

Symantec Corporation Security Analytics S500 Appliances

Models: SA-S500-10-CM, SA-S500-20-FA, SA-S500-30-FA, SA-S500-40-FA Hardware Versions: 090-03645, 080-03938, 090-03646, 080-03939, 090-03648, 080-03940, 090-03649, and 080-03941 FIPS Security Kit Version: HW-KIT-FIPS-500 Firmware Version: 7.2.3

FIPS 140-2 Non-Proprietary Security Policy

FIPS 140-2 Security Level: 2 Document Version: 0.8

COPYRIGHT NOTICE

© 2017 Symantec Corporation All rights reserved. BLUE COAT, PROXYSG, PACKETSHAPER, CACHEFLOW, INTELLIGENCECENTER, CACHEOS, CACHEPULSE, CROSSBEAM, K9, DRTR, MACH5, PACKETWISE, POLICYCENTER, PROXYAV, PROXYCLIENT, SGOS, WEBPULSE, SOLERA NETWORKS, DEEPSEE, DS APPLIANCE, SEE EVERYTHING. KNOW EVERYTHING., SECURITY EMPOWERS BUSINESS, BLUETOUCH, the Blue Coat shield, K9, and Solera Networks logos and other Symantec logos are registered

trademarks or trademarks of Symantec Corporation or its affiliates in the U.S. and certain other countries. This list may not be complete, and the absence of a trademark from this list does not mean it is not a trademark of Symantec or that Symantec has stopped using the trademark. All other trademarks mentioned in this document owned by third parties are the property of their respective owners. This document is for informational purposes only.

SYMANTEC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT. SYMANTEC PRODUCTS, TECHNICAL SERVICES, AND ANY OTHER TECHNICAL DATA REFERENCED IN THIS DOCUMENT ARE SUBJECT TO U.S. EXPORT CONTROL AND SANCTIONS LAWS, REGULATIONS AND REQUIREMENTS, AND MAY BE SUBJECT TO EXPORT OR IMPORT REGULATIONS IN OTHER COUNTRIES. YOU AGREE TO COMPLY STRICTLY WITH THESE LAWS, REGULATIONS AND REQUIREMENTS, AND ACKNOWLEDGE THAT YOU HAVE THE RESPONSIBILITY TO OBTAIN ANY LICENSES, PERMITS OR OTHER APPROVALS THAT MAY BE REQUIRED IN ORDER TO EXPORT, RE-EXPORT, TRANSFER IN COUNTRY OR IMPORT AFTER DELIVERY TO YOU.

Americas: Rest of the World:

Symantec Corporation 350 Ellis Street Mountain View, CA 94043

This document may be freely reproduced and distributed whole and intact including this copyright notice.

Table of Contents

1.	INTR	ODUCTION	.5
	1.1	Purpose	.5
	1.2	References	.5
	1.3	DOCUMENT ORGANIZATION	.5
2	SEC	ΙΙΡΙΤΥ ΔΝΔΙ ΥΤΙCS \$500 ΔΡΡΙ ΙΔΝΟΕ	6
2.	21		6
	2.1		8
	23	MODULE INTERFACES	8
	2.0	2.3.1 SA-S500-10-CM/20-EA/30-EA/40-EA Front Panel	9
		2.3.2 SA-S500-10-CM Rear Panel	10
		2.3.3 SA-S500-20-FA Rear Panel	12
		2.3.4 SA-S500-30-FA Rear Panel	13
		2.3.5 SA-S500-40-FA Rear Panel	14
	2.4	Roles and Services	5
		2.4.1 Crypto-Officer Role	16
		2.4.2 User Role	19
		2.4.3 Authentication Mechanism	21
	2.5	PHYSICAL SECURITY	25
	2.6	Non-Modifiable Operational Environment	25
	2.7	CRYPTOGRAPHIC KEY MANAGEMENT	25
	2.8	Self-Tests	34
		2.8.1 Power-Up Self-Tests	34
		2.8.2 Conditional Self-Tests	34
		2.8.3 Critical Function Tests	34
	2.9	MITIGATION OF OTHER ATTACKS	35
3.	SEC	URE OPERATION	6
	3.1	INITIAL SETUP	36
		3.1.1 Label and Baffle Installation Instructions	36
		3.1.2 Shutter Installation	37
		3.1.3 Label Application	38
	3.2	SECURE MANAGEMENT4	0
		3.2.1 Initialization	10
		3.2.2 Management	11
		3.2.3 Zeroization	11
	3.3	USER GUIDANCE	2
	3.4	Non-Approved Mode4	-2
4.	ACR	ONYMS4	3

List of Figures

FIGURE 1 TYPICAL DEPLOYMENT DIAGRAM	7
FIGURE 2 CONNECTION PORTS AT THE FRONT OF THE SA-S500 APPLIANCES	9
FIGURE 3 REAR OF THE SA-S500 APPLIANCES	.11
FIGURE 4 FIPS SECURITY KIT CONTENTS	36
FIGURE 5 SHUTTER DISASSEMBLY	37
Figure 6 Lower Shutter Installation	38
FIGURE 7 UPPER SHUTTER INSTALLATION	38
FIGURE 8 LABELS SHOWING TAMPER EVIDENCE	39

List of Tables

TABLE 1 SECURITY LEVEL PER FIPS 140-2 SECTION	7
TABLE 2 SECURITY ANALYTICS S500 APPLIANCE TESTED CONFIGURATIONS	8
TABLE 3 FIPS 140-2 LOGICAL INTERFACE MAPPINGS FOR THE FRONT OF THE SA-S500 APPLIANCES	9
TABLE 4 FRONT PANEL LED STATUS INDICATIONS FOR THE SA-S500 APPLIANCES	0
TABLE 5 FIPS 140-2 LOGICAL INTERFACE MAPPINGS FOR THE REAR OF THE SA-S500-10-CM APPLIANCE 1	1
TABLE 6 REAR PANEL LED STATUS INDICATIONS FOR THE SA-S500-10-CM APPLIANCE	1
TABLE 7 FIPS 140-2 LOGICAL INTERFACE MAPPINGS FOR THE REAR OF THE SA-S500-20-FA APPLIANCE 12	2
TABLE 8 Rear Panel LED Status Indications for the SA-S500-20-FA Appliance 13	3
TABLE 9 FIPS 140-2 LOGICAL INTERFACE MAPPINGS FOR THE REAR OF THE SA-S500-30-FA APPLIANCE 13	3
TABLE 10 REAR PANEL LED STATUS INDICATIONS FOR THE SA-S500-30-FA APPLIANCE	4
TABLE 11 FIPS 140-2 LOGICAL INTERFACE MAPPINGS FOR THE REAR OF THE SA-S500-40-FA APPLIANCE \dots 14	4
TABLE 12 REAR PANEL LED STATUS INDICATIONS FOR THE SA-S500-40-FA APPLIANCE	5
TABLE 13 FIPS AND SECURITY ANALYTICS S500 APPLIANCE ROLES1	6
TABLE 14 CRYPTO OFFICER ROLE SERVICES AND CSP ACCESS1	6
TABLE 15 USER SERVICES AND CSP ACCESS	0
TABLE 16 AUTHENTICATION Mechanisms Used by Security Analytics S500 Appliance 22	2
TABLE 17 FIPS-Approved Algorithm Implementations 24	5
TABLE 18 LIST OF CRYPTOGRAPHIC KEYS, CRYPTOGRAPHIC KEY COMPONENTS, AND CSPS	7
TABLE 19 ACRONYMS	3

1. Introduction

1.1 Purpose

This is a *Non-Proprietary Cryptographic Module Security Policy* for the Security Analytics S500 Appliance (090-03645, 080-03938, 090-03646, 080-03939, 090-03648, 080-03940, 090-03649, and 080-03941; 7.2.3) from Symantec Corporation. This *Non-Proprietary Security Policy* describes how the Security Analytics S500 Appliance meets the security requirements of Federal Information Processing Standards (FIPS) Publication 140-2, which details the U.S. and Canadian Government requirements for cryptographic modules. More information about the FIPS 140-2 standard and validation program is available on the National Institute of Standards and Technology (NIST) and the Communications Security Establishment (CSE) Cryptographic Module Validation Program (CMVP) website at http://csrc.nist.gov/groups/STM/cmvp.

This document also describes how to run the appliance in the Approved mode of operation. This policy was prepared as part of the 2 validation of the module. The Security Analytics S500 Appliance is referred to in this document as SA S500 Appliance, crypto module, or module.

1.2 References

This document deals only with operations and capabilities of the module in the technical terms of a FIPS 140-2 cryptographic module security policy. More information is available on the module from the following sources:

- The Symantec website (<u>www.symantec.com</u>) contains information on the full line of products from Symantec.
- The CMVP website (<u>http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140val-all.htm</u>) contains contact information for individuals to answer technical or sales-related questions for the module.

1.3 Document Organization

The *Non-Proprietary Security Policy* document is one document in a FIPS 140-2 Submission Package. In addition to this document, the Submission Package contains:

- Vendor Evidence document
- Finite State Model document
- Submission Summary document
- Other supporting documentation as additional references

With the exception of this *Non-Proprietary Security Policy*, the FIPS 140-2 Submission Package is proprietary to Symantec and is releasable only under appropriate non-disclosure agreements. For access to these documents, please contact Symantec.

2. Security Analytics S500 Appliance

2.1 Overview

The Security Analytics Appliances (SA-S500-10-CM, SA-S500-20-FA, SA-S500-30-FA, and SA-S500-40-FA) are part of Symantec's Security Platform's Incident Response and Forensics solutions. The turnkey, pre-configured appliances harness the Security Analytics software to capture, index and classify all network traffic (including full packets) in real time. This data is stored in an optimized file system for rapid analysis, instant retrieval and complete reconstruction to support all your incident response activities. The appliances can be deployed anywhere in the network: at the perimeter, in the core, in a 10 GbE backbone, or at a remote link to deliver clear, actionable intelligence for swift incident response and resolution and real-time network forensics.

Security Analytics helps you visualize and analyze network data and uncover specific network activity – without requiring specific knowledge of networking protocols and packet analysis methods. Its powerful features let you locate and reconstruct specific communication flows, as well as network and user activities, within seconds. The platform does this by classifying captured network traffic packets and identifying meaningful data flows. A flow is the collection of packets that comprises a single communication between two specific network entities. Within a particular data flow, you can then identify and examine network artifacts such as image files, Word documents, emails, and video, as well as executable files, HTML files, and more. Security Analytics also allows you to reconstruct HTML pages, emails, and instant messaging conversations.

Security Analytics also provides the ability to do real-time, policy-based artifact extraction, and is not limited to any specific operating system (OS) environment. Extracted artifacts can be automatically placed in centralized network repositories for analysis by superior forensics tools within Security Analytics. These artifacts are hashed and stored for future retrospection on newly discovered malware variants and provide a method to understand relatedness to preexisting hashes. The Central Manager Appliance (SA-S500-10-CM) facilitates federated queries on hundreds of Security Analytics Forensic Appliances (SA-S500-20-FA, SA-S500-30-FA, and SA-S500-40-FA) to provide a 360-degree view of activity across the entire enterprise network including perimeter, data centers, and remote offices.

In a typical deployment, the Security Analytics Forensic Appliance receives mirrored traffic from a SPAN port or network tap. The traffic enters the appliance through one or more Ethernet ports, also known as capture interfaces. The Forensic Appliances can be integrated with leading security network and endpoint solutions for a full network-to-endpoint view of any malicious activity, delivering prompt and precise attack resolution. The Central Manager Platform is a dedicated appliance that sits on the network alongside the Forensic Appliances to provide an aggregated view of data across multiple Forensic Appliances, an interface for Forensic Appliance management, and centralized Forensic Appliance software upgrades. Please see Figure 1 below for a typical deployment diagram of the Security Analytics appliances.

Figure 1 Typical Deployment Diagram

The Security Analytics S500 Appliances are validated at the following FIPS 140-2 Section levels in Table 1.

Table 1 Security Level per FIPS 140-2 Section

Section	Section Title	Level
1	Cryptographic Module Specification	2
2	Cryptographic Module Ports and Interfaces	2
3	Roles, Services, and Authentication	2
4	Finite State Model	2
5	Physical Security	2
6	Operational Environment	N/A
7	Cryptographic Key Management	2
8	Electromagnetic Interference/Electromagnetic Compatibility	2
9	Self-tests	2
10	Design Assurance	3
11	Mitigation of Other Attacks	N/A

2.2 Module Specification

For the FIPS 140-2 validation, the crypto module was tested on the following appliance types listed in Table 2 below.

Table 2 Security Analytics S500 Appliance Tested Configurations

SA S500 Appliance Type	Hardware Version	SKU / Short Description
Cold Standby Appliance	080-03938	SA-S500-10-CM-CS
	080-03939	SA-S500-20-FA-CS
	080-03940	SA-S500-30-FA-CS
	080-03941	SA-S500-40-FA-CS
Standard Hardware	090-03645	SA-S500-10-CM
	090-03646	SA-S500-20-FA
	090-03648	SA-S500-30-FA
	080-03649	SA-S500-40-FA

The hardware version numbers in Table 2 represent licensing options available. All appliance types and editions run on similar hardware and firmware and are the same from a cryptographic functionality and boundary perspective. The hardware differs only in the amount of storage, memory, network interfaces to the module. A Cold Standby appliance varies only in that firmware is not preinstalled. The four hardware configurations are the same between the Cold Standby and standard appliance types (e.g., The SA-S500-10-CM-CS shares the same hardware as the SA-S500-10-CM). The Crypto Officer and User services of the module are identical for all appliance types regardless whether it is a Cold Standby or standard appliance.

For the FIPS 140-2 validation, the module was tested on the following appliance configurations:

- SA-S500-10-CM
- SA-S500-20-FA
- SA-S500-30-FA
- SA-S500-40-FA

The module has a Multi-chip Standalone embodiment. The overall security level is 2. The cryptographic boundary of the module is defined by the tested platform, which surrounds all components. The module software 7.2.3, includes the following cryptographic libraries:

• SA Cryptographic Library v7.2.3

2.3 Module Interfaces

The module's physical ports can be categorized into the following logical interfaces defined by FIPS 140-2:

• Data input

- Data output
- Control input
- Status output

2.3.1 SA-S500-10-CM/20-FA/30-FA/40-FA Front Panel

The front panel of the SA S500 appliances (as shown below in Figure 2) have an LCD interface, two LEDs, a USB port, and six control buttons. The control buttons and USB port on the front panel are disabled once the module is configured for its Approved mode of operation.

Figure 2 Connection Ports at the Front of the SA-S500 Appliances

The type and quantity of all ports present in the front panel of the SA-S500 appliances are given in Table 3.

Table 3 FIPS 140-2 Logical Interface Mappings for the front of the SA-S500 Appliances

Physical Port/Interface	Quantity	FIPS 140-2 Interface
LEDs	2	Status Output
LCD	1	Status Output
Control Buttons	6	N/A (buttons are disabled)
USB 2.0 port	1	N/A (USB is disabled)

The status indications provided by the LEDs is described in Table 4.

Table 4 Front Panel LED Status Indications for the SA-S500 Appliances

LED	Color	Definition
Power LED	OFF	The appliance is powered off
	AMBER	The appliance is booting and the OS load is not yet complete.
	FLASHING GREEN TO AMBER	The OS has been loaded but has not been configured.
	GREEN	The OS has loaded and is properly configured.
System LED	OFF	The appliance has not determined the system status
	GREEN	Healthy
	AMBER	Warning
	FLASHING AMBER	Critical Warning

2.3.2 SA-S500-10-CM Rear Panel

The rear panel of the -CM and -FA appliances slightly differ in the rear-facing port configurations.

The rear ports and interfaces available on the SA-S500 appliances are shown in Figure 3. Based on the specific model, slots 3-7 may be populated with additional copper or Fiber ports for storage and network traffic related needs.

The models/Part numbers listed include the following base configuration and were tested, as such. SA-S500-10-CM (P/N 090-03645, P/N 080-03938)

- Slot 7 populated
- SA-S500-20-FA (090-03646, 080-03939)
 - Slots 5 and 7 populated
- SA-S500-30-FA (090-03648, 080-03940)
 - Slots 5, 6, and 7 populated
- SA-S500-40-FA (090-03649, 080-03941)
 - Slots 5, 6, and 7 populated

Slot 7 Slot 5 Slot 6 Slot 3 Slot 4

Figure 3 Rear of the SA-S500 Appliances

Symantec. + BLUE COAT

Defining the Future of Cyber Security

The type and quantity of all ports present on the rear panel of the SA-S500-10-CM appliance are provided below in Table 5. The LED status indicators, color, and definitions are provided below in Table 6.

Dhycical Part/Interface	Quantity	EIDS 140.2 Interface
Physical Porvintenace	Quantity	FIFS 140-2 Interface
Ethernet Ports	Λ	Data Input
	7	Data input
		Control Input
		Status Output
System MGMT Port	1	Data Input
		Data Output
		Control Input
		Status Output
BMC ¹ Management Port (Serial over Ethernet)	1	N/A (port is disabled)
Ethernet Interface – Speed LEDs	6-8	Status Output
Ethernet Interface – Activity LEDs	6-8	Status Output
Serial port	1	Control Input
		Status Output
AC Power	2	Power Input
AC Power Connection LEDs	2	Status Output
Soft Power Switch	1	Control Input
USB 2.0 Port	1	N/A (port is disabled)

Table 5 FIPS 140-2 Logical Interface Mappings for the rear of the SA-S500-10-CM Appliance

Table 6 Rear Panel LED Status Indications for the SA-S500-10-CM Appliance

¹ BMC – Base Management Controller

LED	Color	Definition	
AC power connection LED	OFF	The module is not receiving power.	
	GREEN	The module is receiving power.	
Ethernet Interface -	OFF	No link is present.	
Activity LEDs	GREEN	Link is present	
	FLASHING GREEN	Link activity.	
Ethernet Interface – Speed LEDs	OFF	10 Mbps speed connection is present.	
	GREEN	100 Mbps speed connection is present.	
	AMBER	1000 Mbps speed connection is present.	

2.3.3 SA-S500-20-FA Rear Panel

The type and quantity of all ports present on the rear panel of the SA-S500-20-FA appliance are provided below in Table 7. The LED status indicators, color, and definitions are provided below in Table 8.

Table 7 FIPS 140-2 Logical Interface Mappings for the rear of the SA-S500-20-FA Appliance

Physical Port/Interface	Quantity	FIPS 140-2 Interface
Ethernet Interface – 10GigE Copper	2	Data Input Data Output
System Management Port	1	Data Input Data Output Control Input Status Output
BMC Management Port	1	N/A (port is disabled)
12Gbps SAS3 Port	0-4	Data Input Data Output
1/10 GigE SX/SR Fibre Channel Port	2	Data Input Data Output
Ethernet Interface – Speed LEDs	6-8	Status Output
Ethernet Interface – Activity LEDs	6-8	Status Output
Serial ports	1	Control Input Status Output
AC Power	2	Power Input
AC Power Connection LEDs	2	Status Output
Soft Power Switch	1	Control Input
USB 2.0 Port	1	N/A (port is disabled)

Table 8 Rear Panel LED Status Indications for the SA-S500-20-FA Appliance

LED	Color	Definition	
AC power connection LED	OFF	The module is not receiving power.	
	GREEN	The module is receiving power.	
Ethernet Interface -	OFF	No link is present.	
Activity LEDs	GREEN	Link is present	
	FLASHING GREEN	Link activity.	
Ethernet Interface – Speed LEDs	OFF	10 Mbps speed connection is present.	
	GREEN	100 Mbps speed connection is present.	
	AMBER	1000 Mbps speed connection is present.	

2.3.4 SA-S500-30-FA Rear Panel

The type and quantity of all ports present on the rear panel of the SA-S500-30-FA appliance are provided below in Table 9. The LED status indicators, color, and definitions are provided below in Table 10.

Table 9 FIPS 140-2 Logical Interface Mappings for the rear of the SA-S500-30-FA Appliance

Physical Port/Interface	Quantity	FIPS 140-2 Interface
Ethernet Interface – 10GigE Copper	2	Data Input Data Output
System Management Port	1	Data Input Data Output Control Input Status Output
BMC Management Port	1	N/A (port is disabled)
Ethernet Ports	4	Data Input Data Output Control Input Status Output
12Gbps SAS3 Port	0-2	Data Input Data Output
1/10 GigE SX/SR Fibre Channel Port	0-4	Data Input Data Output
Ethernet Interface – Speed LEDs	6-8	Status Output
Ethernet Interface – Activity LEDs	6-8	Status Output
Serial ports	1	Control Input Status Output

Physical Port/Interface	Quantity	FIPS 140-2 Interface
AC Power	2	Power Input
AC Power Connection LEDs	2	Status Output
Soft Power Switch	1	Control Input
USB 2.0 Port	1	N/A (port is disabled)

Table 10 Rear Panel LED Status Indications for the SA-S500-30-FA Appliance

LED	COLOR	DEFINITION
AC power connection LED	OFF	The module is not receiving power.
	GREEN	The module is receiving power.
Ethernet Interface -	OFF	No link is present.
Activity LEDs	GREEN	Link is present
	FLASHING GREEN	Link activity.
Ethernet Interface – Speed LEDs	OFF	10 Mbps speed connection is present.
	GREEN	100 Mbps speed connection is present.
	AMBER	1000 Mbps speed connection is present.

2.3.5 SA-S500-40-FA Rear Panel

The type and quantity of all ports present on the rear panel of the SA-S500-40-FA appliance are provided below in Table 9. The LED status indicators, color, and definitions are provided below in Table 10.

Table 11 FIPS 140-2 Logical Interface Mappings for the rear of the SA-S500-40-FA Appliance

Physical Port/Interface	Quantity	FIPS 140-2 Interface
Ethernet Interface – 10GigE Copper	2	Data Input Data Output
Ethernet Ports	4	Data Input Data Output Control Input Status Output
System MGMT Port	1	Data Input Data Output Control Input Status Output
BMC Management Port	1	N/A (port is disabled)
Ethernet Interface – Speed LEDs	6-8	Status Output

Physical Port/Interface	Quantity	FIPS 140-2 Interface
Ethernet Interface – Activity LEDs	6-8	Status Output
12Gbps SAS3 Port	0-2	Data Input Data Output
1/10 GigE SX/SR Fibre Channel Port	0-4	Data Input Data Output
Serial port	1	Control Input Status Output
AC Power	2	Power Input
AC Power Connection LEDs	2	Status Output
Soft Power Switch	1	Control Input
USB 2.0 Port	1	N/A (port is disabled)

Table 12 Rear Panel LED Status Indications for the SA-S500-40-FA Appliance

LED	COLOR	DEFINITION
AC power connection LED	OFF	The module is not receiving power.
	GREEN	The module is receiving power.
Ethernet Interface -	OFF	No link is present.
Activity LEDs	GREEN	Link is present
	FLASHING GREEN	Link activity.
Ethernet Interface – Speed LEDs	OFF	10 Mbps speed connection is present.
	GREEN	100 Mbps speed connection is present.
	AMBER	1000 Mbps speed connection is present.

2.4 Roles and Services

Before accessing the modules for any administrative services, COs and Users must authenticate to the module according to the methods specified in Table 16.

The modules offer the following management interfaces:

- Web UI (HTTPS/TLS)
- CLI (locally via serial port or remotely via SSH)
- Web Services API (HTTPS/TLS)

The CO and User details are found below in Table 13.

Table 13 FIPS and Security Analytics S500 Appliance Roles

FIPS Roles	Security Analytics S500 Appliance Roles and Privileges
CO	Administrator, Security Administrator
User	User

Descriptions of the services available to a Crypto Officer (CO) and User are described below in Table 14 and Table 15 respectively. For each service listed below, COs and Users are assumed to already have authenticated prior to attempting to execute the service, except for the services related to establishing a session with the module. Please note that the keys and CSPs listed in the table indicate the type of access required using the following notation:

- **R**: The CSP is read
- W: The CSP is established, generated, modified, or zeroized
- X: Execute: The CSP is used within an Approved or Allowed security function or authentication mechanism.

2.4.1 Crypto-Officer Role

Descriptions of the FIPS 140-2 relevant services available to the Crypto-Officer role are provided in the table below.

Table 14 Crypto Officer Role Services and CSP Access

Service	Description	CSP And Access Required
Show Status	Displays the operational status of the module and if the module is operating in the Approved mode.	None
On-demand Self-Test	By rebooting the module, the power-up self-tests will be invoked	None
Initial Key Generation Service	As part of the module initialization process performed by the CO, the SSH and Web RSA key pairs are created during the initial boot cycle.	SSH RSA public key: W SSH RSA private key: W Web RSA public key: W Web RSA private key: W
Change own password	COs can change their own password	CO Password: RW
Firmware Load	COs can initiate updates to the running firmware	Firmware Load Key: RX

Service	Description	CSP And Access Required
Create remote management session (CLI)	Manage the module through the CLI (SSH) remotely via Ethernet port.	SSH RSA public key: RX SSH RSA private key: RX SSH Session Key: WRX SSH Authentication Key: WRX DH public key: RX DH private key: RX ECDHE public key: RX ECDHE private key: RX HMAC DRBG Seed: RX HMAC DRBG Seed: RX HMAC DRBG V: RX HMAC DRBG Key: RX CO Password: R
Create remote management session (Web UI)	Manage the module through the Web UI (TLS) remotely via Ethernet port.	Web RSA public key: RX Web RSA private key: RX ECDHE public key: RX ECDHE private key: RX DH public key: RX DH private key: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Secret: WRX HMAC DRBG Seed: RX HMAC DRBG Seed: RX HMAC DRBG Entropy: RX HMAC DRBG V: RX HMAC DRBG Key: RX CO Password: R
Create remote management session (Web API)	Manage the module through the Web API (TLS) remotely via Ethernet port.	Web RSA public key: RX Web RSA private key: RX ECDHE public key: RX DH public key: RX DH private key: RX DH private key: RX Web API Passphrase: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Secret: WRX HMAC DRBG Seed: RX HMAC DRBG Seed: RX HMAC DRBG V: RX HMAC DRBG Key: RX CO Password: R

Service	Description	CSP And Access Required
Configure Module Settings	COs can modify the: network, date and time, license management, Web UI timeouts, log management, user accounts, geo-location settings	CO Password: W
Process Captured Traffic	 COs can:' Import traffic generate reports, apply filters perform searches and analysis on the captured traffic. 	None
Zeroize keys	Zeroize keys by taking the module out of FIPS-mode. This will zeroize all CSPs. The zeroization occurs while the module is still in FIPS- mode.	SSH RSA public/private key: W SSH Session Key: W SSH Authentication Key: W TLS Session Key: W TLS Authentication Key: W Web RSA public/private key: W NTP RSA public/private key: W ECDHE public key: W ECDHE private key: W DH public key: W DH public key: W DH private key: W VPN RSA public/private key pair: W CO and User Password: W Web API Passphrase: W HMAC DRBG Seed: W HMAC DRBG Entropy: W HMAC DRBG V: W
View Data Enrichment Results	View the results of the data- enrichment resources	None
Configure Data Retention Settings	COs can modify the data retention settings for the collected data	None
Reprocess/Replay Captured Network Traffic	COs can reprocess and replay captured traffic	None

Service	Description	CSP And Access Required
Configure encrypted NTP	COs can enable encryption for the NTP connection by generating an NTP Host Key	NTP RSA Public Key: W NTP RSA Private Key: W
Configure and activate Data Enrichment providers	COs can configure external sources to analyze selected file types and data flows	None
Rule Configuration	Can set up rules/alerts/indicators that act on data and send it to one of the pre-defined Data enrichment providers	None
Add Remote Forensic Appliances for Management	COs may add one or more Forensic Appliances to CM so that central management can be performed via CM. The VPN configuration must be set up as a part of this step for secure CM to Forensic Appliance communication.	VPN RSA Public key: W VPN RSA Private key: W Web API Passphrase: W
Remotely Manage Forensic Appliances	COs may centrally manage multiple Forensic Appliances from a single instance of CM	Web RSA public key: RX Web RSA private key: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Secret: WRX VPN RSA Public key: RX VPN RSA Private key: RX ECDHE public key: RX ECDHE private key: RX DH public key: RX DH public key: RX DH private key: RX Web API Passphrase: R HMAC DRBG Seed: RX HMAC DRBG Entropy: RX HMAC DRBG V: RX HMAC DRBG Key: RX
Configure CM accounts	COs can configure local CM accounts, and can also configure what role each CM account will be mapped to during remote Forensic Appliance management from CM	CO or User Passowrd: W

2.4.2 User Role

Descriptions of the FIPS 140-2 relevant services available to the User role are provided in the table below.

Table 15 User Services and CSP Access

Service	Description	CSP And Access Required
Change own password	Users can change their own password	User Password – RW
Process Captured Traffic	Users can: Import traffic generate reports, apply filters perform searches and analysis on the captured traffic.	None
Create remote management session (Web UI)	Manage the module through the Web UI (TLS) remotely via Ethernet port.	Web RSA public key: RX Web RSA private key: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Key: WRX ECDHE public key: RX ECDHE private key: RX DH public key: RX DH public key: RX DH private key: RX HMAC DRBG Seed: RX HMAC DRBG Entropy: RX HMAC DRBG V: RX HMAC DRBG Key: RX User Password: R
Create remote management session (Web API)	Manage the module through the Web API (TLS) remotely via Ethernet port.	Web RSA public key: RX Web RSA private key: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Key: WRX TLS Master Key: WRX ECDHE public key: RX ECDHE private key: RX DH public key: RX DH public key: RX DH private key: RX HMAC DRBG Seed: RX HMAC DRBG Entropy: RX HMAC DRBG V: RX HMAC DRBG Key: RX User Password: R
Reprocess/Replay Captured Network Traffic	Users can reprocess and replay captured traffic	None

Service	Description	CSP And Access Required
Rule Configuration	Can set up rules/alerts/indicators that act on data and send it to one of the pre-defined Data enrichment providers	None
Remotely Manage Forensic Appliances	Users may centrally manage multiple Forensic Appliances from a single instance of CM. A 'User' in CM can be assigned the CO or User role when remotely managing a Forensic Appliance.	Web RSA public key: RX Web RSA private key: RX TLS Session Key: WRX TLS Authentication Key: WRX TLS Master Secret: WRX VPN RSA Public key: RX VPN RSA Private key: RX VPN RSA Private key: RX ECDHE public key: RX ECDHE private key: RX DH public key: RX DH public key: RX DH private key: RX Web API Passphrase: R HMAC DRBG Seed: RX HMAC DRBG Entropy: RX HMAC DRBG V: RX

2.4.3 Authentication Mechanism

The module supports role-based authentication. COs and Users must authenticate using a user ID and password, SSH client key (SSH only), or certificates associated with the correct protocol in order to set up the secure session. Secure sessions that authenticate Users have no interface available to access other services (such as CO services). Each CO or User SSH session remains active (logged in) and secured until the operator logs out. Each CO and User Web UI and Web API session remains active until the operator logs out or inactivity for a configurable amount of time has elapsed.

The authentication mechanisms used in the module are listed in Table 16.

Table 16	Authentication	Mechanisms	Used by Security	y Analytics S500	Appliance
				, ,	

Role	Authentication Type	Authentication Strength		
	Password	internally. For password authentication done by the modules, passwords are required to be at minimum 15 characters in length. A 15- character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ¹⁵), or 1: 463,291,230,159,753,366,058,349,609,375 chance of false acceptance. This is less than the required 1:1,000,000. The CO may connect locally using the serial port or remotely after establishing a TLS or SSH session. Successfully guessing the sequence in one minute would require the ability to make 7,721,520,502,662,556,100,972,493,489 guesses per second, which far exceeds the		
	RSA Public-key based authentication	The module supports using RSA keys for authentication of COs during SSH. Using conservative estimates and equating a 2048-bit RSA key to a 112-bit symmetric key, the probability for a random attempt to succeed is $1:2^{112}$ or $1:5.19 \times 10^{33}$. To exceed a one in 100,000 probability of a successful random key guess in one minute, an attacker would have to be capable of approximately 5.19×10^{28} attempts per minute, which far exceeds the operational capabilities of the modules to support.		

Role	Authentication Type	Authentication Strength			
	Web API Passphrase	The module supports authentication via the Web API using an API passphrase. API passphrases are 50 characters in length. A 50-character API passphrase allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ⁵⁰), or 1: 7.69 X 10 ⁹⁸ chance of false acceptance. This is less than the required 1:1,000,000. The CO may connect remotely after establishing a TLS session.			
		Successfully guessing the sequence in one minute would require the ability to make 95 ⁵⁰ guesses per second, which far exceeds the operational capabilities of the module			

Role	Authentication Type	Authentication Strength
User	Password	The modules support password authentication internally. For password authentication done by the modules, passwords are required to be at minimum 15 characters in length. A 15-character password allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95 ¹⁵), or 1: 463,291,230,159,753,366,058,349,609,375 chance of false acceptance. This is less thant the required 1:1,000,000. The User may connect locally using the serial port or remotely after establishing a TLS or SSH session.
		Successfully guessing the sequence in one minute would require the ability to make 7,721,520,502,662,556,100,972,493,489 guesses per second, which far exceeds the operational capabilities of the module.
	RSA Public-key based authentication	 The module supports using RSA keys for authentication of Users during SSH. Using conservative estimates and equating a 2048-bit RSA key to a 112-bit symmetric key, the probability for a random attempt to succeed is 1:2¹¹² or 1: 5.19 x 10³³. To exceed a one in 100,000 probability of a successful random key guess in one minute, an attacker would have to be capable of approximately 5.19x10²⁸ attempts per minute,
	Web API Passphrase	 which far exceeds the operational capabilities of the modules to support. The module supports authentication via the Web API using an API Passphrase. API Passphrases are 50 characters in length. A 50-character API passphrase allowing all printable American Standard Code for Information Interchange (ASCII) characters (95) with repetition equates to a 1: (95⁵⁰), or 1: 7.69 X 10⁹⁸ chance of false acceptance. This is less than the required 1:1,000,000. The User may connect remotely after establishing a TLS session.
		Successfully guessing the sequence in one minute would require the ability to make 95 ⁵⁰ guesses per second, which far exceeds the operational capabilities of the module

2.5 Physical Security

The Security Analytics S500 Appliance is a multi-chip standalone cryptographic module and is enclosed in a hard, opaque metal case that completely encloses all of its internal components. There are only a limited set of vent holes provided in the case, and these holes obscure the view of the internal components of the module. Tamper-evident labels are applied to the case to provide physical evidence of attempts to remove the case of the module. The Crypto-Officer is responsible for the placement of tamper-evident labels and baffles and guidance can be found in section 3.1.1. The labels and baffles are part of the FIPS Security Kit (Part Number: HW-KIT-FIPS-500).

All of the module's components are production grade. The Security Analytics S500 Appliance (10-CM, 20-FA, 30-FA, and 40-FA-F) were tested and found conformant to the EMI/EMC requirements specified by 47 Code of Federal Regulations, Part 15, Subpart B, Unintentional Radiators, Digital Devices, Class A (i.e., for business use).

2.6 Non-Modifiable Operational Environment

The operational environment of the modules does not provide a general-purpose operating system (OS) to the user. The SA-S500 Appliances run Red Hat Fedora-based kernel in a non-modifiable operational environment. The operating system is not modifiable by the operator, and only the modules' signed image can be executed. All firmware upgrades are digitally-signed, and a conditional self-test (RSA signature verification) is performed during each upgrade.

NOTE: Only FIPS-validated firmware may be loaded to maintain the module's validation.

2.7 Cryptographic Key Management

The module implements the FIPS-Approved algorithms listed in Table 17 below.

CAVP Cert	Algorithm	Standard	Mode/ Method	Key Lengths, Curve or Moduli	Use
#4390	AES	FIPS 197, SP800-38A, SP800-38D	CBC, GCM ²	CBC-128, 256 GCM-256 ³	Data Encryption/Decr yption
#2373	RSA	FIPS 186-4	FIPS 186-4 Key pair generation	2048, 3072 ⁴ , 4096	Key pair generation
#2373	RSA	FIPS 186-4	PKCS #1.5	2048, 3072, 4096 – signature generation ⁵ 1024^{6} , 2048, 3072^{7} , and 4096 signature verification	Signature generation and signature verification

Table 17 FIPS-Approved Algorithm Implementations

² AES-GCM and CBC - AES-CBC-192 and AES-GCM 128 were tested but not used in any FIPS services

³ AES-GCM - The module used GCM in support of TLS compliant with SP 800-52 and is compatible with TLS version 1.2. The module generates new TLS keys if power is lost.

⁴ FIPS 186-4 KPG was tested for 3072-bitkeys, but these are not used by any service.

⁵ FIPS 186-2 Signature generation was tested; however, it was not used by any service.

⁶ RSA 1024-bit keys were tested; however, they are not used by any service.

⁷ RSA 3072-bit keys were tested; however, they are not used by any service.

CAVP Cert	Algorithm	Standard	Mode/ Method	Key Lengths, Curve or Moduli	Use
#1108	CVL ECDH	SP800-56A	ECC	NIST P curves 256, 384, 521	Key Agreement
#1108	CVL FFC	SP800-56A	FFC	2048, 224	Key Agreement
#3619	SHS	FIPS 180-4	SHA-1		Message Digest
#3619	SHS	FIPS 180-4	SHA-224 ⁸ SHA-256, SHA- 384 ⁹ , SHA-512		Message Digest
#2917	HMAC	FIPS 198-1	HMAC-SHA-1		Message Authentication
#2917	HMAC	FIPS 198-1	HMAC- SHA-224 ¹⁰ SHA-256, SHA- 384 ¹¹ , SHA-512		Message Authentication
#1413	DRBG	SP800-90A	HMAC-SHA-512		Deterministic Random Bit Generator
#1109	CVL TLS 1.0, 1.1, 1.2, SSH	SP800- 135rev1			Key Deriviation

The TLS and SSH protocols have not been reviewed or tested by the CAVP and CMVP. The generated seeds for private keys are generated per SP 800-133 (unmodified output from a DRBG)

The module utilizes the following non-FIPS-Approved algorithms:

- RSA PKCS#1 wrap/unwrap (key-wrapping) 2048, 3072, and 4096–bit sizes providing 112, 128, and 150-bits of security.
- MD5 used during TLS sessions
- Diffie-Hellman for key agreement during TLS and SSH: 2048-bit keys (provides 112 bits of security).
- EC Diffie-Hellman for key agreement during TLS (provides between 128 and 256 bits of encryption strength)
- Non-Deterministic RNG (NDRNG) for seeding the FIPS-Approved DRBG (SP 800-90 HMAC_DRBG)

The module supports the CSPs listed below in Table 18.

⁸ SHA-224 was tested; however, it is not used by any service.

⁹ SHA-384 was tested; however, it is not used by any service.

¹⁰ HMAC-SHA-224 was tested; however, it is not used by any service.

¹¹ HMAC-SHA-384 was tested; however, it is not used by any service.

Table 18 List of Cryptographic Keys, Cryptographic Key Components, and CSPs

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
Firmware Load Key	RSA public key 4096 bits	Preloaded at the factory.	Never exits the module	Stored in plaintext on non-volatile memory	Can be overwritten after upgrade by the key in the newly signed image	Verifying the integrity of the system image during upgrade or downgrade
Web RSA Public Key	2048, 3072, 4096- bits	Modules' public key is internally generated per the FIPS 186-4 standard (4096-bit only) Externally generated 2048, 3072, and 4096 bit keys can be input into the module encrypted (over TLS)	Output during TLS negotiation in plaintext.	Modules' public key is stored on non-volatile memory	Modules' public key is zeroized by command	Negotiating TLS (Web UI, API) sessions

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
Web RSA Private Key	2048, 3072, 4096- bits	Internally generated per the FIPS 186-4 standard (4096-bit only) Externally generated 2048, 3072, and 4096 bit keys can be input into the module encrypted (over TLS)	Never exits the module	Stored in encrypted form on non-volatile memory	Modules' public key is zeroized by command	Negotiating TLS (Web UI, API) sessions
VPN RSA Public Key	2048-bits	Public key is internally generated per the FIPS 186-4 standard	Output during TLS negotiation in plaintext.	Modules' public key is stored on non-volatile memory	Modules' public key is zeroized by command	Establishing TLS connection between CM and FA.
VPN RSA Private Key	2048-bits	Internally generated per the FIPS 186-4 standard	Never exits the module	Stored in encrypted form on non-volatile memory	Modules' public key is zeroized by Command	Establishing TLS connection between CM and FA.

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
NTP RSA Public Key	2048-bits	Public key is internally generated per the FIPS 186-4 standard	Output during NTP negotiation in plaintext.	Modules' public key is stored on non-volatile memory	Modules' public key is zeroized by command	Negotiating encrypted NTP
NTP RSA Private Key	2048-bits	Internally generated per the FIPS 186-4 standard	Never exits the module	Stored in encrypted form on non-volatile memory	Modules' public key is zeroized by command	Negotiating encrypted NTP
SSH RSA Public Key	2048-bits	Modules' public key is internally generated per the FIPS 186-4 standard	Output during SSH negotiation in plaintext.	Modules' public key is stored on non-volatile memory	Modules' public key is zeroized by command	Negotiating SSH sessions
SSH RSA Private Key	2048-bits	Internally generated per the FIPS 186-4 standard	Never exits the module	Stored in encrypted form on non-volatile memory	Modules' public key is zeroized by command	Negotiating SSH sessions

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
DH public key	2048-bits	Module's public key is internally generated via FIPS Approved DRBG Public key of a peer enters the module in plaintext	The module's Public key exits the module in plaintext	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Negotiating TLS or SSH sessions
DH private key	224-bits	Internally generated via FIPS-Approved DRBG	Never exits the module	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Negotiating TLS or SSH sessions
ECDHE ¹² public key	NIST Curves: P- 256, P-384, and P-521	Module's public key is internally generated via FIPS Approved DRBG Public key of a peer enters the module in plaintext	The module's Public key exits the module in plaintext	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Negotiating TLS sessions
ECDHE private key	NIST Curves: P- 256, P-384, and P-521	Internally generated via FIPS-Approved DRBG	Never exits the module	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Negotiating TLS sessions

¹² Elliptic Curve Diffie-Hellman – Ephemeral

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
SSH Session key	AES CBC 128-, or 256-bit key	Generated internally during session negotiation by the SSH KDF	Output in encrypted form during SSH protocol handshake	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Encrypting SSH data
SSH Session Authentication key	HMAC SHA-256 and 512 key	Generated internally during session negotiation	Never exits the module	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Data authentication for SSH sessions
TLS Master Secret	384-bit key	Generated internally during session negotiation	Never exits the module	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Establishing the TLS Session Key
TLS Session key	AES CBC 128-, or 256-, or GCM 256-bit key	Generated internally during session negotiation by the TLS KDF	Output in encrypted form during TLS protocol handshake	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Encrypting TLS data
TLS Session Authentication key	160-bit HMAC SHA-I key	Generated internally during session negotiation	Never exits the module	Stored in plaintext on volatile memory	Rebooting the modules Removing power	Data authentication for TLS sessions
Web API Passphrase	50 characters long	Internally generated via FIPS-Approved DRBG	Exits in encrypted form via a secure TLS	Stored in hashed form on non- volatile memory	Overwritten when resetting API Passphrase	Sent along with Web API commands for authentication

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
CO Password User Password	Minimum of fifteen (15) characters long	Externally generated. Enters the module in encrypted form via a secure TLS or SSH session Enters the module in plaintext via a directly attached cable to the serial port	Exits in encrypted form via a secure TLS session for external authentication	Stored in hashed form on non- volatile memory	Overwritten with a new password	Locally authenticating a CO or User for Web UI or CLI
SP 800-90A HMAC_DRBG Seed	880-bit random number	Internally generated	Never exits the module	Plaintext in volatile memory	Rebooting the modules Removing power	Seeding material for the SP800-90A HMAC_DRBG
SP 800-90A HMAC_DRBG Entropy ¹³	256-bit random number with derivation function 384-bit random number without derivation function	Internally generated	Never exits the module	Plaintext in volatile memory	Rebooting the modules Removing power	Entropy material for the SP800-90A HMAC_DRBG
SP 800-90A HMAC_DRBG key value	Internal state value	Internally generated	Never	Plaintext in volatile memory	Rebooting the modules Removing power	Used for the SP 800-90A HMAC_DRBG

¹³ The Entropy required by the FIPS-Approved SP 800-90 HMAC_DRBG (with SHA-512) is supplied by the NDRNG

Key Heading	Кеу Туре	Generation / Input	Output	Storage	Zeroization	Use
SP 800-90A HMAC_DRBG V value	Internal state value	Internally generated	Never exits the module	Plaintext in volatile memory	Rebooting the modules	Used for the SP 800-90A HMAC_DRBG
					Removing power	

NOTE: that some algorithms may be classified as deprecated, restricted, or legacy-use. Please consult NIST SP 800-131A for details.

2.8 Self-Tests

The module implement two types of self-tests: power-up self-tests and conditional self-tests. Upon a power-up self-test failure, the module halts operation and requires a reboot. Information as to which power-up self-test failed is displayed over the local console. Upon encountering a conditional self-test error, the module will suspend operation until the error is cleared. Power-up self-tests can also be performed on demand by cycling the power on the module.

The sections below describe the self-tests performed by the module.

2.8.1 Power-Up Self-Tests

The module performs the following power-up self-tests:

- Integrity check
- Known Answer Tests (KAT)s
 - AES CBC KAT for encryption
 - AES CBC KAT for decryption
 - AES GCM KAT for encryption
 - o AES GCM KAT for decryption
 - RSA KAT for signature generation
 - RSA KAT for signature verification
 - RSA KAT for encrypt/decrypt (wrap/unwrap)
 - SHA-1 KAT
 - o SHA-256 KAT
 - SHA-384 KAT
 - SHA-512 KAT
 - HMAC SHA-1 KAT
 - HMAC SHA-256 KAT
 - HMAC SHA-384 KAT
 - HMAC SHA-512 KAT
 - SP 800-90A DRBG KAT
 - SP 800-56A ECDH Primitive "Z" Computation KAT
 - SP 800-56A DH Primitive "Z" Computation KAT
- No data output occurs via the data output interface until all power-up self tests have completed.

2.8.2 Conditional Self-Tests

The module performs the conditional self-tests:

- Continuous RNG test (CRNGT) for the SP 800-90A DRBG
- Continuous RNG test (CRNGT) for the non-deterministic Random Number Generator (NDRNG)
- RSA pairwise consistency check upon key pair generation
- Firmware Load Test using RSA Signature Verification with SHA-512

2.8.3 Critical Function Tests

The module implements the SP800-90A HMAC_DRBG as its random number generator. The following critical function tests are implemented by the module:

- DRBG Instantiate Critical Function Test
- DRBG Reseed Critical Function Test

- DRBG Generate Critical Function Test
- DRBG Uninstantiate Critical Function Test

The module also performs a validity check on the installed license. If the license is not valid, the module will not operate.

2.9 Mitigation of Other Attacks

This section is not applicable. The module does not claim to mitigate any attacks beyond the FIPS 140-2 Level 2 requirements for this validation.

3. Secure Operation

The module meets FIPS 140-2 Level 2 requirements. The sections below describe how to place and keep the module in FIPS-Approved mode of operation. The tamper seals and FIPS kit shall be installed for the module to operate in a FIPS Approved mode of operation

3.1 Initial Setup

Before powering-up the module, the CO must ensure that the required tamper-evident labels (included in the FIPS security kit) are correctly applied to the enclosure. The FIPS security kit (Part Number: 085-02870; HW-KIT-FIPS-500) consists of the following items as shown below in Figure 6.

Figure 4 FIPS Security Kit Contents

Note: There are (30) 'Short Labels' and (10) 'Long labels' included with the FIPS kit; however, only (8) short labels and (2) long labels are required for FIPS compliance. Additional labels are provided for reapplication purposes.

3.1.1 Label and Baffle Installation Instructions

The Crypto-Officer is responsible for installing the baffle (security panel) and applying the tamper evident labels at the client's deployment site to ensure full FIPS 140-2 compliance. Once the seals have been applied, the Crypto Officer must develop an inspection schedule to verify that the external enclosure of the module and the tamper seals have not been damaged or tampered with in any way. The Crypto-Officer is responsible for securing and having control at all times of any unused labels. The Crypto-Officer is responsible for the direct control and observation of any changes to the module such as reconfigurations where the tamper-evident labels or security appliances are removed or installed to ensure the security of the module is maintained during such changes and the module is returned to a FIPS Approved state.

Crypto-Officers must adhere to the following when applying the tamper-evident labels:

• The minimum temperature of the environment must be 35-degrees Fahrenheit. After application, the labels' acceptable temperature in the operational environment is -5-degrees to 158-degrees Fahrenheit.

• Do not touch the adhesive side of the label. This disrupts the integrity of the adhesive. If a label is removed from a surface, the image is destroyed and the label shows tamper-evident text as evidence. If you accidently touch the adhesive side, discard that label and apply another one.

Label application tips:

- Apply skin moisturizer on your fingers before handling.
- Use a rubber fingertip to partially remove the label from its backing.
- After applying the labels, allow at least 24 hours for the label adhesive to cure.

3.1.2 Shutter Installation

The two piece rear shutter (500 Series Shutter as shown in Figure 4Figure 5) is designed to prevent unauthorized access to key system components by shielding the rear ventilation outlets, option cards, interfaces, and the soft power switch.

1. Remove the top shutter from the bottom shutter by removing two (2) screws and pulling directly rearward. Set the top shutter aside in a safe location.

Figure 5 Shutter Disassembly

2. Align the bottom shutter mounting points against the screw locations and the alignment pins on the chassis and secure with three (3) flat-head screws. Be aware the FIPS kit includes (7) additional screws, in case some are misplaced or lost during installation.

Figure 6 Lower Shutter Installation

- 3. Rack mount the appliance. Refer to the 500 Series Maintenance and Upgrade Guide for instructions and safety information on rack-mounting the appliance.
- 4. Reinstall the appliance network and other interconnect cables to their respective locations

Note: All network and interconnect cables must installed at this time to prevent reopening of the shutters and subsequent reapplication of the security labels.

- 5. Route the network cables through the cable management anchors to prevent cables from obstructing airflow.
- Install the top shutter by aligning the notches with the raised pins on the appliance and secure with two (2) flat-head screws. Be aware the FIPS kit includes (7) additional screws, in case some are misplaced or lost during installation.

Figure 7 Upper Shutter Installation

3.1.3 Label Application

The FIPS compliant blue labels are applied over key areas of the chassis to provide tamper-evident security. If the labels are removed after being affixed to a surface, the image self-destructs and leaves a

pattern of VOID markings on the label. The image below illustrates the tamper-evident features of the label. Figure 8 below illustrates the tamper-evident features of the blue labels.

Figure 8 Labels Showing Tamper Evidence

Use alcohol swabs to clean the label location surface using Isopropyl Alcohol (99%); this ensures complete adhesion. Verify that all the surfaces are dry before applying the labels .

- 1. Set the appliance on a flat, slip-proof work space and make sure you have access to all sides of the appliance.
- 2. Apply two (2) blue short labels (short labels 1 and 2) over the exposed shutter screw heads. These labels extend slightly over the left and right edges of the shutter when properly applied.

3. Apply one (1) long blue label through *each* power supply unit (long labels 1 and 2) and/or dummy cover in a U-shape, making sure to route the label through the handle and to apply the ends of the label on the chassis top and bottom, as illustrated below. When applying the labels in, make sure there is enough material on both ends to properly secure the power supply. When you are applying these labels, it is imperative that you do not cover any of the vent holes.

4. Apply six (6) short blue labels (short labels 3, 4, 5, 6, 7, and 8) over the opposite ends of the bezel, center cover, and the rear cover panel to prevent unauthorized access to the system components. Each label should be placed on the opposite ends of the appliance, as shown below.

Note: The chassis-center cover labels are destroyed each time the center cover is opened. Be sure to re-secure the appliance after servicing!

5. Power-on the appliance by plugging in the power cords.

3.2 Secure Management

The Crypto-Officer is responsible for initialization and security-relevant configuration and management of the module. Please see the *Blue Coat Systems Security Analytics S500 Appliance Administration Guide, Version 7.2.3* for more information on configuring and maintaining the module.

3.2.1 Initialization

The module is delivered in an uninitialized factory state, and requires minimal first-time configuration to operate in FIPS-Approved mode and be accessed by a web browser via TLS or remotely via SSH. Physical access to the module shall be limited to the CO, and the CO shall be responsible for putting the module

into the Approved mode. Note, these same steps in this section shall be followed after the zeroization command is entered.

The process of establishing the initial configuration is described below.

- 1. Connect to the serial interface with the **admin** account (admin | Solera).
- 2. Set the IP address and default gateway using sudo if config and sudo route.
- 3. Login to the Web Interface with the **admin** account.
- 4. Re-enter the IP address, netmask, and gateway values.
- 5. Specify at least one DNS server.
- 6. Set the correct date, time, and zone for the appliance: MM/DD/YYYY hh:ii:ss.
- Set the passwords for the root and admin accounts. The default password-strength requirements are: 14 characters, digit, uppercase, lowercase, other character. NOTE: After entering FIPS mode, the root account is disabled.
- 8. Click Save.
- 9. Enter the license key in the space provided, send the request, and then select the license for the appliance. The appliance automatically reboots.
- 10. When the appliance has rebooted, log in to the web interface using the **admin** account and the new password.
- 11. Select Settings -> Security and scroll down to FIPS Mode. Select Toggle FIPS mode and click Save.

Fips mode				
Toggle fips mode				

12. The appliance will automatically restart.

Upon completion of these initialization steps, the module is considered to be operating in its Approved mode of operation.

3.2.2 Management

The CO is able to monitor and configure the module via the Web UI and Web API (HTTPS over TLS) and the CLI (SSH or serial).

The CO should monitor the module's status regularly. If any irregular activity is noticed or the module is consistently reporting errors, customers should consult Symantec Blue Touch Online (BTO) and the administrative guidance documents to resolve the issues. If the problems cannot be resolved through these resources, Symantec customer support should be contacted.

The CO password must be at least 15 characters in length.

3.2.3 Zeroization

The CO can zeroize the module's keys by disabling FIPS mode in the Web UI. This command will automatically reboot the module and zeroize the keys. The RSA private key for TLS, RSA private key used for SSH, RSA private key used for syslog over TLS, CO password, User password are all zeroized in this process.

In addition, rebooting the module causes all temporary keys stored in volatile memory (SSH Session key, TLS session key, DRBG entropy values, and NDRNG entropy values) to be zeroized. The CO must wait until the module has successfully rebooted in order to verify that zeroization has completed.

3.3 User Guidance

The User is only able to access the module remotely via SSH (CLI) or HTTPS (Web UI). The User must change his or her password at the initial login. The User must be diligent to pick strong passwords (alphanumeric with minimum 15 characters) that will not be easily guessed, and must not reveal their password to anyone. Additionally, the User should be careful to protect any secret/private keys in their possession, such as TLS or SSH session keys. The User should report to the CO if any irregular activity is noticed.

3.4 Non-Approved Mode

When initialized and configured according to the Crypto-Officer guidance in this *Non-Proprietary Security Policy*, the module does not support a non-Approved mode of operation.

4. Acronyms

This section describes the acronyms used throughout this document.

Table 19 Acronyms

Acronym	Definition
AC	Alternating Current
AD	Active Directory
AES	Advanced Encryption Standard
BMC	Baseboard Management Controller
BTO	BlueTouch Online
CA	Certificate Authority
CBC	Cipher Block Chaining
CFB	Cipher Feedback
CIFS	Common Internet File System
CLI	Command Line Interface
CMVP	Cryptographic Module Validation Program
CO	Crypto-Officer
CRNGT	Continuous Random Number Generator
	Test
CSE	Communications Security Establishment
CSP	Critical Security Parameter
DH	Diffie Hellman
DNS	Domain Name System
DRBG	Deterministic Random Bit Generator
ECB	Electronic Codebook
ECDHE	Elliptic Curve Diffie-Hellman Ephemeral
EDC	Error Detection Code
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
FIPS	Federal Information Processing Standard
FTP	File Transfer Protocol
HMAC	Hash-Based Message Authentication
	Code
HTTP	Hypertext Transfer Protocol
HIIPS	Secure Hypertext Transfer Protocol
	Internet Protocol
KAI	Known Answer Lest
LCD	Liquid Crystal Display
LED	Light Emitting Diode
MAC	Message Authentication Code
NIC	Network Interface Card

© 2017 Symantec Corporation

43 of 44

Updated 5 Jun 2017

© 2017 Symantec Corporation All rights reserved. Symantec, the Symantec logos, ProxySG, PacketShaper, CacheFlow, IntelligenceCenter, CacheOS, CachePulse, Crossbeam, K9, the K9 logo, DRTR, MACH5, PacketWise, PolicyCenter, ProxyAV, ProxyClient, SGOS, WebPulse, Solera Networks, the Solera Networks logos, DeepSee, "See Everything. Know Everything.", "Security Empowers Business", and BlueTouch are registered trademarks or trademarks of Symantec Corporation or its affiliates in the U.S. and certain other countries. This list may not be complete, and the absence of a trademark from this list does not mean it is not a trademark of Symantec or that Symantec has stopped using the trademark. All other trademarks mentioned in this document owned by third parties are the property of their respective owners. This document is for informational purposes only. Symantec makes no warranties, express, implied, or statutory, as to the information in this document.

Acronym	Definition
NIST	National Institute of Standards and Technology
RSA	Rivest Shamir Adleman
SAS3	Serial Attached SCSI 3
SHA	Secure Hash Algorithm
SSH	Secure Shell
TLS	Transport Layer Security
USB	Universal Serial Bus
WAN	Wide Area Network

© 2017 Symantec Corporation

44 of 44

Updated 5 Jun 2017

© 2017 Symantec Corporation All rights reserved. Symantec, the Symantec logos, ProxySG, PacketShaper, CacheFlow, IntelligenceCenter, CacheOS, CachePulse, Crossbeam, K9, the K9 logo, DRTR, MACH5, PacketWise, PolicyCenter, ProxyAV, ProxyClient, SGOS, WebPulse, Solera Networks, the Solera Networks logos, DeepSee, "See Everything. Know Everything.", "Security Empowers Business", and BlueTouch are registered trademarks or trademarks of Symantec Corporation or its affiliates in the U.S. and certain other countries. This list may not be complete, and the absence of a trademark from this list does not mean it is not a trademark of Symantec or that Symantec has stopped using the trademark. All other trademarks mentioned in this document owned by third parties are the property of their respective owners. This document is for informational purposes only. Symantec makes no warranties, express, implied, or statutory, as to the information in this document.