m2l3θ̇sinθ

0 −m2l2θ̇sinθcosθ

] [
ẋ
θ̇

]
+

[
−m2l2g sin θ cos θ

(M + m)mgl sin θ

]
+

[
−ml2γ ml cos θγr

ml cos θγ −(M + m)γr

] [
ẋ
θ̇

]
+

[
ml2u

−ml cos θu

]
) (3.31)

which defines the state equations for ẍ and θ̈:

ẍ =
msinθ(lθ̇2 − gcosθ)− γẋ + γrcosθθ̇

l + u
M + msin2θ

(3.32)

θ̈ =
−m2l2sinθcosθθ̇2 + mlγcosθẋ− (M + m)γr θ̇ + (M + m)gmlsinθ −mlcosθu

ml2(M + msin2θ)
(3.33)

The total energy of the system is studied in the following section. The various
positions of the system correspond to different values of the total energy which
will be a guideline for the formulation of the control law.





Chapter 4

Control Design

Introduction

This chapter deals with the design of a swing up strategy for the inverted pendu-
lum. Initially, the cart pendulum system is presented in a state space form using
generalized coordinates. Afterwards, the total energy of the system is defined. It
is used in the formulation of the control law. Eventually, using LaSalle’s invariance
principle the control law is obtained. Related theorems and definitions are also
referred.

Energetic Approach

To swing up the pendulum to the upright vertical position is used a strategy that
controls the total amount of energy in the system: adding enough energy, the
pendulum is swung up from the hanging position to its unstable equilibrium point.
The total energy of the system E(q, q̇) is defined as the sum of its kinetic (K(q, q̇))
and potential (P(q)) components. P(q) has been initially chosen to be zero at the
origin (P(0) = 0) but, because of conditions imposed on the derivative of the
Lyapunov function, as described later in this chapter, an offset Po f f = 3mgl has
been added. Consequently, the energy of the system in its balancing position is
represented by P(0) + Po f f . Such a reference value for the potential energy ensures
the total energy E(q, q̇) to remain nonnegative as time elapses.
The total energy of the inverted pendulum considering (3.23) is:

E(q, q̇) = K(q, q̇) + P(q) + Po f f

=
1
2

[
ẋ
θ̇

]T

M(θ)

[
ẋ
θ̇

]
+ mgl(cosθ − 1) + 3mgl (4.1)

23
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In an unforced system, to equilibrium points it corresponds a zero derivative of
P(q):

∂P(q)
∂q

= 0⇒ −mgl sin(θ) = 0.

Those equilibria result to be [q, q̇]T = [iπ, 0], i ∈ Z. The second derivative of
P(q) instead is negative for q = 0 and positive for q = π. Origin corresponds then
to a local maximum of the potential energy (unstable) while q = π is a minimum
(stable).

As said, potential energy in the reference point is P(0) + Po f f = 0+ 3mgl while
in the downright position, at a distance of 2l from the reference, it is equal to
3mgl + mgl(cos θ − 1) = mgl. So, it is P(q) ∈ [mgl, 3mgl]. The offset Po f f has been
chosen big enough (but cautiously) to ensure a positive total energy and to do not
introduce substantial modifications in the system.

As respects initial kinetic energy, it is proportional to the squared value of the
velocity and it assumes its minimum value when velocity is zero. The potential
energy of the inverted pendulum is defined [7] as

P(q) = mgl(cosθ − 1)

and its derivative is related with the G(q) as

G(q) =
∂P
∂q

(4.2)

From equations (3.22)-(3.26) and (3.28)-(4.2) it is obtained the rate of the energy
change of system

Ė = q̇TM(q)q̈ +
1
2

q̇TṀ(q)q̇ + q̇TG(q)

= q̇T
(
−C(q, q̇)q̇−Dq̇− G(q) + τ +

1
2

Ṁ(q)q̇
)
+ q̇TG(q)

= q̇T 2
2

(
−C(q, q̇)q̇−Dq̇ +

1
2

Ṁ(q)q̇
)
+ q̇Tτ

=
1
2

q̇T (Ṁ(q)− 2C(q, q̇)
)

q̇ + q̇Tτ − q̇TDq̇

= q̇Tτ − q̇TDq̇ (4.3)

= q̇T
[

u
0

]
− q̇T

[
γ 0
0 γr

]
q̇

= ẋu− ẋ2γ− θ̇2γr
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Homoclinic Orbit

Consider the non linear system

ẋ = f (x) (4.4)

with f : D → Rn and x̄ an equilibrium point of (4.4); that is f (x̄) = 0.

The n-dimensional solution can be presented, for a more clear and nice represen-
tation, with a set of oriented curves along all points of a 2-dimensional Cartesian
plane (θ, θ̇), called as phase plane. This set of curves is called the phase portrait of the
system (4.4).
The oriented curves traced by the solutions of system of differential equations, are
called orbits or trajectories and demonstrate how the solutions of the system change.
A solution of the system (4.4) is an equilibrium point (x1, x2). A saddle point is a
type of equilibrium point which does not correspond to a local extremum on both
axis of a system phase portrait.
In the two dimensional phase plane, a typical periodic (closed) orbit of non linear
mechanics is the limit cycle. Inside a limit cycle there is at least one trajectory that
spirals as time elapses. When the neighbouring orbits of a limit cycle go asymp-
totically towards to it as t → +∞, the limit cycle is characterized as stable as it is
shown in figure 4.1(a). In contrast, if the trajectories start from neighbouring points
of a limit cycle and tend away from it as t→ ∞, then the limit cycle is unstable [12].

(a) (b)

Figure 4.1: (a) stable and (b) unstable limit cycle

A homoclinic orbit is a special case of a single orbit which leaves a saddle point
in one direction and returns to the same saddle point from another direction as it
is shown in figure 4.2(b). Such a homoclinic orbit can express the behaviour of a
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dynamical system such as a frictionless pendulum that oscillates around a stable
equilibrium point (figure 4.2(a)). For several constant values of E, equation (4.1)
describes a possible orbit in the phase plane.

(a) (b)

Figure 4.2: Homoclinic orbit example

In the present study, the behavior of the cart pendulum system can be rep-
resented in a phase plane, where variables are angular position (θ) and angular
velocity (θ̇).

At any instant of time, the system is characterized by a certain pair (q, q̇) due
to its motion. This variable pair traces out a phase plane orbit which corresponds
to a specific total energy E according to (4.1). Different initial conditions for the
system give different values of total energy E, hence different orbits. The behavior
of the system can be shown through its phase portrait which can be used to obtain
the various values of the total energy E of the system. Due to the potential energy
offset (Po f f ), the total energy will now converge to 3mgl when q and q̇ converge to
zero as it is referred in section 4.2.

Substituting matrices from (3.23) in equation (4.1) and considering ẋ = 0 and
E(q, q̇) = 3mgl, for the case of an upright stabilized inverted pendulum it is ob-
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tained

K(q, q̇) + P(q) + Po f f =
1
2

θ̇2ml2 + mgl(cosθ − 1) + Po f f ⇒

K(q, q̇) + P(q)︸ ︷︷ ︸
=0

+3mgl =
1
2

θ̇2ml2 + mgl(cosθ − 1) + 3mgl ⇒

1
2

θ̇2ml2 = −mgl(cosθ − 1) (4.5)

which expresses the homoclinic orbit [10]. Also, when θ = 0 (then θ̇ = 0), the
pendulum has reached an equilibrium point. Generally, when the pendulum is
in the region θ ∈ [0, 2π], the system (3.22) has two sets of equilibrium points:
(x, θ, ẋ, θ̇) = (α, 0, 0, 0) for the unstable equilibrium points, (x, θ, ẋ, θ̇) = (α, π, 0, 0)
for the stable equilibrium points, where (α) can be any possible value of the cart
displacement x.
If the system can be brought to the homoclinic orbit then the task of swinging up
the pendulum has been solved since the pendulum, eventually, will approach an
unstable equilibrium point if it follows the homoclinic orbit. Finally, the swing up
control will be switched to a linear controller which will ensure (local) asymptotic
stability for this equilibrium point and will stabilize the pendulum in the upright
vertical position as described in section 4.4. Moreover, convergence of the system
in the homoclinic orbit ensures that the trajectory of the inverted pendulum will
enter the operation range of this linear controller.

Consider the subsystem pendulum: neglecting the friction, the system is con-
servative. Energy remains constant and its derivative is zero. Adding friction,
energy decreases, because of dissipation, with derivative ∂E

∂t ≤ 0 and the trajec-
tory tends to the stable equilibrium point. The study of the derivative of E(q, q̇)
along the trajectory of the system provides informations about the stability of the
equilibrium point. Certain mathematical function could be used in the study of
stability of equilibrium points rather than energy [12] . Changes over time on such
an energy-like function (V), introduced by Lyapunov, might reveal conclusions
about the trajectories of a system without finding the trajectories.

Lyapunov Stability

Consider a function V : Rn → R that satisfy some conditions on V and V̇, than
trajectory of the system satisfies some property. If such a function V exists, it is
called Lyapunov function. Depending on the system’s equations, there will be a
different V for each different system.
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Theorem 4.3.1 (Lyapunov’s stability) Let x = 0 be an equilibrium point for the system
(4.4) and D ⊂ Rn be a domain containing x = 0. Let V : D → R be a continuously
differentiable function such that

V(0) = 0 and V(x) > 0 in D− {0}
V̇ ≤0 in D

Then, x = 0 is stable. Moreover, if

V̇ < 0 in D− {0}

then x = 0 is asymptotically stable [12].

The aim to design a Lyapunov function based on the mechanical energy is dis-
cussed. The proposed candidate function is expressed as the sum of squares of
total energy, position and velocity of the cart. The purpose is to have all the terms
of V(q, q̇) equal to zero in the upright position:

V =
KE

2
(
E− Po f f

)2
+

Kv

2
ẋ2 +

Kx

2
x2 (4.6)

where gains KE, Kv, Kx are strictly positive constants. Lyapunov’s stability theorem
(4.3.1) requires the candidate function (4.6) to be positive definite but from the ex-
pression of energy (4.1) it is possible to get E− Po f f = 0 by combination of θ and
θ̇ values other than zero. Therefore, (4.6) is not a Lyapunov function . Failing to
design a Lyapunov function does not preclude alternative approaches: conditions
in Lyapunov’s stability theorem are only sufficient.

Theorem 4.3.2 (LaSalle’s theorem) Let Ω ⊂ D be a compact set that is positively in-
variant with respect to (4.4). Let V : D → R be a continuously differentiable function such
that V̇ ≤ 0 in Ω. Let E be the set of all points in Ω where V̇ = 0. Let M be the largest
invariant set in E . Then every solution starting in Ω approaches M as t→ ∞ [12].

LaSalle’s theorem allows us to use function (4.6) also if it is not positive defi-
nite; there are conditions only on the derivative of V(q, q̇). It extends Lyapunov’s
theorem (4.3.1) and can be used when, instead of an isolated equilibrium point,
the system has an equilibrium set [12]. In return, the construction of the set Ω is
required. When V(q, q̇) is radially unbounded (as function (4.6)), it is possible to
define a set Ωc = {(q, q̇) ∈ Rn|V(q, q̇) ≤ c} bounded for all the values of c. The
set Ωc represents an estimation for the region of attraction to the equilibrium set
[12].Using the LaSalle’s theorem principle, a control law will be designed to bring
the pendulum to the invariant set M, starting from a region of attraction.

As it was referred in section 4.2.1, in this study the inverted pendulum has a
set of equilibrium points instead of a unique equilibrium point. Furthermore, the
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non linear energy control that performs the swing up motion of the pendulum
will eventually switch to a linear control when the pendulum arrives in a narrow
region around the upright vertical position such that to stabilize it. The linear
controller K1 designed in [4] is used for the stabilization of the pendulum in the
upright vertical position. Experimentally it has been found that the controller K1

is able to stabilize the pendulum from an initial angle θ ∈ (−0.262,+0.262)[rad]
(or θ ∈ (−15o,+15o)). Therefore, by switching from the non linear energy control
to the linear control for a pendulum displacement θ ∈ [−0.175,+0.175][rad] (or
θ ∈ [−10o,+10o]) it is ensured that finally the linear controller will execute the
control task.

Control Law Formulation

Since frictions (Ff = Fc + γẋ) acting during the linear motion of the cart will be
compensated by the microcontroller (section 2.2), control law u will be designed
considering u = FM − Ff . Therefore, the system dynamics (3.20) is transformed to

(M + m)ẍ−mlθ̇2 sin θ + mlθ̈ cos θ = u

ml2θ̈ −mgl sin θ + ml cos θẍ = γr θ̇ (4.7)

It follows that state equations for ẍ (3.32) and θ̈ (3.33) become:

ẍ =
msinθ(lθ̇2 − gcosθ) + γrcosθθ̇

l + u
M + msin2θ

(4.8)

θ̈ =
−m2l2sinθcosθθ̇2 − (M + m)γr θ̇ + (M + m)gmlsinθ −mlcosθu

ml2(M + msin2θ)
(4.9)

where terms with γẋ disappeared.

Expression (4.3) for Ė is also affected by this change:

Ė = ẋu− θ̇2γr (4.10)

The derivative of V(q, q̇), using the equation (4.10), is

V̇ = KE(E− Po f f )Ė + Kυ ẋẍ + Kxxẋ

= KE(E− Po f f )(ẋu− θ̇2γr) + Kυ ẋẍ + Kxxẋ

= ẋ
[
KE(E− Po f f )u + Kυ ẍ + Kxx

]
− θ̇2γrKE(E− Po f f ) (4.11)

For simplicity, equation (4.8) is redefined as

m sin θ(lθ̇2 − gcosθ) + γrcosθθ̇
l + u

M + msin2θ
=

α(θ, θ̇) + u
β(θ)

(4.12)
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and substituting (4.12) into (4.11), it is obtained

V̇ = ẋ
[

KE(E− Po f f )u + Kυ

(
α(θ, θ̇) + u

β(θ)

)
+ Kxx

]
− θ̇2γrKE(E− Po f f ) (4.13)

A large level of the system potential energy in the unstable equilibrium point en-
sures the cart pendulum total energy E to be always positive, as it is referred in
section 4.2. Thus, term −θ̇2γrKEE in equation (4.13) is always negative and it is not
considered in the design of the control law u. Consequently, the following control
law is proposed based on (4.13)

KE(E− Po f f )u + Kυ
α(θ, θ̇) + u

β(θ)
+ Kxx = −Kδ ẋ ⇒

u
(

KE(E− Po f f ) +
Kυ

β(θ)

)
+ Kυ

α(θ, θ̇)

β(θ)
+ Kxx = −Kδ ẋ (4.14)

that gives

u =
β(θ)(−Kδ ẋ− Kxx)− Kυα(θ, θ̇)

β(θ)KE(E− Po f f ) + Kυ
. (4.15)

Control law u is defined if singularities in (4.14) are avoided. Thus, seen (4.12), it
exists:

KE(E− Po f f ) +
Kυ

β(θ)
6= 0⇒

Kυ

KE
6= −(E− Po f f )(M + m sin2 θ) (4.16)

Considering the total energy of system (4.1), term (E − Po f f ) is not smaller than
−2mgl:

E− Po f f ≥ −2mgl (4.17)

From (4.16) and (4.17), the following constrain is achieved

Kυ

KE
> 2mgl maxθ{M + m sin2 θ} ⇒

Kυ

KE
> 2mgl(M + m) ' 5.11 (4.18)

The ratio of Kυ to KE will be provided according to inequality (4.18). Substituting
(4.14) in (4.13) it is obtained

V̇ = −Kδ ẋ2 − θ2γrKE(E− Po f f ) (4.19)
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where Kδ > 0 to ensure that V̇(q, q̇) is negative semi definite as required in the
LaSalle’s invariance principle. Control gains in control law (4.15) have been cho-
sen according to bibliography as well as simulation tests such that to give a high
pendulum oscillation as much close to its unstable equilibrium point. They are
determined as:

Kx = 14, Kδ = 2, Kυ = 5.5, KE = 1 (4.20)

Equation (4.5) reveals us the energetic level where we want the system to be. The
relative phase portrait plot of (4.5) is shown in figure 4.3.
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Figure 4.3: System’s potential energy and homoclinic orbit reference.

Its shape varies with the potential energy shape. To the maxima of potential
energy (P), correspond the unstable points 0[rad] and 6.28[rad], to its minimum the
stable point 3.14[rad]. Homoclinic orbit separates the trajectories circling the stable
point from those circling the two unstable points [19].
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The nonlinear strategy here presented is not able to reach that level. It will be
showed instead that, by means of the swing up, system will converge as close as
possible to that orbit.
Simulations in figure 4.4 for the closed loop system using the control law (4.15)
revealed that the pendulum can not reach the desired range where the linear con-
troller works. A reason could be the rotational viscous friction in the pendulum,
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Figure 4.4: Angular position and phase portrait simulation using control law (4.15).

since these non conservatives forces usually create difficulties in modeling and
controlling a system. The underactuated system can not directly overcome it. To
verify such an assumption a simulation removing the rotational friction from the
system (γr = 0) has been run. Figure 4.5 shows that, without the rotational friction,
control law u is able to bring the pendulum in a vicinity of the upright position,
while the orbit goes close to the homoclinic one.
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Figure 4.5: Angular position and phase portrait simulation using control law (4.15) while rotational
friction has been removed.

Being the friction removed, can be seen that quite long time is required to reach
the result. Trying to tune differently the gains could help to reach earlier the same
result.

Formulation of the additional control term υ

Taking into account results from figure 4.4 and 4.5, it can be said that the dissipa-
tion term γr θ̇ can be considered as an uncertainty, that affects the control of the
system. Thus, an additional feedback control term υ should be designed in order
to compensate the effect of γr in the closed loop equation of the pendulum (4.9)
and stabilize the actual system from this uncertainty.

θ̈new =
−m2l2sinθcosθθ̇2 − (M + m)γr θ̇ + (M + m)gmlsinθ −mlcosθ(utot)

ml2(M + msin2θ)
(4.21)

where utot = u + υ is the overall controller that eventually will stabilize the
pendulum in the upright vertical position.

According to [9], the additional term υ is designed based on the expectation
that equation (4.21) (that presents rotational friction term and correction term υ)
coincide with equation (3.33) for the case without friction (γr = 0) and relative
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compensation, as it is shown below.

θ̈|(γr=0) = θ̈new ⇒
−m2l2sinθcosθθ̇2 + (M + m)gmlsinθ −mlcosθu

ml2(M + msin2θ)
=

−m2l2sinθcosθθ̇2 − (M + m)γr θ̇ + (M + m)gmlsinθ −mlcosθ(u + υ)

ml2(M + msin2θ)

Removing terms present in both sides of the equality, it remains:

mlcosθ

ml2(M + msin2θ)
υ =

−(M + m)γr θ̇

ml2(M + msin2θ)
⇒

υ =

(
−(M + m)γr θ̇

) (
ml2(M + msin2θ)

)
(ml2(M + msin2θ)) (mlcosθ)

⇒

υ = −M + m
mlcosθ

γr θ̇ (4.22)

As a consequence, it is formulated the following control law based on a desired
total energy (4.5) and a desired closed loop structure (4.21). The inverted pen-
dulum, considering also the non conservative forces, is swung up by this control
input that ensures also convergence to the operational range of the linear controller.

Setting u = utot − υ in equation (4.13) it is obtained:

V̇ = ẋ
[

KE(utot − υ)E + Kυ

(
α(θ, θ̇) + (utot − υ)

β(θ)

)
+ Kxx

]
− θ̇2γrKEE

where

KE(utot − υ)E + Kυ

(
α(θ, θ̇) + (utot − υ)

β(θ)

)
+ Kxx = −Kδ ẋ ⇒ (4.23)

utot

(
KEE +

Kυ

β(θ)

)
− υ

(
KEE +

Kυ

β(θ)

)
+

Kυα(θ, θ̇)

β(θ)
+ Kxx = −Kδ ẋ ⇒

utot

(
KEE +

Kυ

β(θ)

)
= −Kδ ẋ + υ

(
KEE +

Kυ

β(θ)

)
− Kυα(θ, θ̇)

β(θ)
− Kxx ⇒

utot =
(−Kδ ẋ− Kxx)β(θ)− Kυα(θ, θ̇)

β(θ)KEE + Kυ
+ υ (4.24)

with υ as defined in (4.22)
From equations (4.23), (4.13) the derivative of the function V is obtained, which

should be negative semi definite as it is required in the LaSalle’s invariance principle:

V̇ = −Kδ ẋ2 − θ̇2γrKEE (4.25)
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For Kδ > 0, it gives V̇ ≤ 0, thus the control law (4.24) can be used for the swinging
of the pendulum.

Additional controller υ in equation (4.22) has a singularity for values of θ close
to (π

2 + kπ)[rad], when cos θ is very close to zero. As a consequence, while pen-
dulum rod were close to the horizontal positions, DC motor would be required to
release a very high torque. This eventuality can be avoided introducing a limita-
tion to the value assumed by the function υ. During the entire swing up, additional
controller (4.22) is then compared with the function

υmax = − M + m
ml cos(1.435)

γr θ̇.

where the argument of cos(θ) in (4.22) has been substituted with 1.435[rad] (or
82o). For a range of θ about (π

2 + kπ)[rad], υ becomes too large: it is imposed to
the additional term to switch to the value sign( υ

υmax
) when υ > υmax. Under this

condition, singularity is avoided and the motor is not overloaded.
A saturation function, as said in (2.2), is already present in the Utility.cpp library;
it is reported in Listing 4.1.

Listing 4.1: Saturation function.

17 f l o a t s a t ( f l o a t x , f l o a t eps ) {
18 i f ( abs ( x ) > 1) {
19 return s ign ( x ) ;
20 }
21 e lse {
22 return x∗(1/ eps ) ;
23 }
24 }

With the purpose of writing a clean code, this saturation function has been used
to implement the definitive controller in the Arduino code as well as the Matlab
code has been built following the same structure. So, additional controller v from
equation (4.22) becomes:

υ =sat

(
υ

υmax
,

1
υmax

)
(4.26)

From a Matlab simulation plot, υ is represented as in figure 4.6. It is easy to see
that it assumes the highest values when the pendulum is close to the horizontal
positions; singularity is avoided switching υ to ±1.
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Figure 4.6: Additional controller υ from Matlab simulation.

Introducing (4.26) in the equation (4.24), it is attained:

utot =
(−Kδ ẋ− Kxx)β(θ)− Kυα(θ, θ̇)

β(θ)KEE + Kυ︸ ︷︷ ︸
u

+ sat

(
υ

υmax
,

1
υmax

)
︸ ︷︷ ︸

υ

(4.27)

Simulation in figure 4.7(a) using controller (4.27) shows that the system is able
to bring the pendulum close to the upright position, in a region where the linear
controller performs well.
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Figure 4.7: Angular position and phase portrait simulation using control law (4.27).

Running the same simulation for a very long time, it is possible to see the effect
of the control law (4.27) while there is no switch to the linear controller. Figure 4.8
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shows the system converged to a set of orbit representing the invariant set M, as
stated in LaSalle’s theorem 4.3.
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Figure 4.8: Phase portrait showing the invariant set M (in blue) where the system converges during
the swing up. Plotting time range is 3000÷ 4000[s].

An outlook of the complete scenario is given in figure 4.9, where the homoclinic
reference, the invariant set M and the possible Ω sets are depicted.
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Figure 4.9: Phase portrait showing various Ω sets inside and outside the stable set M.

In figure 4.9, the Ω sets surrounded by set M are good enough estimations of
the region of attraction. Outside the M set and the homoclinic orbit, sets Ω become
open. LaSalle’s theorem (4.3) refers to those Ω sets that are compact. Nothing can
be said if they are not.

Simulation

The final desired behaviour of the controlled inverted pendulum can be distin-
guished in two parts. Initially, the system with the applied control law (4.27)
swings the pendulum from a downright position to an upright position. After-
wards, when the pendulum displacement is close to an unstable equilibrium point
(−0.175[rad] < θ < 0.175[rad]) the applied swing up energy control switches to a
linear control that stabilizes the pendulum upright vertically. Matlab ode23 func-
tion has been used to simulate the behavior of the non linear system.

Totally, simulation was performed for initial conditions (x, θ, ẋ, θ̇) = (0.25[m], π[rad], 0, 0).
The used controller gains are:

• linear controller: K1 = [−30.6130− 121.4494− 22.5738− 17.1256] as it is pre-
sented in the Appendix A

• swing up energy controller: Kx = 14, Kδ = 2, Kυ = 5.5, KE = 1
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(a) (b)

Figure 4.10: System response. The dashed lines in figure 4.10(a) defines in which angles the switching
to the linear controller is executed. The homoclinic orbit is presented with red color in figure 4.10(b)

Figure 4.10 demonstrates the simulated response of the system. The angular
position and velocity of the pendulum are increasing regularly until the time of
63[s] where the pendulum reaches an angle θ = 0.175[rad] as it is shown in figure
4.10(a). At this point the swing up control switches to the linear control such that
the pendulum to be stabilized upright vertically. Thus, after 63[s] the pendulum
displacement and velocity are almost equal to 0. Figure 4.10(b) shows the orbits
followed by the pendulum. The pendulum arrives very close to the reference of
homoclinic orbit (red orbit) but since it is not able to reach it, the control switches
to a linear one that will stabilize the pendulum.It should be referred that the M
invariant set shown in plot 4.8 contains pendulum angles which are inside the op-
erational range of the linear controller. In this way it is guaranteed that eventually
the swing up control switches to the linear one.

As final step in the analysis performed in this chapter, some considerations
about the energy are given. In figure 4.11 the level of the system energy (4.1) is
presented: during the swing up, the energy starts from the value mgl(= 0.751)[J]
and it reaches the value 3mgl(= 2.253)[J] before the switching in t = 63[s]. Initial
and final values for the total energy are those of the potential energy, as in figure
4.3. Energy remains every time positive during the simulation, as required in
section 4.2.
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Figure 4.11: Simulated energy of the system



Chapter 5

Laboratory implementation

Introduction

This chapter presents the implementation and tuning process of the swing up con-
troller in the inverted pendulum. The control law (4.27), as well as the energy
controller (4.20) are implemented in the physical inverted pendulum set up shown
in figure 3.5. Simulation results which are presented in sections 4.3.1 and 4.4, were
used as guidelines. Due to implementation issues, the control law (4.27) should be
adjusted accordingly in order to achieve:

• a swing up motion that gives to the pendulum a proper velocity θ̇

• a steady switching from the swing up controller to the linear controller which
eventually stabilize the pendulum upright

Initially, a scaling factor η is introduced in the applied control law to achieve the
first objective. The value of this coefficient is defined with a tuning process which
consists of two steps as it is presented in section 5.2. Afterwards, a second scal-
ing factor η2 is also applied in the control law in order to reach the second objective.

It is convenient to recall the designed control laws presented in section 4.3.1
since they were used during the tuning procedure.

Control law (4.15):

u =
β(θ)(−Kδ ẋ− Kxx)− Kυα(θ, θ̇)

β(θ)KE(E− Po f f ) + Kυ

The pendulum oscillates within the range of 2.22[rad] < θ < 4.05[rad].

41
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Control law (4.27):

utot =
(−Kδ ẋ− Kxx)β(θ)− Kυα(θ, θ̇)

β(θ)KEE + Kυ︸ ︷︷ ︸
u

+ sat

(
υ

υmax
,

1
υmax

)
︸ ︷︷ ︸

υ

The pendulum swinging up approaching the upright vertical position where a linear con-
troller acts.

1st Control Adjustment: Swing Up Tuning

For an initial cart displacement of xinit = 0, 25[m], as well as a pendulum displace-
ment of θinit = π[rad], the response of the real system was obtained using the
control law (4.27)). Figure 5.1 demonstrates that with the usage of this control law
the pendulum swings up from its initial angle θinit = π[rad] but it is not able to be
stabilized from the linear controller, with gains K1, since the pendulum angle does
not remain steady in an angle of 0 or 6.28[rad] eventually. The linear controller K1

operates in the angle range of −0.175[rad] < θ < 0.175[rad].

(a) (b)

Figure 5.1: System response using the control law (4.27)

A reason for this issue could be a large pendulum velocity (θ̇) when the pen-
dulum enters the linear controller operational range. Consequently, the linear con-
troller is not able to stabilize the pendulum upright. Practically, that may mean
that the applied force of the motor (FM) is higher than the one which has been
designed and simulated for the energy controller that performs the swing up mo-
tion of the inverted pendulum. Due to the fact that simulation results presented in
section 4.4 show an acceptable performance with a pendulum stabilized upright, it
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can be said that there is an implementation issue or a model uncertainty may exist.

Initially, from the control law (4.27) the additional control input term (υ) which
compensates the rotational friction of the pendulum (γr θ̇) is disregarded. Now,
the applied control law is the (4.15). In this case, the pendulum reaches the oper-
ational range of the linear controller (−0.175[rad] < θ < 0.175[rad], dashed lines)
as it is shown in figure 5.2. Also, the pendulum is stabilized upright vertically.
Apparently, this is an undesired behaviour because simulations in subsection 4.3.1
revealed that in such a case the pendulum should not reach the operational range
of the linear controller.

(a) (b)

Figure 5.2: System response for the control law (4.15)

In an attempt of following the simulation results, a scaling coefficient η is intro-
duced proportional to the control law (4.27) in order to regulate the applied control
input. After that, the applied swing up control law in the real system is defined as:

utot = η

 (−Kδ ẋ− Kxx)β(q)− Kυα(q, q̇)
β(q)KEE + Kυ︸ ︷︷ ︸

u

+ sat
(

υ

υmax
,

1
υmax

)
︸ ︷︷ ︸

υ

 (5.1)

The response of the system for different values of this coefficient was investigated,
according to the following tuning procedure:

• step 1 Initially, set a value for the coefficient η and control the system via
utot = η ∗ u.

• step 2 Then, control the system via utot = η ∗ (u + υ) and comparison with
the corresponding simulation results.
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In the next subsection, conclusions from this regulation procedure are pre-
sented aiming to results similar with the simulated ones.

Tuning procedure

Imprecise estimated values for the states ẋ, θ̇ of the system may introduce uncer-
tainties in the system. The swing up motion of an inverted pendulum is a demand-
ing and accurate motion, where small errors may create deviations that results in
a failure. With the usage of the scaling coefficient η, a regulation of the control law
(5.1) is performed, without modifying the swing up control gains (Kδ, Kx, Kυ, KE).

Step 1
From a starting value of η = 1, this coefficient was decreased until the real pen-
dulum followed the simulations (figure 4.5(b)) and oscillated ideally close to the
region 2.22[rad] < θ < 4.05[rad].

The applied control law is

utot = η

(
(−Kδ ẋ− Kxx)β(q)− Kυα(q, q̇)

β(q)KEE + Kυ

)
︸ ︷︷ ︸

u

(5.2)

that corresponds to the theoretical (4.15).
For a value of η=0.279 the pendulum oscillates in the range (1.77[rad] < θ <

4.5[rad]) which is close to the simulation range of 2.22[rad] < θ < 4.05[rad], as
it is shown in figures 5.3 and 5.4.

(a) (b)

Figure 5.3: System response using the control law (5.2) and coefficient η = 0.279.
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Figure 5.4: Simulated system response (red) and real system response with η = 0.279 (blue) for the
control laws (4.15) and (5.2) respectively.

Now the inverted pendulum has a behaviour that follows the simulations and
the related theory referred in section 4.3.1 for the applied control (5.2).

Step 2
Next step is the implementation of the additional control input term υ such that the
system to be controlled according to equation (5.1) in order to reach the operational
range of the linear controller. For the control law (5.1) and a coefficient η = 0.279 ,
the response of the system is shown in figure 5.5.

(a) (b)

Figure 5.5: System response using the control law (5.1) and coefficient η = 0.279

Unfortunately the system still does not reach the desired region where the lin-
ear control acts (dashed lines) as it is shown from figure 5.5(a). Additional control
term υ is not able to give any contribution to the swing up procedure if multiplied
by the coefficient η = 0.279. It is concluded that the option of η = 0.279 can not
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be characterized as acceptable, probable because of its low value. For this reason it
is gradually increased, starting this time from the value of 0.279, until the applied
control law (5.1) will place the pendulum in the operational range of the linear
controller with gains K1 and stabilize it upright vertically. The previous tuning
procedure is repeated. It is now chosen a value η = 1.44.

Step 1
As shows figure 5.6, using the control law (5.2) with η = 1.44, the pendulum does
not arrive to the angular positions θ < 0.175[rad] or θ > 6.125[rad]. This behaviour
follows what was expected from the simulations.

(a) (b)

Figure 5.6: System response using the control law (5.2) with a coefficientη = 1.44.

Step 2
Afterwards, the control law (5.1) with a coefficient η = 1.44 was applied in the
system. Figure 5.7 shows the response of the system in this case.

The pendulum reaches the operational range of the linear controller but, ap-
parently, after the switching it is not able to be stabilized upright from the linear
controller. Also, according to figure 5.7(b) the phase portrait of the real pendulum
does not remain close to the reference homoclinic orbit. This fact reveals that the
pendulum is not stabilized upright despite the fact that it reaches the switching
range.

To sum up, for an applied control law (5.2) with coefficient η = 1.44 the real
inverted pendulum has the same tendency with the simulated one.
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(a) (b)

Figure 5.7: System response using the control law (5.1) with coefficient η = 1.44.

This is demonstrated in figure 5.8 where both the real system angular displace-
ment and the simulated one do not arrive in the switching point to the linear
controller (dashed lines). The first objective of a proper swing up motion has been
reached.

Figure 5.8: Simulated system response (red) and real system response (blue) for a control law (5.2)
and a used coefficient η = 1.44 for the applied control in the real system.

On the other hand, a smooth control switch to the linear controller has not been
reached yet as it is shown in figure 5.7. Thus, the form of the applied control law
(5.1) should be modified as an attempt to better results.



48 Chapter 5. Laboratory implementation

2nd Control Adjustment: Stable Switching Tuning

In this part is presented how it is faced the problem of the failed linear control after
the control switching from the swing up energy control. According to the referred
theory in section 4.3.1, the applied control law in the physical inverted pendulum
should have the form of (5.1) that corresponds to the theoretical (4.27). Initially, the
form of the applied law (5.1) has been modified to

utot = η

 (−Kδ ẋ− Kxx)β(q)− Kυα(q, q̇)
β(q)KEE + Kυ︸ ︷︷ ︸

u

+ sat
(

υ

υmax
,

1
υmax

)
︸ ︷︷ ︸

υ

(5.3)

and for a coefficient η = 1.44 the real pendulum swings without reaching the
angles of θ < 0.175[rad] or θ > 6.125[rad], as figure 5.9 shows.

(a) (b)

Figure 5.9: Real system response for the control law (5.3) and coefficient η = 1.44

Still, the applied motor force (FM) is not enough to perform a complete swing
up motion in order to place the pendulum in the operational range of the linear
controller. Considering also that the applied control (5.3) contains both terms u
and υ, the bad response of the system may be related with the values of the terms
u, υ. Therefore, an analysis based on the simulation was performed investigating
the ratio ( υ

u ).
Figure 5.10 states the simulated evolution of the terms u,υ for the applied con-

trol law (4.27) during the swing up control of the system.
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Figure 5.10: The terms of the theoretical control law (4.27).

Taking the peak envelopes for each signal it is approximated an average ration
of

v
u
≈ 4 (5.4)

Apparently, with the usage of the control law (5.3) and a coefficient η = 1.44,
the ratio v

u is not close to 4 as it should, but much larger since the coefficient η is
only proportional to the term u.

Therefore, a new coefficient η2 is introduced to maintain the ratio between
terms u and υ. As a result, the applied control law in the real system reached its
final form

utot = η

 (−Kδ ẋ− Kxx)β(q)− Kυα(q, q̇)
β(q)KEE + Kυ︸ ︷︷ ︸

u

+ η2

sat
(

υ

υmax
,

1
υmax

)
︸ ︷︷ ︸

υ

 (5.5)

Based on (5.4) and the already used coefficient η = 1.44, the new coefficient η2

was estimated as

η2 =
η

4
⇒ η2 =

1.44
4
⇒ η2 = 0.36 (5.6)

Implementation and Validation of the Control Law

Finally, for the applied control law (5.5), where η = 1.44 and η2 = 0.36 the physical
inverted pendulum has the desired behaviour with a proper swinging and stabi-
lization from the linear controller as it is demonstrated in figures 5.11 and 5.12.
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Figure 5.11: System response, using the control law (5.5) with coefficients η = 1.44 and η2 = 0.36

(a) (b)

Figure 5.12: The overall applied control input and the corresponding phase portrait for the system.
The control law (5.5) with coefficients η = 1.44 and η2 = 0.36 is applied in the system only during
the swing up motion (0− 63[s])

The response of the real system is quite similar with the simulated one as it is
demonstrated in figures 5.13, 5.14. The pendulum in both, simulation and reality,
swings and is stabilized upright vertically at around 63[s].
Furthermore, it is validated the estimated coefficients η, η2 as well as the form of
the applied control law (5.5) in the physical system, since the graphs of angular
displacement and velocity are quite similar.
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Figure 5.13: Real (blue) and simulated (red) system response for the applied control laws (5.5) and
(4.27) respectivaly.

(a) (b)

Figure 5.14: The phase portraits plots for the real (blue) and simulated (red) system response for the
applied control laws (5.5) and (4.27) respectivaly.

In the simulation the swing up control switches to the linear one for an angle
of θ < 0175[rad], while in reality for an angle θ > 6.125[rad]. This is not an issue
and is related only with estimated values of the system states(x, θ, ẋ, θ̇) from the
Matlab software.
In figure 5.15 the comparison between the energy level of the experimental data
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and the simulated one (from figure 4.1) is presented. They confirm the expectations
from the analysis with simulations in the previous chapter.

Figure 5.15: Energy of the real system (blue) and simulated one (red)



Chapter 6

States Estimation

Introduction

When using modern control theory, it is required to measure the states of a dynam-
ical system in order to control it. This task is performed via sensors. Unfortunately
in complex systems it is common that some of the system states are not measured
directly from sensors. Moreover, some sensors give noise measurements making
the system data collection and process a challenging task. This undesired situation
is addressed by using state estimators that predict the unknown or uncertain states
of a system. Kalman filters are state estimators based on stochastic models. These
stochastic models describe noise characteristics (i.e. standard deviation, variance)
of measured sensors data. In the control theory, this noise may be related with an
uncertainty which had not been considered during the control design of a system.
Kalman filter is a mathematical tool that makes optimal estimations using a system
and a measurement model.

In the present chapter the objective is to perform state estimations using the
model of the system presented in section 3.3. The available encoders measure the
angular and the linear displacement of the system. In contrast, the angular and
linear velocities (ẋ, θ̇) of the inverted pendulum are not measured directly from a
sensor but initially they are estimated from the measured displacements according
to:

θ̇ =
∆θ

Ts
, ẋ =

∆x
Ts

(6.1)

where Ts is the sampling time of the obtained data.

Therefore, the states ẋ, θ̇ may not be well estimated at first. Furthermore, all the
measured states (x, θ, ẋ, θ̇) may include an uncertainty due to a noisy signal. With
a Kalman filter, optimal as well as less noisy estimations for the unknown and

53
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known states of a system are obtained. In [3], [6] a Kalman filter is used for the
state estimation of a mobile inverted pendulum such that to improve its balancing
control. In the present thesis an extended Kalman filter is used in order to obtain
more accurate states and improve the non linear swing up control of the system as
well as its balancing control by the linear controller.
The difference between a Kalman filter (KF) and an extended Kalman filter (EKF)
is that the first one is a linear estimator while the second a nonlinear estimator.
The main parts of the present chapter are:

• Theoretical principle of the extended Kalman filter

• Design of the extended Kalman filter

• Results from the implementation of the extended Kalman filter in the real
system

Extended Kalman Filter

Noise that is included in measured data is a parameter that is taken into account
from both Kalman and extended Kalman filters. This noise is considered as white
and consist of the system (w) and the measurement (v) noise [8]. In the KF the
linear system and measurement equations are:

x = Ax + Bu + w

y = Cx + v (6.2)

and for the EKF the non linear system and measurement equations are:

ẋ = f (x, u) + w

y = h(x) + v (6.3)

Algorithm of Extended Kalman Filter

The EKF algorithm is implemented in discrete time. Therefore, the nonlinear sys-
tem and measurement model in discrete time are presented.

xk+1 = fd(xk, uk) + wk, wk ∼ N (0, Qk)

yk = hd(xk, uk) + vk, vk ∼ N (0, Rk) (6.4)

where
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xk the state vector of the system at time k
fd(xk, uk) the discrete non linear system equation
yk the output vector of the system at time k
hd(xk, uk) the discrete non linear measurement equation
N (µ, σ2) a Gaussian distribution with mean µ and covariance σ2

wk the system noise with 0 mean and covariance Qk
Qk the noise covariance matrix of the system
vk the measurement noise with 0 mean and covariance Rk
Rk the noise covariance matrix of the measurement

An EKF deals with nonlinearities by linearizing the system during the actual
estimation, and filters this linearized system via a KF. For this reason the system
and measurement equations (6.4) are linearized by using partial derivatives with
respect to the most recent estimations of x:

Fk =
∂ fd(x, u)

∂xT

∣∣∣∣
x̂k|k ,uk

Hk =
∂hd(x, u)

∂xT

∣∣∣∣
x̂k|k−1,uk

(6.5)

where x̂k|k is defined the estimation of the state xk using known data at time k
and x̂k|k−1 the estimation of the state xk using known data at time k− 1. The EKF
algorithm consists of 3 steps:

• Initialization

• Prediction

• Time update

Initialization: The predicted state x̂ and the covariance matrix P of the state esti-
mations are initialized:

x̂0|−1 =0

P0|−1 =Q

Prediction: At the current time k prediction is performed. Available actual
measurements yk, uk are compared with previous state estimations and then cor-
rected:

ŷk|k−1 =hd(x̂k|k−1, uk)

ỹk|k−1 =yk − ŷk|k−1

Kk =Pk|k−1HT
k (HkPk|k−1HT

k + Rk)
−1

x̂k|k =x̂k|k−1 + Kkỹk|k−1

Pk|k =(I−KkHk)Pk|k−1(I−KkHk)
T + KkRkKT

k



56 Chapter 6. States Estimation

Time update: From the time k to k + 1. The next state x̂ and covariance matrix
P are predicted:

x̂k+1|k = fd(x̂k|k, uk)

Pk+1|k =FkPk|kFT
k + Qk

where

ŷk|k−1 the predicted measurement at time k, using the state prediction x̂k|k made at
time k− 1

ỹk|k−1 the measurement error at time k
Kk the Kalman gain at time k
x̂k|k the state prediction at time k corrected from the kalman gain and the previous

state estimation
Pk|k the covariance matrix of the state predictions at time k
x̂k+1|k the updated state prediction corrected from the kalman gain and the actual

state estimation made at time k
Pk+1|k the updated covariance matrix of the state predictions

The main concept in the EKF is to predict the prior state in the prediction step
and update it in the update step, using the non linear model. This is performed
by computing the kalman gain (K) and the covariance matrix (P) by using the lin-
earized terms Fk, Hk of the non linear system (6.4).

Design of Extended Kalman Filter

Improvement in the control of the inverted pendulum is expected by the usage of
an EKF which will process all the states of the system. More specifically, the states
of the system are defined as:

x̄ =


x
θ

ẋ
θ̇

 =


x1

x2

x3

x4


(cart horizontal position)
(pendulum angular position)
(cart horizontal velocity)
(pendulum angular speed)

(6.6)
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The model of the inverted pendulum presented in subsection 4.3.1 is:

(M + m)ẍ−mlθ̇2 sin θ + mlθ̈ cos θ = u

ml2θ̈ −mgl sin θ + ml cos θẍ = γr θ̇ (6.7)

and by introducing the notation (6.6) the nonlinear state equations of the system
are obtained:

ẋ1 = x3

ẋ2 = x4

ẋ3 =
msinx2(lx4

2 − gcosx2) +
γrcosx2x4

l + u
M + msin2x2

ẋ4 =
−m2l2sinx2cosx2x4

2 − (M + m)γrx4 + (M + m)gmlsinx2 −mlcosx2u
ml2(M + msin2x2)

(6.8)

where the form of the model is simplified by redefine the ẋ3 as:

ẋ3 =
m sin x2(lx2

4 − gcosx2) +
γrcosx2x4

l + u
M + msin2x2

=
α(x2, x4) + u

β(x2)

In this way. the nonlinear state equations for the system are:

ẋ1 = x3

ẋ2 = x4

ẋ3 =
α(x2, x4) + u

β(x2)

ẋ4 =
g
l

sinx2 −
γrx4

ml2 −
1
l

cosx2

(
α(x2, x4) + u

β(x2)

)
(6.9)

Since the displacements x1, x2 are the measurements from the physical system
that are fed in the EKF, the measurement equations of the system are:[

y1

y2

]
=

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

H

[
x1

x2

]
(6.10)

The models (6.8) and (6.10) are the system and the output model respectively,
that are used from the EKF. In our system they have a continuous form:

˙̄x = f (x̄, u)

y = Hx̄ (6.11)
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where the system model is nonlinear while the output model is linear. The system
(6.11) should be discretized using the forward Euler method, since the algorithm
of the EKF is referred in discrete time:

xk+1 = xk + Ts f (xk, uk)

yk = Hxk (6.12)

with Ts = 0.005[s] the used sampling time of the Arduino board, that is also used
in the algorithm of the EKF. Consequently, the discrete form of the model (6.9) is:

x1k+1 = x1k + Tsx3k

x2k+1 = x2k + Tsx4k

x3k+1 = x3k + Ts
α(x2k, x4k) + u

β(x2k)

x4k+1 = x4k + Ts

(
g
l

sinx2k −
γrx4k

ml2 −
1
l

cosx2k

(
α(x2k, x4k) + u

β(x2k)

))
(6.13)

As it was described in subsection 6.2.1 the derivation of the Kalman filter is used by
the EKF in order to linearize the nonlinear terms only when it is needed. Therefore,
it is convenient to present the discrete linearized system and output matrices of the
system:

Fk =
∂ fd(xk, uk)

∂x̄

∣∣∣∣
xk ,uk

Hk =
∂hd(xk, uk)

∂x̄

∣∣∣∣
xk ,uk

(6.14)

where Hk is defined in (6.10) and the state transition matrix Fk is given by:

Fk = I + Ts
∂ f (x̄, u)

∂x̄T

∣∣∣∣
x̂k|k ,uk

(6.15)

Design of Measurement and System Noise

White noise is present in real world systems. Therefore, in the outputs of the
sensors it is common to consider a white noise component, which has Gaussian
distribution with zero mean N (0, σ2) and random samples uncorrelated. In the
Kalman theory the covariance matrices are expressed as Q for the system noise
and as R for the measurement noise. These covariance matrices are the tuning
parameters of the EKF since they affect the state estimations, as it can be seen from
the EKF algorithm in subsecton 6.2.1.
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Measurement noise

The state measurements of the investigated system are obtained trough quadrature
encoders. Generally these type of sensors are very accurate with very small noise
measurement. Initially, an attempt to detect a possible measurement noise was
performed by observation of the sensors data when the system was not moving.
However noise was measured. Afterwards considering that the sensors data comes
from discrete measurements (Ts = 0.005[s]), the resolution of them was considered
to define the measurement noise. Section 2.6 contains the approximated resolutions
for the used encoders. These values can be referred as the standard deviations (σ)
of the noise and from them the variance of the noise can be obtained as follows:

• The resolution of the encoder which measure the linear cart displacement
is Rescart = 8 ∗ 10−6[m]/count ⇒ σcart = 8 ∗ 10−6[m]. Therefore the cart
measurement variance is defined as: Varcart = σ2

cart = 6.4 ∗ 10−6[m2].

• The resolution of the encoder which measure angular pendulum displace-
ment is ResPen = 0.0031[rad]/count ⇒ σpen = 0.0031[rad]. Thus, the pendu-
lum measurement variance is defined as: Varpen = σ2

pen = 9.61 ∗ 10−6[rad2].

Encoders data for the cart x and pendulum θ displacements are used during the
design of the EKF. For this reason the covariance matrix R is square with dimen-
sions [2x2] defined as:

R =

[
Rx 0
0 Rθ

]
=

[
6.4 ∗ 10−6 0

0 9.61 ∗ 10−6

]
(6.16)

The matrix R remains constant during the tuning process.

System Noise

The various components in the inverted pendulum system introduce noise during
their operation. Moreover, external factors considered as uncertainties may also
cause noise in the system. Therefore, the system noise is difficult to be measured.
However, it can be estimated with values that correspond to Gaussian distributions.
Also tuning is required to obtain good estimations. In the present thesis the system
noise covariance matrix Q is defined as:

Q =


Qx 0 0 0
0 Qθ 0 0
0 0 Qẋ 0
0 0 0 Qθ̇
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since estimations for all the system states are obtained from the EKF algorithm .
Initially all variances have the same value (0.1) but after a simulation tuned process
the following covariance matrix Q was defined:

Q =


0.01 0 0 0

0 0.1 0 0
0 0 100 0
0 0 0 10

 (6.17)

An initial idea related with the variance values of Q was that the Qx may have the
smallest value since it is the state of the system that is controlled directly from the
dc motor.
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EKF Results

The EKF algorithm was tested and tuned in Matlab by using real system data. A
guideline in the tuning process was that the state estimations should follow the
real used measurements removing a possible noise at the same time. Also, the
autocorrelation function (ACF) of error for the outputs x, θ was investigated. Ide-
ally, the error should be uncorrelated.The results for the EKF estimations for the
used covariance matrices (6.17) and (6.16) are presented below. Moreover figure
6.5 presents the applied control input in the system during the swing up motion
and the linear control.

The estimated states for the linear and angular position of the system are quite
similar with the real measured as it shows figure 6.1. The measured data seems
without noise and the same trend is followed by the estimated data.

Figure 6.1: EKF estimated linear and angular positions (blue) and measured linear and angular
positions (red)

On the other hand, figure 6.2 demonstrates a small estimation error for the
linear and angular velocities. This variation may be due to the fact that for the
state estimations, measured data for the linear and angular displacement are only
used. The red graph in this figure corresponds to the estimated velocities from the
numerical differentiation of the measured displacements. The purpose of the EKF
was to improve these estimated velocities.
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As shows figure 6.2 the EKF results (blue one) are less noise compared with
the estimations made from the numerical differentiation of positions (red). This is
more obvious during the linear control of the system as it is presented in figure 6.3

.

Figure 6.2: The estimated linear and angular velocities from the EKF (blue) and from the numerical
differentiation of the measured positions (red)

Figure 6.3: Zommed area of the system response shown in figure 6.2. Estimations of EKF (blue) and
the numerical differentiation of the measured positions (red)
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The autocorrelation functions of the linear (x) and angular (θ) position estima-
tion error are almost 0 after the first time lag as it is shown in figure 6.4. Therefore,
the filtered error is characterized as uncorrelated.

Figure 6.4: Autocorrelattion function for the estimated errors of cart(x) and pendulum(θ displace-
ments)

Finally, the applied control input of the system is more steady especially dur-
ing the linear control as shows figure 6.5. More specifically, without using the
estimated states of the EKF the applied input is characterized by rapid fluctuations
between 15[N] and −15[N]. By using the EKF estimations the applied control input
had smaller and slower variations.
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Figure 6.5: Applied control input in the system based on measured state values (red) and on EKF
estimated state values (blue)

A stable DC motor operation can reduce the fatigue and increase the life span
of this component. Moreover the energy demands of the device may be smaller.
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The benefits of such a motor response can be considerable in terms of maintenance
and energy consumption cost.

Summarizing, using state estimations from an EKF a different system response
is observed. Less noise signals especially for the states of velocities during the
linear control are observed. In practise, that may create a smoother motion of the
system that may be valuable for specific applications. This result is supported also
from the progression of the energy in figure 6.6
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Figure 6.6: Energy of system using the measured states (blue) and the EKF estimated states (red)



Chapter 7

Conclusion

The classical system of the inverted pendulum is studied in this thesis. The abso-
lutely main goal of balancing the pendulum upright starting from its downwards
vertical position has been addressed. Lagrangian mechanics were used for the
formulation of the inverted pendulum model. The available system, in the AAU
laboratory facilities, consists of a mechanical and an electrical part. Dynamical
analysis for each part was performed aiming to a more accurate model formula-
tion. Results revealed that the effect of the electrical set up in the control of the
system is inconsiderable.

The used non linear control strategy was based on an energetic approach of the
system. Lyapunov theory was used for the derivation of the control law that swings
up the pendulum from its hanging position. Close to the upright vertical position
of the pendulum, the non linear control of the swinging motion switches to a linear
one, designed at [4], in order to balance the pendulum. Through simulations, the
inability of the non linear controller for an upswing motion was detected. Addi-
tional energy should be introduced in the system but precisely in order to create
ideal situations for the linear control. A pendulum with the less possible angular
velocity close to its upright position is a requirement for a successful linear con-
trol. Modifications in the designed swing up control law were based on the friction
forces acting on the system during its motion. Moreover, a transition region which
ensures a smooth control switching was developed through these modifications.
The new obtained control law resulted to a successful swing up and balancing mo-
tion of the pendulum.

Difficulties during the implementation of the designed control in the physical
system were present. In contrast with the good simulation results, the real sys-
tem could not perform the complete task of the swing up and pendulum balance.
Possible estimation errors between the unknown estimated system parameters and
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the real one could be reasonable. Furthermore, model uncertainties that were not
considered in the system dynamics could also be a factor for an undesired system
response. To face this problem two scaling factors were introduced in the applied
control that executes the swing up motion. In this way, the applied force in the
cart of the system was regulated without changing the form of the applied control.
The values of these factors were set via a tuning procedure which is presented in
Chapter 5. Eventually, the real system performed a complete pendulum swing up
and upright stabilization motion.

For the control of the system the feedback signals of the cart and pendulum
positions and velocities are used. Noticeable noise was observed in the velocity
measurements due to numerical differentiation. Therefore, an extended Kalman
Filter (EKF) algorithm was used to perform state estimations. The resolution of
the system sensors (encoders) were considered as a possible measurement noise
while the system noise was estimated with a Gaussian distribution with zero mean
N (0, σ2) and random samples uncorrelated. The estimated states of velocities are
less noise. It can be said that this may result in a more smooth system motion. In
this way, financial benefits can be obtained due to a lower DC motor operation and
maintenance cost. The estimated states were implemented off-line in the system as
it is presented in Chapter 6. However, since data from the real system was used for
the state estimations, quite similar results are expected during the implementation
in the real system.

Due to time limitation the EKF algorithm was not applied in the real system.
For this reason, this can be a further improvement of this study, that may result
in interesting conclusions and findings. Better estimation methods for the un-
known parameters as well as the usage of friction models in the system dynamics
can create a more accurate model and consequently a better control. Other con-
trol algorithms (i.e. sliding mode, Lyapunov redesign, Linear Quadratic Gaussian
(LQG)) can also be tested and evaluated .
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Appendix A

Parameter Estimation and Linear Con-
troller

As it was referred in chapter 1, in the present work results and conclusions reported
at [4] provide vital knowledge for the investigating non linear system in order to
perform the objectives of this project. The inverted pendulum set up shown in
figure A.1,is located in the laboratory facilities of the AAU. Its main parts are
the cart with a mass (M), the pendulum rod with length l = 0.305[m] and the
pendulum with a mass m = 0.251[kg]. While the cart moves horizontally in the
rail, friction forces exist with a direction opposite to the cart displacement. Also,
during the pendulum rotational motion a friction torque is applied to the system.
The values of the parameters related with the referred frictions of the system were
unknown, thus they have been estimated. Below they are presented the estimated
values of each parameter with a short description for the corresponding estimation
procedure of each. The following content is also presented in [4] with more details.

Linear Friction Terms

During the horizontal cart movement linear frictions Ff are generated, which are
represented by the model

Ff = γẋ + Fcsign(ẋ) (A.1)

where

• γ the coefficient of viscous friction

• Fcsign(ẋ) the Coulomb friction of the cart that will be referred as Fc for sim-
plicity.
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Figure A.1: The cart-pendulum system

• ẋ the velocity of the pendulum cart, that is a state of the inverted pendulum
system

The linearised model of the system (3.20), after a small-angle linearization (sin θ ≈
θ, cos θ ≈ 1, θ̇2 ≈ 0) is defined as:

(M + m)ẍ + Ff = FM −mlθ̈ (A.2a)

ml2θ̈ = mglθ −mlẍ− γr θ̇ (A.2b)

Neglecting the pendulum mass (m) and its velocity (θ̇), and substituting (A.1) in
(A.2a) it is obtained

Mẍ + γẋ + Fc = FM (A.3)

which describes the cart motion of the inverted pendulum that will be used for the
estimation of the γ coefficient. A signal that corresponds to a ramp function [21]
was applied in the cart via the Arduino board that controls the DC motor which
move the cart. In this way the cart moves with an almost constant velocity (ẍ = 0).
Thus the cart motion equation A.3 takes the form

γẋ + Fc = FM (A.4)

Due to the special construction characteristics of the inverted pendulum system it
was found that there is a larger friction during the cart motion to the right side of
the rail, compared with a motion to the left of the rail. Therefore two different esti-
mations for the parameter γ and Fc were performed by using the same procedure.
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The estimations of the Coulomb frictions (FcL , FcR ) for a left and a right cart dis-
placement were made considering equations (A.4), (A.1) as well as concepts related
with the Coulomb friction (Fc) [15]. The friction, which resist to the motor force
(FM) and keeps the cart stationary, expresses the Coulomb friction Fc. Right before
the cart starts moving, since its velocity is (ẋ = 0) it exists Fc = FM. Figure A.2
demonstrates one of the experimental tests of estimation.

Figure A.2

The estimated Coulomb frictions were FcL = 2.85[N], FcR = 3.98[N] for a left
and a right cart motion respectively. More details are presented at [4]

For a friction model consisted from Coulomb and viscous friction (A.1) the
theoretical graph for the velocity of an object as function of its friction is shown
in figure A.3. From the obtained data of the real system, it was constructed the
experimental version of the figure A.3. The slope of the almost linear parts of
the graphs that corresponds to the viscous friction (γẋ), represents the viscous
coefficients (γ). Experimentally it was found γR = 0.94 for a right and γL = 0.64
for a left cart motion respectively, as it is also presented in [4].

Mass of the Cart

The mass of the cart (M) was estimated through the step response (figure A.4) of
the system which was consisted only from the cart. Setting FM = 0 from equation
A.3 it is obtained

FM = 0→ v̇ =
−γv− Fc

M
(A.5)

that represent the response of the system when the control input is u = 0 (part
after the time 0.2[s] in figure A.4) Solving A.5 with respect to M it is obtained

M =
−γυ− Fc

υ̇
(A.6)
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Figure A.3: Evolution of friction forces during the sliding motion of an object

Figure A.4: Step input and corresponding response of the system.

Two estimations for the mass of the cart were performed, since the response of the
system during a left and a right motion of the cart was different. The previous
estimated parameters (γR, γL, FcR , FcL ) were used for the cart mass estimation (M).
Also, a data point (υ, t) from the linear part of the system step response (figure A.5),
gave the value of velocity in equation (A.6), while the acceleration is expressed
from the slope of the graph in figure A.5.Following the same process for a left
and right cart motion the two estimated masses were found ML = 2.357[kg], MR =

3.95[kg] while the final cart mass estimation

M =
ML + MR

2
=

2.357 + 3.95
2

= 3.15kg (A.7)
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Figure A.5: The linear part of the systemm response in the step input.

Rotational Viscous Coefficient

During the pendulum motion, rotational friction (γr θ̇) is acting in the pendulum.
Through a free pendulum motion, (starting from initial system states:[x0 θ0 ẋ0 θ̇0] =

[0 − 1.57rad 0 0] ) and without any input in the system, an estimation for the rota-
tional viscous coefficient γr was performed. During this movement the pendulum
performs a damped sinusoidal motion (figure A.6) which can be upper and lower
bounded from two exponential function (e−σt,−e−σt) where σ = ωnζ.

Figure A.6: Pendulum free motion response

The motion of a damped second order system like the pendulum is expressed
by

ẍ + 2σẋ + ω2
nx = 0 (A.8)

and relating (A.8) with

ml2θ̈ −mgl sin θ + ml cos θẍ = −γr θ̇

which is the equation of the inverted pendulum model that expresses the motion
of the pendulum, it is obtained
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γr

ml
= 2σ⇒ γr = 2mlσ = 2mlωnζ. (A.9)

Through logarithmic decrement method [11] the system parameters σ, ζ, ωd
and ωn are defined, considering two points from the pendulum free motion re-
sponse (figure A.6). The found parameters were

• ζ = 0.00983

• ωd = 6.6914[rad/s]

• ωn = 6.6981[rad/s]

whose calculations are presented analytically in [4].
Consequently, using A.9 is obtained γr = 0.00983. The exponential boundaries of
the pendulum response are ±θ0e−σt ⇒ ±1.57e−0.0657t which fits well to the damped
sinusoidal motion of the pendulum as it is shown in figure A.7.

Figure A.7: Envelopes representing the decay of the pendulum free motion

Linear Controller

The pendulum of the system is stabilized upright vertically (θ = 0) via a linear
controller. This controller acts within the neighbour region of the unstable equi-
librium point of the system (θ = 0). For the design of the linear controller K1 the
linearized model (A.2) was used. Through small angle approximation the linear
state space form of (A.2) is defined as:

ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1
0 −mg

M − γ
M

γr
Ml

0 M+m
Ml g γ

Ml − (M+m)γr
mMl2


︸ ︷︷ ︸

A


x1

x2

x3

x4

+


0
0
1
M
− 1

Ml


︸ ︷︷ ︸

B

FM
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where 
x
θ

ẋ
θ̇

 =


x1

x2

x3

x4


(cart horizontal position)
(pendulum angular position)
(cart horizontal velocity)
(pendulum angular speed)

From desired response characteristics, the poles of the linearized inverted pen-
dulum were obtained:

−2± 2.20j, −4± 4.4j

Using Ackerman’s formula via command (A,B,poles) in the Matlab software the
gain vector of the linear controller K1 was obtained:

K1 = [−30.6130− 121.4494− 22.5738− 17.1256] (A.10)

The method of pole placement was used to obtain the control gain vector K1 =

[−30.6130 − 121.4494 − 22.5738 − 17.1256]. The applied law for the linear
control of the system was

u = K1 ∗ [x θ ẋ θ̇] (A.11)

An analytical description of this design procedure is also presented in [4].

Conversion Force Factor

The designed control input u corresponds to a proper force FM which is applied in
the cart of the physical system. A belt connects the shaft of the DC motor with the
cart via a wheel as shows figureA.8.

In this way the produced torque of the motor applies the force FM in the cart
according to:

FM =
kM ∗ IM

r
(A.12)

where,

• kM = 0.0934 the motor torque constant as referred in [14]

• r = 0.03[m] the radius of the used wheel for the connection of the DC motor
to the cart via the belt

• IM the applied current to the motor

A digital set point value is defined in the Arduino Due board according to a de-
signed control input u. This reference value, referred with the variable SetOutSled
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Figure A.8: DC motor-cart interconnection

in the Arduino code, is transformed, through a power amplifier, to a specific cur-
rent IM that supplies the DC motor. In [4] is presented a detail experimental pro-
cess involving measurements in different points of the input system of the physical
inverted pendulum. It was estimated that the current sent in the motor is propor-
tional to the reference value by way of a coefficient b

IM = b ∗ SetOutSled (A.13)

where b = 0.00579 defines the supplied current of the motor (IM) according to the
digital set value SetOutSled that is set in the Arduino code.

Considering that the force FM is the applied control in the physical system that
is defined from the reference value SetOutSled in the Arduino code, from (A.12),
(A.13) is obtained

FM =
kM ∗ b ∗ SetOutSled

r
⇒ SetOutSled =

1
kM∗0.00579

0.03

∗ FM (A.14)

where the term
1

kM∗0.00579
0.03

= 55.47

is defined as the variable Conv FM to u in the Arduino code and determines the
applied force (FM) from the motor to the cart, according to the value SetOutSled.
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A summary of the Appendix A content is presented via the table A.1

Table A.1: Estimated parameters

Parameters

Coulomb friction for left cart displacement (FcL) 2.85N
Coulomb friction for right cat displacement (FcR) 3.98N
Viscous friction coefficient for left cart displacement (γL) 0.64
Viscous friction coefficient for right cart displacement (γR) 0.94
Mass of the cart (M) 3.15kg
Viscous rotational friction coefficient for pendulum (γr) 0.00983
Coefficient Conv Fm to u 55,47
Linear controller K1 [−30.6130,−121.4494,−22.5738,−17.1256]
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