
 

 

SWITCHING THEORY AND LOGIC DESIGN  

UNIT I - syllabus 

NUMBER SYSTEM & BOOLEAN ALGEBRA 

Digital systems, Binary Numbers, Number base conversions, Complements of numbers, Signed 

Binary numbers, Binary codes. Boolean algebra - Basic definition, Basic theorems and properties, 

Boolean Functions, Canonical & Standard forms, other logic operations & Digital logic gates. 

UNIT I- DIGITAL SYSTEMS AND BINARY NUMBERS 

DIGITAL SYSTEMS 

 Digital systems have such a prominent role in everyday life that we refer to the present 

technological period as the digital age. Digital systems are used in communication, business 

transactions, traffic control, spacecraft guidance, medical treatment, weather monitoring, the 

Internet, and many other commercial, industrial, and scientific enterprises. 

 The most striking property of the digital computer is its generality. It can follow a sequence 

of instructions, called a program that operates on given data. The user can specify and change the 

program or the data according to the specific need. Because of this flexibility, general‐purpose 

digital computers can perform a variety of information‐processing tasks that range over a wide 

spectrum of applications. 

 One characteristic of digital systems is their ability to represent and manipulate discrete 

elements of information. Discrete elements of information are represented in a digital system by 

physical quantities called signals. Electrical signals such as voltages and currents are the most 

common. The signals in most present‐day electronic digital systems use just two discrete values 

and are therefore said to be binary. A binary digit, called a bit. It has two values: 0 and 1. 

 Discrete quantities of information either emerge from the nature of the data being processed 

or may be quantized from a continuous process. This process is called Analog to Digital 

conversion. 

DIGITAL SYSTEMS: manipulate discrete elements of information (finite sets) 

• E.g. the 10 decimal digits, the 26 letters of the alphabet, 64 squares of chess board) 

 The general‐purpose digital computer is the best‐known example of a digital system. The 

major parts of a computer are a memory unit, a central processing unit, and input-output units. The 

memory unit stores programs as well as input, output, and intermediate data. The central 

processing unit performs arithmetic and other data‐processing operations as specified by the 

program. The program and data prepared by a user are transferred into memory by means of an 

input device such as a keyboard. An output device, such as a printer, receives the results of the 

computations, and the printed results are presented to the user. 

 There are fundamental reasons that commercial products are made with digital circuits. 

Like a digital computer, most digital devices are programmable. By changing the program in a 

programmable device, the same underlying hardware can be used for many different applications 



 

 

BINARY NUMBERS 

A decimal number such as 7,392 represents a quantity equal to 7 thousands, plus 3 hundreds, 

plus 9 tens, plus 2 units. The thousands, hundreds, etc., are powers of 10 implied by the position 

of the coefficients (symbols) in the number. To be more exact, 7,392 is a shorthand notation for 

what should be written as 

 

However, the convention is to write only the numeric coefficients and, from their position, deduce 

the necessary powers of 10 with powers increasing from right to left. In general, a number with a 

decimal point is represented by a series of coefficients: 

 

The  coefficients  aj are any of the 10 digits (0, 1, 2,c, 9),  and  the  subscript  value j gives  the 

place value and, hence, the power of 10 by which the coefficient must be multiplied. Thus, the 

preceding decimal number can be expressed as 

 

The decimal number system is said to be of base,or radix,10 because it uses 10 digits and the 

coefficients are multiplied by powers of 10. The binary system is a different number system. The 

coefficients of the binary number system have only two possible values: 0 and 1. Each coefficient 

ajis multiplied by a power of the radix, e.g., 2j and the results are added to obtain the decimal 

equivalent of the number. 

 

There are many different number systems. In general, a number expressed in a base‐r system has 

coefficients multiplied by powers of r: 



 

  

An example of an octal number is 127.4. To determine its equivalent decimal value, we expand 

the number in a power series with a base of 8:  

 

For example, in the hexadecimal(base‐16) number system, the first 10 digits are borrowed from 

the decimal system. The letters A, B, C, D, E, and F are used for the digits 10, 11, 12, 13, 14, and 

15, respectively. An example of a hexadecimal number is 

 

Examples of addition, subtraction, and multiplication of two binary numbers are as follows: 

 

 

 



 

NUMBER‐BASE CONVERSIONS 

 The conversion of a number in base r to decimal is done by expanding the number in a 

power series and adding all the terms as shown previously. We now present a general procedure 

for the reverse operation of converting a decimal number to a number in base r. The conversion of 

a decimal integer to a number in base r is done by dividing the number and all successive quotients 

by r and accumulating the remainders. 

BINARY TO DECIMAL: 

 A binary number can be converted to a decimal by forming the sum of the powers of 2 of 

those coefficients whose value is 1. 

Example:  

OCTAL TO DECIMAL 

 

  = (408.5)10 

DECIMAL TO BINARY 

  = (10100000)2 

(41)10 = (             )2 

 



 

 

DECIMAL TO OCTAL 

 

 



 

 

OCTAL AND HEXADECIMAL NUMBERS 

 The conversion from and to binary, octal, and hexadecimal plays an important role in 

digital computers, because shorter patterns of hex characters are easier to recognize than long 

patterns of 1’s and 0’s. Since 23=8  and  24=16, each octal digit corresponds to three binary digits 

and each hexadecimal digit corresponds to four binary digits.  

The conversion from binary to octal is easily accomplished by partitioning the binary number into 

groups of three digits each, starting from the binary point and proceeding to the left and to the 

right. The corresponding octal digit is then assigned to each group.  

The following example illustrates the procedure: 

 

Conversion from binary to hexadecimal is similar, except that the binary number is Divided into 

groups of four digits: 

 

Conversion from octal or hexadecimal to binary is done by reversing the preceding procedure. 

Each octal digit is converted to its three‐digit binary equivalent. Similarly, each hexadecimal digit 

is converted to its four‐digit binary equivalent. The procedure is illustrated in the following 

examples: 



 

 

Thus, the binary number 111111111111 has 12 digits and is expressed in octal as 7777 (4 digits) 

or in hexadecimal as FFF (3 digits). During communication between people (about binary numbers 

in the computer), the octal or hexadecimal representation is more desirable because it can be 

expressed more compactly with a third or a quarter of the number of digits required for the 

equivalent binary number. Thus, most computer manuals use either octal or hexadecimal numbers 

to specify binary quantities .. 

COMPLEMENTS OF NUMBERS 

Complements are used in digital computers to simplify the subtraction operation and for logical 

manipulation. Simplifying operations leads to simpler, less expensive circuits to implement the 

operations. There are two types of complements for each base‐r system: the radix complement and 

the diminished radix complement. The first is referred to as the r’s complement and the second as 

the (r -1)>s complement. When the value of the base r is substituted in the name, the two types are 

referred to as the 2’s complement and 1’s complement for binary numbers and the 10’s 

complement and 9’s complement for decimal numbers. 

DIMINISHED RADIX COMPLEMENT--- (r-1) COMPLEMENT 

Given a number N in base r having n digits, the (r -1)’s complement of N,i.e., its diminished radix 

complement, is defined as (rn-1)-N. For decimal numbers, r =10 and r -1=9, so the 9’s complement 

of N is (10n-1)-N. In this case, 10n represents a number that consists of a single 1 followed by n 

0’s. 10n-1 is a number represented by n 9’s. For example, if n=4, we have 104=10,000 and              

104-1=9999.  It follows that the 9’s complement of a decimal number is obtained by subtracting 

each digit from 9. Here are some numerical examples:  

The  9’s complement of 546700 is 999999 -546700=453299. 

The 9’s complement of 012398 is 999999 -012398=987601. 

For binary numbers, r=2  and  r-1=1, so the 1’s complement of N is (2n-1)-N. Again, 2n is 

represented by a binary number that consists of a 1 followed by n 0’s. 2n-1 is a binary number 

represented by n 1’s. For example, if n=4,  we  have  24=(10000)2 and  24-1=(1111)2. Thus, the 1’s 

complement of a binary number is obtained by subtracting each digit from 1. However, when 

subtracting binary digits from 1, we can have either 1-0=1 or 1-1=0, which causes the bit to change 

from 0 to 1 or from 1 to 0, respectively. Therefore, the 1’s complement of a binary number is 

formed by changing 1’s to 0’s and 0’s to 1’s.The following are some numerical examples:  

The 1’s  complement  of  1011000  is  0100111. 

The 1’s complement of 0101101 is 1010010. 

 The  (r -1)’s complement of octal or hexadecimal numbers is obtained by subtracting each digit 

from 7 or F (decimal 15), respectively.  

 



 

RADIX COMPLEMENT (r’s Complement) 

The r’s complement of an n‐digit number N in base r is defined as rn-N for   N≠ 0  and as 0 for 

N=0.  Comparing with the (r -1)’s complement, we note that the r’s complement is obtained by 

adding 1 to the (r -1)’s  complement,  since  rn-N=[(rn-1)-N]+1 . Thus, the 10’s complement of 

decimal 2389 is 7610+1=7611 and is obtained by adding 1 to the 9’s complement value. The 2’s 

complement of binary 101100 is 010011+1=010100 and is obtained by adding 1 to the 1’s‐
complement value. Since 10 is a number represented by a 1 followed by n 0’s, 10n-N, which is the 

10’s complement of N, can be formed also by leaving all least significant 0’s unchanged, 

subtracting the first nonzero least significant digit from 10, and subtracting all higher significant 

digits from 9. Thus,  

the 10’s complement of 012398 is 987602 and 

the 10’s complement of 246700 is 753300 

 The 10’s complement of the first number is obtained by subtracting 8 from 10 in the least 

significant position and subtracting all other digits from 9. The 10’s complement of the second 

number is obtained by leaving the two least significant 0’s unchanged, subtracting 7 from 10, and 

subtracting the other three digits from 9.  

 Similarly, the 2’s complement can be formed by leaving all least significant 0’s and the 

first 1 unchanged and replacing 1’s with 0’s and 0’s with 1’s in all other higher significant digits. 

For example,  

 the 2’s complement of 1101100 is 0010100  

 and the 2’s complement of 0110111 is 1001001  

The 2’s complement of the first number is obtained by leaving the two least significant 0’s and the 

first 1 unchanged and then replacing 1’s with 0’s and 0’s with 1’s in the other four most significant 

digits. The 2’s complement of the second number is obtained by leaving the least significant 1 

unchanged and complementing all other digits. 

SUBTRACTION WITH COMPLEMENTS  

when subtraction is implemented with digital hardware, the borrow method is less efficient than 

the method that uses complements.  

The subtraction of two n‐digit unsigned numbers M-N in  base  r can be done as follows: 

1. Add  the  minuend M to the r’s complement of the subtrahend N. Mathematically,  

 M+(rn-N) =M-N+rn.  

2. If  M≥N, the sum will produce an end carry rn, which can be discarded; what is left is the result 

M-N.  

3. I f  M < N, the sum does not produce an end carry and is equal to rn-(N-M) , which is the r’s 

complement of (N-M). To obtain the answer in a familiar form, take the r’s complement of the 

sum and place a negative sign in front. 

 



 

 

Note  that M has five digits and N has only four digits. Both numbers must have the same number 

of digits, so we write N as 03250. Taking the 10’s complement of N produces a 9 in the most 

significant position. The occurrence of the end carry signifies that M≥N and that the result is 

therefore positive.  

 

There is no end carry. Therefore, the answer is -(10>s complement of 30718) = -69282. Note that 

since 3250<72532,  the result is negative 

 

Subtraction of unsigned numbers can also be done by means of the (r -1)’s complement. Remember 

that the (r -1)’s complement is one less than the r’s complement. Because of this, the result of 

adding the minuend to the complement of the subtrahend produces a sum that is one less than the 

correct difference when an end carry occurs. Removing the end carry and adding 1 to the sum is 

referred to as an end‐around carry. 



 

 

SIGNED BINARY NUMBERS 

Positive integers (including zero) can be represented as unsigned numbers. However, to represent 

negative integers, we need a notation for negative values. In ordinary arithmetic, a negative number 

is indicated by a minus sign and a positive number by a plus sign. Because of hardware limitations, 

computers must represent everything with binary digits. The convention is to make the sign bit 0 

for positive and 1 for negative.  

The user determines whether the number is signed or unsigned. If the binary number is signed, 

then the leftmost bit represents the sign and the rest of the bits represent the number. If the binary 

number is assumed to be unsigned, then the leftmost bit is the most significant bit of the number. 

For example, the string of bits 01001 can be considered as 9 (unsigned binary) or as +9  (signed  

binary) because the leftmost bit is 0. The string of bits 11001 represents the binary equivalent of 

25 when considered as an unsigned number and the binary equivalent of -9  when  considered as 

a signed number. 



 

 

As an example, consider the number 9, represented in binary with eight bits. +9  is represented 

with a sign bit of 0 in the leftmost position, followed by the binary equivalent of 9, which gives 

00001001. Note that all eight bits must have a value; therefore, 0’s are inserted following the sign 

bit up to the first 1. Although there is only one way to represent  +9, there are three different ways 

to represent -9  with  eight  bits:  

  signed‐magnitude  representation:  10001001  

  signed‐1’s‐complement  representation:  11110110  

  signed‐2’s‐complement representation:  11110111  

 

ARITHMETIC ADDITION 

The addition of two numbers in the signed‐magnitude system follows the rules of ordinary 

arithmetic. If the signs are the same, we add the two magnitudes and give the sum the common 

sign. If the signs are different, we subtract the smaller magnitude from the larger and give the 

difference the sign of the larger magnitude. For example,  (+25)+(-37)=-(37 -25)=-12 is done by 

subtracting the smaller magnitude, 25, from the larger magnitude, 37, and appending the sign of 

37 to the result.  

The addition of two signed binary numbers with negative numbers represented insigned‐ 2’s‐
complement form is obtained from the addition of the two numbers, including their sign bits. A 

carry out of the sign‐bit position is discarded. 



 

 

ARITHMETIC SUBTRACTION  

Subtraction of two signed binary numbers when negative numbers are in 2’s‐complement form is 

simple and can be stated as follows:  

Take the 2’s complement of the subtrahend (including the sign bit) and add it to the minuend 

(including the sign bit). A carry out of the sign‐bit position is discarded. 

To see this, consider the subtraction (-6)-(-13)=+7. In binary with eight bits, this operation is 

written as (11111010-11110011).The subtraction is changed to addition by taking the 2’s 

complement of the subtrahend (-13),  giving  (+13).In binary, this is 

11111010+00001101=100000111.  Removing the end carry, we obtain the correct answer:  

00000111 (+7). 

BINARY CODES 

An n‐bit binary code is a group of n bits that assumes up to 2n distinct  combinations of 1’s and 

0’s, with each combination representing one element of the set that is being coded. A set of four 

elements can be coded with two bits, with each element assigned one of the following bit 

combinations: 00, 01, 10, 11. A set of eight elements requires a three‐bit code and a set of 16 

elements requires a four‐bit code. The bit combination of an n‐bit code is determined from the 

count in binary from 0 to 2n-1. 

WEIGHTED CODES  

Weighted  binary  codes  are  those  which  obey  the  positional  weighting  principles,  each  

position  of  the number represents a specific weight. Eg. BCD, 8421,84-2-1. 

BINARY-CODED DECIMAL CODE  

The code most commonly used for the decimal digits is the straight binary assignment listed in 

Table 1.4 . This scheme is called binary‐coded decimal and is commonly referred to as BCD. 

Other decimal codes are possible and a few of them are presented later in this section. Table 1.4 

gives the four‐bit code for one decimal digit. A number with k decimal digits will require 4kbits 

in BCD. Decimal 396 is represented in BCD with 12 bits as 0011 1001 0110, with each group of 

4 bits representing one decimal digit. A  decimal number in BCD is the same as its equivalent 

binary number only when the number is between 0 and 9. 



 

 

BCD ADDITION 

1. Convert the given decimal to its equivalent BCD code 

2. The given number are to be added using the rule of binary. 

3. The result of addition is less than 9, which is valid for BCD numbers. 

4. If the four bit result of addition is greater than 9 and if a carry bit is present in the result 

then it is invalid and we have to add 6 whose binary equivalent is (0110)2 to the result of 

addition. Then the resultant that we would get will be a valid binary coded number. 

 

 

In each case, the two BCD digits are added as if they were two binary numbers. If the binary sum 

is greater than or equal to 1010, we add 0110 to obtain the correct BCD sum and a carry. In the 

second example, the binary sum produces an invalid BCD digit. The addition of 0110 produces 

the correct BCD sum, 0010 (i.e., the number 2), and a carry. In the third example, the binary sum 

produces a carry. This condition occurs when the sum is greater than or equal to 16. Although the 

other four bits are less than 1001, the binary sum requires a correction because of the carry. Adding 

0110, we obtain the required BCD sum 0111 (i.e., the number 7) and a BCD carry. 



 

 

BCD SUBTRACTION: 

 At first the decimal equivalent of the given Binary Coded Decimal (BCD) codes are found out. 

 Then the 9’s compliment of the subtrahend is done and then that result is added to the number 

from which the subtraction is to be done. 

 If there is any carry bit then the carry bit may be added to the result of the subtraction. 

 If  carry bit is not generated then the result is negative, to obtain the answer find the 9’s 

complement of the sum and place –ve sign in front. 

Eg 1. 8-3 

9’s complement of 3 is 6  0110 ADD 

 8 1000 

        1110 (14>9) 

        0110    ADD 6 

       10100  

               1 ADD CARRY 

      0101 (5)  

 

Eg . 2. 24-68 

 

 24 0010  0100 

9’s complement 0f 68 is 310011  0001  ( ADD ) 

          0101  0101  (55) with no carry 

9’s  complement 0f 55 is 44  -0100  0100 

NON WEIGHTED CODES  

Non weighted codes are codes that are not positionally weighted. That is, each position within the 

binary number is not assigned a fixed value. Ex: excess-3 code, gray code 

EXCESS THREE (XS-3)CODE: 



 

It  is  a  non-weighted  BCD  code  .Each  binary  code word  is  the  corresponding  8421 code 

word  plus  0011(3).It  is  a  sequential  code  &  therefore  it can  be  used  for  arithmetic operations. 

It  is  a  self-complementing  .  

 

 

 

REFLECTIVE CODE  

A code is said to be reflective when code for 9 is complement for the code for 0, and so is for 8 

and 1  

codes, 7 and 2, 6 and 3, 5 and 4. Codes 2421, 5211, and excess-3 are reflective, whereas the 8421 

code is  

not. 



 

 

THE GRAY CODE (REFLECTIVE –CODE): 

Gray code is a non-weighted code & is not suitable for arithmetic operations.  It is not a BCD  code  

.  It  is  a  cyclic  code  because  successive  code  words  in  this  code  differ  in  one  bit position 

only i.e, it is a unit distance code. Popular of the unit distance code. It is also a reflective code i.e 

both reflective & unit distance.  

 

BINARY CODE TO GRAY CODE 

Let Binary code be b3  b2  b1  b0. Then the respective Gray Code can be obtained is as follows 

 

https://i0.wp.com/testbook.com/blog/wp-content/uploads/2015/11/binary-code-to-gray-code.png?ssl=1


 

g3 = b3 

g2 = b3 ⊕ b2 

g1 = b2 ⊕ b1 

g0 = b1 ⊕ b0 

 Example: 

Binary Code: b3  b2  b1  b0 = 1 1 1 0  

g3 = b3 = 1  

g2 = b3 ⊕ b2 = 1 ⊕ 1 = 0 

g1 = b2 ⊕ b1 = 1 ⊕ 1 = 0 

g0 = b1 ⊕ b0 =1 ⊕ 0 = 1 

∴ Final Gray code: 1 0 0 1 

 

GRAY TO BINARY 

 

Gray Code: g3  g2  g1  g0  = 1 0 0 1  then Binary Code:  b3  b2  b1  b0 

b3 = g3 = 1  

b2 = b3 ⊕ g2 = 1 ⊕ 0 = 1 

b1 = b2 ⊕ g1 = 1 ⊕ 0 = 1 

b0 = b1 ⊕ g0 =1 ⊕ 1 = 0 

∴ Final Binary Code: 1 1 1 0 

 

ERROR –  DETECTING CODES: When binary data is transmitted & processed, it is susceptible 

to noise  

that  can  alter  or  distort  its  contents.  The  1‘s  may  get  changed  to  0‘s  &  1‘s  .because  

digital systems  must  be  accurate  to  the  digit,  error  can  pose  a  problem.  Several  schemes  

have  been devised to detect the  occurrence  of a single bit error in a binary word, so that whenever 

such an error occurs the concerned binary word can be corrected & retransmitted.  

https://i2.wp.com/testbook.com/blog/wp-content/uploads/2015/11/Conversion-from-Binary-code-to-Gray-Code-Example.png?ssl=1


 

 

ASCII Character Code 

Many applications of digital computers require the handling not only of numbers, but also of other 

characters or symbols, such as the letters of the alphabet. The standard binary code for the 

alphanumeric characters is the American Standard Code for Information Interchange (ASCII), 

which uses seven bits to code 128 characters. 

SELF-COMPLEMENT CODE:  

XS -3 is a self complement code because the 1s complement of an xs-3 is equal to the xs-3 code 

for 9’s complement of respective decimal no. 

Eg. (2)10  

XS -3 code for 2 is 0101 

1’s comp. of XS-3 for 2 is 1010 

9’s comp. of  2 is 7 

XS -3 code for 7 is 1010           

 

 

 

 

 



 

BOOLEAN ALGEBRA AND LOGIC GATES 

BASIC DEFINITIONS 

 

 

 

 



 

 

BASIC THEOREMS AND PROPERTIES OF BOOLEAN ALGEBRA 

DUALITY  

It states that every algebraic expression deducible from the postulates of Boolean algebra remains 

valid if the operators and identity elements are interchanged. In a two‐valued Boolean algebra, the 

identity elements and the elements of the set B are the same: 1 and 0. The duality principle has 

many applications. If the dual of an algebraic xpression is desired, we simply interchange OR and 

AND operators and replace 1’s by 0’s and 0’s by 1’s.  

BASIC THEOREM 

 

 



 

 

 

 

BOOLEAN FUNCTIONS 

Boolean algebra is an algebra that deals with binary variables and logic operations. A Boolean 

function described by an algebraic expression consists of binary variables, the constants 0 and 1, 

and the logic operation symbols. For a given value of the binary variables, the function can be 

equal to either 1 or 0.  

F1 =x+y’z 



 

The  function  F1 is equal to 1 if x is equal to 1 or if both y’ and z are equal to 1. F1 is  equal to 0 

otherwise. The complement operation dictates that when y’ =1, y=0.  Therefore, F1 =1  if  x=1  or  

if  y=0  and  z=1. 

A Boolean function can be represented in a truth table. The number of rows in the truth table is 2n,  

where n is the number of variables in the function. The binary combinations for the truth table are 

obtained from the binary numbers by counting from 0 through  2n-1 

 

 

 

 



 

 



 

ALGEBRAIC MANIPULATION 

 When a Boolean expression is implemented with logic gates, each term requires a gate and 

each variable within the term designates an input to the gate. We define a literal to be a single 

variable within a term, in complemented or uncomplemented form. The function of fig. 2.2 (a) has 

three terms and eight literals, and the one in fig. 2.2 (b) has two terms and four literals. By reducing 

the number of terms, the number of literals, or both in a boolean expression, it is often possible to 

obtain a simpler circuit. The manipulation of Boolean algebra consists mostly of reducing an 

expression for the purpose of obtaining a simpler circuit. 

 

The fourth function illustrates the fact that an increase in the number of literals sometimes leads 

to a simpler final expression. Function 5 is not minimized directly, but can be derived from the 

dual of the steps used to derive function 4. Functions 4 and 5 are together known as the consensus 

theorem. 

COMPLEMENT OF A FUNCTION 

 The complement of a function f is f’ and is obtained from an interchange of 0’s for 1’s and 

1’s for 0’s in the value of f. The complement of a function may be derived algebraically Through 

demorgan’s theorems, listed in table 2.1 for two variables. Demorgan’s theorems can be extended 

to three or more variables. The three‐variable form of the first Demorgan’s theorem is derived as 

follows, from postulates and theorems listed in table 2.1 :  

 



 

 

 

CANONICAL AND STANDARD FORMS 

 MINTERMS AND MAXTERMS 

 A binary variable may appear either in its normal form (x) or in its complement form (x’) 

. Now consider two binary variables x and y combined with an AND operation. Since each variable 

may appear in either form, there are four possible combinations: x’y’, x’y, xy’, and xy. Each of 

these four and terms is called a MINTERM, or A STANDARD PRODUCT. In a similar manner, 

n variables can be combined to form 2n minterms.  The  2n different  minterms may be determined. 

 In a similar fashion, n variables forming an OR term, with each variable being primed or 

unprimed, provide 2n possible  combinations,  called MAXTERMS, or STANDARD SUMS. The 

eight maxterms for three variables, together with their symbolic designations. 

 



 

A boolean function can be expressed algebraically from a given truth table by forming a minterm 

for each combination of the variables that produces a 1 in the function and then taking the or of all 

those terms. 

 

 

Now consider the complement of a boolean function. It may be read from the truth table by forming 

a minterm for each combination that produces a 0 in the function and then ORing those terms. The 

complement of f1 is  read  as 

 

SUM OF MINTERMS 

The minterms whose sum defines the Boolean function are those which give the 1’s of the function 

in a truth table. 



 

 

An alternative procedure for deriving the minterms of a Boolean function is to obtain the truth 

table of the function directly from the algebraic expression and then read the minterms from the 

truth table.Consider the Boolean function given in Example 2.4:  

    F=A+B’C 

 

 



 

PRODUCT OF MAXTERMS  

Each of the 22n functions of n binary variables can be also expressed as a product of maxterms. To 

express a Boolean function as a product of maxterms, it must first be brought into a form of OR 

terms. This may be done by using the distributive law, x+yz=(x+y)(x+z).  Then  any  missing  

variablex in each OR term is ORed with xx’. 

 

 

CONVERSION BETWEEN CANONICAL FORMS  

The complement of a function expressed as the sum of minterms equals the sum of minterms 

missing from the original function. This is because the original function is expressed by those 

minterms which make the function equal to 1, whereas its complement is a 1 for those minterms 

for which the function is a 0. As an example, consider the function. 

 



 

A Boolean function can be converted from an algebraic expression to a product of maxterms by 

means of a truth table and the canonical conversion procedure. Consider, for example, the Boolean 

expression  

    F=xy+x’z 

First, we derive the truth table of the function, as shown in Table 2.6 . The 1’s under Fin the table 

are determined from the combination of the variables for which xy=11  or xz=01. The minterms 

of the function are read from the truth table to be 1, 3, 6, and 7. The function expressed as a sum 

of minterms is 

 

Since there is a total of eight minterms or maxterms in a function of three variables, we determine 

the missing terms to be 0, 2, 4, and 5. The function expressed as a product of maxterms is 

 

 

STANDARD FORMS 

 There are two types of standard forms: the sum of products and products of sums. The sum 

of productsis a Boolean expression containing AND terms, called product terms,with one or more 

literals each. The sumdenotes the ORing of these terms. An example of a function expressed as a 

sum of products is 

F1 =Y’ +XY+X’YZ’ 

The expression has three product terms, with one, two, and three literals. Their sum is, in effect, 

an or operation. 



 

 

A product of sums is a boolean expression containing or terms, called sum terms. Each term may 

have any number of literals. The product denotes the AND ing of these Terms. An example of a 

function expressed as a product of sums is  

    F2 =X(Y’ +Z)(X’ +Y+Z’) 

This expression has three sum terms, with one, two, and three literals. The product is an AND 

operation. This standard type of expression results in a two‐level structure of gates. 

A boolean function may be expressed in a NONSTANDARD FORM. For example, the function  

      F3 =AB+C(D+E) 

It can be changed to a standard form by using the distributive law to remove the parentheses:  

  F3 =AB+C(D+E) =AB+CD+CE 

OTHER LOGIC OPERATIONS 

 



 

DIGITAL LOGIC GATES 

Since Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to 

implement a Boolean function with these type of gates. Still, the possibility of constructing gates 

for the other logic operations is of practical interest.  

 



 

POSITIVE AND NEGATIVE LOGIC 

The binary signal at the inputs and outputs of any gate has one of two values, except during 

transition. One signal value represents logic 1 and the other logic 0. Since two signal values are 

assigned to two logic values, there exist two different assignments of signal level to logic value, 

as shown in Fig. The higher signal level is designated by Hand the lower signal level by L. 

Choosing the high‐level H to represent logic 1 defines a positive logic system. Choosing the low‐
level L to represent logic 1 defines a negative logic system. 

 


