
COMPUTER GRAPHICS

1

SYLLABUS

BASICS OF COMPUTER GRAPHICS: -

Introduction, What is computer Graphics?, Area of Computer Graphics, Design

and Drawing, Animation Multimedia applications, Simulation, How are pictures

actually stored and displayed, Difficulties for displaying pictures.

GRAPHIC DEVICES

Cathode Ray Tube, Quality of Phosphors, CRTs for Color Display, Beam

Penetration CRT, The Shadow - Mask CRT, Direct View Storage Tube, Tablets,

The light Pen, Three Dimensional Devices

C Graphics Basics
Graphics programming, initializing the graphics, C Graphical functions, simple

programs

SIMPLE LINE DRAWING METHODS

Point Plotting Techniques, Qualities of good line drawing algorithms, The

Digital Differential Analyzer (DDA), Bresenham’s Algorithm, Generation of

Circles

TWO DIMENSIONAL TRANSFORMATIONS and CLIPPING AND WINDOWING

What is transformation?, Matrix representation of points, Basic transformation,

Need for Clipping and Windowing, Line Clipping Algorithms, The midpoint

subdivision Method, Other Clipping Methods, Sutherland - Hodgeman

Algorithm, Viewing Transformations

GRAPHICAL INPUT TECHNIQUES

Graphical Input Techniques, Positioning Techniques, Positional Constraints,

Rubber band Techniques

THREE DIMENSIONAL GRAPHICS

Need for 3-Dimensional Imaging, Techniques for 3-Dimesional displaying,

Parallel Projections, Perspective projection, Intensity cues, Stereoscope effect,

Kinetic depth effect, Shading

SOLID AREA SCAN CONVERSION and Three Dimensional Transformations

Solid Area Scan Conversion, Scan Conversion of Polygons, Algorithm

Singularity,

Three Dimensional transformation, Translations, Scaling, Rotation, Viewing

Transformation, The Perspective, Algorithms, Three Dimensional Clipping,

Perspective view of Cube

COMPUTER GRAPHICS

2

HIDDEN SURFACE REMOVAL

Need for hidden surface removal, The Depth - Buffer Algorithm, Properties that

help in reducing efforts, Scan Line coherence algorithm, Span - Coherence

algorithm, Area-Coherence Algorithms, Warnock’s Algorithm, Priority

Algorithms

COMPUTER GRAPHICS

3

Table of The Contents

UNIT – 1

BASICS OF COMPUTER GRAPHICS

1.1 Introduction

1.2 What is computer Graphics?

1.3 Area of Computer Graphics

 1.3.1 Design and Drawing

1.3.2 Animation

1.3.3 Multimedia applications

1.3.4 Simulation

1.4 How are pictures actually stored and displayed

1.5 Difficulties for displaying pictures

1.6 Block Summary

1.7 Review Question and Answers.

UNIT 2

GRAPHIC DEVICES

2.1 Introduction

2.2 Cathode Ray Tube

2.3 Quality of Phosphors

2.4 CRTs for Color Display

2.5 Beam Penetration CRT

2.6 The Shadow - Mask CRT

2.7 Direct View Storage Tube

2.8 Tablets

2.9 The light Pen

2.10Three Dimensional Devices

Unit 3

C Graphics Introduction

3.1 Introduction

3.2 ‘C’ GRAPHICS FUNCTIONS

3.3 C Graphics Programming Examples

COMPUTER GRAPHICS

4

UNIT 4

SIMPLE LINE DRAWING METHODS

4.1 Introduction

4.2 Point Plotting Techniques

4.3 Qualities of good line drawing algorithms

4.5 The Digital Differential Analyzer (DDA)

4.6 Bresenham’s Algorithm

4.7 Generation of Circles

UNIT 5

TWO DIMENSIONAL TRANSFORMATIONS

5.1 Introduction

5.2 What is transformation?

5.3 Matrix representation of points

5.4 Basic transformation

5.5 Translation

5.6 Rotation

5.7 Scaling

UNIT 6

CLIPPING AND WINDOWING

6.1 Introduction

6.2 Need for Clipping and Windowing

6.3 Line Clipping Algorithms

6.4 The midpoint subdivision Method

6.5 Other Clipping Methods

6.6 Sutherland - Hodgeman Algorithm

6.7 Viewing Transformations

UNIT 7

GRAPHICAL INPUT TECHNIQUES

7.1 Introduction

7.2 Graphical Input Techniques

7.3 Positioning Techniques

7.4 Positional Constraints

7.5 Rubber band Techniques

UNIT 8

THREE DIMENSIONAL GRAPHICS

8.1 INTRODUCTION

8.2 Need for 3-Dimensional Imaging

8.3 Techniques for 3-Dimesional displaying

COMPUTER GRAPHICS

5

8.4 Parallel Projections

8.5 Perspective projection

8.6 Intensity cues

8.7 Stereoscope effect

8.8 Kinetic depth effect

8.9 Shading

UNIT 9

SOLID AREA SCAN CONVERSION

9.1 Introduction

9.2 Solid Area Scan Conversion

9.3 Scan Conversion of Polygons

9.4 Algorithm Singularity

UNIT 10

Three Dimensional Transformations

10.1 Introduction

10.2 Three-Dimensional transformation

10.3 Translations

10.4 Scaling

10.5 Rotation

10.6 Viewing Transformation

10.7 The Perspective

10.8 Algorithms

10.9 Three Dimensional Clipping

10.10 Perspective view of Cube

UNIT 11

HIDDEN SURFACE REMOVAL

11.1 Introduction

11.2 Need for hidden surface removal

11.3 The Depth - Buffer Algorithm

11.4 Properties that help in reducing efforts

11.5 Scan Line coherence algorithm

11.6 Span - Coherence algorithm

11.7 Area-Coherence Algorithms

11.8 Warnock’s Algorithm

11.9 Priority Algorithms

COMPUTER GRAPHICS

6

UNIT – 1

BASICS OF COMPUTER GRAPHICS

1.1 Introduction

1.2 What is computer Graphics?

1.3 Area of Computer Graphics

1.3.1 Design and Drawing

1.3.2 Animation

1.3.3 Multimedia applications

1.3.4 Simulation

1.4 How are pictures actually stored and displayed

1.5 Difficulties for displaying pictures

1.1 Introduction

In this unit, you are introduced to the basics of computer graphics.

To begin with we should know why one should study computer graphics. Its

areas of application include design of objects, animation, simulation etc.

Though computer graphics gained importance after the introduction of

monitors, these are several other input and output devices that are important

for the concept of computer graphics. They include high-resolution color

monitors, light pens, joysticks, mouse etc. You will be introduced to the

working principles of them.

The concept of computer graphics simply means identifying their

areas of the screen that are to be illuminated and those that should not be.

Most of the regular figures like straight lines, circles etc, are represented by

mathematical equations. Given such equations, the first aspect of computer

graphics is to convert them to a sequence of points - picture cells or pixels that

are to be illuminated (in case of raster graphic display) or simply covert it to a

curve that should be traced on the screen. Since many times these jobs have

to be very fast and efficient. You will be introduced to a number of such

algorithms and also their limitations.

We also look into the concept of transformations. Whenever as

existing is to be moved to a new place or say to be zoomed, the drawing is not

done again on the other hand; we only try to transform them. Simple

transformation matrices for various operations are also introduced. Further,

often we may end up drawing pictures larger than these that can be

COMPUTER GRAPHICS

7

represented on the screen. In such cases, we have a mechanism of "clipping" it

to the required dimensions. We also have schemes that fit a given picture into a

"window" of suitable size and location.

Further, since the computer is an "exact" device, in the sense it

cannot approximate operations; sometimes it becomes difficult for the human

beings to input exact values, like making the lines join exactly or the ends of a

circle meeting perfectly etc. To take care of such cases, certain "constraints" are

introduced so that the computer can know what the input is about - or looking

at the other way, one cannot "approximate" things he is "constrained" to make

them perfect. Similarly there are several other graphical input techniques that

allow the user to interactively input the data, mostly drawings, without giving

rise to ambiguities. These are also dealt with in this unit.

1.2 What is computer Graphics?

Computer graphics is an art of drawing pictures, lines, charts, etc

using computers with the help of programming. Computer graphics is made up

of number of pixels. Pixel is the smallest graphical picture or unit represented

on the computer screen. Basically there are two types of computer graphics

namely

1) Interactive computer graphics: It is the computer graphics

in which user can interact with the image on the computer screen. Here exist

two-way communication between the user and the image. The image is totally

under the control of user. Example: Playing the computer game in the

computer. Here user controls the image completely. According to the user wish

image makes the movements on the screen.

2) Non-interactive computer graphics: it is the computer

graphics in which user does not have any kind of control over the image. Image

is merely the product of static stored program and will work according to the

instructions given in the program linearly. The image is totally under the

control of program instructions not under the user. Example: screen savers.

1.3 Areas of Computer Graphics

As ancient says “ a pixel is worth thousand words”, graphics is

essential everywhere to understand the things, concepts, etc easily. Computer

graphics is useful in almost all part of our life. In the following sections we are

discussing some of the popular areas of computer graphics.

1.3.1 Design and Drawing

 In almost all areas of engineering, be it civil, mechanical,

electronic etc., drawings are of prime importance. In fact, drawing is said to be

the language of engineers. The ability of computers to store complex drawings

COMPUTER GRAPHICS

8

and display them on demand was one of the major attractions for using

computers in graphics mode. Few samples in this area are given below.

a) A mechanical engineer can make use of computer

graphics to design nuts, bolts, gears etc.

b) Civil engineer can construct the buildings, bridges,

train tracks, roads etc on the computer and can see in different angles

and views before actually putting the foundation for them. It helps in

finalizing the plans of these structures.

c) A text tile designer designs different varieties of

designs through computer graphics

d) Electronics and electrical engineers design their

circuits, PCB designs easily through computer graphics.

1.3.2 Animation

Making the pictures to move on the graphical screen is called

animation. Animation really makes the use of computers and computer

graphics interesting. Animation brought the computers pretty close to the

average individuals. It is the well known principle of moving pictures that a

succession of related pictures, when flashed with sufficient speed will make the

succession of pictures appear to be moving. In movies, a sequence of such

pictures is shot and is displayed with sufficient speed to make them appear

moving. Computers can do it in another way. The properties of the picture can

be modified at a fairly fast rate to make it appear moving. For example, if a

hand is to be moved, say, the successive positions of the hand at different

periods of time can be computed and pictures showing the position of the hand

at these positions can be flashed on the screen. This led to the concept of

“animation” or moving pictures. In the initial stages, animation was mainly

used in computer games.

However, this led to a host of other possibilities. As we see later on

in this course, computers not only allow you to display the figures but also

offer you facilities to manipulate them in various ways – you can enlarge,

reduce, rotate, twist, morph (make one picture gradually change to another –

like an advertisement showing a cheetah change into a motor bike) and do a

whole lot of other things. Thus, a whole lot of films made use of computers to

generate tricks. In fact, several advertisement films and cartons strips are built

with no actors at all – only the computer generated pictures.

Animation also plays very important role in training through

computer graphics. If you have been given a bicycle you might have learn to

ride it easily with little effort, but if you have been given a flight, automatically

it needs the animated images to study the entire scenario of how flight takes

COMPUTER GRAPHICS

9

off, on and handling it during flying, contacting with and getting the help from

control room etc will be better explained using computers animation technique.

1.3.3 Multimedia applications

 The use of sound cards to make computers produce sound effect

led to other uses of graphics. The concept of virtual reality, where in one can be

taken through an unreal experience, like going through an unbuilt house (to

see how it feels inside, once it is built) are possible by the use of computer

graphics technology. In fact the ability of computers to convert electronic

signals (0 & 1) to data and then on to figures and pictures has made it possible

for us to get photographs of distant planets like mars being reproduced here on

the earth in almost real time.

1.3.4 Simulation

 The other revolutionary change that graphics made was in the

area of simulation. Basically simulation is a mockup of an environment

elsewhere to study or experience it. The availability of easily interactive devices

(mouse is one of them, we are going to see a few other later in the course) made

it possible to build simulators. One example is of flight simulators, wherein the

trainee, sitting in front of a computer, can operate on the interactive devices as

if he were operating on the flight controls and the changes he is expected to see

outside his window are made to appear on the screen, so that he can master

the skills of flight operations before actually trying his hand on the actual

flights.

The graphic capabilities of computers are used in a very large

variety of areas like criminology (to recreate faces of victims, assailants etc.,)

medical fields (recreating pictures of internal cavities, using signals sent by

miniature cameras), recreation of satellite pictures etc.

1.4 How are pictures actually stored and displayed?

 All operations on computers are in terms of 0’s and 1’s and hence

figures are also to be stored in terms of 0’s and 1’s. Thus a picture file, when

viewed inside the memory, can be no different from other files – a string of Os

and 1s. However, their treatment when they are to be displayed makes the

difference.

Pictures are actually formed with the help of frame-buffer display

as follows

COMPUTER GRAPHICS

10

Frame buffer display contains a frame buffer, which is a storage

device and stores the image in terms of 0’s and 1’s. It contains the 0’s and 1’s

in terms of 8’s, or multiples of 8’s in a row. These 0’s and 1’s will be read by

display controller one line at a time and sent to the screen after converting

them from digital to analog. The display controller reads the contents of frame

buffer one line at a time or entire digits at time. These digital images after

converting into the analog will be displayed on the screen. The following figure

illustrates this

Frame Buffer Display Controller

 Monitor

Figures can be stored and drawn in two ways – either by line

drawing or by Raster graphic methods. In the line drawing scheme, the figures

are represented by equations – for example a straight line can be represented

by the equation y=mx+c, a circle by x2+y2=r2 etc. If (x, y) are representative

points, then all these (x,y) value pairs which satisfy the equations form a part

of the figure while those that do not, lie outside the figure. Thus, to generate

any figure, obviously the equation of the figure is to be known. Then all points

that satisfy the equation are evaluated. These are the points to be illuminated

on the screen.

00000000 00000000

01100110 10101100

01000000 00000010

01000000 00000010

01000000 00000010

0011111111111110

00000000 00000000

00000000 00000000

00000000 00000000

00000000 00000000

Scan Line

COMPUTER GRAPHICS

11

 Y

 Points to be illuminated

A moving electronic beam, as we know illuminates the screen, or

the monitor. Whenever the beam is switched on, the electrons illuminate the

phosphorescent screen and display a point. In the line drawing schemes, this

beam is made to traverse the path of the figure to be traced and we get the

figure we need. For example, in the above cited example if the electron beam is

made to move from a to be along the points, we get the line.

The raster scan mechanism uses a different technique and is often

found more convenient to manipulate and operate with. In this case, a "frame

buffer", (a chunk of memory) is made to store the pixel values. (Remember, the

screen can be thought of as having beam made up of a number of horizontal

rows of pixels (picture cells), each pixel representing a point on the picture. In

fact the number of such horizontal and vertical points indicate higher

resolutions and therefore better pictures. Typical resolutions are like 640 X

480, 860 X 640, 1024 x 860 etc., where the figures indicate the number of rows

and the number of pixels along each row respectively on a computer screen

(unlike in standard mathematics) the top left hand point indicates the origin or

the point (0,0) and the distances are measured horizontally and vertically as

shown).

 a

 x

 x

 x

 x

 x

 x

 o x
X b

COMPUTER GRAPHICS

12

 o x

 y

Now, assuming a 1024 x 1024 point screen, any figure that is to be

displayed within this space. The "frame buffer" stores "status" of each of these

pixels - say 0 indicates the pixel is off and hence is not a part of the picture and

1 indicates it is a part of the picture, and is to be displayed. This data is used

to display the pictures.

1.5 Difficulties for displaying pictures

Unfortunately, the concept of graphics of displaying pictures is lot

more complicated than what has been described so far - evaluate the points

using the equations, store them in a file and use raster graphics methods or

use simple line drawing algorithms. We will list a few of them before we close

this chapter.

i) Stair case effects: Note that the pixel values are

always integers (0,0) (0,1) (0,2) - - - - - -- - -, but an algorithm to

draw/manipulate pictures need not always return integer values.

Suppose the point at which two line meet, say is at (1.4, 2.7). What

do we do? Common sense suggests that we round off the values, by

using any of the standard algorithms. Excellent. 1.4 gets rounded of

to 1 and 2.7 to 3. But another value of 1.6 say gets rounded off to 2

and a value of 3.1 also gets rounded of to 3. So, what do we have?

The pointer 1.4 and 1.6, which should be very close to each other,

appear to be separated by a distance of 1 and not 0.2 in our figure,

i.e. the smoothness of a figure joining these points is lost. Alternately,

the points 2.7 and 3.1, instead of appearing to be different, appear to

be the same in our picture. A no. of such adjustments makes the

figure looks like a jagged one instead of a smooth figure.

COMPUTER GRAPHICS

13

(Why this is called a stair case effect and how we can reduce it, we

will see in due course)

ii) Response time: Especially when talking of animation,

the speed at which new calculations are made and the speed at which

the screen can interact are extremely important. Imagine a running

bus, shown on the screen. Each new position of the bus (and it's

surroundings, if needed) is to be calculated and sent to the screen and

the screen should delete the earlier position of the bus and display its

new position. All this should happen at a speed that convinces the

viewer that the vehicle is actually moving at the prescribed speed,

otherwise a running vehicle would appear like a "walking" bus or

worse a "piecewise movement” bus. For this, most the speed of the

algorithm and the speed of the display devices are extremely

important. Further, the entire operation should appear smooth and

not jerky otherwise, especially in simulation applications, the effects

can be dangers.

iii) What happens when the size of the picture exceeds

the size of the screen?: Obviously, some areas of the picture are to

be cut off. But this involves certain considerations and needs to be

addressed by software. [Which we will discuss while discussing about

clipping and windowing]

iv) Can the user create pictures directly on the

screen?: Definitely all pictures can not be thought of in terms of

regular geometric figures and hence in terms of equations? Now,

seeing a particular picture on the screen, the viewer wants to change

it slightly, say bend it slightly here, stretch it their etc. This may not

suit any regular equation? How should the system handle it?

The subsequent blocks answer these and many other

questions.

COMPUTER GRAPHICS

14

Review Questions

1. The art of representing moving pictures is called ________________________-

2. The concept of changing one picture gradually into another is called

3. The combination of calculations, sound and pictures in computer is called

4. Building a mock up of an environment with the aim of studying the same is

called __________________

5. The equation of a straight line is given by _______________________

6. A block of memory to store pixel values is called ________________________

7. The number of pixels available for display of pictures is indicated by

8. The concept of creating pictures directly on the screen is called

Answers

1. Animation

2. Morphing

3. Multimedia

4. Simulation

5. y= mx+c

6. Frame buffer

7. Resolution

8. Interactive graphics.

COMPUTER GRAPHICS

15

Unit 2

GRAPHIC DEVICES

2.1 Introduction

2.2 Cathode Ray Tube

2.3 Quality of Phosphors

2.4 CRTs for Color Display

2.5 Beam Penetration CRT

2.6 The Shadow - Mask CRT

2.7 Direct View Storage Tube

2.8 Tablets

2.9 The light Pen

2.10 Three Dimensional Devices

2.1 Introduction

Due to the widespread reorganization of the power and utility of

computer graphics in almost all fields, a broad range of graphics hardware and

software systems are available now. Graphics capabilities for both two-

dimensional and three-dimensional applications are now common on general-

purpose computers, including many hand-held calculators. These need wide

variety of interactive devices.

In this unit, we will look into some of the commonly used hardware

devices in conjunction with graphics. While the normal concept of a CPU,

Memory and I/O devices of a computer still holds good, we will be

concentrating more on the I/O devices. The special purpose output devices that

allow us to see pictures in color, for example, with different sizes, features etc.

Also, once the picture is presented, the user may like to modify it interactively.

So one should be able to point to specific portions of the display and change

them. Special input devices that allow such operations are also introduced.

While ever changing technologies keep producing newer and newer products,

what you are being introduced to here are trends of technology.

2.2 The Cathode Ray Tube (CRT/Monitor)

One of the basic and commonly used display devices is Cathode

Ray Tube (CRT). A cathode ray tube is based on the simple concept that an

electronic beam, when hits a phosphorescent surface, produces a beam of light

(momentarily - though we later describe surfaces that produce light intensities

lashing over a period of time). Further, the beam of light itself can be focused to

any point on the screen by using suitable electronic / magnetic fields. The

direction and intensity of the fields will allow one to determine the extent of the

COMPUTER GRAPHICS

16

defection of the beam. Further these electronic / magnetic fields can be easily

manipulated by using suitable electric fields with this background. In following

section we describe the structure and working of the simple CRT.

Simple CRT makes use of a conical glass tube. At the narrow end

of the glass tube an electronic gun is kept. This gun generates electrons that

will be made to pass through the magnetic system called yoke. This magnetic

system is used for making the electronic beam to fall throughout the broad

surface of the glass tube. The broad surface of the glass tube contains a single

coat of high quality phosphorus. This reflects the electronic beam makes it to

fall on the computer screen.

Fig. Basic Design of magnetic Deflection CRT

 A pair of focusing grids - one horizontal and another vertical

does the actual focusing of the electronic beam on to the screen. Electronic or

magnetic fields operate these grids. Depending on the direction (positive or

negative) and the intensity of the fields applied to them, the beam is deflected

horizontally (or vertically) and thus, by using a suitable combination of these

focusing grids; the beam can be focused to any point on the screen.

COMPUTER GRAPHICS

17

 So, we now have a mechanism wherein any point on the screen

can be illuminated (or made dark by simply switching off the beam).

 Hence, from a graphics point of view, any picture can be

traced on the screen by the electron beam by suitably and continuously

manipulating the focusing grids and we get to see the picture on the screen "A

basic graphic picture" of course, since the picture produced vanishes once the

beam is removed, to give the effect to continuity, we have to keep the beam

retracing the picture continuously - (Refreshing).

Quality of Phosphors

The quality of graphic display depends on the quality of phosphors

used. The phosphors are usually chosen for their color characteristics and

persistence. Persistence is how long the picture will be visible on the screen,

after it is first displayed. Most of the standards prescribe that the intensity of

the picture should fall to 1/10 of its original intensity is less than 100

milliseconds.

The color of the phosphor is normally chosen as white, also it

should be of small grains, so that the resolution of the screen can be high.

However, special types of monitors, to suit special applications

have been devised, which may not confirm to the above standards. We will see

a few of them in the next sections.

2.3 CRTs for Color Display

This was one the earlier CRTs to produce color displays. Coating

phosphors of different compounds can produce different colored pictures. But

the basic problem of graphics is not to produce a picture of a predetermined

color, but to produce color pictures, with the color characteristics chosen at

run time.

The basic principle behind colored displays is that combining the 3

basic colors –Red, Blue and Green, can produce every color. By choosing

different ratios of these three colors we can produce different colors - millions

of them in-fact. We also have basic phosphors, which can produce these basic

colors. So, one should have a technology to combine them in different

combinations.

COMPUTER GRAPHICS

18

2.4 Beam Penetration CRT

This CRT is similar to the simple CRT, but it makes use of multi

coloured phosphorus of number of layers. Each phosphorus layer is

responsible for one colour. All other arrangements are similar to simple CRT. It

can produce a maximum of 4 to 5 colours

The organization is something like this - The red, green and blue

phosphorus are coated in layers - one behind the other. If a low speed beam

strikes the CRT, only the red colored phosphorus is activated, a slightly

accelerated beam would activate both red and green (because it can penetrate

deeper) and a much more activated one would add the blue component also.

But the basic problem is a reliable technology to accelerate the

electronic beam to precise levels to get the exact colors - it is easier said than

done. However, a limited range of colors can be conveniently produced using

the concept.

2.5 The Shadow - Mask CRT

This works, again, on the principle of combining the basic colors -

Red, green and Blue - in suitable proportions to get a combination of colors,

but it's principle is much more sophisticated and stable.

The shadow mask CRT, instead of using one electron gun, uses 3

different guns placed one by the side of the other to form a triangle or a "Delta"

COMPUTER GRAPHICS

19

as shown. Each pixel point on the screen is also made up of 3 types of

phosphors to produce red, blue and green colors. Just before the phosphor

screen is a metal screen, called a "shadow mask". This plate has holes placed

strategically, so that when the beams from the three electron guns are focused

on a particular pixel, they get focused on particular color producing pixel only

i.e. If for convenience sake we can call the electronic beams as red, blue and

green beams (though in practice the colors are produced by the phosphors,

and until the beams hit the phosphor dots, they produce no colors), the metal

holes focus the red beam onto the red color producing phosphor, blue beam on

the blue producing one etc. When focused on to a different pixel, the red beam

again focuses on to the red phosphor and so on.

Now, unlike the beam penetration CRTs where the acceleration of

the electron beam was being monitored, we now manipulate the intensity of the

3 beams simultaneously. If the red beam is made more intense, we get more of

red color in the final combination etc. Since fine-tuning of the beam intensities

is comparatively simple, we can get much more combination of colors than the

beam penetration case. In fact, one can have a matrix of combinations to

produce a wide variety of colors.

The shadow mask CRT, though better than the beam penetration

CRT in performance, is not without it's disadvantages. Since three beams are to

be focused, the role of the "Shadow mask" becomes critical. If the focusing is

not achieved properly, the results tend to be poor. Also, since instead of one

pixel point in a monochrome CRT now each pixel is made up of 3 points (for 3

colors), the resolution of the CRT (no. of pixels) for a given screen size reduces.

Another problem is that since the shadow mask blocks a portion of the beams

(while focusing them through the holes) their intensities get reduced, thus

reducing the overall brightness of the picture. To overcome this effect, the

beams will have to be produced at very high intensities to begin with. Also,

since the 3 color points, though close to each other, are still not at the same

point, the pictures tend to look like 3 colored pictures placed close by, rather

than a single picture. Of course, this effect can be reduced by placing the dots

as close to one another as possible.

The above displays are called refresh line drawing displays,

because the picture vanishes (typically in about 100 Milli seconds) and the

pictures have to be continuously refreshed so that the human persistence of

vision makes them see as static pictures. They are costly on one hand and also

tend to flicker when complex pictures are displayed (Because refreshing

because complex). These problems are partly overcome by devices with

inherent storage devices - i.e. they continue to display the pictures, till they are

COMPUTER GRAPHICS

20

changed or at least for several minutes without the need of being refreshed. We

see one such device called the Direct View Storage Tube (DVST) below.

2.6 Direct View Storage Tube

Conceptually the Direct View Storage Tube (DVST) behaves like a

CRT with highly persistent phosphor. Pictures drawn on there will be seen for

several minutes (40-50 minutes) before fading. It is similar to CRT as far as the

electronic gun and phosphor-coated mechanisms are concerned. But instead of

the electron beam directly writing the pictures on the phosphor coated CRT

screen, the writing is done with the help of a fine-mesh wire grid.

The grid made of very thin, high quality wire, is located with a

dielectric and is mounted just before the screen on the path of the electron

beam from the gun. A pattern of positive charges is deposited on the grid and

this pattern is transferred to the phosphor coated CRT by a continuous flood of

electrons. This flood of electrons is produced by a "flood gun" (This is separate

frame the electron gun that produces the main electron beam).

Just behind the storage mesh is a second grid called the collector.

The function of the collector is to smooth out the flow of flood electrons. Since a

large number of electrons are produced at high velocity by the flood gun, the

collector grid, which is also negatively charged reduces, the acceleration on

these electrons and the resulting low velocity flood pass through the collector

and get attracted by the positively charged portions of the storage mesh (Since

the electrons are negatively charged), but are repelled by the other portions of

COMPUTER GRAPHICS

21

the mesh which are negatively charged (Note that the pattern of positive

charges residing on the storage mesh actually defines the picture to be

displayed). Thus, the electrons attracted by the positive charges pass through

the mesh, travel on to the phosphor coated screen and display the picture.

Since the collector has slowed the electrons down, they may not be able to

produce sharp and bright images. To over come this problem, the screen itself

is maintained at a high positive potential by means of a voltage applied to a

thin aluminum coating between the tube face and the phosphor.

Flood of

electrons

 Mesh of thin gauge CRT Screen

The dotted circle on the mesh is created by positive charges the

flood of electrons hit the mesh at all points. But only those electrons that hit

the dotted circle pass through and hit the CRT screen. The negatively charged

mesh repels others.

Since the phosphor is of a very high persistence quality, the

picture created on the CRT screen will be visible for several minutes without

the need for being refreshed.

Now the problem arises as to how do we remove the picture, when

the time for it's erasure or modification comes up. The simple method is to

apply a positive charge to the negatively charged mesh so that it gets

neutralized. This removes all charges and clears the screen. But this technique

also produces a momentary flash, which may be unpleasant to the viewer. This

is mainly so when only portions of the picture are to be modified in an

interactive manner. Also, since the electrons hit the CRT screen at very low

speeds (though they are slightly accelerated in the last part of their journey to

the CRT by a positively charged aluminum coating), the contrasts are not

sharp. Also, even though the pictures stay for almost an hour, there will be a

gradual degradation because of the accumulation of the background glow. The

COMPUTER GRAPHICS

22

other popular display device is the plasma panel device, which is partly similar

to the DVST in principle, but over comes some of the undesirable features of

the DVST.

2.7. Laser Scan Display

The laser-scan display is one of the high resolutions, large screen

display device. It is capable of displaying an image measuring 3 by 4 feet and

still has good resolution. The main principle behind working of this display

device is light source mixed with laser light and the deflection of laser light

according to the natural light source. Modulators, focusing lenses and x-y

deflectors make laser light to deflect and fall on the screen where natural light

falls.

2.8. Input Devices

We shall now see some of the popularly used input devices for

interactive graphics.

i) Mouse:

COMPUTER GRAPHICS

23

The mouse consists of a small plastic box resting on a metal wheel

(see Fig). It was developed originally at Stanford Research Institute. The wheel

of the mouse is connected to two variable resistors that deliver analog voltage

for every incremental rotation of the wheel. As the mouse is rolled around on a

flat surface, its movement in two orthogonal directions is translated into

rotation of the wheel. These rotations can be measured by converting the

analog voltages to digital values. The converted values may be held in registers

accessible to the computer or written directly into the computer’s memory; the

values are normally sampled 30 or 60 times a second by the computer.

Pushbutton is mounted on top of the mouse, and the user can work them with

his fingers as he moves the mouse. Ideally the computer should be able to read

the position of these buttons whenever it reads the coordinates of the mouse.

In addition to its simplicity and low cost, the mouse has the

advantage that the user need not pick it up in order to use it-the mouse simply

sits on the table surface until he needs it. This makes the mouse an efficient

device for pointing, as experiments have shown. The mouse has some unique

properties that are liked by some and disliked by others. For example, if the

mouse is picked up and put down somewhere else, the cursor will not move.

also, the coordinates delivered by the mouse wrap around when overflow

occurs; this effect can be filtered out by software, or can be retained as a

means of moving the cursor rapidly from one side of the screen to the other.

The mouse has two real disadvantages. It cannot be used for tracing data from

paper, since a small rotation of the mouse or a slight loss of contact will cause

accumulative error in all the reading, and it is very difficult to handprint

COMPUTER GRAPHICS

24

characters for recognition by the computer. For these types of application a

tablet is essential.

The following figure shows one button, two buttons and three

buttons mouse.

ii) Joystick

In fact, the forerunner of the mouse is a joystick. Here, as the

name suggests, we have a stick (or a handle, to be more exact) can be moved in

all possible direction.

A joy Stick

COMPUTER GRAPHICS

25

The direction and amount of movement in that direction controls

the amount of curser movement. Once the curser arrives at the desired

position, clicking the buttons can choose the picture and any modification can

be made.

In fact, the joysticks were originally used for video games (hence

the name "joy" stick), but later on modified for the more accurate graphics

requirements.

However, both the mouse and joysticks may appear a bit

cumbersome for the new users. They find some difficulty in aligning the curser

to the precisely desired positions.

iii) Tracker Ball

The working principle of tracker ball is similar to that of mouse or

joystick. In this device instead of holding the device ball inside the device, it will

be hold in hand and rotated. According to the ball movement on the roller

groove fixed with rollers for X, Y and Z –axis. According to the movements of

the ball the rollers will move and they give the position of the pointer on the

screen. The following figure shows tracker ball.

2.9 TABLETS

The Tablets work on the principle of sound and its speed through

which the position of the pointer on the screen will be decided. It makes use of

flat surface on which we are writing with a stylus. The stylus tip is covered with

material called ceramic. It makes sound when writing on the flat surface.

COMPUTER GRAPHICS

26

Tablet and stylus The acoustic tablet

The flat surface is having powerful strip microphones on two sides.

These microphones will receive the sound generated by the stylus while writing.

Based on the actual time of sound generated and sound received by two

microphones will decide the position of the pointer on the screen. In case of 3D

acoustic Tablet three strip microphones are used to along the sides of the flat

surface and one vertically on their intersecting point.

2.10 The light Pen

The devices discussed so far, the mouse, the tablet, the joystick are

called "positioning devices". They are able to position the curser at any point

on the screen. (Which in turn means, we can operate at that point or the chain

of points)

LIGHT PEN A) USING HAND-HELD PHOTOCELL, B) USING A FIBER OPTIC PIPE

Often, we also need devices that can "point" to a given position on

the screen. This becomes essential when a diagram is already there on the

COMPUTER GRAPHICS

27

screen, but some changes are to be made. So, instead of trying to know its

coordinates, it is advisable to simply "point" to that portion of the picture and

ask for changes. The simplest of such devices is the "light pen". Its principle is

extremely simple.

We know that every pixel on the screen that is a part of the picture

emits light. In fact they are much brighter than their surrounding pixels. All

that the light pen does is to make use of this light signal to indicate the

position. A small aperture is held against the portion of the picture to be

modified and the light from the pixels, after passing through the operator falls

on a photocell. This photocell converts the light signal received from the screen

to an electrical pulse - a signal sent to the computer. Since the electrical signal

is rather weak, an amplifier amplifies it before being sent to the computer.

Since a "tracking software" keeps track of the position of the light pen always

(in a manner much similar to the position of the mouse being kept track of by

the software), a signal received by the light pen at any point indicates that

portion of the picture that needs to be modified (most often that portion gets

erased, paving way for any other modifications to be made).

However, when the pen is being moved to it's position - where the

modification is required - it will encounter so many other light sources on the

way and these should not trigger the computer. So the operator of the light

pen is normally kept closed and when the final position is reached, then it can

be opened by a switch - in a manner similar to the one used in a photographic

camera, though, of course, the period of opening the operator is for much

longer periods than in a camera.

2.10 Three Dimensional Devices

Though the display on the CRT monitor always presents a 2

dimensional picture, it is not necessary that the data stored in the computer

about the picture also should be two-dimensional. In particular, when one is

taking data from 3-dimensional models it becomes necessary to map input

data, which is 3-dimensional in nature into the 2-dimensional pictures. This

aspect will be dealt with in a later chapter. However, the input devices should

be able to read and transfer data from a 3-dimensional world, in the first place.

The devices that we have seen so far, namely the mouse or light pen or

joysticks or even tablets work only on two-dimensional data only.

In this section, we see the simplest of input devices, which work

only on the extended principle of the 2-dimensional tablet that we have

encountered earlier.

COMPUTER GRAPHICS

28

The concept is that when two perpendicularly placed microphones

can pick up signals and identify them in a 2 dimensional space, 3-

perpendiculorly placed microphones can pickup and identifies signals in a 3-

dimensional space. The result is the above figure.

But when a 2 -dimensional tablet is made 3-dimensional by adding

a third, perpendicular microphone, the tablet becomes more difficult to manage

because of the bulk. Hence one more mechanism, wherein a 2-dimensional

tablet can be used to affect a 3 dimensional recognition was developed. In this

case, all the four sides of the tablet are provided with a microphone each and it

can be mathematically shown that any sound made by the stylus tip at a

height above the tablet is picket up by the four microphones, the time delays

will be proportional not only to the x and y distances of the stylus form the

microphones, but also to it's height above the stylus - the z distance. By using

very simple mathematics - it is possible to separate the x,y and z values, i.e.

the actual position of the stylus.

 Reel of tense wire

 Stylus

One more simple method of tracking in 3 dimensions is by the use

of wires in 3 dimensions. The trick is to connect the stylus to 3-wires,

positioned in x,y and z direction, connected to several length of wires and

which are spring loaded. The distance of the stylus from each of these springs

COMPUTER GRAPHICS

29

is proportional to the force applied on the springs, which can be used to

indicate the position. However, this method is less accurate and is seldom

used.

Review Questions

1. In a CRT, a stream of electrons falling on a ___________of the screen produces

images.

2. The path of the electron beam is focused on to the screen using

_____________ or _________________.

3. The term ____________________ indicates how long the picture created on the

phosphorescent screen remains on it.

4. The three basic colors are ___________, ____________ and ________________

5. Different electron beams are accelerated to different levels in a

6. When the picture has to remain on the screen for a long time _______________

type of CRT is sued.

7. The first device to allow the user to move the cursor to any point, without

actually knowing the coordinates was ____________________

8. The input device that allows user to write pictures on it an input them

directly to the computer is called _______________________

9. Light pen is a ________________ device.

10. Name one device that allows a 3 dimensional input to be given to

the computer.

COMPUTER GRAPHICS

30

Answers

1. Phosphorescent

2. Magnetic, electrical

3. Persistence

4. Red, Blue, Green

5. Beam Penetration CRT

6. Direct view storage Tube (DVST)

7. Joy stick

8. Tablet

9. Pointing

10. Acoustic Tablet.

COMPUTER GRAPHICS

31

UNIT 3

INTRODUCTION TO THE

‘GRAPHICS’ AND ‘C’

3.1 Introduction

3.2 ‘C’ GRAPHICS FUNCTIONS

3.3 C Graphics Programming Examples

3.1 Introduction

‘C’ is the language of choice for the system programming. It also

provides the facility to draw the graphics on the screen. All the graphical

related functions are kept in the header file graphics.h. C is a popular

programming language. It supports computer graphics and provides number of

standard library functions for drawing regular diagrams and figure on the

computer screen. One can use these graphical functions to draw the images

easily through computer program. For these we need to initialize the graphics

mode and detect the related graphics drivers. The standard library functions

are kept in the header file called “graphics.h”. for using any of the graphical

built-in functions “graphics.h” file must be included.

Before starting with the C language syntax for graphics let us

discuss some of the important terms that are used in computer graphics.

a) Pixel : It is the smallest recognizable picture part on

the computer screen. Each dot(.) we can draw on the computer screen id

a pixel and any image or picture we draw is the combinations of pixels.

b) Resolution: The maximum number of pixels we can

put on the computer screen along X-axis is called its resolution. The

higher resolution leads to fine quality of an image. Usually it is 640 pixels

along X-axis and 480 pixels along Y-axis. But these resolution changes

from computer to computer-based on configuration and operating system

as well as applications used.

c) Coordinate system: usually the coordinate system in

C computer graphics considers only positive coordinates with integer

values. The left top corner of the screen is origin and X keeps on

increasing along X-axis horizontally upto right border of the screen and Y

keeps on increasing vertically down until button border o the screen.

d) Graph mode : Integer that specifies the initial

graphics mode (unless graph driver=DETECT is specified). If graph driver

COMPUTER GRAPHICS

32

= DETECT, initgraph sets graph mode to the highest resolution available

for the detected driver. We can give graph mode a value using a constant

of the ‘graphics_modes’ enumeration type available in graphics.h header

file.

 Some of the standard library functions of graphics.h header file

used in this project are given below.

3.2 ‘C’ GRAPHICS FUNCTIONS

For doing this project we are using the ‘C’ graphics. The functions

using for our project are given below,

1.initgraph(); Initializes the graphics system.

Declaration: void far initgraph (int far *graphdriver, int far

*graphmode,

 char far *path to driver);

Remarks: To start the graphics system, you must first call

initgraph. Initgraph Initializes the graphics system by loading a graphics

driver from Disk (or validating a registered driver) then putting the system into

graphics mode.

2. setbkcolor(); It sets the current background color using

palette.

Declaration: void far setbkcolor (int color);

Remarks: setbkcolor sets the background to the color specified by

color.

3. setcolor(); setcolor sets the current drawing color.

Declaration: void far setcolor (int color);

Remarks: It sets the current drawing color to color, which can

range from 0 to getmaxcolor.

4. rectangle(); Draws a rectangle (graphics mode)

Declaration: void far rectangle (int left, int top, int right, int

bottom);

Remarks: rectangle draws a rectangle in the current line style,

thickness and (right, bottom) is its lower right corner.

5. settextstyle(); Sets the current text characteristics.

Declaration: void far settextstyle (int font, int direction, int

charsize);

Remarks: It sets the text font, the direction in which text is

displayed and the size of the characters.

6. putimage(); putimage outputs a bit image onto the screen.

COMPUTER GRAPHICS

33

Declaration: void far putimage (int left, int top, void far *bitmap, int

top);

Remarks: putimage puts the bit image previously saved with

getimage back onto the screen, with the upper left corner of the image placed at

(left, top)

7. getimage (); getimage saves a bit image of the specified region

into memory.

Declaration: void far getimage (int left, int top, int right, int bottom,

void far * bitmap);

Remarks: getimage copies an image from the screen to memory.

8. malloc(); It allocates the memory.

Declaration: void *malloc(size_t size) ;

Remarks: It allocates a back of size bytes from the memory heap. It

allows a program to allocate memory explicitly as its needed and in the exact

amount needed

9. floodfill(); Flood_fills a bounded region.

Declaration: void far floodfill (int x, int y, int border);

Remarks: floodfill fills an enclosed area on bitmap devices. The

areas bounded by the color border are flooded with the current fill pattern and

fill color.

10. Closegraph(); Shut down the graphics system.

Declaration: void far closegraph(void);

Remarks: It reallocates all memory allocated by the graphics

system.

11. cleardevice(); It clears the graphics screen.

Declaration: void far cleardevice(void);

Remarks: It erases the entire graphics screen and moves the

current position (CP) to home(0, 0).

12. sleep(); Suspends execution for interval.

Declaration: void sleep(unsigned seconds);

Remarks: With a call to sleep, the current program is suspended

from execution for the number of seconds specified by the argument seconds.

13. exit(); exit terminates the program.

Declaration: void exit(int status);

Remarks: Exit terminates the calling process.

14. sound(); sounds turns the PC speaker on at the specified

frequency.

Declaration: void sound(unsigned frequency);

Remarks: Sound turns on the PC’s speaker at a given frequency.

15. nosound(); sounds turns the PC speaker off.

Declaration: void sound(void);

COMPUTER GRAPHICS

34

Remarks: Sound turns on the PC’s speaker off after it has been

turned on by a call to sound.

16. textcolor(); It selects a new character color in text mode.

Declaration: void textcolor(int newcolor);

Remarks: This function works that procedure text-mode output

directly to the screen (console output functions), textcolor selects the

foreground character color.

17. delay(); It suspends execution for interval (milliseconds).

Declaration: void delay(unsigned milliseconds);

Remarks: With a call to delay, the current program is suspended

from execution for the time specified by the argument milliseconds. It is not

necessary to make a calibration call to delay before using it. It is accurate to

one milliseconds.

18. imagesize(); Returns the number of bytes required to store a

bit image.

Declaration: unsigned far imagesize(int left, int top, int right, int

bottom);

Remarks: determines the size of memory area required storing a bit

images.

19. gotoxy(); Positions cursor in text window.

Declaration: void gotoxy(int x, int y);

Remarks: gotoxy moves the cursor to the given position in the

current text window. If the coordinates are invalid, the call to gotoxy is ignored.

20. line(); line draws a line between two specified points.

Declaration: void far line(int x1, inty1, intx2, inty2);

Remarks: line draws a line from (x1, y1) to (x2,y2) using the

current color, line style and thickness. It does not update the current position

(CP)

3.3 C Graphics Programming Examples:

Let us consider a small program that illustrates graphics

initialization.

/* Program to initialize the graph and draw a line * /

#include<graphics.h>

#include<conio.h>

void main()

{

int gd =DETECT: /*Detect the graph driver dynamically*/

int gm; /*for graph mode*/

COMPUTER GRAPHICS

35

initgraph (&gd,&gm,’’’); /* graph driver, graph mode and

path has to be passed as parameters. The empty path is specified means the

path will be taken dynamically after searching in the computer. Otherwise we

need to spcify the path where bgi directory is stored in the computer */

line(10,10,200,200); /* this function draws a line from

starting co-ordinates(10,10) to the target co-ordinates (200,200). These co-

ordintes are specified in terms of pixels */

getch();

closegraph(); /* close the graph mode */

}

The above program draws a line in between the specified co-

ordinates. The syntax of the popular graphical functions is given above, in any

of the graphical programs it is essential to detect the graph driver and set the

graph mode or terminating the program execution. But it is always advisable to

close the graphics mode before terminating the program.

 Let us consider the program for drawing a rectangle.

/*program to initialize the graph and draw a rectangle */

#include<graphics.h>

#include<conio.h>

void main()

{

int gd=DETECT; /* Detects the graph driver dynamically */

int gm; *for graph mode*/

initgraph(&gd,&gm,””);

rectangle(10,10,200,200,); /* This function draws a rectangle

taking co-ordinates (10,10) as top left point and target co-ordinates (200,200)

as botton right co-ordinates. These co-ordinates are specified in terms of pixels

*/

getch();

colsegraph(); /* closes the graph mode */

}

The following program illustrates the combinations of different

Regular shaped graphical objects. Here we will draw a rectangle

and lines along its diagonals. A circle is also drawn inside the rectangle.

COMPUTER GRAPHICS

36

/* program to draw a rectangle , lines as its diagonals and a circle */

#include<graphics.h>

#include<conio.h>

void main()

{

int gd=DETECT;

int gm;

initgraph(&gd,&gm,””);

rectangle(10,10,200,200); /* draws a rectangle */

line(10,10,200,200); /* draw a line on the main diagonal*/

line(10,200,200, 10); /* draws a line on off diagonal */

circle(105,105,95); /* draws a circle taking (105,105)

as center co-ordinates and 95 as radius

all the dimensions are in pixels */

getch();

closegraph(); /*closes the graph mode */

}

By making use of the available library functions we can easily draw

such graphics. We can also set the writing colors for drawing by using setcolor

() function, which takes color code or color name as its parameter. C graphics

supports sixteen colors whose codes rang from 0 to 15 (The graphical constants

related to colors, styles, patterns etc., are given in appendix B). When the color

name is used as the parameter it must be specified in capital alphabets. The

following program illustrates the circles and ellipses drawn with different

colors.

/* program to draw a circle and ellipses */

#include<graphics.h>

#include<conio.h>

void main()

{

int gd=DETECT;

int gm;

Initgraph (&gd,&gm,””);

Circle (getmaxx ()/2,getmaxy ()/2,100); /*draws a circle taking midpoint of

the screen as center co-ordinates and

100 as radius */

COMPUTER GRAPHICS

37

setcolor(2); /*sets the drawing color as green */

ellipse(getmaxx()/2,0,360,80,50);

/* draws an ellipse taking center of the screen as its center , 0 as starting angle

and 360 as ending angle and 80 pixel as Y radius */

setcolor(4); /*sets the drawing color as red */

ellipse(getmaxx()/2, getmaxy()/2,90,270,50, 80);

/*draws half the ellipse starting from 90 angle and ending at 27o angle

with 50 pixels as X-radius and 80 pixels as Y-radius in red color */

getch();

closegraph(); /* closes the graph mode */

}

The different combinations of ellipses and arcs are illustrated in

the following program.

/* program to draw ellipses and arcs */

#include<graphics.h>

#include<conio.h>

void main()

{

int gd=DETECT;

int gm;

initgraph(&gd,&gm,””);

setcolor(1); /*sets the drawing color as blue*/

ellipse(getmaxx()/2, getmaxy()/2,0,360,80,50);

 /*draws an ellipse taking center of the screen as its center, 0as starting angle

and360 as ending angle and 80 pixels as x-radius, 50 pixels as y radius*/

setcolor(4); /*sets the drawing color as red*/

ellipse(getmaxx()/2, getmaxy()/2, 90,270,50,80);

 /*draws half the ellipse starting from 90 degree angle and ending at 270

degree with 50 pixels as x-radius and 80 pixels as y-radius in red color*/

setcolor(5); /*sets the drawing color as pink */

arc(getmaxx()/2, getmaxy()/2, 0, 180, 100);

 /*arc with center of the screen as its center and 100 pixels as radius. It starts

at an angle 0 and ends at an angle 180 degrees, i.e., half circle*/

setcolor(9); /* sets the drawing color as light blue */

arc(300,200,20,100,70) ;

COMPUTER GRAPHICS

38

 /*arc with (300,200) as its center and 70 pixels as radius. It starts at an angle

20 and ends at an angle 100 degrees*/

getch();

closegraph(); /* closes the graph mode */

}

The following program illustrates the putpixel function. It keeps on

drawing the pixels throughout the screen until pressing any key from the

keyboard. The co-ordinates for drawing the pixel are selected randomly by

using rand() library function and taking co-ordinates for x-axis and y-axis

randomly within the limits of screen resolution.

/* program to demonstrate put pixel */

include<graphics.h>

include<conio.h>

include <stdlib.h>

include<dos.h>

void main()

{

int gm, gd=DETECT,I;

initgraph(&gd, &gm,’’’’);

while(!kbhit())/* until pressing any key this loop continues */

{

putpixel(rand()%getmaxx(), rand() % getmaxy(), rand()%16);

/*x and y co-ordinates and the color are taken randomly*/

delay(2); /* just to draw the pixels slowly*/

}

getch ();

closegraph(); /* closes the graph mode */

}

COMPUTER GRAPHICS

39

The proper combinations of pixels can make any of the

graphical objects. The following program shows drawing of lines and

rectangles using putpixel () function.

/* program to demonstrate rectangles using putpixel and lines*/

#include<graphics.h>

#include<conio.h>

#include<stdlib.h>

#include<dos.h>

void main()

{

int gm,gd=DETECT;

int x1,x2,y1,y2,c,I;

initgraph(&gd,&gm,’’’’);

while(!kbhit())/*until pressing any key this loop continues*/

{

/*for rectangle co-ordinates are taken randomly*/

x1=rand()%getmaxx();

x2=rand()%getmaxx();

y1=rand()%getmaxy();

y2=rand()%getmaxy();

if(x1>x2)

{

c=x1; /* exchange of x1 and x2 when x1 >x2 */

x1=x2;

x2=c;

}

if(y1>y2)

{

c=y1; /* exchange of y1 and y2 when y1>y2 */

y1=y2;

y2=c;

}

c=rand()%16;

/*to draw rectangle using putpixel*/

for(I=x1;I<=x2;++i)

COMPUTER GRAPHICS

40

{

putpixel(I,y1,c);

delay(1);

}

for(I=y1;I<=y2;++i)

{

putpixel(x2,I,c);

delay(1);

}

for(I=x2;I>=x1;_- i)

{

putpixel(I,y2,c);

delay(1);

}

for(I=y2;I>y1;-I)

{

putpixel(x1,I,c);

delay(1);

}

delay(200); /* to draw the pixels slowly */

}

getch();

closegraph(); /* closes the graph mode */

}

 The closed graphical areas can be filled with different fill effects

that can be set using setfillstyle () function. The following program

illustrates fill effects for the rectangles, which are drawn randomly using

putpixel.

/* Program to demonstrate rectangles using putpixel and filling them with

different fill effects */

Include <graphics.h>

Include <conio.h>

include <stdlib.h>

include <dos.h>

void main()

{

int gm,gd= DETECT;

COMPUTER GRAPHICS

41

int x1,x2,y1,y2,c,I;

initgraph(&gd,&gm,’’’’);

while(!kbhit()) /* until pressing any key this loop continues */

 {

/* To draw rectangle co-ordinatinates are taken randomly */

x1=rand()%getmaxx();

x2=rand()%getmaxx();

y1=rand()%getmaxy();

y2=rand()%getmaxy();

if (x1>x2)

{

c=x1; /* exchange of x1 and x2 when x1 is >x2 */

x1=x2;

x2=c;

}

if(y1>y2)

{

c=y1; /* exchange of y1 and y2 when y1 is > y2 */

y1=y2;

y2=c;

}

c=rand()%16;

/* for rectangle using putpixel */

for(I=x1 ;i<=x2;++i)

{

putpixel(I,y1,c);

delay (1);

}

for(i=y1;I<=y2;++i)

{

putpixel(x2,I,c);

delay(1);

}

for(i=x2;i>=x1; i)

{

putpixel(i,y2,c);

delay(1);

}

for(i=y2;I>=y1; i)

{

COMPUTER GRAPHICS

42

putpixel(x1,i,c);

 delay(1);

}

setfillsytyle(rand()%12, rand()%8); /* setting the random fill styles and colors

*

floodfill(x1+1,y1+1,c);

delay(200); /* to draw the pixels slowly */

}

getch();

closegraph(); /* closes the graph mode */

}

The lines with different lengths and colors are illustrated in the

following program.

/* Program to demonstrate lines with different colors and co-ordinates */

#include<graphics.h>

#include<conio.h>

#include<stdlib.h>

#include<dos.h>

void main()

{

int gm, gd=DETECT;

int x1,x2,y1,y2,c,I;

initgraph(&gd,&gm,””);

while(kbhit()) /* until pressing any key this loop continues */

{

/* to draw rectangle co-ordinates are taken randomly */

x1=rand()%getmaxx();

x2=rand()%getmaxx();

y1=rand()%getmaxy();

y2=rand()%getmaxy();

setcolor(rand ()%16); /*to set the line color */

line(x1,y1,x2,y2); /* to draw the line */

delay(200); /* draw the pixels slowly */

}

getch();

COMPUTER GRAPHICS

43

closegraph(); /*closes the graph mode */

}

The viewport is the portion of the screen within the screen. The

entire screen is the default viewport. We can make and choose our own

viewports according to our requirements. Once the viewport is set the top left

co-ordinates of the viewport becomes (0,0) origin and the maximum number of

pixels along x-axis and y-axis change according to the size of the view port. Any

graphical setting can be unset using graphdefaults() function.

The following program illustrates setting the viewport and clipping

the lines. It also sets the different line styles and colors for the lines. The

viewport border co-ordinates are taken from the user as input.

/* Program to demonstrate viewport, clipping and lines with different colors,

line styles and co- ordinates */

#include<graphics.h>

#include<conio.h>

#include<stdlib.h>

#include<dos.h>

#include<stdio.h>

void main()

{

int gm, gd=DETECT;

int x1,x2,y1,y2,c,i;

clrscr();

printf(“enter starting co-ordinates of viewport (x1,y1)/n”);

scanf(“%d%d”,&x1,&y1);

printf(“enter ending co-ordinates of viewport(x2,y2)/n”);

scanf(“%d%d”,&x2,&y2);

initgraph(&gd,&gm,””);

rectangle(x1,y1,x2,y2); /*to show the boundary of viewport */

setviewport(x1,y1,x2,y2,1); /* view port is set and any drawing now onwards

must be drawn within the viewport only */

while(1kbhit()) /*until pressing any key this continues */

{

/* Rectangle coordinates are taken randomly */

COMPUTER GRAPHICS

44

x1=rand()%getmaxx();

x2=rand()%getmaxx();

y1=rand()%getmaxy();

y2=rand()%getmaxy();

setlinestle(rand()%10, rand()%20);

setcolor(rand()%16); /*to set the line color */

line(x1,y1,x2,y2); /*to draw the line */

delay(200);

}

getch();

closegraph(); /*closes the graph mode */

}

In computer graphics using C language, we can also display the

text and set the different styles for the texts. The following two programs

illustrate this.

/* Program to demonstrate text and its setting */

#include<graphics.h>

#include<conio.h>

#include<stdlib.h>

#include<dos.h>

#include<stdio.h>

void main()

{

int gm, gd=DETECT;

initgraph(&gd,&gm,””);

setcolor(5);

settextstyle(4,0,5); /*sets the text style with font, direction and char size

*/

moveto(100,100); /*takes the CP to 100,100 */

outtext(“Bangalore is”);

setcolor(4);

settextstyle(3,0,6);

moveto(200,200);

outtext(“silicon”);

setcolor(1)

COMPUTER GRAPHICS

45

settextstyle(5,0,6);

moveto(300.300);

outtext(“Valley”);

setcolor(2);

sertextstyle(1,1,5);

outtextxy(150,50,”Bangalore is”);

getch();

}

The set of pixels make lines and a set of continuous lines make

surfaces. The following program demonstrates the creation of surfaces using

lines and different colors.

/* Program to demonstrate surfaces using lines and colors */

 #include<graphics.h>

#include<conio.h>

#include<dos.h>

#include<alloc.h>

#include<math.h>

void main()

{

int gm, gd=DETECT;

initgraph(&gd,&gm,””);

setviewport(100,100,300,300,0);

for(j=0;j<200;j=j+20)

{

for(i=0;i<=200;++i)

{

if (i%20==0)

setcolor(rand()%16+1);

line(i,j,i,j+20);

}

delay(100);

}

getch();

}

COMPUTER GRAPHICS

46

 Following is a menu driven program that shows different parts of

the car.

/* Program to draw a car. The different graphical functions are used to draw

different parts of the car */

 #include<stdio.h>

#include<graphics.h>

main()

{

int x,y,i,choice;

unsigned int size;

void*car;

int gd=DETECT,gm;

initgraph(&gd, &gm,” “);

do

{

cleardevice();

printf(“1:BODY OF THE CAR\n”);

printf(“2:WHEELS OF THE CAR\n”);

printf(“3:CAR\n”);

printf(“4:QUIT”);

printf(“\nEnter your choice\n”);

scanf(“%d”,&choice);

switch(choice)

{

case 1 : initgraph (&gd,&gm,” “);

line(135,300,265,300);

arc(100,300,0,180,35);

line(65,300,65,270);

line(65,270,110,220);

line(110,220,220,220);

line(140,220,140,215);

line(180,220,180,215);

line(175,300,175,220);

line(120,215,200,250);

line(220,220,260,250);

COMPUTER GRAPHICS

47

line(260,250,85,250);

line(260,250,345,275);

arc(300,300,0,180,35);

line(345,300,345,275);

line(335,300,345,300);

getch();

cleardevice();

break;

case 2: initgraph(&gd,&gm,””);

 circle(100,300,25);

 circle(100,300,13);

 circle(300,300,25);

 circle(300,300,13);

 getch();

 cleardevice();

 break;

case 3: initgraph (&gd,&gm,” “);

 outtextxy(150,40,”MARUTI 800”);

 circle(100,300,25);

 circle(100,300,13);

 line(135,300,265,300);

 arc(100,300,0,180,35);

 line(65,300,65,270);

 line(65,270,110,220);

 line(110,220,220,220);

 line(140,220,140,215);

 line(180,220,180,215);

 line(175,300,175,220);

 line(120,215,200,215);

 line(220,220,260,250);

line(260,250,85,250);

line(260,250,345,275);

arc(300,300,0,180,35);

circle(300,300,25);

circle(300,300,13);

line(345,300,345,275);

line(335,300,345,300);

COMPUTER GRAPHICS

48

getch();

cleardevice();

break;

case 4 : exit(0);

 }

}

while(choice!=4);

getch();

}

COMPUTER GRAPHICS

49

Unit 4

SIMPLE LINE DRAWING METHODS

Block Introduction: In this block, you will be introduced the

concept of writing pictures on the screen as a set of points. Any picture can be

thought of as a combination of points. The idea is to identify the points, which

form the part of the picture one is trying to draw and by a suitable technique

display these points. To do this, the screen is supposed to be made up of a

number of pixels (picture cells), each pixel corresponding to a point. Those

pixels, which form a part of the picture being drawn, are made to light up so

that the picture is visible on the screen. The trick is to switch on the laser

beam (of the CRT) when it is passing over the pixel and switch it off when it is

passing over a pixel that does not form a part of the picture.

 This block tells us about the techniques of identifying those

pixels that should from the part of the picture and the various difficulties that

one will have to encounter in the process. Once the pixels are identified, that

hardware takes over the question of actually drawing the pictures.

Contents:

1. Point Plotting Techniques

2. Qualities of good line drawing algorithms

3. The Digital Differential Analyzer (DDA)

4. Bresenham Algorithm

5. Generation of Circles

6. Block Summary

7. Review Question and Answers

Point Plotting Techniques

The coordinate systems of the monitor: Point plotting

techniques are based on the use of Cartesian coordinate system. Each point is

addressed by two points (x,y) which indicate the distance of the point with

respect to the origin. p (x,y) is pixel at a horizontal distance x and vertical

distance y from the origin

 o x

 y

 P (x,y)

 x

COMPUTER GRAPHICS

50

Now any picture to be displayed is to be represented as a

combination of points

Examples of point plotted pictures:

Though no continuous lines are drawn but only a sense of points

are being made bright, because of the properties of the human eye, we see

continuous lines, when the points that are being lighted are fairly close to each

other.

 In fact, the closer the points to one another, we see better

pictures (see the example below)

 In the above figure both pictures indicate A, but in the

second picture, the points are closer and hence it appears more like A than the

first. How many points are there per unit area of the screen indicate what is

known as the "resolution" of the monitor. Higher the resolution, we get more

number of points and hence better quality pictures can be displayed (As a

corollary, such high resolution monitors are costlier)

COMPUTER GRAPHICS

51

 Having surveyed the essentials of hardware of CRT once

again we are now in a position to look at the actual process of drawing

pictures.

Incremental methods

 The concept of incremental methods, as the name suggests, is to

draw the picture in stages - incrementally. I.e. from the first point of the

picture, we have a method of drawing the second point, from there to the third

point etc. They are also sometimes called "iterative methods" because they

draw picture in stages - in iterations.

Qualities of good line drawing algorithms: Before we start

looking at a few basic line drawing algorithms, we see what are the conditions

that they should satisfy. While the same picture can be drawn using several

algorithms, some are more desirable than others, because they provide as

features that enable us to draw better "quality" pictures. A few of the

commonly expected qualities are as follows:

i. Lines should appear straight: Often straight lines drawn by the

point plotting algorithms do not appear all that straight.

Examples of not so straight lines.

The reason is not far to be searched for. Any point plotting

algorithm will give a series of points (x,y) for various values of x and y. In a

general case, the values of x and y need not be integers, they can be any real

numbers. But on the screen, pixel values are only integers. So, what do we

do?. The easy solution is to round off. If two points (successive points) are

given say as (6.6, 15.4) and (7.4, 16) when rounded off 6.6 becomes 7 and 15.4

become 15.

 So, the point becomes (7, 15) Similarly the second point will

become (7,16). Note that while the difference between 6.6 and 7.4 was 0.8

(almost 1 pixel value) the display shows then as the some point, whereas the

COMPUTER GRAPHICS

52

points 15 and 16 are different points. So the segment, instead of appearing as

in fig (a) appears as in fig (b)

� (6.6, 15.4) • (7,15)

� (7.4, 16) • (7,16)

Note that the slope of the line has changed - A series of such

changes between successive points make the lines look as shown in the fig

above (Jagged lines)

ii. Lines should terminate accurately: The cause is still the same

as in (1). Because of inaccuracies and approximations, the lines do not

terminate accurately. Either they stop short of the point at which they should

end or extend beyond the points result? Intersections and joints do not form

correctly. Look at the examples below

\Required triangle Lines stop short Lines extend beyond

iii. Maintain constant intensity: The pictures are drawn with

illumination i.e. a number of point along the line are illuminated. As long as

the intensity of these points is uniform, we have a pleasing picture to look at.

This can be done if the points to be illuminated are equidistance from one

another. However, because of the inaccuracies in the algorithm, we often end

up with either dots that are too close or a bit further from each other.

Obviously two points, close to each other, when illuminated, make the points

look brighter. The result is a line that is brighter in save parts and not so

bright in others. The result will be a line that looks jagged and non-uniform.

iv. Lines should be drawn rapidly: This is especially the case in

interactive graphics, wherein lines are drawn in real time. While there may not

be many problems with straight lines, complex figures may need longer

computations before the next pants are identified. Hence the picture is drawn

in bits and pieces, which may appear unpleasant or even irritating at times.

 Having seen some of the requirements of algorithms, we now

see a few practical algorithms to draw simple figures like straight lines or

circles.

COMPUTER GRAPHICS

53

The Digital Differential Analyzer (DDA)

These include a class of algorithms, which draw lines from their

corresponding differential equations. Before we see the actual algorithms, let

us see the concept by the example of a simple straight line.

The differential equation of a straight line is given by dy = y / ∆x

 dx

Looked another way, given a point on the straight line, we get the

next point by adding x to the x coordinate and y to the y coordinate i.e.

given a point p(x,y), we can get the next point as a Q(x+ ∆x, y + ∆ y) , the next

point R as R(x+2* ∆x, y+2* ∆y)etc. So this is a truly incremental method, where

given a starting point we can go on generating points, one after the other each

spaced from it's previous points by an additional x and y, until we reach the

final point.

Different values of ∆x and ∆y give us different straight lines.

But because of inaccuracies due to rounding off, we seldom get a

smooth line, but end up getting lines that are not really perfect.

We now present a simple DDA algorithm in a C like Language.

Procedure DDA (x1, y1, x2, y2)

/* The line extends from (x1, y1) to (x2, y2)*/

{

length = abs (x2 - x1);

if length < abs (y2-y1), then length = abs(y2-y1)

x increment = (x2-x1)/length;

y increment = y2-y1)/length;

x=x1+0.5; y=y1+0.5;

for (I=1;I<=length; i++)

{ plot (trun (x), trun (y))

x = x + x increment;

y = y + y increment;

}

}

We start from the point (x1,y1) and go up to the point (x2,y2)

COMPUTER GRAPHICS

54

The difference (x2-x1) gives the x spread of the line (along the x-

axis) and (y2-y1) gives the y spread (along y axis)

(x2,y2)

 Y spread

The larger of these is taken as the variable length (not exactly the

length of the line)

 The variables xincrement and yincrement give the amount of

shifts that we should make at a time in each direction. (Note that by dividing

by length, we have made one of them equal to unity. If y2-y1 is larger, then

yincrement will be unity; otherwise xincrement will be unity. What this means

is that in one of the directions, we move by one pixel at a time, while in the

other direction, we have to calculate as to whether we have to go to the next

valve or should stay in the previous value)

 Plot is a function that takes the new values of x and y,

truncates then and plots those points. Then we move on to the next valve of x,

next value of y, plot it, and so on.

A typical DDA drawn line appears as follows:

Obviously a mean line through these points is the actual line

needed.

Note that the line looks like a series of steps. This effect is

sometimes called a "Stair case" effect.

X Spread

COMPUTER GRAPHICS

55

Now we can explain the program to generate DDA line using C

Programming.

/*Program to Generate a Line using Digital differential Algorithm(DDA) */

 # include<stdio.h>

include<conio.h>

include <graphics.h>

include<math.h>

/*function for plotting the point and drawing the line */

void ddaline(float x1,float y1,float x2,float y2)

{

int i, color=5;

float x,y, xinc, yinc, steps;

steps=ads(x2-x1);

if (steps<abs(y2-y1);

steps=abs(y2-y1);

xinc=(x2-x1)/steps;

yinc=(y2-y1)/steps;

x=x1;

y=y1;

putpixel((int)x,(int)y,color);

for(i=1;i<=steps; i++)

{

putpixel((int)x,(int)y,color); /* plots the points with specified color */

x=x+xinc;

y=y=yinc;

}

{

/* The main program that inputs line end point and passes them to ddaline()

function */

void main()

{

 int gd=DETECT,gm,color:

float x1,y1,x2,y2;

printf(“\n enter the end points:\n”);

scanf(“%f %f %f %f”,&x1,&y1,&x2,&y2);

clrscr();

initgraph(&gd,&gm, “c:\\tc\\bgi”);

ddaline(x1,y1,x2,y2);

getch();

closegraph();

}

COMPUTER GRAPHICS

56

The main draw back of DDA method is that it generates the line

with “stair case” effect. It also needs all parameters as float but C language

syntax does not take any floating-point values as co-ordinates in computer

graphics.

Bresenham’s algorithm: This algorithm is designed on a very

interesting feature of the DDA. At each stage, one of the coordinates changes

by a value 1 (That is because we have made either (y2-y1) or x2-x1) equal to

length, so that either (x2-x1)/length or (y2-y1)/length will be equal to 1). The

other coordinate will either change by 1 or will remain constant. This is

because, even though the value should change by a small value, because of the

rounding off, the value may or may not be sufficient to take the point to the

next level.

 e

 e

Look at the above figure. The left most point should have been at

the point indicated by x, but because of rounding off, falls back to the previous

pixel. Whereas in the second case, the point still falls below the next level, but

because of the rounding off, goes to the next level. In each case, e is the error

involved in the process.

 So what the Bresenham algorithm does it as follows. In each

case adds ∆y or ∆x as the case may be, to the previous value and finds the

difference between the value and the (next) desirable point. This difference is

the error e. If the error is >=1, then the point is incremented to the next level

and 1 is subtracted from the value. If e is <1, we have not yet reached the

point, where we should go to the next point, hence keep the display points

unchanged.

COMPUTER GRAPHICS

57

 We present the algorithm below

 e=(deeltay/deltax)-0.5;

 for(i=1;i=deltax; i++)

{

plot (x ,y);

if e>o then

{

y=y+1;

e=e-1;

}

x=x+1;

e=e+(deltay/ deltax);

}

 The steps of the algorithm are self-explanatory. After

plotting each point, find the error involved, if it is greater than Zero, then in the

next step, the next incremental point is to be plotted and error by error-1; else

error remains the same and the point will not be incremented. In either case,

the other coordinate will be incremented (In this case, it is presented that x -

coordinate is uniformly incremented at each stage, while y coordinate is either

incremented or retained as such depending on the value of error)

Now we look at the program below that draws the line using

Bresneham,s line drawing algorithm.

/* Program to generate a line using Bresenham’s algorithm */

 # include<stdio.h>

include<conio.h>

#include<stddlib.h>

include <graphics.h>

void brline(int,int,int,int);

void main()

{

int gd=DETECT,gm,color:

int x1,y1,x2,y2;

printf(“\n enter the starting point x1,y1 :”);

scanf(“%d%d”,&x1,&y1);

COMPUTER GRAPHICS

58

printf(“\n enter the starting point x2,y2 :”);

scanf(“%d%d”,&x2,&y2);

clrscr();

initgraph(&gdriver, &gmode,””);

brline(x1,y1,x2,y2);

getch();

closegraph();

}

/* Function for Bresenham’s line */

void brline(int x1,int y1,int x2,int y2)

{

int e,l,xend;

int color;

float dx,dy,x,y;

dx=abs(x2-x1);

dy=abs(y2-y1);

if(x1>x2)

{

 x=x2;

y=y2;

 xend=x1;

}

else

{

 x=x1;

 y=y1;

xend=x2;

}

e=2*dy-dx;

while(x<xend)

{

color=random(getmaxcolor());

putpixel((int)x,(int)y,color);

if(e>0)

{

 y++;

e=e+2*(dy-dx);

}

COMPUTER GRAPHICS

59

else

 e=e+2*dy;

 x++;

}

}

Generation of Circles

 The above algorithms can always be extended to other curves -

the only required condition is that we should know the equations of the curve

concerned in a differential form. We see a few cases.

i) A circle generating DDA:

The differential equation of a circle is dy = -x/y

 dx

Hence by using the above principle, we can implement the circle

plotting DDA by using the following set of equations x n+1 = xn +εyn and

yn+1 = yn -εxn

 Where the subscript n refers to the present value and n+1 to

the next value to be computed. �y and �x are the increments along the x

and y values.

 Unfortunately, this method ends up drawing a spiral instead

of a circle, because the two ends of a circle do not meet. This is because, at

each stage, we move slightly in a direction perpendicular to the radius,

instead of strictly along the radius i.e. we keep moving slightly away from

the center. So, in the end, we get the closing point a little higher up than

where it is required and hence the circle does not close up

Ideal Circle Drawn by a DDA

COMPUTER GRAPHICS

60

However the error can be reduced to a large extent by using the

term - x n+1 instead of xn in the second equation.

i.e. x n+1 = xn +εyn

 yn+1 = yn -εx n+1

Another way of drawing circles is by using polar coordinators

x n+1 = xncosθ + ynsinθ

yn+1 = yncosθ - x nsinθ

Of course, each of them has a few minor disadvantages, which are

rectified by special algorithms, discussion of which is beyond the scope of the

present course.

Here are the programs for generating circles using DDA and

Bresneham’s algorithms. Also we have given the program to generate spiral.

/* Program to demonstrate circle using DDA algorithm */

include <graphics.h>

 # include<conio.h>

include<dos.h>

#include<alloc.h>

#include<math.h>

void main()

{

int gm,gd=DETECT,I,;

int x,y,x1,y1,j;

initgraph(&gd,&gm,””);

x=40; /*The c0-ordinate values for calculating radius */

y=40;

for(i=0;i<=360;i+=10)

{

 setcolor(i+1);

 x1=x*cos(i*3.142/180)+y*sin(i*3.142/180);

y1=x*sin(i*3.142/180)-y*cos(I*3.142/180);

circle(x1+getmaxx()/2,y1+getmaxy()/2,5); /* center of the circle is center

of the screen*/

delay(10);

}

getch();

}

COMPUTER GRAPHICS

61

The following program draws the circle using Bresenham’s

algorithm.

/* program to implement Bresenham’s Circle Drawing Algorithm */

 # include<stdio.h>

include<conio.h>

include <graphics.h>

include<math.h>

#include<dos.h>

/* Function for plotting the co-ordinates at four different angles that are placed

at egual distences */

void plotpoints(int xcentre, int ycentre,int x,int y)

{

int color=5;

putpixel(xcentre+x,ycevtre+y,color);

putpixel(xcentre+x,ycevtre-y,color);

putpixel(xcentre-x,ycevtre+y,color);

putpixel(xcentre-x,ycevtre-y,color);

putpixel(xcentre+y,ycevtre+x,color);

putpixel(xcentre+y,ycevtre-x,color);

putpixel(xcentre-x,ycevtre+x,color);

putpixel(xcentre-y,ycevtre-x,color);

}

/* Function for calculating the new points for(x,y)co-ordinates. */

void cir(int xcentre, ycentre, int radius)

{

int x,y,p;

x=0; y=radius;

plotpoints(xcentre,ycentre,x,y);

p=1-radius;

while(x<y)

{

if(p<0)

p=p+2*x+1:

else

COMPUTER GRAPHICS

62

{

 y--;

p=p+2*(x-y)+1;

}

x++;

plotpoints xcentre, ycentre,x,y);

delay(100);

}

}

/* The main function that takes (x,y) and ‘r’ the radius from keyboard and

activates other functions for drawing the circle */

void main()

{

intgd=DETECT,gm,xcentre=200,ycentre=150,redius=5;

printf(“\n enter the center points and radius :\n”);

scanf(“%d%d%d”, &xcentre, &ycentre, &radius);

clrscr();

initgraph(&gd,&gm,””);

putpixel(xcentre,ycentre,5);

cir(xcentre,ycentre,redius);

getch();

closegraph();

}

Bresenham specified the algorithm for drawing the ellipse using

mid point method. This is illustrated in the following program.

/* BBRESENHAM’s MIDPOINT ELLIPSE ALGOTITHM. */

 # include<stdio.h>

include<conio.h>

include<math.h>

include <graphics.h>

int xcentre, ycentre, rx, ry;

int p,px,py,x,y,rx2,ry2,tworx2,twory2;

void drawelipse();

void main()

{

COMPUTER GRAPHICS

63

int gd=3,gm=1;

clscr();

initgraph(&gd,&gm,””);

printf(“n Enter X center value: “);

scanf(“%d”,&xcentre);

printf(“n Enter Y center value: “);

scanf(“%d”,&ycentre);

printf(“n Enter X redius value: “);

scanf(“%d”,&rx);

printf(“n Enter Y redius value: “);

scanf(“%d”,&ry);

cleardevice();

ry2=ry*ry;

rx2=rx*rx;

twory2=2*ry2;

tworx2=2*rx2;

/* REGION first */

x=0;

y=ry;

drawelipse();

p=(ry2-rx2*ry+(0.25*rx2));

px=0;

py=tworx2*y;

while(px<py)

{

x++;

px=px+twory2;

if(p>=0)

{

 y=y-1;

 py=py-tworx2;

 }

 if(p<0)

 p=p+ry2+px;

 else

 {

 p=p+ry2+px-py;

COMPUTER GRAPHICS

64

 drawelipse();

 }

}

/*REGION second*/

 p=(ry2*(x+0.5)*(x+0.5)+rx2*(y-1)*(y-1)-rx2*ry2);

 while(y>0)

 {

 y=y-1:

 py=py-tworx2;

 if(p<=0)

 {

 x++;

 px =px + twory2;

}

if(p >0)

 p=p+rx2-py;

else

{

 p=p+rx2-py+px;

 drawelipse();

 }

}

 getch();

 closegraph();

}

void drawelipse()

{

Putpixel (xcenter +x, ycenter +y, BROWN);

putpixel (xcenter +x, ycenter +y, BROWN);

putpixel (xcenter +x, ycenter +y, BROWN);

putpixel (xcenter +x, ycenter +y, BROWN);

}

The following program demonstrates the generation of spiral.

/* Program to demonstrate spiral */

include <graphics.h>

 # include<conio.h>

include<dos.h>

#include<alloc.h>

#include<math.h>

COMPUTER GRAPHICS

65

void main()

{

int gm,gd=DETECT;

float x,y,x1,y1,i;

initgraph(&gd,&gm,””);

x=100;

y=100;

for(i=0;i<=360;i+=0.005)

{

 x=x*cos(i*3.142/180)+y*sin(i*3.142/180);

y=x*sin(i*3.142/180)+y*cos(i*3.142/180);

 putpixel((int)x+200,(int)y+200,15);

}

getch();

}

Block Summary: In this block, you were introduced to the concept

of point plotting. I.e. drawing the curser point by point. The concept of pixels

in the monitor helps you to calculate the points that form the line (or curve)

and these points can be illuminated giving the picture.

 However, because of rounding off errors, certain inaccuracies

are introduced in the pictures so drawn, like non uniform slopes, non uniform

illumination and in accurate terminations.

The concept of differential analyzer algorithms was introduced -

The algorithms which draw the lines based on the Bresenham algorithms were

discussed in detail, while the circle generation algorithms were also introduced.

Review Questions:

1. Higher the resolution, better will be the quality of pictures because the

__________ will be closer.

2. An algorithm that draws the next point based on the previous paut's location

is called ____________________.

3. The appearance of stair case effect in drawing straight lines is be cause of

__________ of mathematical calculations.

COMPUTER GRAPHICS

66

4. DDA stands for __________________________

5. The algorithm that ensures a movement of 1 unit at a time in either x or y

direction is the ________________________ algorithm.

6. The common difficulty in drawing circles using DDA method with it's

differential equation is that ______________________.

7. One method to overcome the above problem is to use ______________

equation.

Answers

1. Pixels

2. Incremental method

3. Approximation

4. Digital Differential Analyzer

5. Bresenham's

6. The ends do not meet

7. Parametric equations.

COMPUTER GRAPHICS

67

UNIT 5

TWO DIMENSIONAL TRANSFORMATIONS

5.1 Introduction

5.2 What is transformation?

5.3 Matrix representation of points

5.4 Basic transformation

5.5 Translation

5.6 Rotation

5.7 Scaling

 5.8Concentration of the operations

5.9 Rotation about an arbitrary point

5.1 Introduction

In this unit, you are introduced to the basics of pictures

transformations. Graphics is as much about the concept of creating pictures as

also about making modifications in them. Most often, it is not changing the

pictures altogether, but about making "transformation" in them. Like shifting

the same picture to some other place on the screen, or increasing or decreasing

it's size (this can be in one or two directions) or rotating the picture at various

angles - The rotation also can be either w.r.t. the original x, y coordinates or

with any other axis. All these are essentially mathematical operations. We view

points (and hence pictures, which are nothing but the collections of points) as

matrices and try to transform them by doing mathematical operations on them.

These operations yield the new pixel values, which, when displayed on the CRT

give the transformed picture.

5.2 What is transformation?

In the previous unit, we have seen the concept of producing

pictures, given their equations. Though we talked of generating only straight

lines and circles, needless to say similar procedures can be adopted for the

other more complex figures - in many cases a complex picture can always be

treated as a combination of straight line, circles, ellipse etc., and if we are able

to generate these basic figures, we can also generate combinations of them.

Once we have drawn these pictures, the need arises to transform these

pictures. We are not essentially modifying the pictures, but a picture in the

center of the screen needs to be shifted to the top left hand corner, say, or a

COMPUTER GRAPHICS

68

picture needs to be increased to twice it's size or a picture is to be turned

through 900. In all these cases, it is possible to view the new picture as really a

new one and use algorithms to draw them, but a better method is, given their

present form, try to get their new counter parts by operating on the existing

data. This concept is called transformation.

5.3 Matrix representation of points

Before we start discussing about the actual transformations, we

would go through the concept of representation of points. Once we know how to

unambiguously represent a pant, we will be able to represent all other possible

pictures.

Normally, we represent a point by two values in a rectangular

coordinate systems as (x,y). x represents the distance of the point from the

origin in the horizontal direction and y in the vertical directions. Negative

values are intended to represent movement in the reverse direction (on a CRT

screen, however, negative valued pixels can not be represented).

However, in the context of graphics we tend to represent a point as

a 3 valued entity [x y 1] where x and y are the coordinates and 1 is just added

to the representation. But use of this additional value becomes significant

shortly.

5.4 The basic Transformation

Now we are ready to probe into the basics of transformations. As

indicated earlier, we talk about transforming points, throughout the

discussions, but any complex picture can be transferred using similar

techniques in succession.

The three basic transformations are (i) Translation (ii) rotation and

(iii) scaling. Translation refers to the shifting of a point to some other place,

whose distance with regard to the present point is known. Rotation as the

name suggests is to rotate a point about an axis. The axis can be any of the

coordinates or simply any other specified line also. Scaling is the concept of

increasing (or decreasing) the size of a picture. (in one or in either directions.

When it is done in both directions, the increase or decrease in both directions

need not be same) To change the size of the picture, we increase or decrease

the distance between the end points of the picture and also change the

intermediate points are per requirements;

COMPUTER GRAPHICS

69

5.5 Translation

 x Q(x2,y2)

 y Ty

 (x,y)

 x Tx

 x

Consider a point P(x1, y1) to be translated to another point Q(x2, y2).

If we know the point value (x2, y2) we can directly shift to Q by displaying the

pixel (x2, y2). On the other hand, suppose we only know that we want to shift by

a distance of Tx along x axis and Ty along Y axis. Then obviously the

coordinates can be derived by x2 =x1 +Tx and Y2 = y1 + Ty.

Suppose we want to shift a triangle with coordinates at A(20,10),

B(30,100 and C(40,70). The shifting to be done by 20 units along x axis and 10

units along y axis. Then the new triangle will be at A1 (20+20, 10+10) B1

(30+20, 10+10) C1 (40+20, 70+10)

In the matrix form [x2 y2 1] = [x1 y1 1] * 1 0 0

 0 1 0

 Tx Ty 1

COMPUTER GRAPHICS

70

 5.6Rotation

 Suppose we want to rotate a point (x1 y1) clockwise through an

angle⁄ about the origin of the coordinate system. Then mathematically we can

show that

 x2 = x1cosθθθθ + y1sinθθθθ and

 y2 = x1sinθθθθ - y1cosθθθθ

These equations become applicable only if the rotation is about the

origin.

In the matrix for [x2 y2 1] = [x1 y1 1] * cosθ -sinθ 0

 sinθ cosθ 0

 0 0 1

5.7 Scaling

Suppose we want the point (x1 y1) to be scaled by a factor sx and

by a factor sy along y direction.

Then the new coordinates become: x2 = x1 * sx and y2 = y1 * sy

(Note that scaling a point physically means shifting a point away. It

does not magnify the point. But when a picture is scaled, each of the points is

scaled differently and hence the dimension of the picture changes.)

 35

 30

 25 B

 20

 15

 10 B A C

 5

 A C

 5 10 15 20 25 30 35

COMPUTER GRAPHICS

71

For example consider a Triangle formed by the points A (5,5),

B(10,10) and C (10,5). Suppose we scale it by a factor of 3 along x-axis and 2

along y-axis.

 Then the new points will A(5 * 3, 5 * 2)

 B(10*3, 10*2) and

 C(10*3,5*2)

 In the matrix form we get

[x2 y 1 1] = [x1 y1 1] * sx 0 0

 0 sy 0

 0 0 1

5.8 Concentration of the operations

Normally, one will not be satisfied with a single scaling or rotation

or translation operation, but we will be doing a sequence of such operations.

We may translate by a factor, scale by some other factor, translate a second

time by other factor, rotate . . . Etc. In such cases, we can simply represent the

situation by a sequence of matrix operations. The only constraint is that we

should not change the order of operations. Suppose O1 is the first operation, O2

is the second operation, O3 the third etc. Then the final point will be simply

[P2] = [P1] [O1] [O2] [O3]

Where [p1] is the original point in matrix form

 [P2] is the new point (got after the transformations)

 [O1] [O2] … are the respective operations in matrix form.

In fact, we can also undo some of the operations, if need be, by

simply taking up the converse operations like inversing. In effect, we will be

bringing the computations into the realm of matrix operations, where all the

rules of matrix arithmetic become applicable.

5.9 Rotation about an arbitrary point

Note that our rotation formula described previously is about

rotating the point w.r.t. the origin. But most often we do want to rotate our

pictures about points other than the origin, like say the center of the picture we

are talking of, or one of it's vertices or may be a point on a neighboring picture.

In this concluding section on transformations, we perform the operation of

rotating a point (x1, y1) about another arbitrary point (Rx, Ry).

COMPUTER GRAPHICS

72

This is also supposed to provide you an insight about the ease with

which matrix representation of operations allows us to Performa a sequence of

operations.

 First, how do we sequence the operations in the case?

 Since we know how

i) to translate any point to any other point

ii) to rotate it by any angle w.r.t. the origin and

iii) to scale a point, we should be able to combine these

operations to do the required transformation.

 R (Rx, Ry)

 y x

 xP (x,y)

 o x

Now if we look at the figure, we know how to rotate the point

w.r.t. O, the origin, whose coordinates are (0,0). But we should rotate it

about the point R(Rs, Ry). Looking other way, we could have rotated P about

R, if the coordinates of R were (0,0), or if we make the coordinates of R as

(0,0). We can make the coordinates of R as (0,0) if we shift the rigin to R, (as

shown by dotted lines). If we do that, then we can rotate P about R. But we

can shift the origin to

R (or shift R to the origin, say) and make corresponding adjustments in the

coordinates of P. (In practice, we simply evaluate what would be the value of

(x1, y1), if instead o, R were the origin and we start measuring from R. This

could be easily done by subtracting the difference of x and y values of R and

origin (i.e. Rx & Ry) from the coordinates of (x, y). The new values, x11 and

y11 referee to the coordinates w.r.t. R. Now since R is the origin, we know the

formula for rotation P w.r.t. R by an angle. We do the operation and get

the picture.

 But the only hitch is that the whole sequence is about the

point R, but it should have been w.r.t. origin. So, to get the desired picture

from this, shift the origin back to O. Then we get the desired picture.

Now we can list the sequence of operations as follows.

i) Shift the origin to (Rx, Ry) from (0,0)

COMPUTER GRAPHICS

73

Using the matrix 1 0 0

 0 1 0

 -Rx - Ry 0

 ii) Rotate the point P(x1, y1) w.r.t. the (new) origin by

 cosθ -sinθ 0

 sinθ cosθ 0

 0 0 1

iii) Shift the origin back to (0,0) by

 1 0 0

 0 1 0

 Rx Ry 1

Hence the required point is

 [x2, y2 1] = [x1 y1 1] 1 0 0 cosθ- sinθ 0 1 0 0

 0 1 0 sinθ cos⁄θ 0 0 1 0

 -Rx - Ry 0 0 0 1 Rx Ry 1

Review Questions:

1. If a point (x,y) is moved to a point which is at a distance of Tx along x axis

what is it's new position?

2. If a point (x,y) is moved to a point which is at a distance Ty along y axis,

what is it's new position.

3. If a point (x,y) is rotated anticlockwise through an angle about the origin,

what are it's new coordinates.

COMPUTER GRAPHICS

74

4. Write the equation for scaling transformations.

5. How many values does the matrix representation of a point (x,y) has ? What

are they?

6. Give the matrix formulations for transforming a point (x,y) to (x1, y1) by

translation

7. A point (x,y) is to be moved through an angle clockwise about a point (px,

py). What is the sequence of operations?

Answers

1. (x+Tx, y)

2. (x, y+Ty)

3. (xcos(- θ) + y sin (-θ), - xsin (-θ) + ycos (θ)

 = (xcosθ - ysinθ , xsinθ + ycos (θ)

4. x1=xsx, y1=ysy

5. 3 values (x y 1)

6. [x1 y1 1] = [x y 1] 1 0 0

 0 1 0

 Tx Ty 1

7. Translate (px, py) to origin, effect the rotation Translate the point back to it's

original position.

COMPUTER GRAPHICS

75

UNIT 6

CLIPPING AND WINDOWING

6.1 Introduction

6.2 Need for Clipping and Windowing

6.3 Line Clipping Algorithms

6.4 The midpoint subdivision Method

6.5 Other Clipping Methods

6.6 Sutherland - Hodgeman Algorithm

6.7 Viewing Transformations

6.1 Introduction

In this unit, you are introduced to the concepts of handling

pictures that are larger than the available display screen size, since any part

of the picture that lies beyond the confines of the screen cannot be

displayed. We compare the screen to a window, which allows us to view only

that portion of the scene outside, as the limits of the window would permit.

Any portion beyond that gets simply blocked out. But in graphics, this

“blocking out “ is to be done by algorithms that decide point beyond which

the picture should not be shown. This concept is called clipping. Thus, we

are “clipping” a picture so that it becomes viewable on a “window”.

The other related concept is the windowing transformation. It is

not always necessary that you clip off the larger parts of the picture. You

may resolve to zoom it to lower sizes and still present the whole picture. This

concept is called windowing. Here you are not cutting off the parts beyond

the screen size, but are trying to prepare them to a size where they become

displayable on the screen. Again, such a “prepared” picture need not occupy

the complete window. In fact, it may be possible for you to divide the screen

into 2 or more windows, each showing a different picture. Then, the pictures

will be “prepared” to be “fitted” not to the entire screen, but to their

respective windows. Since all these operations are done at run time, it is

necessary that the algorithms will have to be very fast and efficient.

6.2 Need for Clipping and Windowing

The size of a CRT terminal on which the pictures are displayed

is limited – both the physical dimensions and it’s resolution. The physical

dimensions limit the maximum size of the picture that can be displayed on

COMPUTER GRAPHICS

76

the screen and the resolution (no. of pixels/inch) limits the amount of

district details that can be shown.

Suppose the size of the picture to be shown is bigger than the

size of the screen, then obviously only a portion of the picture can be

displayed. The context is similar to that of viewing a scene outside the

window. While the scene outside is quite large, a window will allow you to

see only that portion of the scene as can be visible from the window – the

latter is limited by the size of the window.

Similarly if we presume that the screen, which allows us to see

the pictures as a window, then any picture whose parts lie outside the limits

of the window cannot be shown and for algorithmic purposes, they have to

be “clipped”. Note that clipping does not become necessary only when we

have a picture larger than the window size. Even if we have a smaller

picture, because it is lying in one corner of the window, parts of it may tend

to lie outside or a picture within the limits of the screen may go (partly or

fully) outside the window limits, because of transformation done on them.

And what is normally not appreciated is that as result of transformation,

parts, which were previously outside the window limits, may come within

limits as well. Hence, in most cases, after each operation an the pictures, it

becomes necessary to check whether the picture lies within the limits of the

screen and if not, too decide as to where exactly does it reach the limits of

the window and clip it at that point. Further, since it is a regular operation

in interactive graphics, the algorithms to do this will have to be pretty fast

and efficient.

The other related concept is windowing. It is not always that we

cut down the invisible parts of the picture to fit it into the window. The

alternate option is to scale down the entire picture to fit it into the window

size i.e. instead of showing only a part of the picture, it’s dimensions can be

zoomed down. In fact, the window can be conceptually divided into more

than one window and a different picture can be displayed in each window,

each of them “prepared” to fit into the window.

In a most general case, one may partly clip a picture and partly

transform it by windowing operation. Also, since the clipped out parts

cannot be discarded by the algorithm, the system should be able to keep

track of every window and the status of every picture in each of them and

keep making changes as required all in real time.

Having seen what clipping and windowing is all about; we

straightaway introduce you to a few clipping and windowing algorithms.

COMPUTER GRAPHICS

77

 6.3 A Line Clipping Algorithm

Look at the following set of lines. The rectangle indicates the

screen in which they are to be displayed.

How to decide which of the lines, or more precisely which part of

every line is to be displayed. The concept is simple. Since we know the

coordinates of the screen,

i) Any line whose end points lie within the screen

coordinate limits will have to display fully (because we cannot have

a straight line whose end points are within the screen and any

other middle point in outside).

ii) Any line whose end points lie totally outside the

screen coordinates will have to examined to see if any intermediate

point is inside the screen boundary.

iii) Any line whose one end point lies inside the

boundary will have to be identified.

In case of (ii) and (iii), we should decide up to what point, the

line segment can be displayed. Simply finding the intersection of the line

with the screen boundary can do this.

Though on paper the concept appears simple, the actual

implementation poses sufficient problems. We now see how to find out

whether the respective end points lie inside the screen or not. The

subsequent sections will inform us about how to go about getting the

intersection points.

COMPUTER GRAPHICS

78

The Four bit code

001 000 010

001

creen

000

010

101 100 110

Look at the above division of region. Each region is given a code of

4 bits. They are assigned to their values based on the following criterion.

First bit: will be 1 if the point is to the left of the left edge of the

screen. (LSB)

 Second bit: 1 if the point is to the right of the right edge.

 Third bit: is 1 if the point is below the bottom edge and

 Fourth bit: is 1 if the point is to the top of the top edge.

(MSB)

The conditions can be checked by simply comparing the screen

coordinate values with the coordinates of the endpoints of the line.

If for a line, both end points have the bit pattern of 0000, the line

can be displayed as it is (trivially).

Otherwise, the pattern of 1’s will indicate as to with respect to

which particular edge the intersection of the line is to be verified.

For example if one of the points of a straight line shows 1000, then

it’s interring section w.r.t. to the top edge needs to be computed (since the

point is above the top edge). If for the same line, the other point returns 0010,

then since a segment of the line a beyond the right edge, the intersection with

the right edge is to be computed.

(The students are encouraged to write a simple algorithm which

accepts the end points of a straight line, find out whether it needs any clipping

and if so w.r.t. which edges).

COMPUTER GRAPHICS

79

 Having decided that we need clipping to be done, we look at

algorithms that compute the intersections of the line w.r.t. the edges efficiently.

6.4 The Midpoint subdivision method

While mathematical formulae exist to compute the intersection of

two straight lines (in this case, the edge under consideration and the straight

line to be clipped) it comes computationally intensive and hence another

efficient method has been developed. As you know, multiplication and division

are most time consuming and hence an algorithm that minimizes on

multiplications and divisions is always considered superior. The algorithm in

question can be seen to be very efficient in minimizing the divisions that occur,

when the intersection of two straight line are computed directly.

P2

P2
1

 P1
1

 P1

Consider a straight line P1 P2. We have decided, (based on the

earlier suggested algorithm) that the point P11 is visible while the point P2 is

not. The point is that we should find a point P1 which is the point farthest

from P1 and still visible. Any point beyond P11 becomes invisible. The

question is to find P11.

The algorithm processes by dividing the line P1 P2 at the middle,

hence the name mid-point division. Let us say the point is P1
1 . This point, in

this ease is visible. That means the farthest visible point away from P1
1 . So

divide the segment P1
1 p2 at the middle. In this case, the new mid point P2

1 is

invisible. So the farthest visible point is between P1
1 P2

1 . So divide the segment

COMPUTER GRAPHICS

80

into two and so on, until you end up at a point that cannot be further divided.

The segment P1 to this point is to be visible on the screen.

Now we formally suggest the mid point division algorithm.

6.5 Algorithm mid point subdivision

1. Check whether the line P1 P2 can be trivially included. i.e. when

both P1 and P2 are visible. If so exit. Else.

2. Check the point P1, which is visible, and the other point P2,

which is invisible.

3. Divide the segment P1 P2 at P1
1 check if P1

1 is visible if so, the

farthest point is beyond P1
1, so proceed by dividing P1

1 P2 else divide the

segment P1 P1
1

4. Repeat step (3) until the segment to be divided reduces to a

single point. The segment to be displayed is bound by P1 and this point.

(Note: if in step2, both P1
 and P2 are invisible, we have to first divide

the line, take a visible point and then repeat the algorithm twice for both the

segments)

6.1 Other clipping methods

In general, the graphic pictures involve much more straight lines.

Curves, if any can be considered as a series of straight lines and each of them

can be clipped based on requirements. However, dividing the curve into a series

of straight lines may not be very efficient in many cases. One other method is

to consider the curves as polygons and use the polygon-clipping algorithm,

which will be introduced in the next section.

The other difficulty is about characters. It is normal practice not to

clip characters. Either they are shown in full if only a small portion of it is to

be clipped; otherwise the entire character is clipped. The normal practice is to

divide the character at the middle. If the portion to be clipped lies on the

farther side of this middle line, the entire character is deleted otherwise the

entire character is seen.

Polygon clipping

A polygon is a closed figure bounded by line segments. While

common sense tells us that the figure can be broken into individual lines, each

being clipped individually, in certain applications, this method does not work.

Look at the following example.

COMPUTER GRAPHICS

81

Original Figure Clipped Figure

A solid arrow is being displayed. Suppose the screen edge is as

shown by dotted lines. After clipping, the polygon becomes opened out at the

points A and B. But to ensure that the look of solidly is retained, we should

close the polygon along the line A-

B. This is possible only if we consider the arrow as a polygon – not

as several individual lines.

Hence we make use of special polygon clipping algorithms – the

most celebrated of them is proposed by Sutherland and Hodgeman.

6.2 Sutherland - Hodgeman algorithm

The basis of the Sutherland Hodgeman algorithms is that it is

relatively easy to clip a polygon against one single edge of the screen at a time

i.e. given a complete polygon, clip the entire polygon against one edge and take

the resultant polygon to clip against a second edge and so on until all the four

edges are covered. At first sight, it looks like a rather simplistic and too

obvious a solution, but when put in practice this has been found to be

extremely efficient.

An algorithm can be represented by a set of vertices v1, v2, v3 -------

------- vn which means there is an edge from v1 to v2, v2 to v3 vn to v1

(we consider only closed polygons and even after clipping would like to have

closed polygons, the only difference being that the edges of the screen make for

some of the edges of the newly formed, clipped polygon).

The algorithm tests each vertex vi (i=1,2n) in

succession against a clipping edge e. Now e is an edge of the screen and has

two sides. Any vertex lying on one side of the edge will be visible (which we call

the visible side). While any other vertex will not be visible if it is on the other

side (the invisible side). (For example for the top edge of the screen, any vertex

above it is on the invisible side whereas any vertex below it is visible. Similarly

for the left edge, any point to it’s left is invisible but an edge on it’s right is

A

B

A

B

COMPUTER GRAPHICS

82

visible and so on). Now coming back to the algorithm. It tests each vertex of the

given polygon in turn against a clipping edge e. Vertices that lie on the visible

side of e are included in the output polygon, while those that are on the

invisible side are discarded. The next stage is to check whether the vertex vi
(say) lies on the same side of e as it’s predecessor vi-1. If it does not, it’s

intersection with the clipping edge e is to be evaluated and added to the output

polygon.

We formally see an algorithm and also the application of the

algorithm to a specific example.

Algorithm Sutherland – Hodgeman (v1, v2 v3 vn)
For i 1 to n do

if (i>1) then begin check whether the line

v[i] V[i-1] intersects the edge e, ifso, compute the intersection

and output the intersection point as the next out put vertex

end;

check always whether vi is on the visible

side of e

if so output vi

if i<n, go to (1)

else

Check whether the line Vn-V1 intersects e

if so, compute the intersection

and output it as the next edge

of the output polygon,

always return.

Now to illustrate this algorithm consider the 5 edges polygon

below.

 V2

 V1

V3

 V4

 V5

 V4

COMPUTER GRAPHICS

83

Now, let us consider ab as the clipping edge e. Beginning with v1
the vertex v1 is an the visible edge of ab so retain it in the output polygon now

take the second vertex v2, the vertices v1, v2 are on different side of a. Compute

the intersection of V1, V2 let it be i1, add i1 to the output polygon.

Now consider the vertex v3, v2 and v3 are an different sides of ab.

Compute the intersection of v2 and v3 with ab. Let it be i3. include i3 in the

output polygon. Now consider v3, v4 and v5 are all on the same side (visible side)

of the polygon, and hence when considered are after the other, they are

included in the output polygon straightaway.

Now the output polygon of stage (1) looks like in the figure below

Now repeat the same sequence with respect to the edge b c, for this

output polygon of stage (1) v1, i1 and iz are on the same side of bc and hence get

included in the output polygon of stage (2) since iz and v3, are the different

sides of the line be, the intersection of bc with the line iz is is v3 computed. Let

this point be i3. Similarly, v3, v4 are the different sides of bc, their intersection

COMPUTER GRAPHICS

84

with be is computed as i4, v\4, v5 are on the same sides of bc and hence pass the

test trivially.

Now the output polygon looks like this:

 i1 i2

i3

 v1

 v4

i4

 v5

After going through two more clippings against the edges cd and

da, the clipped figure looks like the one below

 i1 i2

 i8

i3

 i7

i4

 v4

 i6 i5

COMPUTER GRAPHICS

85

It may be noted that the algorithms works correctly for all sorts of

polygons.

6.8 VIEWING TRANSFORMATIONS

Assuming a screen of some size say 1024 x 1200 pixels, this size

given the maximum size of the picture that we can represent. But the picture

on hand need not always be corresponding to these sizes. Common sense

suggests that if the size of the picture to be displayed is larger than the size of

the screen, two options are possible (i) clip the picture against the screen edges

and display the visible portions. This will need fairly large amount of

computations, but in the end, we will be seeing only a portion of the picture.

(ii) Scale downs the picture (We have already seen how to enlarge/scale down a

point or a set of points by using matrix transformations). This would enable us

to see the entire picture, though with a smaller dimensions.

The converse can also be true. If we have a very small picture to be

displayed on the screen, we can either display it as it see, thereby seeing only a

cramped picture or scale it up so that the entire screen is used to get a better

view of the same picture.

However, a picture need not always be presented on the complete

screen. More recent applications allow us to see different pictures on the

different part of the screen. i.e., the screen is divided into smaller rectangles

and each rectangle displays a different picture. Such a situation is

encountered when several pictures are being viewed simultaneously either

because we want to work on them simultaneously or we want to view several of

them for comparison purposes. Now, each of these smaller rectangles that form

the space for one such picture is called a “window” and it should be possible for

us to open several of these windows at one time and view the pictures. In such

a scenario, the problem is still the same: of trying to fit the picture into the

rectangle meant for it. i.e. of scaling the picture into it’s window. The only

change is that since the window sizes are different for different pictures, we

should have a general transformation mechanism that can map a picture of

any given size to fit into any window of any given size. Incidentally we call the

coordinates system of the picture as the “world coordinate”

This concept of mapping the points between the two coordinate

systems is called the “windowing transformation”

COMPUTER GRAPHICS

86

Generally, when the rectangle in which we display the picture on

the screen is smaller than the entire screen size, it is called a view port and in

such a case the transformation can be called a “View Port Transformation”.

Now we derive a very simple and straightforward method of

transforming the world coordinates to the full screen coordinates (or for that

matter any window size)

Since different authors use different nomenclatures, in this course,

we follow the following conventions. A picture in its normal coordinates system

is in the “world Coordinate” system. We are interested only in a part of this

picture. That part of picture in which we are interested is called the “window”.

Now we want to transform the portion of the picture that lies

within this window to fit into a “viewport”. This view port can be a part of

screen or the full screen itself. The following diagrams illustrate the situation

and also the various coordinate values that we will be using

 wyt

 wyb

 wx1 wxr

The dotted lines indicate the window while the picture is in full

lines. The window is bounded by the coordinates wx1 and wxr (the x-coordinates

on the left side of window and the x – coordinates on the right side of the

window) and wyt and wyb (The y- coordinate on the bottom of the window). It is

easy to see that these coordinates enclose a window between them (The dotted

rectangle of the figure),

We can correspondingly think of a view port rectangle.

COMPUTER GRAPHICS

87

 vyt

 vyb

 vxc

vxr

Screen

The nomenclature is the same as before.

Now consider any point (xcw yws) on the window. To convert this to

the view port coordinates, the following operations are to be done in the

sequence.

i) Scale the window coordinates so that the sizes of the

window and the view port match. This will ensure that the entire window

fits into the view port without leaving blank spaces in the view port. This

can be done by simply changing the x and y coordinates in the ratio of

the x-size of view port to the x size of window and y – size of view port to

y – size of the window respectively

i.e. vxr – vx1 and vyt – vyb

 wxr – wx1 wyt – wyb

 It may be noted that in each of the above ratios, the

numerator defines the overall space available in the view port and the

denominator, the overall space available in the window.

COMPUTER GRAPHICS

88

ii) Since the origins of the window and view port need not

be coinciding with their world coordinate systems and the screen

coordinate system respectively we have to shift them correspondingly.

This can be achieved by the following sequence.

a) Before scaling, shift the origin of the window to the origin of

the world coordinates.

b) Perform the scaling operation.

c) Shift it back to reflect the difference between the screen

origin and view port origin.

Now considering any point (xw, yw) to be transformed, we get the

following sequence on applying the above sequence of operations.

a) xw – wx1 and yw – yyb

b) Vxy – Vx1 (xw-wx1) and Vyt – Vyb (yw – wyb)

Wxr – Wxl Wyt - Wyb

c) Vxy – Vx1 (xw-wx1) + Vx1 Vyt – Vyb (yw – wyb) + Vyb

 Wxr – Wxl Wyt - Wyb

The equation in the step c indicates the complete window to view

port transformation.

Before closing this section a few observations:

i) It is may not be necessary to transform all the points

using the above formula. Regular figures like straight lines or regular

curves can be transformed by transforming only their end points.

ii) Since more often than not a transformation from

window to view port involves certain portions getting clipped in the

process, it is desirable to run a clipping algorithm on the picture w.r.t.

the view port so that unnecessary points are not computed only to be

thrown off latter.

COMPUTER GRAPHICS

89

Review Questions

1. Define Clipping

2. Define Windowing

3. Explain the 4 bit code to define regions used in rejection method.

4. What is the other name of the most popular polygon clipping algorithm?

5. With usual notations, state the equations that transform the window

coordinates to screen coordinates.

Answers

1. The process of dividing the picture to it's visible and invisible portions,

allowing the invisible portion to be discarded.

2. Specifying an area (or a window) around a picture in world coordinate, so

that the contents of the window can be displayed or used otherwise.

3.

1001

1000 1010

0001 Screen

0000

0010

0101

0100 0110

4. Sutherland - Hodgeman algorithm

5. Vxy – Vx1 (xw-wx1) + vx1)

Wxr – Wxl

c) Vyt – Vyb (yw-wyb) + Vyb

 Wyt – Wyb

(xs, ys) are the screen coordinates vxr and vx1 are the right and left edges of the

view port, vyt and vyb are the top and bottom edges of the view port, wxr, wx1, wyt

and wyb are the corresponding edges of the window., (xw, yw) are the window

coordinates .

COMPUTER GRAPHICS

90

UNIT 7

GRAPHICAL INPUT TECHNIQUES

7.1 Introduction

7.2 Graphical Input Techniques

7.3 Positioning Techniques

7.4 Positional Constraints

7.5 Rubber band Techniques

7.1 Introduction

We have familiarized ourselves with many of the interactive input

devices. But since the computer expects perfect input values, any errors made

in the use of such devices can create problems - like not drawing the lines

completely on the tablet or overdrawing it. Similarly, the end points of lines

may not appear exactly on a pixel value. One can go on listing such in

accuracy's, which would make the computer's understanding of the situation

difficult. On the other hand, insisting that one should be able to draw perfectly

also is not advisable. Hence, several techniques are available that can cover up

for the deficiencies of the input and still make the computer work satisfactorily.

In this block, you will be introduced to various positing techniques

using positional constants, concept of modular constraints, ability to draw

straight lines interactively using rubber hand techniques selection and the

concept of menus. The implementation details, however, are omitted.

7.2 Graphical Input Techniques

We have seen several input devices, which bear resemblance to

pens and pencils – example light pens, joysticks etc. To some extent they are

intentionally made to resemble the device that the user is familiar with. For

example, writing on a pad with a pen like stylus is more convenient for the

user. However, there is a basic difference between the targets of such inputs

i.e. a material written with a pen are targeted towards the human user, while

the graphical input derives are targeted towards the computer. Herein lies the

difference. The human can understand variations of input to a large extent. For

example the letter A may be written in different ways by different people or for

that matter, the same person may write it in different ways at different times.

While a human can understand the variations, a computer normally cannot. In

other words, the input to human can vary over a range, while the inputs to a

computer needs to be precise. Similarly while drawing a circle, if the two ends

do not meet properly, a human being can still consider it as a circle, whereas a

computer may not. At the same time, training a person to say, precisely write

COMPUTER GRAPHICS

91

the letters in the same manner, trial after trial, or to make him draw his graphs

to the exact precision would be time consuming. In other words, whereas a

common user can be made to be aware of what he wants and would be willing

to get it as fast and accurately as possible, making him acquire graphic arts

skills would be inexcusable. On the other hand, it is desirable to make the

computer understand what he wants to input or alternately, we can make the

input devices cover up for the miner lapses of the user and feed a near perfect

input to the computer – like making it cover the circle, when the user stops just

short of closing it or ends up making the two ends one next to the other. There

are several astonishingly simple ways to make the life of the user more

comfortable and at the same time improve effectiveness of the input device.

In other words, the graphical input device should not only be

influenced by the way it is used, but should also consider other factors like

what the user is trying to say or what is the next logical step in the sequence of

events and extrapolate or interpolate the same. Of course, some guess work is

involved in the process, but most often it should work satisfactorily.

In fact, the very simple concept of cursor is a good example of

input technique. It can be thought of as a feedback technique. It indicates the

present position of editing / operation. In a more sophisticated case, it can be a

“block” of the text / figure selected by blocking. It helps the user to know what

he is doing and in fact, ascertains that the function that he is working on is

actually working.

However, in this chapter, we look at slightly more sophisticated

user-friendly techniques. The algorithms are fairly involved and hence we will

only be discussing the details, without going into the implementation details.

7.3 Positioning Techniques

This can be considered the most basic of graphical input

operations. In it’s simplest form, it involves choosing a symbol / character on

the screen and moving it to another location. One way of using it is to choose

the symbol or picture involved, moving the cursor to the position required and

pressing a (predetermined) key to place in that position.

COMPUTER GRAPHICS

92

 Choose a Symbol Choose a Position End of operation

While in earlier DOS versions, using a combination of pre-selected

keys in proper order was doing this operation; the advent of mouse has

simplified the matter. The concept of selection, positioning and final movement

are all done with the click of buttons.

7.4 Positional Constraints

One of the problems faced by inexperienced users while drawing

figures is the concept of positioning. For example, we may want to put an

object exactly at the end of a straight-line or a cross at the center of the circle

etc. Because of lack of coordination between the eyes and the hand

movements, the object may end up either a little away from the line or inside

the line as below.

 Desired position Away from the end inside the line

Similarly, while locating a center of the circle the cross may get

located very near to the center of the circle, but not exactly at the center. In

fact, it is easy to appreciate that in the case of putting a rectangle at the end of

X

X

COMPUTER GRAPHICS

93

the straight lines one may often end up operating between the second and third

stages several times before (if at all) successfully reacting the position of (i). One

of the methods of helping the user is to put a “construct” on the position of the

box. i.e. when the distance between the box and the end of the line is very

small, the box automatically aligns itself on the edge of the line. i.e. it is

enough if the user brings it to either of the positions (ii) & (iii) and the software

automatically aligns it to position (i).

Though we are not considering the implementation aspects of the

same, it is easy to note that writing an algorithm for this is fairly straight

forward. Assuming each line ends at an integer value of the pixel, if the edge of

the base is brought to a value which is a fraction above / below the value,

automatically round it off to the pixel value. For example, if the (x,y) values of

the end of the lines is say (10,50) and a box is brought to a position say (10.6,

50.7), the values are automatically changed to (10,50), similar being the case if

the box position is say (9.7, 49.8). It is easier to see that the first example is

the case where the box is slightly above the line and the second where it is

inside the line.

This type of putting constraints is often called a “modular

constraint”. There can be other types of constraints as well. In a certain figure,

only horizontal and vertical lines are there, say like in a grid design, any

angular lines can be brought into any one of these positions by putting an

angular constraint that no straight line can be at any angle other than 00 and

900. The same can be extended to draw lines at any particular angle.

Now let us go back to the problem of attaching a box to the end of

a line. Suppose the end of the line does not terminate always at integer value.

Then positional constraints cannot be used. In such cases, we can think of

gravity constraints, wherein the box gets attached to the line because of the

“gravitational force” of the line i.e. it gets attached to the nearest free point

which forms the end of line. Again this relieves the user of the difficulty of

exactly putting the box to the end of the line.

7.5 Rubber band techniques

Rubber banding is a very simple, but useful technique for

positioning. The user, if he wants to draw a line, say, specifies the end points

and as he moves from one point to another, the program displays the line being

drawn. The effect is similar to an elastic line being stretched from one point to

another and hence the name for the technique. By altering the end points, the

position of the line can be modified.

The technique can be extended to draw rectangles, arcs, circles etc.

The technique is very useful when figures that pass through several

intermediate points are to be drawn. In such cases, just by looking at the end

COMPUTER GRAPHICS

94

points, it may not be possible to judge the course of the line. Hence, the

positioning can be done dynamically, however, rubber band techniques

normally demand fairly powerful local processing to ensure that lines are

drawn fast enough.

Dragging

As the name suggests, it involves choosing a symbol or a portion of

a figure and positioning it at any desired point. It is possible to achieve a

accurate and visible results without bothering to know about the actual

coordinates involved.

Dimensioning Techniques

It is often desirable to display the coordinate position or the

dimensions along with the object. This would be helpful in ascertaining the

location of the object, when mere visible accuracy of location may not be

enough, but they may have to be positioned w.r.t. the actual coordinate system.

The more difficult problem is that the coordinates need to keep

changing as the figure is being dragged around and this demands rapid

calculation on the part of the system.

Normally the dimensions are displayed only when the object is

being manipulated or moved around and will stay only long enough for the user

to take note of them. This ensures that they do not obscure the active parts of

the picture, once the completed picture is on display.

Selection of Objects

One of the important points to be addressed is to select parts of the

picture for further operations. Once the selection is made properly, tasks like

 80, 100

 80, 60

 30, 40

COMPUTER GRAPHICS

95

moving, deletion, copying is whatever can be done. But the actual selection

process poses several problems.

The first one is about the choice of coordinates. When a point is

randomly chosen at the starting point of the selection process, the system

should be able to properly identify its coordinates. The second problem is about

how much is being selected. This can be indicated by selecting a number of

points around the figure or by enclosing the portion selected by a rectangle.

The other method is to use multiple keys i.e. position the cursor at the first

point of selection, press certain combination of keys, move the cursor to the

final position and again press certain combination of keys, so that the figure

lying in between them is selected. The mouse facilitates the same operation by

the use of multiple buttons on it. Once the selection is made, normally the

system is supposed to display the portion selected so that user can know he

has actually selected what he had wanted to. This feed back is done either by

changing the color of the screen, modifying the brightness or by blinking.

Menu selection

This is one of the special cases of selection where the user would

be able to choose and operate from a set of available commands / figures

displayed on the screen. This concept is called the “menu” operation, where

you select the item from those available on the menu card. The use of mouse

an input technique normally implies menus being provided by the system. The

menu concept helps the user to overcome the difficulty of having to draw

simple and often used objects by providing them as a part of the system.

Review Question:

Name the type of input facility available to the user in each of the following

cases

1. Moving pictures from one place to another.

2. Making a line meet another box accurately.

3. Ending a line exactly a pixel.

4. Drawing a straight line interactively

5. Showing the x, y coordinates of points as the lines are being drawn.

COMPUTER GRAPHICS

96

6.. Choosing one out of a number of options.

Answers :

1. Dragging

2.. gravitational constraint

3. Modular constraint

4.. Rubber band technique

5. Dimensioning technique.

6. Menu selection.

COMPUTER GRAPHICS

97

UNIT 8

THREE DIMENSIONAL GRAPHICS

8.1 Introduction

8.2 Need for 3-Dimensional Imaging

8.3 Techniques for 3-Dimesional displaying

8.4 Parallel Projections

8.5 Perspective projection

8.6 Intensity cues

8.7 Stereoscope effect

8.8 Kinetic depth effect

8.9 Shading

8.1 INTRODUCTION

In this unit, we get ourselves introduced to the realm of 3-

dimensional graphics. Through 2-dimensional pictures help us in a number of

areas, there are several applications where it is simply not sufficient to meet

the requirements. We look into those areas where 2-D displays fall short of the

demands initially. Then, since we have only a 2-dimensional display to

represent 3-dimensional objects we briefly look into the various alternatives

available for the user in brief. Of course, in the subsequent blocks, we study

same of them with greater depth.

8.2 Need for 3-Dimensional Imaging

There are several areas of applications where 2-D imaging is not

sufficient we look into some of them in brief.

a. Computer Aided Design (CAD): Computer generated images

are of atmost use in several design applications like those of automobiles,

aircraft’s, mechanical parts etc. Since the computers can do fast

computations and the displays can draw them for the visual analysis of the

designer, CAD has gained immense popularity in recent years. Obviously, a

mere 2-dimensional picture seldom tells the complete story. Further,

design details like fixtures etc can be studied only in 3-Dimensions. Hence

the use of 3-Dimensional pictures is obviously the key in CAD.

b. Animation: This is another fast growing area, A sequence of

pictures that educate or explain some concept or simply are of

entertainment value are presented with motion incorporated. In such

cases, mere 2-dimensional animation is of little interest and the viewer is to

be treated to a virtual concept of depth.

COMPUTER GRAPHICS

98

c. Simulation: There are certain experiments that are either

too costly or for certain other reasons can not be conducted in full scale

reality. In certain other cases, a preliminary sequence of oeprations are

done on the computer before a full fledged experimentation is taken. The

examples of flight simulation or nuclear testing illustrate the concepts. In a

flight simulation case, the trainee is made to “Experience” real flight even

though he is stationery. In such a case, definitely a 2-Dimensional

simulation is of very little use and for the trainee to experience fully the

various complexities involved, an experience of depth is to be provided.

Similarly in the case of a nuclear testing, a realistic study can be made only

by having a 3-dimensional view on the screen.

In fact, the list of applications that need 3-D views can go on

endlessly. Instead, we simply underline the fact that using the 2-dimensional

screen to provide a 3-dimensional effect is of prime importance and move on to

the various ways in which this can be achieved.

8.3 Techniques for 3-Dimensional displaying

At the outset itself, it is to be made clear that since we are using a

2-dimensional screen for a 3-dimensional display, what we can achieve is only

an approximation. Even this approximation is achieved at the cost of

computational overheads i.e. additional computation is to be done before a

picture can be fitted into a 2-D screen. Further there is a limit to the amount of

computations that can be done. This limit is not set so much by the hardware /

software capacities of the machine as by the available time. Going through

some of the applications that need 3-dimensional views, it is clear that the

effects are to be achieved within reasonable time. In an animation picture, if

time delays prevent a continuous stream of pictures being presented to the

viewer, then the whole idea behind animation is lost. In case of simulation, the

limitations are more stringent. The views are to be presented to the viewer as

they “happen” in the real world. If a plane is moving (or it’s motion is being

simulated), then the movement of hills, buildings etc should be presented at

the same speed as it is experienced in a real case. Otherwise, the entire

meaning of simulation is lost.

The aim of this discussion is to highlight the fact that the methods

of presentation depend not only on how good is one scheme than the other, but

also on how fast can one scheme gets executed than the other. With the rapid

changes in hardware technologies, some of the schemes that were unattractive

previously have become useful now and the process will continue in future

also.

COMPUTER GRAPHICS

99

8.4 Parallel projections

Those familiar with the concepts of engineering drawing will recall

that any 3-dimensional object can be represented by it’s projections on parallel

planes. They constitute the front view, top view (and some times the side view).

This is the simplest of the available techniques and can be done quite rapidly

and also with reasonable accuracy. But the views will be useful only to trained

engineers and architects whereas a common viewer may not be able to make

much out of it. For example if a motor car is represented by what it looks like

from the front, from the side and from the top, a trained engineer or mechanic

can immediately visualize it’s form, including the various dimensions. But a

common man cannot make any thing out of it. Thus, this method may be

useful in applications like CAD, but is useless as far as animation or

simulation is concerned.

Fig. Three parallel projection views of an object, showing

relative proportions from different viewing positions.

8.5 Perspective projection

This is the ‘common man’s’ technique. When we see a number of

objects or even a large object, parts that are nearer to the eye appear larger

than those that are for away. Thus a matchbox can obscure a building, which

is far away. This is the way all humans see and understand things in real life.

Thus, the scheme provides very realistic depth information and is best suited

for animation and simulation applications. But the draw back is that even

though the method provides a feel of depth, it seldom provides the actual

information about the depth. (The case of a matchbox obscuring the building

clarifies the situation). It also is fairly computation intensive.

COMPUTER GRAPHICS

100

8.6 Intensity cues

One depth cue that is not computationally intensive is the concept

of intensity cues. As an object moves further from the viewer, its intensity

decreases. Further, if it is made up of wide lines, the width of the lines decrease

with increasing distance.

8.7 Stereoscope effect

The reason why we see depth is because of the stereoscopic effect

of the eyes. We get two views of the same object by the two eyes and when

these are superimposed, we get the idea about the depth. (In fact a clear idea

about the depth coordinates cannot be got if only one eye is functional). The

same can be used even in the case of computer displays. How exactly can we

show two images differ? Either two different screens showing slightly displayed

images of the same object can be shown or the same screen can be used to

alternate the two views at more than 20 times per second. The method of

polarized glasses is of a recent origin.

8.8 Kinetic depth effect

It is common experience that while in motion; objects that are far

away appear to move much slower than those near by. The same can be used

in the reverse method to give an indication of depth, especially in motion

pictures. The objects that are supposed to be nearer to the viewer can be made

to move faster than those that are to be shown further away. The viewer

automatically gets the feeling of difference in depths of the various objects.

Fig. An object and

its prospective view

COMPUTER GRAPHICS

101

This could be a very useful technique especially in animation and simulation

pictures.

8.9 Shading

Those who have done artistic pictures know that shading is a very

powerful method of shading depth. Depending on the direction of incident light

and the depth of the point under consideration, shades are generated. If they

can be represented graphically, excellent ideas about depth can be created in

the viewer. Raster graphics, which allow each pixel to be set to a large number

of brightness values, is ideally suited for such shading operations.

Review questions

1. Name the method of sharing fast moving sequence of pictures.

2. State two reasons why simulation is resorted to?

3. What is the need for 3-dimentional representations of pictures?

4. Name the type of projections normally used in engineering drawings.

5. Which projection gives the most realistic view of the object?

6. What is stereoscope technique?

7. How can one produce the stereoscope effect with a computer display?

8. What is kinetic depth effect?

Answers:

1. Animation.

2. Certain experiments may be too costly; certain other experiments need lot of

changes to be made, which is easier to incorporate on a computer.

3. Most of the objects we see in real life are 3-dimentional. Also in applications

like animation or simulation, where realism is of prime importance, not able to

give a concept of depth would make the whole concept useless.

4. Parallel Projection.

5. Perspective Projection.

6. The technique of showing two different pictures which are slightly displaced

from each other, so that the user gets the idea of a third dimension is called the

stereoscope technique.

7. Either by using two screen displaced slightly from each other or by using a

single screen to produce both the views, one after the other at speeds greater

than 20 times per second.

8. In moving objects, the following points move slowly compared to the nearby

points. If a similar technique is used in moving pictures, the viewer gets a cue

about the depth of the object.

COMPUTER GRAPHICS

102

UNIT 9

SOLID AREA SCAN CONVERSION

9.1) Introduction

9.2) Solid Area Scan Conversion

9.3) Scan Conversion of Polygons

9.4) Coherence

9.5) (yx) Algorithm

9.6) Singularities

9.7) Algorithm Singularity

9.1 Introduction

In this unit, we learn about the concept of scan conversion of

polygons. We talk about polygons, since any object of any random shape can be

though of as a polygon – a figure bounded by a number of sides. Thus if we are

able to do certain operations on the polygons, they can be extended to all other

bodies.

So for, we have seen the line drawing algorithms. But if only a

figure bounded by a number of sides is given, we do not know complex when a

large number of polygons is there in the screen. We do not know whether the

objects behind the present object are visible or not. So, we would like to make a

distinction between objects that are inside the polygon and those that are

outside and display them differently. The concept of identifying such pixels is

called the “scan conversion”, since we convert the pixels along one scan line at

a time.

We make use of the property of coherence- i.e. pixels that are in

the same neighborhood share similar properties. Using this, we introduce you

to the YX algorithm, which makes use of the intersections of polygons with the

scan lines and the concept of coherence to suggest an efficient scan conversion

methodology.

9.2 SOLID AREA SCAN CONVERSION

The main reason for the rapid increase in popularity of raster scan

displays is their ability to display “solid” images. They are useful in

representative, thickness, depth, or objects line up one behind another.

Needless to say, the ability to display the third dimension is of prime

importance in realistic display of objects, especially in video games and

animation.

Generating a display of a solid object means one should be able to

COMPUTER GRAPHICS

103

i) Find out pixels that lie within the solid area and find out

those that lie outside the solid area. This concept is called the mask of the

area. One simple way of representative such pixels is to use a 1 to indicate

pixels that lie inside the area and use a 0 to indicate pixels outside. The bit is

called the “mask”

ii) To determine the shading rule. The shading rule deals with

the pixel intensity of each pixel within the solid area. To give a realistic image

for the depth, it is essential that the “shade” of each pixel be indicated

separately, so as to give a coherent idea of the concept of depth. Such a

mechanism would give the effect of shadows to pictures so that pixels that lie

nearer to the observer would caste a shadow on those that are far away. A

variable shading technique is of prime importance in presenting realistic 3-

dimensional pictures.

iii) To determine the priority. When one speaks of 3-dimensions

and a number of objects, the understanding is that some of the objects that are

nearer are likely to cover the objects that are far away. Since each pixel can

represent only one object, the pixel should become a part of the object that is

nearest to the observer i.e. a priority is assigned to each object and if a pixel

forms part of more than one object, then it will represent the object with the

highest priority amongst them.

Out of these concepts, the problem of identifying those pixels that

form a part of the object from those that do not is called “scan conversion” In

this block; we see a few algorithms for scan conversion. In the subsequent

blocks, we see more about the other aspects.

9.3 Scan conversion of polygons

The simplest algorithm of scan conversion can do something like

this

i) Display the boundary of the solid object

ii) For each pixel on the screen, try to find out whether it lies

inside the boundary or on the boundary or outside it. Suitably arrange the

mask of each.

Though this method is simple and reliable, it needs enormous

amounts of computations to achieve the purpose. Obviously more efficient

methods for scan conversion are needed. One may note that the trade off

involved is not just the time involved, but such inordinate delays avoid a

proper, real time modifications and display of the picture. Hence, several

algorithms have been devised so that certain inherent properties of the pictures

are utilized to reduce the computations. One such broad technique is to

COMPUTER GRAPHICS

104

consider figures as closed polygons and use certain properties of polygons to

find out which pixels should lie inside the picture and which are not one such

property is coherence.

9.4 Coherence

The performance of a scan conversion algorithm can be

substantially improved by taking advantage of the property of coherence i.e.

Given a pixel that is inside a polygon, it’s immediately adjacent pixels are most

likely to be also inside the polygon. Similarity if a pixel is outside a polygon,

most of its adjacent ones also will be most probably outside it. A corollary is

that the coherence property changes only at the boundaries i.e. we will have to

check the status of the pixels only at the boundaries and immediately adjacent

to it, to find out whether the pixel lies inside or outside. The property of

coherence can be applied to all its neighboring pixels and hence their status

need not be checked individually. Consider the following example. Given a

polygon, it is to be scan converted.

 a1 a2

 a

 b

 c

Suppose we want to identify all those pixels that lie inside the

polygon and those that lie outside. This can be done in stages, scan line by

scan line. Consider the scan line a. This is made up of a number of pixels.

Beginning with left most point of the scan line, compute the intersections of the

edges of the polygon with the particular scan line. In this case these are two

intersections (91 & a2). Starting at the left most pixels, all pixels lie outside the

polygon up to the first intersection. From then on all pixels lie inside the

polygon until the next intersection. Then afterwards, all pixels lie outside. Now

consider a line b. It has more than two intersections with the polygon. In this

case, the first intersection indicates the beginning of the series of pixels inside

COMPUTER GRAPHICS

105

the polygon, the next intersection indicates that the following pixels will be

inside the polygon and fourth intersection concludes the series.

Now we write this observation as an algorithm. This algorithm is

called the (yx) Algorithm (We will see at the end of the algorithm, why this

peculiar name).

9.5 (yx) Algorithm

1. For every edge of the polygon, find out it’s intersection with all

the scan lines (This is a fairly straight forward process, because beginning with

one tip of the edge, every incremental value of y gives the next scan line and

hence a DDA type algorithm can be written to compute all such intersections

very fast and quite efficiency. However, we leave this portion to the student).

Build a list of all those (x,y) intersections.

2. Sort the list so that the intersections of each scan line are at one

place. Then sort them again with respect to the x coordinate values.

(Understanding this concept is central to the algorithm). To simplify the

operations, in stage 1, we simply computed the intersections of every edge with

every (intersecting) scan line. This gives a fairly large number of (unordered)

points. Now sort these points w.r.t. their y-values, i.e. the scan line values.

Assuming that the first scan line has a y value of 1, we get the list of it’s

intersections with every edge. Then of the scan line with value 2 and soon. At

this stage, looking at the previous example, we have the intersections of ‘a’

listed first, then intersection of ‘b’ and then of ‘c’ Now sort these intersections

separately w.r.t. x points. Then the points a1 and a2 appear in the order,

similarly of b and c)

3. Remove the intersection points in pairs. The first of these points

indicate the beginning of the series of pixels that should lie inside the polygon

and the second one ends the series. (a1 and a2 in this case) . (In the case of the

scan line b, we get two pairs of intersections, since we have two sets of pixels

inside the polygon for that scan line, while an intermediate set lies outside).

This information can be used to display the pictures.

Incidentally this algorithm is called the yx algorithm, since it sorts

the elements first w.r.t. y and then w.r.t. x. We leave it to the student to try and

write a xy algorithm and ensure that it does the job equally well.

COMPUTER GRAPHICS

106

9.6 Singularities

 Note that we have not commented on the scan line c of the

picture. The peculiarity of that line is that the intersection lies exactly on the

vertex of a polygon. In such a case, it is very easy to see that the algorithm

fails. This is because the intersection of the scan line with the vertex not only

defines the beginning of a series of pixels that lie inside the polygon, but also

the end of the series. Now how do we treat such intersections?

One earlier solution suggested was never to have such

intersections at all i,e. instead of sharp vertices, have only blunt vertices. Then

every scan line will have two intersections instead of one. But obviously this

solution is not a welcome one since it distorts the picture altogether.

The other suggestion is to identify that such a “special” type of

intersection has occurred and treat it as two intersections at the same point.

This solves the problem elegantly, the only problem being that how do we

identify? The answer is to keep track of the direction of the polygon edges. It is

easy to note that the polygon changes it’s “direction” at it’s vertex. So,

whenever an intersection is recorded, find out whether the next point on the

boundary of polygon lies on a monotonically increasing / decreasing sequence

or is on a different direction altogether. Once this is done, if the direction is

different, then include two points instead of one into the list of intersections

(With the same coordinate values, of course). Now, we write a simple algorithm

that treats such singularity problems. This algorithm also takes care of the

other imminent problem – that of horizontal edges. A horizontal edge would

intersect with every pixel of the scan line and how to deal with such a situation

wherein every pixel can be considered to be inside the polygon is also dealt with

here.

9.7 Algorithm Singularity:

1. A variable yprev is used to keep track of the previous intersection

of the edge. Whenever an intersection is found, not only is a new pair of (x,y)

stored as in the yx algorithm, but the y coordinate is stored to indicate the

previous intersection by storing it in yprev. Initially its value is set to 0.

2. Go to the next edge of the polygon. If these are no more edges to

be processed, exit.

COMPUTER GRAPHICS

107

3. Compute it’s intersection with the scan lines. If it has no

intersections at all (or a very large no. of intersections, the way you look at it) it

can be considered horizontal. Go to step 2

4. Compute the difference dy=y2-y1, where y2 is the y coordinate of

the beginning vertex of the edge and y1 the y coordinate of the ending vertex. If

dy>o go to step5, else go to step6.

5. If dy>0, the first intersection generated must have y= yprev.+1

compute all other intersections of the edge. The y coordinate of the last

intersection is stored in yprev. . Go to step 2 to findout whether any edges are

still there.

6. If dy<o, the first intersection generated will have y= yprev. itself

generate all intersections for the edge. The y coordinate of the last intersection

is preserved in yprev. = ylast -1. Go to step2.

 Note that this algorithm does not generate intersection nor

does it produce the scan conversion. The scan conversion algorithm, which

does the conversion, will only pass its intersection values to the singularity

algorithm to check for the specific cases.

 The other aspect to be taken care of while displaying

polygons is to decide on the priority. In 3 dimensional graphics, it is obvious

that two or more polygons tend to overlap one another. In such cases, only the

polygon that it is closest to the observer will visible. This polygon obscures any

more polygons behind it. But the problem is that the front polygon may not

cover the polygon behind it completely. That means the farther polygon is

visible in those places where it is not covered by the front polygon, but will not

be visible in those regions where the front polygon covers it. One solution to

solve this problem is to find the intersections of the polygons display the front

polygon completely and display the back polygon(s) in these areas where the

front polygon is not covering it. But, if you consider cases wherein a large

number of polygons is covering one another at different regions, this method

becomes unwieldy.

 A very ingenious method to solve this problem of assigning

priorities to the algorithms has been devised. This is called a “painters

algorithm”. Imagine a painter painting these polygons on his canvas. What does

he do? He does not bother himself about intersections or partially obscurities.

He begins by painting the furthest polygon, say in a particular color. This

obviously has the least priority in display i.e. it will be displayed only when no

other polygon is obscuring it. Then he begins painting the next polygon in front

COMPUTER GRAPHICS

108

of it. He simply goes about painting this second polygon, without bothering

about the previous polygon. This new polygon, let us say polygon 2, has a

higher priority than the polygon 1. i.e. when the two polygons appear together,

polygon 2 will be visible completely and polygon 1 is visible only if polygon 2 is

not obscuring it in that region. Now, once the second polygon is painted, in a

different color, it is simple to analyze that the parts of the polygon 1 that are

covered by polygon 2 automatically get covered and becomes invisible.

Similarly if a polygon 3 is painted, it gets the highest priority in display.

Thus, an extremely simple concept emerges. Do not bother about

any mathematical formulations. Start from the farthest polygon and keep

displaying them in the order of increasing priorities. The priorities are

automatically taken care of.

Expressed in technical terms the algorithm can be expressed as

follows. Assign a priority to each polygon, the lowest priority to the polygon that

is farthest from the viewer and the highest priority to the one that is nearest.

Sort them on the order of priority. Scan covert each of the polygons and start

displaying them in the increasing order of priority. The higher order polygons

automatically cover the lower order ones and the priority concept is case of.

This algorithm can be called p-(yx) algorithm on the lines similar to

yx algorithm. In the yx algorithm we were first ordering on y then on x

coordinates. Here, before that, we order the polygons based on priorities. i.e. 3

stages of p, y and x sorting are involved. Hence p(yx) algorithm.

 This algorithm, however, has a very minor drawback. It is

not visually appealing. Since the algorithms appear in the order of priorities,

from the least to the highest, the most important of them appear only in the

end. Also, it will be distracting to the user to see the polygons appearing one

after the other, one overwriting another. A better scheme will be to make them

appear in their final order, even if it is from one end to the other (or top to

bottom). A simple way to do this is to first sort the pixels in terms of their y

coordinates (scan line by scan line), then on their priorities and finally on there

x coordinates. Then the algorithm changes to an ypx algorithm.

The algorithm, in brief, appears as follows:

1. For each polygon, compute the intersections with every scan

line. This yields a list of (x,y,p) where x & y are the coordinates of the point of

intersection and p is the priority of the polygon.

2. Sort the list first by y, then sort w.r.t. p and finally w.r.t. x

COMPUTER GRAPHICS

109

3. Remove pairs of nodes from this sorted list and scan convert as

before.

 One difficulty of this algorithm is that it takes large amounts

of computational efforts for sorting, since a large number of points are involved.

The only solution will be to resort to efficient sorting algorithms.

Review questions

1. What is scan conversion?

2. Why are we specific about polygons?

3. What is priority in the concept of a pixel?

4. What is coherence?

5. Why yx algorithm called so?

6. What is singularity? How are they taken care of in yx algorithm?

7. How is a singular point identified?

Answers:

1. The idea of identifying and converting pixels along a scan line that lie inside

the polygon so that they can be displayed differently.

2. Because once we are able to do certain operations on polygons, they can be

extended to others, since most of the regular and irregular boundaries can be

thought of as polygons.

3. In 3-dimensional views, when more than one object stands one behind

another, the same pixel on the screen represents more than one object. So the

priority for the pixel as to which object it should represent is important.

4. Pixels in the same neighborhood share similar properties – most often. If a

pixel is inside a polygon, most probably, it’s neighbors also will be inside the

same polygon. Hence, the same set of operations need not be repeated on each

of them.

5. Since it first sorts the elements with respect to y and then with respect to x.

6. When a vertex coincides with a scan line, it is a singular because the scan

line entres and leaves the polygon at the same place. They are counted as z

intersections for the algorithm.

7. In a singular point, an edge of the polygon changes it’s direction.

COMPUTER GRAPHICS

110

UNIT 10

THREE DIMENSIONAL TRANSFORMATIONS

10.1) Introduction

10.2) Three Dimensional transformation

10.3) Translations

10.4) Scaling

10.5) Rotation

10.6) Viewing Transformation

10.7) The Perspective Transformation

10.8) Three Dimensional Clipping

10.9) Clipping

10.10) Perspective view of Cube

10.1 Introduction

In this unit, we look into the basics of 3-D graphics, beginning with

transformations. In fact the ability to transform a 3-dimensional point, i.e. a

point represented by 3 Co-ordinates (x,y,z) is of immense importance not only

for the various operations on the picture, but also for the ability to display the

3-D picture in a 2-D screen. We briefly see the various transformation

operations – they are nearly similar to the 2-D operations. We also see the

concepts of clipping and windowing in 3-D.

10.2 Three Dimensional Transformation

Just as in the case of 2D, we represent the transformation

operations as a series of matrix operations. With this, we obtain the flexibility

of sequencing a series of operations one after the other to get the desired

results on one hand and also the ability to undo the operations, by resorting to

the reverse sequence. Since in the 2-dimensional case we were representing a

point (x,y) as a tuple [x y 1], in the 3-dimensional case, we represent a point

(x,y,z) as a [x y z 1]. The dimensions of the matrices grow from 3 x 3 to 4 x 4.

10.3 Translations

Without repeating the earlier methods, we simply write

COMPUTER GRAPHICS

111

[x1 y1 z1 1] = [x y z 1] 1 0 0 0

 0 1 0 0

 0 0 1 0

 Tx Ty Tz 1

Where the point [x y z 1] gets transformed to [x1 y1 z1 1] after

translating by Tx, Ty and Tz along the x,y,z directions respectively.

10.4 Scaling

A given point [x y z 1] gets transformed to [x1 y1 z1 1] after getting

scaled by factors Sx, Sy and Sz in the three dimensions to

[x1 y1 z1 1] = [x y z 1]

10.5 Rotation

Rotation in 3-dimensions is a more complex affair. (In fact, even in

2 dimensions, rotation was more involved than scaling or translation because

the concept of point of rotation). This is because; the rotation takes place

about an axis. The same point, given the same amount of rotation, gets

transformed to different points depending on which axis it was rotated.

The simplest of the cases is to rotate the point about an axis that

passes through the origin, and coincides with one of the axes x, y or z. The next

complication arises when the axis passes through the origin, but does not

coincide with any of the axes. The most general case would be, of course, when

an arbitrary axis that does not pass through the origin becomes the axis of

rotation.

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

COMPUTER GRAPHICS

112

Let us begin with simplest cases: The understanding is that a

clockwise rotation, when viewed at the origin, standing on the axis is taken as

positive and the other direction is negative. If this description looks too

complicated, look at the following figures. In each case, we write down the

transformation for the rotation through a positive angle of +θ.

 Z

 Y

 θ

 O X

 Rotation Direction of view of origin

 Z

 Direction of view of

 Origin

 Y

 θ

 O X

[x1 y1 z1 1] = [x y z 1] cosθ - Sin θ 0 1

 sinθ cosθ 0 0
 0 0 1 0

 0 0 0 1

Transformation Matrix

[x1 y1 z1 1] = [x y z 1] cosθ 0 - Sinθ 0

 0 1 0 0

 -sinθ 0 cosθ 0
 0 0 0 1

Transformation Matrix

COMPUTER GRAPHICS

113

Z

 Direction of view of origin

 Y

 θ

 O X

Now the other cases of rotation can be taken to be concatenations

of the various operations.

For example to rotate a point about an axis that passes through

the origin, but does not coincide with any of the axes, as in the following figure

 Z

 Y

 O X

[x1 y1 z1 1] = [x y z 1] 1 0 0 0

 0 cosθ - Sinθ 0

 0 sinθ cosθ 0

 0 0 0 1

Transformation Matrix

COMPUTER GRAPHICS

114

Suppose the axis passes through the origin, but does not coincide

with any of the axes, then the axis itself is to be first aligned to one of the axes

before doing the transformations. The sequence of events appears as follows.

(a) Rotate the axis through the desired angle to make it coincide

with one of the axes. (Depending on with respect to which axis, it's angle of

deviation is available).

(b) Rotate the point (desired to be rotated) about this axis.

(c) Rotate the axis back to its original angle of deviation.

In cases where the axis is an arbitrary axis passing through some

points, but not the origin, the sequence lengthens

(a) Shift the point through which the axis points to the origin.

(b) Rotate the axis through an angle necessary to coincide it

with one of the primary axes.

(c) Rotate the point to be rotated about this axis.

(d) Rotate the axis back to it's original inclination.

(e) Shift the point from the origin to it's original point.

(Similar operations have been illustrated n the case of 2-

dimensional operations in the earlier block. The student is encouraged to

attempt to write transformations for above cases on similar lines).

(It is also to be noted that reverse operations can be done fairly

easily using matrices. For example if a rotation is made through an angle θ, to

undo the operation, one need not go to the extent of finding the inverse of the

original transformation matrix, but by simply multiplying the resultant with

one more matrix where cos(θ) and sin (θ) are replaced by cos (-θ) and sin(-θ). In

the case of scaling -Sx and -Sy perform the inverse operations for Sx and Sy).

10.6 Viewing Transformations

Before displaying the 3-D picture one more set of "viewing

transformations" is to be done. This is to ensure that the viewer would get the

depth perspective that has been displayed on the screen. This is done by

transforming the image to another coordinate system with axes xe, ye and ze,

the origin being the position of the eye and ze being the axis passing from the

eye perpendicularly to the screen.

COMPUTER GRAPHICS

115

If this transformation is called V, then it is not enough if we simply

display the completed picture as it is, but every point is to be transformed to

the eye coordinate system.

Calling the original picture coordinate systems as the world

system, if a point in it is represented by [xw yw zw 1] then it should be

transformed to the eye coordinate system [xe ye ze 1] using the following

transformation

[xe ye ze 1] = [xw yw zw 1] V

V is a series of matrix transformations that can be got by including

several translations and rotations that are determined by viewing parameters.

10.7 The perspective Transformation

A perspective display can be generated by simply projecting every

point of the object on to the plane of the screen. This section teaches you to get

the coordinates (xs - ys) in the screen coordinates with respect to the eye

coordinates (xe, ye, ze).

Consider the above figure, which indicates the basics of the

perspective projection. O is the point behind the screen, which is called the

"Perspective Point", the point. The point P measured in eye coordinate is

available at P(xe,ye,ze). The effort is to find the coordinates of the same point

P(xs,ys) on the screen (also called screen coordinates) so that the perspective

effect is established. D is the distance of the convergence point (where ze = 0)

behind screen and S is half width of the screen.

The triangles OQ'P' and OQP are similar.

Hence ys / D = ye / ze
Similarly it can be shown that

COMPUTER GRAPHICS

116

 xs / D = xe /ze

The numbers xs and ys can be converted to fractions by dividing

them by the screen size. This operation not only allows as to numbers which

are fractions, but it also makes the numbers dimensionless (we are dividing a

dimension with another dimension).

Xs / D = Xe /sze and Ys / D = Ye / S ze
Or Xs = D xe / Sze and ys = D ye / Sze
Alternatively they can be converted to the screen coordinates by

including a specification of the location of view port in which the image is

displayed.

 Xs = (Dxe / Sze) Vsx + Vcx and ys = (Dye /Sze) Vsy + Vcy

[This can be derived as follows:

 The view port is at the centre (Vcx, Vcy) and is 2 Vsx units wide

and 2 Vsy unit high

 Vsy

 View Port

Hence a value xs which is given in the window coordinates as (xs =

Dxe / Sze) is scaled by a factor Vsx and is shifted by a value Vcx.

Similarly the coordinate xy given by a value Dye / Sze is scaled by

a factor Vsy and is shifted by a value Vcy. You can remember that we used a

similar methodology to transform from windows to view port in an earlier unit.

Thus, in order to convert a picture it's perspective equivalent, we

should convert every point (xe,ye) using these formulae.

However, this involves a series difficulty. As we can see, divisions

are involved in both the conversions. I.e. to convert a single point to it's

perspective equivalent, we have a few multiplication's and additions, but more

worryingly two divisions as well. Computers are most efficient for additions and

multiplications but are thoroughly inefficient with division. Fortunately a

picture can be converted into a perspective equivalent by transforming only the

corners of the picture.

 (Vcx,Vcy)

 Vsx

COMPUTER GRAPHICS

117

10.8 Three dimension clipping

The direct application of the perspective conversion may end up

mapping the object to size of the window, also points beyond the view port may

also get mapped. To circumvent these problems, the object generated needs to

be clipped against a viewing pyramid. The concept is similar to the 2-

dimensional case.

10.9 CLIPPING

Every point needs to be checked as to whether it lies within the

visible area of the pyramid by comparing the values of (D/S) xe and (D/s) ye to

the end values of the visible area

i.e. -Ze ≤ (D/S) xe ≤ +Ze and -Ze ≤ (D/s) ye ≤ +Ze.

This will exclude all points beyond the view point (ze ≤ 0) and all

points that go beyond the visible pyramid.

Note that this creates on problem. We indicated before that an

object can be transformed to it's perspective by simply mapping it's endpoints.

But, if these points go beyond the visible pyramid, then they cannot be

displayed. But this does not mean the entire object cannot be rejected. The

intersection of the visible pyramid with the profile of the object needs to be

computed. This clipping has to work on a 3-dimensional perspective.

A three dimensional extending the 2-D scheme can derive clipping

algorithm.

The algorithm determines whether the end point of the line lies in

the visible pyramid by assigning a 4 bit code to it.

First bit is 1: if the point is to the left the pyramid, else it will be

zero, similarly,

Second bit : If the point is to the right of the pyramid

COMPUTER GRAPHICS

118

Third bit: If the point is below the pyramid

Fourth bit : If it is above the pyramid.

As earlier, if the codes for both the end points are 0000, then the

line is trivially accepted. If the logical AND of the codes is not zero, both end

points lie on the invisible side of one of the planes and can be trivially rejected.

Otherwise the line crosses the side of the pyramid at one/more points. The

point of intersection can be computed in the parametric form as

((1- t) [x1 y1 z1] + t [xz yz Zz]) α = 0

 β

 1

Where different values of α and β have different values for different

planes. For example if α = 1 , β = 0, then it indicates the plane x=z. By

substituting the various values of α and β one can find the point of

intersection with different planes.

These Intersections then replace the ends of the line in the viewing

pyramid.

10.10 Perspective view of a cube

We clarify the above discussions with an example, getting the

perspective view of a cube. Consider a cube centered at the origin of the world

coordinate system, defined by the following points and lines:

Lines Points

 X Y Z

AB, BC A -1 1 -1

CD, DA B 1 1 -1

EF, FG C 1 -1 -1

GH, HE D -1 -1 -1

AE, BF E -1 1 1

CG, DH F 1 1 1

 G 1 -1 1

 H -1 -1 1

We shall observe this cube from a point (6, 8, 7.5) with the viewing

axis ze pointed directly at the origin of the world coordinate system. There is

still one degree of freedom left, namely an arbitrary rotation about the ze axis:

we shall assume that the xe axis lies in the z = 7.5 plane.

The viewing transformation is established by a sequence of

changes of coordinate systems. Recall that a transformation that moves a

coordinate system is the inverse of the corresponding transformation that

moves points.

COMPUTER GRAPHICS

119

1. The coordinate system is translated to (6,8,7.5), the point in

the original coordinate systems becomes the origin:

T1 = 1 0 0 0

 0 1 0 0

 0 0 1 0

 -6 -8 -7.5 1

2. Rotate the coordinate system about the x' axis by -90o. Because

we require the inverse transformation, we substitute θ = 90 o.

T2 = 1 0 0 0

 0 0 -1 0

 0 1 0 0

 0 0 0 1

3. Rotate about the y' axis by an angle θ so that the point

(0, 0, 7.5) will lie on the z' axis. We have cos - θ = cos θ = -8/10 and sin -

θ = -sin θ = 6/10:

T3 = -0.8 0 0.6 0

 0 1 0 0

 -0.6 0 -0.8 0

 0 0 0 1

4. Rotate about the x' axis by an angle ϕ so that the origin of the

original coordinate system will lie on the z' axis, we have cos -ϕ = cos ϕ =

10/12.5 and sin -ϕ = -sin ϕ = -7.5/12.5:

T4 = 1 0 0 0

 0 0.8 0.6 0

 0 -0.6 -0.8 0

 0 0 0 1

4. Finally reverse the sense of the z' axis in order to create a left handed

coordinate system that conforms to the conversions of the eye coordinate

system, A scaling matrix is used.

COMPUTER GRAPHICS

120

T4 = 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

This completes the five primitive transformations needed to

establish the viewing transformation V = T1 T2 T3 T4 T5

Suppose that we wish to fill a 30 by 30 centimeter display screen,

designed to be viewed from 60 centimeters away, and that the coordinate

system of the screen runds from 0 to 1023. Thus D = 60, S = 15, and Vsx =

Vcs = Vsy =Vcy = 1023/2

 The transformation is therefore

N = 4 0 0 0

 0 4 0 0

 0 0 1 0

 0 0 0 1

xs = 511.5 (xc / zc) + 511.5 ys = 511.5 (yc/zc) + 511.5

All the details of the transformations have now been specified. The

matrix VN clipped and converted to screen coordinates using the above

equation transforms each vertex of the cube

VN = T1 T2 T3 T4 T5N =

 We can now apply this transformation to the eight vertices of

the cube:

 Xc yc zc

 A 5.6 -3.68 12.94

 B -0.8 -6.56 11.98

 C -5.6 -2.72 13.26

 D 0.8 0.16 14.22

-3.2 -1.44 -0.48 0

 2.4 -1.92 -0.64 0

 0 3.2 -0.6 0

 0 0 12.5 1

COMPUTER GRAPHICS

121

 E 5.6 2.72 11.74

 F -0.8 -0.16 10.78

 G -5.6 3.68 12.06

 H 0.8 6.56 13.02

Although the clipping routine must be applied to each line in the

cube, it is apparent from the table that all of the vertices lie within the viewing

pyramid, and the clipping algorithm will trivially accept each line.

Questions

1. What is the order of matrices in 3-dimensional representation of

pictures?

2. What are the sequence of steps involved in rotating a given 3-D point

about an axis passing through the origin, but not coinciding with any of the

principal axes?

3. What is the name given to the method of projecting drawings in a way

similar to that seen by the eye?

5. Write down the formulae for transforming the eye coordinates to screen

coordinates.

6. Explain the concept of 4 bit assignment for clipping algorithm.

Answers:

1. 4 X 4

2.

a) Rotate the axis to make it coincide with x,y or z axis

b) Rotate the point suitably over this axis.

c) Bring the axis back to its original position by the sequence of reverse

transformations.

3. Perspective projection.

4. Xs = (DXe/SZe) Vsx + Vcx

And Ys = (DYe / SZe) Vsy + Vcy

Where Xs and Ys are screen coordinates,

Xe and Ye are the eye coordinates

S is half screen size

Vsx and Vsy are the dimensions of the viewport

Vcx and Vcy are the shift of the viewport with respect to the screen coordinates.

5. First bit is set to 1 if the point is to the left of viewing pyramid

Second bit is set to 1 if the point is to the right of the viewing pyramid

Third bit is set to 1 if the point is below viewing pyramid

Fourth bit is set to 1 if the point is above the viewing pyramid

COMPUTER GRAPHICS

122

UNIT 11

HIDDEN SURFACE REMOVAL

11.1) Introduction

11.2) Need for hidden surface removal

11.3) The Depth - Buffer Algorithm

11.4) Properties that help in reducing efforts

11.5) Scan Line coherence algorithm

11.6) Span - Coherence algorithm

11.7) Area-Coherence Algorithms

11.8) Warnock’s Algorithm

11.9) Priority Algorithms

11.1 Introduction

In this unit, you will be introduced to one of the most interesting

and involved concept of computer graphics – the concept of hidden surface

elimination. When two or more object are represented one behind the other – it

is quite clear that some of them either partially or fully obscure the other object

in such cases the hidden parts of the objects are to be removed.

Several algorithms for the same are introduced. Almost all of them

work on the simple concept of sorting the polygons in the order of their

distance, the nearest ones being represented in full, the farther ones in part

since, in raster graphics, a given pixel can represent more than one object

(each with same x,y) it will represent that object that is nearest to the screen

amongst these objects. Though this concept is straight forward and accurate, it

suffers from the difficulty that it is computationally intensive. Hence, several

efficient algorithms, which perform the same job with more efficiency, are

introduced. Most of them make use of some sort of coherence concept – i.e.

pixels in the neighborhood of a pixel share the properties of a pixel. i.e. If a

pixel forms a part of an object, the neighboring pixel also, most probably, form

the part of the same object. You will also be introduced to certain specific

instances, wherein these concepts may not yield satisfactory results.

11.2 Need for hidden surface removal

This has been considered as one of the most challenging jobs of

computer graphics. Once we start talking of solid objects in 3 dimensional

spaces, it is implied that some of the objects that are nearer to the viewer tend

to partly or wholly cover other objects. In fact, even if there is only one object,

some of its faces are unseen (the back faces) and some are partially seen (the

COMPUTER GRAPHICS

123

side faces). The ability to identify the faces and surfaces that are to be covered

and the extent of coverage in the case of partially covered surfaces in real time

is not only computationally intensive, but also analytically daunting. When

only wire frame types of drawings are being displayed, the task gets somewhat

simplified to that of “hidden line removal” – identifying those lines that should

not be shown. However, when solid objects are being considered, the task

becomes more complex because entire surfaces need to be identified for

removal.

A large number of algorithms are available for the job –though no

single algorithm can be though to be all encompassing capable of being efficient

in all possible conditions. However almost all of them share some common

feature. The first one is that at some point in the algorithm, they tend to sort

the objects in the order of their Z-distance from the viewer and try to eliminate

the farthest ones. But the sorting tends to be a difficult task at least in some

cases, since often an object may not be identified with a unique distance – Z.

when several part of the object have different Z coordinates, simple, direct

sorting methods may become inadequate.

The other common feature with these algorithms in the use of

coherence. As we have seen in other contexts, the coherence (or similarity with

respect to a property) between neighboring pixels is used to reduce the number

of computations effectively.

The behavior of the algorithm also depends on which type of

images one is talking of. In the case of line drawing algorithms, the problem is

solved using the various properties of lines, whereas in the case of raster

images, the algorithms tend to look like extensions of 2-dimensional scan

conversion algorithms.

The algorithms can also work either with respect to the object

space or the image space. One should clearly be able to draw the distinguishing

line between them. The object space in the space occupied by the pictures

created by the algorithms. However, before these pictures can be displayed,

they undergo various operations – like clipping, windowing, perspective

transformations etc. This final set of pictures – ready for display on the screen

is called the image space. The object space algorithms tend to calculate the

values with as a precision as feasible since often these calculations form the

basis for the next set of calculations, whereas the image space algorithms

calculate with precision that is in line with the precision available with the

display devices. This is because any higher precision, achieved with great

efforts, will become useless since the display devices cannot anyway handle

such precisions. Further, the computational efforts in the case of objects –

COMPUTER GRAPHICS

124

since every object tend to rapidly increase with the no. of objects – since every

object will have to be tested with other objects, where as in the image apace

computations, the increase is much slower, since one tends to look at the

number of pixels, irrespective of the no. of objects in the scene. The number of

pixels in a given resolution of display device is a constant.

Having noted some of the expected features of the algorithms, we

now look into the working of some of the algorithms.

11.3 The Depth – Buffer algorithm

The concept of this algorithm is extremely simple and

straightforward. Given a given resolution of the screen, every pixel on the

screen can represent a point on one (and only one) object (or it may be set to

the back ground if it does not form a part of any object). I.e. irrespective of the

number of objects in line with the pixel, it should represent the object nearest

to the viewer. The algorithm aims at deciding for every pixel the object whose

features it should represent. The depth-buffer algorithm used two arrays, depth

and intensity value. The size of the arrays equals the number of pixels. As can

be expected, the corresponding elements of the array store the depth and

intensity represented by each of the pixels.

The algorithm itself proceeds like this

Algorithm Depth Buffer:

a. For every pixel, set it’s depth and intensity pixels to the back

ground value ie. At the end of the algorithm, if the pixel does not become a

part of any of the objects it represents the background value.

b. For each polygon on the scene, find out the pixels that lie

within this polygon (which is nothing but the set of pixels that are chosen if

this polygon is to be displayed completely).

For each of the pixels

i) Calculate the depth Z of the polygon at that point (note

that a polygon, which is inclined to the plane of the screen will have

different depths at different points)

ii) If this Z is less than the previously stored value of

depth in this pixel, it means the new polygon is closer than the earlier

polygon which the pixel was representing and hence the new value of

Z should be stored in it. (i.e from now on it represents the new

polygon). The corresponding intensity is stored in intensity vector.

COMPUTER GRAPHICS

125

If the new Z is greater than the previously stored vale, the

new polygon is at a farther distance than the earlier one and no

changes need be made. The polygon continues to represents the

previous polygon.

One may note that at the end of the processing of all the polygons,

every pixel, will have the intensity value of the object which it should display in

its intensity location and this can be displayed.

This simple algorithm, as can be expected, works on the image

space. The scene should have properly projected and clipped before the

algorithm is used.

 The basic limitation of the algorithm is it’s computational

intensiveness. On a 1024 X 1024 screen it will have to evaluate the status of

each of these pixels in a limiting case. In it’s present form, it does not use any

of the coherence or other geometric properties to reduce the computational

efforts.

To reduce the storage, some times the screen is divided into

smaller regions like say 50 X 50 or 100 X 100 pixels, computations made for

each of this religions, displayed on the screen and then the next region is

undertaken. However this can be both advantageous and disadvantageous. It is

obvious that such a division of screen would need each of the polygons to be

processed for each of the regions – thereby increasing the computational

efforts. This is disadvantage. But when smaller regions are being considered, it

is possible to make use of various coherence tests, thereby reducing the

number of pixels to be handled explicitly.

11.4 Properties that help in reducing the efforts

Several features can be made use of to identify the polygons that

are totally/partially covered, so that the actual effort of elimination of hidden

surfaces can be reduced. A few popularly used tests are as follows.

i) Use of geometric properties: The depth buffer

algorithm reduces the objects to a series of polygons and tests them for

visibility. The polygon, in geometric terms is a surface, which is

represented by the equation ax + by + cz +d =0 for any point (x,y,z) that

lies on the surface (or plane in geometric terminology). A point that does

not satisfy the equation lies outside the plane. A point that gives a

negative value for the equation lies on the back face of the plane (since

x,y coordinates cannot be negative, it implied z becomes negative). Such

back faces like the back of a cube or a pyramid or some similar shape,

COMPUTER GRAPHICS

126

can be totally removed from the calculations then reducing the efforts

considerably.

ii) Overlap tests: Common sense gives us one simple idea.

An object can obscure another only if (a) one of them is at a farther

distance than another – obviously two objects standing side by side

cannot obscure each other

iii) Even if they are at unequal distances, they can

obscure only if either their x or y coordinates overlap. For example the

two polygons in the given figure cannot obscure each other irrespective of

how far or near is each of them than the other.

 P2

 P1

The minimax tests guarantee just this. If the minimum x

coordinate of one polygon is larger than the maximum x coordinate of another

(P2 and P1 respectively of the figure) and similarly the max is coordinate of one

is less than the minimum is coordinate of another (P1 and P2 respectively). The

two figures cannot overlap no matter what their z coordinates are. This test

allows us to trivially avoid testing a few pairs of polygons for obscuring each

other.

However it should be noted that failure to pass the minimax test

does not always imply that they obscure consider the following case

 P1 P2

Here though P1 and P2 coordinates overlap, they still do not

obscure each other. Testing such instances need more elaborate computations.

COMPUTER GRAPHICS

127

11.5 Scan Line Coherence Algorithms

Scan line algorithms solve the hidden surface problem, one

scanline at a time. They traverse the picture the picture space from top to

bottom, one line at a time removing all the hidden surface along that scan line.

The simplest of them can be the depth buffer algorithm itself. Since

the algorithm has to consider every pixel, it can take care of pixels along each

scan line at a time and then go to the next line and so on.

Scan line coherence algorithm:

For each scan line perform the following steps.

a. For every pixel on a scan line, set depth value to 1.0 and

intensity to the back ground value.

b. For each polygon in the view scene, find all pixels of the scan

line under consideration that lie within the polygon. For each of them

i. Find the depth z of the polygon at the point.

ii. If Z < depth [x], set depth[x] to z and the intensity to

the intensity of the polygon.

c. Once all polygons have been taken care of, the pixels contain

the intensity values that are to be displayed. This algorithm when used in

conjunction with Y-X scan conversion forms the simplest of scan line

coherence algorithms.

11.6 Span – Coherence algorithm

Another property of coherence that can be made use of in scan

conversion is the one-dimensional form of area coherence, called span

coherence. If a pixel is inside a polygon, it’s neighbours also lie inside the

polygon. This holds good upto a “Span” once the Span is detected, all pixels

within the span can be set to the intensity value of the polygon and the next

comparison can take place at the end of the span. This reduces the

computation by a very large amount, especially if the no. of polygons is limited.

 The concept of spans can be considered in a simplistic

manner by the following example.

 In the 3-dimensional space, each scan line produces a plane.

I.e. each scan line is for a particular value of y. A plane with this value of y as a

constant over different values of x and z form a plane.

COMPUTER GRAPHICS

128

 Plane defined by the scan line

 Scan line

If one travels along this scan line, the plane intersects one/more

polygons at different points. If these points of intersection are noted and are

sorted in the increasing order of x, we get a sort of xz algorithm which gives the

list of intersections with different polygons.

Taking them in pairs, just as in the XY algorithm, one can convert

the entire plane into several spans.

i. Spans that do not lie within any polygon, the pixels

can be set to the background intensity.

ii. Spans that lie within a single polygon. All of them can

be set to the intensity of the polygon.

iii. Spans that are intersected by 2 or more polygons. In

such spans, the pixel values can be set to the intensity of the nearest

polygon.

 The algorithm implements the details in the following order.

i. A single active edge list, sorted by x, contains the

intersection (and the intensity values) of all polygons that intersect the

scan line.

ii. During the actual scan conversion, the process starts

from the left to the right. Initially, the pixels are at the back ground

intensity. The first node on the list indicates the first polygon being

activated i.e. from no on the pixels will be inside the polygon. The next

node can be either an entry into a new polygon or the exit from a

polygon. (The concept of entry or exit into or out of polygons is stored

into the nodes by setting a particular bit to 1 or 0 for entry or exit at the

time of creating the list – while taking not of the intersections.

iii. Whenever an entry into a polygon occurs, all polygons

that have been currently activated are checked to find the one that is

nearest to the viewer and the pixels from then onwards are set to that

polygons intensity. While exiting from a polygon, again that polygon is

deactivated and the pixel intensity value is recalculated.

COMPUTER GRAPHICS

129

This basic algorithm can make use of coherence in many

other ways for farther improvisation of efficiency. For example, the

intersections need not be calculated for all the scan lines (or scan

planes). If a polygon cuts a scan plane at (x,z) say, then the intersection

of the same polygon in the next immediate scan plane will be either at

(x,z) itself or at one pixel distance from (x,z) in any direction. This can be

used to avoid actual calculation of the intersection and in fact, if the

direction of the polygon edge is known, it’s intersection with next scan

plane can be found at accurately by looking at the precise pixel indicated

by the direction.

11.7 Area – Coherence Algorithms

The idea of coherence can be extended in both directions. I.e. just

as a pixel will have, most probably, the intensity of its left or right neighbor, the

coherence can be extended to the other direction as well. This bi-directional or

area coherence was made use of by Warnock in his algorithm, known by his

name.

11.8 Warnock’s Algorithm

This is one of the class of “area” algorithms. It tries to solve the

hidden surface problem recursively. The algorithm proceeds on the following

lines.

i. Try to solve the problem by taking the entire screen as

one window. If no polygons overlap either in x or y or even if they do,

overlap so that they do not obscure, then return the screen.

ii. If the problem is not easily solvable in step (i) the

algorithm divides the screen into 4 equal parts and tries to apply step (i)

each of them. If it is not solvable, again divides into smaller windows and

so on.

iii. The recursive process continues till each window is

trivially solvable or one endsup with single pixels.

We have still not described how the actual “solution” is done. To do

this, in any window, the algorithm classifies the polygons into three groups

i) Disjoint Polygons: Polygons that do not overlap in the

window and hence can be trivially passed.

ii) A bigger and a smaller polygon overlapping so that the

smaller one will be completely blocked by the bigger one (if the Z of the

larger polygon is smaller than Z of the smaller one).

iii) Intersected polygons: Polygons that partly obscure

each other.

COMPUTER GRAPHICS

130

Polygons that fall into category (i) and (ii) are removed at each level.

If the remaining polygons can be easily solved, the recursive process stops at

that level, else the process continues (with the polygons of category (i) and (ii)

removed).

Since at each recursive level a few polygons are removed, as the

windows become smaller and smaller with the advance of recursion, the list of

polygons falling into them also reduces and hopefully the problem of hidden

surfaces gets solved trivially.

One main draw back of algorithm is that the windows get divided

into smaller and smaller rectangles. In many cases it would be efficient if one

can divide the window roughly in the shape of the polygons themselves. Such

an algorithm, developed by Wieler and Atherton, was found more efficient,

though more complex in terms of larger complexities of recursive divisions and

clippings.

11.9 Priority Algorithms

In contrast to the scan line and area coherence algorithms, priority

algorithms try to discover the depth relations first and then perform the xy

calculations only after the visibility has been established. They are similar to

the priority algorithms of scan conversion.

Remember the painters algorithm? A painter drawing a painting

on a canvas simply keeps painting them beginning from the farthest object. As

and when a nearer object gets painted, the hidden areas of the farther objects

automatically get covered by the new object.

Similarly if one begins scan converting the polygons beginning with

the farthest polygon, the hidden lines and hidden surfaces automatically get

eliminated. However, if the polygons in the priority list overlap in depth, the

things become more complex. Look at the following figure:

 Z

 ZA

 ZB B

 A

 X

Simply sorting them on the basis of Z max would make

computations complicated because for certain scan lines. A is nearer than B

COMPUTER GRAPHICS

131

but for certain others B is nearer than A. Hence the priority list, prepared

based only on the depths will have to be rearranged as follows.

Consider the last polygon in the A (Say). If it has no overlaps in

depths with its predecessors, then it has no overlaps with any other polygons

and can remain at the end. Other wise, if it has any depth overlaps with one or

more polygons, denoted by the set {b}, then we have to again check if any

specific polygon B from this set is obscured by A. If yes, then B has no

business to be in that priority since A, which is obscuring B, should have a

higher priority than B. Corresponding modifications are to be made to the list.

Based on the considerations, in the above figure A should have a

higher priority than B, though the Zmax of B is less than that of A.

The question is how to find out the relation “A obscures B”? Apply

the following steps in the same order to ascertain that A does not obscure B.

(a) Depth minimax test should indicate that A and B do not

overlap in depth and B is closer to the viewpoint than A. This test is

implemented by initially sorting by depth all polygons and by the way A and

{b} are selected.

(b) Minimax test in xy should indicate that A and B do not

overlap in X or Y.

(c) All vertices of A should be farther from the view point than

the plane of B. This can be implemented by substituting x,y coordinates of

a into the plane equation of B and solving for the depth of B.

(d) All vertices of B should be closer to the viewpoint than the

plane of B.

(e) A full overlap test should indicate that A and B do not

overlap in x or y.

The order is not very important, except that any one of the tests

being true indicates that A does not obscure B. Since the latter tests are more

involved, it is desirable that the order is followed so that one can avoid the

latter tests if possible.

Is the “A obscures B” relation sufficient condition to sort polygons?

Look at the following sequence of figure.

COMPUTER GRAPHICS

132

Obviously the algorithm fails to give a clearcut sequence of

polygons. In such cases, it is desirable to subdivide one/more polygons so that

the “Chain reactions” are avoided.

Review questions:

1. State painters algorithm in 2-3 lines.

2. What is the main difficulty of the scan line algorithm?

3. What is the concept of overlap testing?

4. If tow or more objects fail in overlap testing, does it mean they

always obscure at least in some regions.

5. Explain the concept of coherence of pixels.

6. Name the algorithm that work on the concept of area

coherence

7. State one method of improving the recursive efficiency of the

above algorithm.

8. If a portion of polygon A obscure B, a portion of B obscures C

and so on so that they form a cyclic loop, the concept of Zmax fails? How do

you apply the scan conversion algorithm in such a case?

Answers:

1. Start painting from the object that is farthest from the viewer. As

and when new objects are painted, the earlier objects that are obscured by the

nearer objects automatically get removed- either in full or in those regions

where they are invisible.

2. It is computationally insensitive.

3. Two objects can obscure each only if Zmax of one is greater than

the Zmax of the other. Even then, they overlap only if they overlap in either x

or y coordinates. I.e. the maximum y of one is greater than the minimum y of

the other or the maximum x of one is greater than the minimum x of the other

and this holds for both the objects.

4. No, It depends on their actual shapes and placements

COMPUTER GRAPHICS

133

5. The general property of coherence is that neighboring pixels

share properties i.e. if a particular pixel belongs to a particular object, most

probably it’s neighboring pixels also lie in the same object. This applied over

certain “Spans”.

6. Warnock’s Algorithm

7. By dividing the screen recursive not into rectangles but into

areas similar to the shape of the polygons.

8. By dividing on/more of these polygons into similar polygons.

COMPUTER GRAPHICS

134

References

1) Principles of Interactive Computer Graphics – By

Newman & Sproull

2) C Graphics & Projects – By B M Havaldar

3) Computer Graphics – By Hearn & Baker

4) Computer Graphics for Scientists and Engineers – By

Asthana and Sinha

